
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur informaticien diplômé EPF
de nationalités suédoise et suisse et originaire de Rosières (SO)

acceptée sur proposition du jury:

Lausanne, EPFL
2007

Prof. K. Aberer, président du jury
Prof. A. Schiper , directeur de thèse

Prof. D. Malkhi, rapporteur
Prof. N. Suri, rapporteur

Prof. W. Zwaenepoel, rapporteur

Atomic Broadcast:
a Fault-Tolerant Token Based Algorithm and

Performance Evaluations

Nils Richard Ekwall

THÈSE NO 3811 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 31 MAI 2007

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Laboratoire de systèmes répartis

SECTION D'INFORMATIQUE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147927874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Within only a couple of generations, the so-called digital revolution has
taken the world by storm: today, almost all human beings interact, directly
or indirectly, at some point in their life, with a computer system. Comput-
ers are present on our desks, computer systems control the antilock brak-
ing system and the stability control in cars, they collect usage statistics in
elevators in order to anticipate maintenance and repair operations. Com-
puter systems also operate critical systems, such as nuclear power plants,
airplane control systems or space rockets. Furthermore, computer systems
are not only omnipresent, but also increasingly networked.

As the use of computer systems has increased dramatically over the
past decades, the needs and expectations associated with these systems
have also increased. In particular, one of the critical points of a system
is its availability (the fraction of the time during which the system provides
a service to the users): the costs and negative publicity of a system out-
age (be it a commercial web site or a stock exchange for example) are often
considerable.

Fault tolerance is one of the approaches to designing a highly-available
system: a fault tolerant system is designed in such a way that the failure of
one of the components of the system does not compromise the functionality
of the system as a whole. Replication is one of the common fault tolerance
techniques. Instead of having a single machine (a replica) providing a ser-
vice, the system is composed of several replicas running the service and
connected through a network. If one of the replicas fails, the service is still
provided by the remaining replicas. The replication technique is interesting
as it can be achieved by using software running on commodity hardware,
thus avoiding the high cost of special purpose hardware.

Replication, although intuitive to understand, is complex to implement
in practice, as the replicas have to interact in order to ensure the consistency
of the system as a whole. Group communication simplifies the replication
problem, by hiding issues such as the communication between the repli-
cas, the crashes of one or several replicas and the synchronization of the
replicas.

In this thesis, we start by comparing two replication techniques — group
communication and quorum systems — and identifying in which case ei-
ther technique should be used. Atomic broadcast (a group communication
primitive at the heart of this work) allows replicas to broadcast messages

i

Abstract

to each other and then deliver them in the same total order, even if replicas
broadcast messages quasi simultaneously. Atomic broadcast is especially
useful for replication: since all replicas deliver messages in the same order,
their state is kept consistent.

After the comparison between the replication techniques, we present an
atomic broadcast algorithm designed to perform well when the system is
heavily loaded and that allows to quickly detect crashed replicas (by min-
imizing the consequences of wrongly suspecting a non-crashed replica).
The presentation of the algorithm includes simulation results comparing
the performance of the new algorithm to previously proposed atomic broad-
cast algorithms.

The second part of the thesis focuses on the experimental performance
evaluation of the new algorithm in several settings. We start by comparing
four atomic broadcast algorithms in a local area network. We then compare
three of the four algorithms in a wide area network, with sites in Switzer-
land, Japan and France, and where the round trip time between the sites
varies between 4 and 300 ms. Finally, we evaluate the impact of the size of
the system (the number if replicas) on the performance of the algorithms.

Keywords: replication, fault tolerance, distributed algorithms, group com-
munication, agreement problems, consensus, atomic broadcast, token based
algorithms, failure detectors, performance evaluation, scalability, local area
network, wide area network.

ii

Résumé

En seulement deux générations, la révolution numérique a conquis le
monde : aujourd’hui, quasiment tous les êtres humains interagissent, di-
rectement ou indirectement, à un moment de leur vie, avec un système
informatique. Les ordinateurs sont présents sur nos bureaux ; les systèmes
informatiques gèrent les freins ABS et le contrôle de la trajectoire de nos
voitures et collectent des statistiques d’utilisation dans les ascenseurs afin
d’anticiper les opérations de maintenance et de réparation. L’informatique
est également utilisée dans les systèmes critiques, tels que les centrales nu-
cléaires, le contrôle aérien ou les fusées spatiales. De plus, les systèmes in-
formatiques sont non seulement omniprésents, mais de plus en plus sou-
vent reliés en réseau.

