
Fostering the Reuse and Collaborative Development
of Models in the AMS SoC Design Process

Torsten Mähne, Alain Vachoux, and Yusuf Leblebici
Laboratoire de Systèmes Microélectroniques (LSM), École Polytechnique Fédérale de Lausanne (EPFL)

EPFL/STI/IMM/LSM, Bâtiment ELD, Station 11, CH-1015 Lausanne, Switzerland
Phone: +41(21)69-36922, Fax: +41(21)69-36959, WWW: http://lsm.epfl.ch/, E-Mail: torsten.maehne@epfl.ch

Abstract—Systems-on-Chips (SoCs) integrate more and more
heterogeneous components: analog/RF/digital circuits, sensors,
actuators, software. For the design of these systems very different
description formalisms, or Models of Computation (MoCs), and
tools are used for the different subblocks and design stages,
which often create interoperability problems. Additionally the
verification of a complete SoC is difficult due to huge performance
problems. The goal of this Ph.D. work is to develop an efficient
modeling and simulation platform that supports the design of
mixed-signal SoCs using component models written in different
design languages and using different MoCs. One component
of this work is the development of a web-based platform for
collecting behavioral models and supporting the design of Analog
and Mixed-Signal (AMS) SoCs. Its current state and an outlook
on its further development is the focus of this paper.

I. I
The design of SoCs has currently to address a number of sig-

nificant issues, namely: increasing complexity (computing and
communication capabilities), significant heterogeneity (analog,
RF and digital hardware, embedded software, sensors, actu-
ators), increasing environmental awareness (energy saving,
environmental monitoring and interaction), increasing sensi-
tivity to silicon technologies (deep sub-micron technological
processes), and increasing reuse of subsystems (ever shrinking
time to market). One difficulty in solving these issues while
designing a mixed-signal SoC is the usage of a diversity of
specialized EDA tools, design languages and design formats
that are usually efficiently supporting only one aspect, i.e., RF,
analog, or digital, of the complete mixed-signal system. Fur-
thermore, the design’s heterogeneity requires a diversity of
description formalisms, also called Models of Computation
(MoCs), analysis and simulation methods. It is still difficult to
handle all the different design aspects simultaneously. Design-
ers are forced to bridge the gaps between tools and method-
ologies using manual conversion of models, proprietary tool
couplings, and tool integrations. This makes the design process
overly complicated, error-prone and time consuming. Another
very important issue is the capability to perform efficient
overall system verification in the early phases of the design
process. System verification is based on the development of
virtual prototypes [1] of the complete heterogeneous system.
Its main goals are to support architecture exploration, perfor-
mance estimations, validation of reused parts, verification of
the interfaces between MEMS, RF, analog, and digital parts,

This work has been funded by the Hasler Stiftung under project № 2161.

the interoperability with other systems, and the assessment of
the impacts of the future working environment and the used
manufacturing technologies. Modeling tasks are therefore at
the heart of the V-shaped SoC design process (Fig. 1). The
management of the created models of a device, component,
or the whole system on different abstraction levels is one
important aspect since the model development itself is not
easy for several reasons:

• The block heterogeneity requires specific knowledge
about the involved physical domains.

• To formalize his intend into a model, the designer needs
to know the design languages, methodologies, and tools.

• The model needs to be adapted to tools for specific design
task, e.g., simulation, verification, optimization, synthesis.

• The model should contain only the necessary details to
fulfill a design task within a reasonable execution time.

The reuse of models with possible adjustment to the new
task is one important element of any effort to shorten the
design time but is complicated by two important issues. First,
designers are often not aware if and where a similar model
is already existing. Second, the designer has to gain trust
in the validity of the model for his specific task, which is
more difficult to achieve for foreign models because of the
so-called “Not invented here” syndrome. To overcome these
problems, the models need to be documented regarding their
interface, implementation, extend of covered effects, how they
were verified, and other general properties. The designer needs
to understand from this information the model structure and
its functionality as well as to judge, if it is suitable for a given
task. It has to be clear, which tools the model is expected
to be compatible with. The ModelLib project aims to solve
this through the development of a web-based platform to
improve the access to and reuse of model collections. It shall
allow to gather behavioral models, to validate collected models
through collaborative review and development, to organize
meta-model information, and to allow queries supporting the
top-down and bottom-up design approaches. [2] ModelLib is
realized as an open-source framework, but will implement
appropriate IP protection mechanism for the stored documen-
tation and models. This way, sensitive models may be kept
from unauthorized use, while still keeping access to the related
meta information. Its current state and an outlook on its further
development is the focus of this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147927883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Recursions

Requirements

analysis

Component

design

System design

Acceptance test

System test

Component test

Problem definition Product performance

System performanceSystem specification

Component specification Component performance

To
p
-d

o
w

n
te

ch
n
iq

u
e
s

(p
a
rtitio

n
in

g
,

a
rch

ite
ctu

ra
l exp

lo
ra

tio
n
,
syn

th
e
sis) B

o
tt
o
m

-u
p

te
ch

n
iq

u
e
s

(m
e
a
su

re
m

e
n
ts

,

m
o
d
e
l c

a
lib

ra
tio

n
,
R

O
M

m
e
th

o
d
s)

Implementation/Layout Manufacturing

Functional

models

Behavioural

models

Physical

models

Fig. 1. V-model of the design process of an AMS SoC

II. R M L

A model library can be set up on different organizational
levels, e.g., within an project group, a company, or as a
community portal on the Internet. The use cases (Fig. 2) for
the AMS designer accessing the library server through a client
include submitting, retrieving, and collaboratively developing
the models over the Internet. However, the demands for
security and required detail of access control rise with each
level of broader access. The communication between client
and server needs to be done through an encrypted channel.
Users have to authenticate themselves so that the information
stored in the library can be selectively made available. This is
needed to protect the Intellectual Property (IP) of the authors
and to support the conformance to their license terms, under
which they are making their work available to the public or
a restricted group of users. The users of the model library
can be categorized into five basic roles with a different profile
of allowed actions. The guest is anonymous and has thus the
minimum rights. He can only browse for a limited collection
of public models, send queries about their meta information,
and retrieve their source code by checking it out from a public
repository. By authenticating himself with a valid user name
and password, he can become an authorized user, who gains
further rights dependent on his membership in different groups.
These groups grant or deny him access to the different parts of
the library (the different models, test benches, and documents
themselves, as well as the supplementary meta information
about them). He can participate in the review process by
discussing the models, test benches, and documents stored in
the library. He can also contribute to their development by
submitting new models, adding/editing of the meta information
about them, and organizing them into different categories
called model classes. EDA tools need also a direct access to
the model library and are a special form of an authorized
user. There are two privileged roles. The content manager
configures accounts and access rights of the users, reviews
their submitted models, test benches, and documents, and
adds commonly used information about supported design
languages and tools. The system administrator is responsible
for maintenance and development of the library platform.

One way to access the models in the library is to directly
browse through the collection of available models. For this
they need to be sorted into a hierarchy of model classes. After
selecting a model, the user is presented the meta information
describing the properties of the model, which can be detailed

System maintenance

Authentication

Configure accounts
and access control

Access control

Browse for
a model

Edit model class
hierarchy

Query for
meta information

Add/edit models,
test benches, documents

Review submitted
models, test benches,

documents

Add/edit information
about design languages

and design tools

Meta information database

Discuss models,
test benches, documents

Wiki

Checkout files
or documents

Commit files
or documents

Repository

ModelLib

Guest

Authorized
user

EDA tool

System
administrator

Content
manager«follows»

«requires»

«includes»

«includes»

«includes»

«includes»

«includes»

«follows»

«includes»

«includes»

Fig. 2. Use cases of a model library

into structural meta information describing “How the model
is built?” and semantical meta information describing “How
the model can be used?”. The structural meta information
describes the following aspects:
• Name and storage place of the model within the

model class hierarchy;
• Interface, including detailed information about all param-

eters and ports as well as the assertions associated to it;
• One or more model implementations (architectures) in the

form of behavioral and/or structural description(s);
• Design entities, each one gathering the interface and

one model implementation using a particular design lan-
guage (e.g., VHDL-AMS) and tested against particular
tools (e.g., simulators or synthesizers); and

• Test benches to validate design entities along with
test data and expected results.

To each of these aspects, an arbitrary number of references
to external documents can be given. Fig. 4 from the Mod-
elLib prototype shows one way of presenting the structural
meta information to the user.

The semantical meta information further characterizes a
model regarding its fidelity, performance, and usage as de-
scribed for example in [3] and includes, e.g.:
• Model refinement level: Pins (named interface but no

internal features), Static (time-invariant, steady-state in-
ternal behavior), Dynamic (time-varying behavior), Pre-
cision (including significant amount of second order ef-
fects), Vector (model with directional or spatial interface).