Avec l’augmentation considérable de l’utilisation de systèmes informa-
tiques, les besoins et attentes associés à ces systèmes ont aussi augmenté.
En particulier, un des points critiques d’un système est sa disponibilité (la
fraction du temps durant laquelle le système fournit un service aux utili-
sateurs) : les coûts et la publicité négative d’une panne du système (que
ce soit un serveur web commercial ou un marché financier) sont souvent
considérables.

La tolérance aux pannes est une des approches pour concevoir un sys-
tème à haute disponibilité : un système tolérant aux pannes est conçu de
telle manière à ce que la panne d’un des composants du système ne com-
promette pas la fonctionalité du système dans son ensemble. La répliction
est une des techniques communes de tolérance aux pannes. Au lieu d’avoir
une seule machine (une réplique) qui fournit un service, le système est com-
posé de plusieurs répliques, reliées à un réseau et qui fournissent chacune
le service. Si une des répliques tombe en panne, le service est toujours as-
suré par les répliques restantes. La technique de la réplication est intéres-
sante, car elle peut être mise en œuvre avec des logiciels qui s’exécutent
sur du matériel informatique standard, évitant ainsi le coût élevé associé
au matériel informatique conçu sur mesure

La réplication, bien qu’intuitive, est complexe à implémenter en pra-
tique, étant donné que les répliques doivent interagir afin d’assurer la co-
hérence du système en entier. La communication de groupe simplifie la
réplication, en cachant les problèmes tels que la communication entre les
répliques, les pannes d’une ou plusieurs répliques et la synchronisation
entre répliques.

iii

Résumé

Cette thèse débute par une comparaison de deux techniques de répli-
cation — la communication de groupe et les systèmes de quorum — qui
identifie dans quel cas une technique est mieux adaptée que l’autre. La dif-
fusion atomique (une primitive de communication de groupe au cœur de
ce travail) permet aux répliques de diffuser des messages entre eux et de
tous les délivrer dans le même ordre, même si certaines répliques diffusent
des messages quasi-simultanément. La diffusion atomique est particulière-
ment utile pour la réplication : puisque toutes les répliques délivrent les
messages dans le même ordre, la cohérence de leur état est maintenu.

Après la comparaison des deux techniques de réplication, nous présen-
tons un algorithme de diffusion atomique conçu pour de bonnes perfor-
mances lors d’une charge élevée sur le système, et qui permette de rapi-
dement détecter les pannes éventuelles des répliques (en minimisant les
conséquences négatives d’une suspicion à tort d’une réplique qui n’est pas
en panne). La présentation de l’algorithme inclut des résultats de simula-
tions qui comparent la performance du nouvel algorithme par rapport à
d’autres algorithmes de diffusion atomique proposés par le passé.

La seconde partie de cette thèse se focalise sur l’évaluation expérimen-
tale de la performance du nouvel algorithme dans plusieurs situations.
Nous commençons par comparer quatre algorithmes de diffusion atomique
dans un réseau local. Nous comparons ensuite trois des quatre algorithmes
dans un réseau étendu, avec des sites en Suisse, au Japon et en France, et
où les temps aller retour entre sites varient de 4 à 300 ms. Finalement, nous
évaluons l’impact de la taille du système (le nombre de répliques) sur la
performance des algorithmes.

Mots-clés : réplication, tolérance aux pannes, algorithmes répartis, com-
munication de groupe, problèmes d’accord, consensus, diffusion atomique,
algorithmes basés sur des jetons, détecteurs de panne, évaluation de per-
formance, extensibilité, réseau local, réseau étendu.

iv

Acknowledgments

A thesis is usually a long endeavor that requires countless hours of work
and support to be completed. This thesis was no exception to this rule, and
there are thus many people without whom this work would not have been
possible.

First and foremost, I would like to thank my supervisor, Prof. André
Schiper, for his trust and advice throughout these five years at the Dis-
tributed Systems Laboratory (LSR). André gave me the opportunity to par-
ticipate in the REMUNE IST European project, allowing me to get a glimpse
of the processes and inner workings of a large-scale industrial project, while
still working in an academic environment. Thesis supervisors with André’s
qualities are scarce and it was truly a privilege completing this thesis under
his guidance.