• Model of Computation (MoC): on which the model is
based, e.g., Discrete-Event (DE), Finite State Machine
(FSM), signal flow, conservative network, bond graph.

• Feature properties: describe to which extent (e.g., static,
dynamic) a certain aspect of the component behavior

is captured by a model, on which physical effect (e.g.,
self-heating, noise) it is based, and how it influences the
component performance criteria (e.g., gain, bandwidth).

• Model validity: describing under which assumptions and
operating conditions a model is valid.

• Suitability for design tasks: e.g., architecture exploration,
area/power estimation, bottom-up verification.

• Keywords: to index a model.
• Execution capabilities: Depending on its implementation,

a model is suitable for different types of execution,
notably simulation and synthesis. The results obtained
from the model execution need to be characterized.
A model can support for simulation different analysis
types (e.g., DC, transient, small signal, and stability
analysis). For each analysis type, the model can give
different results (e.g., current, voltage, power, failure).
Each result can be in a different form like Flag, Message,
Scalar, Waveform, or Relation. Synthesis transforms a
model through an algorithm into another model. During
top-down design, details are added in each synthesis
step. During bottom-up design, models can be simplified
through reduced-order modeling methods to make them
suitable for simulation on higher levels of abstraction.

It is possible to include all this supplementary information
into free-form description fields, but for large model collec-
tions it is better to structure them as far as possible and to
store them in an adapted data structure.

III. I ML P

A running prototype of ModelLib [2], [4] implements basic
features of a model library. Fig. 3 shows its architecture relying
on several open-source tools (PostgreSQL, Apache 2, Subver-
sion/WebSVN, and YaWiki) and how its components interact.
The lower part of the figure shows the different user created
documents managed by the ModelLib server. The file revisions
of the documents are stored in the Subversion repository. The
meta information about models and accompanying documents
are stored in the meta information database. Informal texts,
like discussions and HOWTOs, are stored in the wiki database.
Both databases are managed by a PostgreSQL server. The
user interfaces provide the access to the data storages and
are implemented on an Apache 2 web server using PHP. This
has the advantage that users can access ModelLib over the
Internet using a standard web browser. WebSVN allows the
comfortable browsing of the Subversion repository. On the
user side, the file revisions of the models and documents
are managed by the Subversion client. It also provides the
possibility to commit them to and update them from the
repository. YaWiki serves as a platform to discuss and jointly
develop the documentation of the models. The developed Mod-
elLib web interface (Fig. 4) allows the browsing for a model
through a hierarchy of model classes. The meta information
about models, test benches, design languages, design tools,
and documents can be displayed. New models can be added by
committing them into the repository and adding/editing their
meta information using the web interface.

WebSVN ModelLib YaWiki

Web browserSubversion client

Storage

backend

Informal texts, e.g.,

discussions, HOWTOs

Aux. Documents

regarding models

languages,

and tools

source code

Model

User web

interface

User created

documents

Meta information

database

(PostgreSQL)

File

repository

(Subversion)

Wiki

database

(PostgreSQL)

Client

File revisions Meta information

HTTP/WebDAV
ModelLib server

Test benches

and their results

Fig. 3. Architecture of the ModelLib prototype

Fig. 4. User interface of the ModelLib prototype

The meta information describing the properties of the mod-
els is stored in a relational database. It currently considers
the model class hierarchy, the information about referenced
external documents, the information about available design
language and tool versions, and the meta information about in-
terface, architectures, assertions, design entities, test benches,

Model class

Interface

Architecture

Design entity

from parent

Architecture parameter

Architecture assertion

Interface port

Interface parameter

Interface assertion

FileDocument

Fig. 5. Access rights inheritance between the tables storing the model
meta information. Tables written in bold have an own ACL, which is merged
with the inherited rights definitions. Documents and Files are not inheriting
from other instances because they can be shared between several models.

and files of the models. This fully covers the structural meta in-
formation described in Section II. The structural meta infor-
mation is not yet implemented in the database structure and
can be stored, currently, only as free-form descriptions.

IV. F-G H A CM
 M I

One important aspect for the success of a model library
is the management of IP represented by the models. A
fine-grained access control mechanism is thus necessary to
disclose selectively information to different user groups. For
example, the public might only have access to high-level
models of a component or only the full interface information
plus a compiled/encrypted model, whereas a customer of the
design company has full read access to the documentation
and the model sources, and the model developers themselves
have full read/write access to all information. Subversion and
YaWiki already implement mechanisms to limit the access to
files/wiki pages with respect to the user and its group member-
ships using ACLs. But the meta information about the models
stored in the relational database is the real key to the models in
the repository and the documents in the wiki and may contain
sensitive information. The Relational Database Management
System (RDBMS) PostgreSQL provides authentication and
access control mechanisms through its role concept and the
grant/deny of privileges on tables, views and function exe-
cution. Each role can be member of other roles permitting
the common definition of privileges. But the definition of
privileges on the table level is too coarse in the case of the
model library, since common information to all models, e.g.,
about the interface, are stored in the same table. That is why a
tuple-wise (per table row) access control mechanism has been
implemented additionally inside the database using only the
features provided by the RDBMS [5].

In the chosen approach, the Select, Update, Delete, and
Insert rights on the tables are granted only to the adminis-
trators (members of role mladmin). The authorized users and
guests (members of mluser and mlguest) are granted only the
Select right on views to which the rows from the underlying

tables are propagated selectively according to the entries in
an additional ACL table for the roles the database user is
member of. The authorized users have also the Update, Delete,
and Insert rights granted on the views. The modification of
the view data is propagated back to the underlying tables
using rules [6], which drop modifications not allowed by the
entries of the attached ACL. The rights administration would
be too tedious, if the rights were specified for each single
tuple. That is why a rights inheritance scheme (Fig. 5) has
been implemented into the view queries and rules allowing to
reuse the rights defined on entities higher in the hierarchy and
permitting their overriding through the local ACL.

The implementation on the database layer has the advantage
that it simplifies the development of the higher (application
logic and presentation) layers and that it allows the reuse of
the access control implementation for different interfaces (e.g.,
web interface and EDA tool links).

V. C O
The developed ModelLib prototype implements basic use

cases of a model library to foster the reuse and collaborative
development of models in the AMS SoC design process. A
fine-grained access control mechanism has been implemented
recently on the database layer. The next steps in the ongoing
development are the redesign and reimplementation of the
business logic and presentation tiers using Java Platform,
Enterprise Edition (Java EE) to improve the modularity of
the data storage, application logic, and presentation layers and
to realize direct EDA tool access through an API. Another
important task is to support the structured storage of the
semantical meta information, which characterize the fidelity,
usage, performance, and other properties of the model. Elabo-
rated query schemes need to be implemented into the web in-
terface to guide the designer in the selection of a suitable
model for his current task. Further goals are completion of the
web interface functionality, better integration of the different
software components, and automatization of the model import.

R
[1] T. Mähne, K. Kehr, A. Franke, J. Hauer, and B. Schmidt, “Creating virtual

prototypes of complex MEMS transducers using reduced-order modelling
methods and VHDL-AMS,” in Applications of Specification and Design
Languages for SoCs: Selected papers from FDL 2005, ser. The ChDL
series. Springer, Oct. 2006, pp. 135–153.

[2] T. Mähne and A. Vachoux, “ModelLib: A web-based platform for
collecting behavioural models and supporting the design of AMS sys-
tems,” in Forum on Specification and Design Languages (FDL) 2006.
Darmstadt University, Germany: ECSI, Sep. 19–22 2006, pp. 91–97.
[Online]. Available: http://infoscience.epfl.ch/search.py?recid=88137

[3] SAE Electronic Design Automation Standards Committee, Model Speci-
fication Process Standard, SAE: The Engineering Society For Advancing
Mobility Land Sea Air and Space International Std. J2546, 2002.

[4] T. Mähne. (2006, Jul. 13) ModelLib prototype. Laboratoire de
Systèmes Microélectroniques (LSM), École Polytechnique Fédérale de
Lausanne (EPFL). [Online]. Available: https://lsmpc4.epfl.ch/modellib/

[5] T. Böhm, “Development of a web-based application for collecting models
and supporting the design of AMS systems,” Diplomarbeit, Otto-von-
Guericke-Universität Magdeburg, Fakultät für Informatik (FIN), Post-
fach 4120, D-39016 Magdeburg, Jan. 2007.

[6] PostgreSQL 8.1.8 Documentation, The PostgreSQL Global Development
Group, 1996–2005. [Online]. Available: http://www.postgresql.org/docs/
8.1/interactive/index.html