I would also like to thank Péter Urbán, who supervised my first student
project at LSR. What started as a semester project eventually became the
Chapter 6 of this thesis. While working with Péter, I also gained an initial
insight into the issues of performance evaluation, a theme that is central to
this thesis.

Reviewing a thesis requires a significant amount of time and effort. I
therefore wish to express my appreciation to the members of the thesis jury:
Prof. Dahlia Malkhi, Prof. Neeraj Suri and Prof. Willy Zwaenepoel, as well
as the president of the jury, Prof. Karl Aberer.

Furthermore, I am grateful to Prof. Xavier Défago and Matthias Wies-
mann, as well as Prof. Pierre Sens, for the access to the infrastructures in
Japan and France respectively, which was essential for the performance
evaluations in Chapters 8 and 9.

My gratitude also goes to all the colleagues and friends from LSR, with
whom I had a chance to work, share a couple of beers at Satellite or en-
joy one of the lab’s ski days. In particular, I would like to thank David
Cavin, Sergio Mena, Yoav Sasson, Arnas Kupšys, Stefan Pleisch, Olivier
Rütti, Paweł Wojciechowski, Fatemeh Borran-Dejnabadi, Martin Hutle and
Nuno Santos. I am also very grateful to France Faille for her kind help in
dealing with all the administrative issues that arose during these years.

Last, but definitely not least, I wish to thank all my friends and family
for their support and the good times during these years at EPFL. Without
them, this adventure would by far not have been as enjoyable as it was. I
especially thank Céline for these wonderful years side by side, my parents
for their continuous encouragements and my brother, Thomas, for the great
moments together.

v

Acknowledgments

vi

Contents

1 Introduction 1

1.1 Research context and motivation 1
1.2 Research contributions . 4
1.3 Structure of the thesis . 6

2 Replication: understanding the advantage of
atomic broadcast over quorum systems 9

2.1 Different isolation degrees . 10
2.2 No isolation . 11
2.3 ”Read-write” isolation only 12

2.3.1 Read-write isolation and the consensus problem . . . 12
2.3.2 Implementing read-write isolation with quorums . . 13
2.3.3 Implementing read-write isolation with atomic broad-

cast . 13
2.3.4 Discussion . 15

2.4 General isolation . 15
2.5 Discussion . 16

Part I Solving Atomic Broadcast with Failure
Detectors and Token based Algorithms

3 System models and definitions 21

3.1 System models . 21
3.1.1 Failure modes . 21
3.1.2 Synchrony . 23
3.1.3 The Heard-Of model 27

3.2 Agreement problems . 28
3.2.1 Consensus . 29
3.2.2 Reliable broadcast . 29

vii

Contents

3.2.3 Atomic broadcast . 30

4 Token based atomic broadcast 31

4.1 Token based atomic broadcast using unreliable failure detec-
tors . 31
4.1.1 Introduction . 31
4.1.2 System model and definitions 34
4.1.3 Failure detectorR . 35
4.1.4 Token based consensus 37
4.1.5 Token based atomic broadcast algorithms 43
4.1.6 Simulation Results . 47
4.1.7 Related work . 58
4.1.8 Discussion . 58

4.2 Variants and optimizations of the token based algorithm . . 59
4.2.1 Unbounded adelivi set of ordered messages 60
4.2.2 Bounded-size adelivi set of ordered messages 61

4.3 Adapting the algorithm to the Heard-Of model 64
4.3.1 Description of the algorithm 65
4.3.2 Heard-Of predicates 68
4.3.3 Discussion . 69

5 Solving atomic broadcast with indirect
consensus 71

5.1 Motivation and indirect consensus 72
5.1.1 Atomic broadcast on message identifiers 72
5.1.2 Violating the Validity of atomic broadcast 74
5.1.3 Indirect consensus . 75
5.1.4 Reducing atomic broadcast to indirect consensus . . 76

5.2 Solving indirect consensus . 77
5.2.1 Conditions on the correctness of indirect consensus

algorithms . 77
5.2.2 Adapting Chandra-Toueg’s �S consensus algorithm 79
5.2.3 Adapting Mostéfaoui-Raynal’s �S consensus algo-

rithm . 83
5.3 Performance measurements 88

5.3.1 System setup and the Neko framework 88
5.3.2 Performance metric: latency versus throughput and

message size . 88
5.3.3 Performance results: overhead of indirect consensus 90
5.3.4 Performance results: comparison of two correct ap-

proaches . 91

viii

Contents

5.3.5 Overview of the performance results 91
5.4 Discussion . 93

Part II Experimental Evaluation of Atomic
Broadcast Algorithms

6 Robust TCP connections for fault tolerant
computing 97

6.1 Design of the protocol . 99
6.1.1 Requirements . 99
6.1.2 Issues at the session layer 100
6.1.3 The problem of control messages 101

6.2 The session layer protocol . 103
6.2.1 Opening a connection and reconnection 104
6.2.2 Data exchange . 104
6.2.3 Closing the connection 105
6.2.4 Handling TCP errors 105
6.2.5 UDP control messages 105

6.3 Java Implementation . 106
6.3.1 Classes . 106
6.3.2 Integration into Java 107

6.4 Performance . 107
6.5 Related work . 109
6.6 Discussion . 110

7 Comparing atomic broadcast algorithms in a
local area network 111

7.1 Algorithms . 112
7.1.1 Chandra-Toueg atomic broadcast algorithm 112
7.1.2 Moving sequencer atomic broadcast algorithm 113

7.2 Elements of our performance study 114
7.2.1 Performance metrics and workloads 115
7.2.2 Faultloads . 115
7.2.3 Implementation framework and issues 117
7.2.4 Evaluation environment 118

7.3 Results . 118
7.3.1 Comparing failure detector based implementations . 118
7.3.2 Comparing token based implementations 125

ix

Contents

7.4 Discussion . 130

8 Modeling and validating the performance of
atomic broadcast algorithms in high latency
networks 133

8.1 Motivation and Related Work 134
8.1.1 The trade-off between number of messages and com-

munication steps . 135
8.1.2 Related work . 136

8.2 System model . 137
8.2.1 Reliable broadcast, consensus and atomic broadcast . 137
8.2.2 Two consensus algorithms 138
8.2.3 Two atomic broadcast algorithms 138

8.3 Performance metrics and workloads 140
8.3.1 Performance metric – latency vs. throughput: 140
8.3.2 Workloads: . 140

8.4 Modeling the performance of the algorithms 141
8.4.1 The three phases of atomic broadcast. 141
8.4.2 Wide-area network with three locations. 142
8.4.3 Wide-area network with two locations. 143

8.5 Experimental performance evaluation 144
8.5.1 Evaluation environments 145
8.5.2 Validation of the model with the experimental results 146
8.5.3 Comparing the performance of the three algorithms . 148

8.6 Discussion . 150

9 On the scalability of atomic broadcast
algorithms 153

9.1 System model . 156
9.1.1 System model, consensus and atomic broadcast . . . 156

9.2 Scalable atomic broadcast . 158
9.2.1 Presentation of the algorithm 158
9.2.2 Benefits and drawbacks of the scalable algorithm . . 160
9.2.3 Proof of correctness . 161
9.2.4 Optimizations . 162

9.3 Performance evaluation . 164
9.3.1 Performance metrics, workload and the implementa-

tion framework . 164
9.3.2 Evaluation environment 166
9.3.3 Results of the performance measurements 168

x

Contents

9.4 Discussion . 178

10 Conclusion 181

10.1 Research assessment . 181
10.1.1 Atomic broadcast . 181
10.1.2 Experimental performance evaluations 183

10.2 Open questions and future research directions 184

A Agreement algorithms 197

A.1 Reliable broadcast . 197
A.2 Consensus . 198

A.2.1 Chandra-Toueg consensus 198
A.2.2 Mostéfaoui-Raynal consensus 200

A.3 Atomic broadcast . 202
A.3.1 Chandra-Toueg atomic broadcast 202
A.3.2 Moving sequencer uniform atomic broadcast 204

B Modeling and validating the performance of
atomic broadcast algorithms in high latency
networks 211

B.1 Analytical performance in a wide area network with three
locations . 211
B.1.1 Chandra-Toueg atomic broadcast 211
B.1.2 TokenFD atomic broadcast 213

B.2 Analytical performance in a wide area network with two lo-
cations . 216
B.2.1 Chandra-Toueg atomic broadcast 217
B.2.2 TokenFD atomic broadcast 221

xi

Contents

xii

List of Figures

3.1 Example of two rounds r and r + 1 in the Heard-Of model,
from the point of view of a process p1 28

4.1 Example execution of the token based consensus algorithm . 41
4.2 The Neko simulation model 48
4.3 Latency vs. throughput with a normal-steady faultload, n = 3

correct processes . 50
4.4 Latency vs. throughput with a crash-steady faultload, one crashed

process (n = 3 processes) . 50
4.5 Latency overhead vs. throughput with a crash-transient fault-

load, one crash, TD = 0ms, n = 3 processes 51
4.6 Latency overhead vs. throughput with a crash-transient fault-

load, one crash, TD = 100ms, n = 3 processes 51
4.7 Latency vs. mistake recurrence time TMR with a suspicion-

steady faultload, n = 3 processes, low throughput 52
4.8 Latency vs. mistake recurrence time TMR with a suspicion-

steady faultload, n = 3 processes, high throughput 52
4.9 Latency vs. throughput with a normal-steady faultload, n = 5

(CT, MR) and n = 7 (TokenFD) correct processes 54
4.10 Latency vs. throughput with a crash-steady faultload, two crashed

processes, n = 5 (CT, MR) or n = 7 (TokenFD) 54
4.11 Latency overhead vs. throughput with a crash-transient fault-

load, two crashes, detection time TD = 0ms 55
4.12 Latency overhead vs. throughput with a crash-transient fault-

load, two crashes, detection time TD = 100ms 55
4.13 Latency vs. mistake recurrence time TMR with a suspicion-

steady faultload, n = 5 (CT, MR) and n = 7 (TokenFD) pro-
cesses, low throughput . 56

4.14 Latency vs. mistake recurrence time TMR with a suspicion-
steady faultload, n = 5 (CT, MR) and n = 7 (TokenFD) pro-
cesses, high throughput . 56

4.15 Illustration of Lemma 4.2.2 . 62

5.1 Latency vs. message size in a system with 3 processes 73
5.2 Latency vs. message size in a system with 5 processes 73

xiii

List of Figures

5.3 Illustration of the violation of the Validity of atomic broadcast
if consensus is executed directly on message identifiers . . . 75

5.4 Intersection of the estimates received by two processes p and
q (n = 7 processes and f = 2 85

5.5 Latency vs. throughput of indirect consensus or (faulty) con-
sensus . 89

5.6 Latency vs. payload of indirect consensus or (faulty) consensus 89
5.7 Latency vs. payload of indirect consensus or consensus and

uniform reliable broadcast. Reliable broadcast uses O(n2)
messages. 92

5.8 Latency vs. payload of indirect consensus or consensus and
uniform reliable broadcast. Reliable broadcast uses O(n) mes-
sages. 92

5.9 Latency vs. throughput of indirect consensus or consensus
and uniform reliable broadcast 93

6.1 The robust TCP protocol in the OSI reference model. 100
6.2 Lifetime of session and transport layer connections. 101
6.3 Opening phase of robust TCP 103
6.4 Reconnection phase of robust TCP 103
6.5 Structure of robust TCP control messages. 106
6.6 Results of the TCP Stream benchmark. 109

7.1 Quality of service model of a failure detector in the suspicion-
steady faultload. 117

7.2 Latency vs. throughput with a normal-steady faultload 118
7.3 Latency vs. mistake recurrence time TMR with a suspicion-

steady faultload, n = 3 processes 120
7.4 Latency vs. mistake recurrence time TMR with a suspicion-

steady faultload, n = 5 (CT, MR) or n = 7 (TokenFD) processes 121
7.5 Communication pattern of CT in a run without (top) and

with (bottom) a wrong suspicion. 121
7.6 Communication pattern of MR in a run without (top) and

with (bottom) a wrong suspicion. 122
7.7 Latency vs. mistake duration TM with a suspicion-steady fault-

load in a system with a mistake recurrence time of 100ms. . . 124
7.8 Latency vs. throughput with a normal-steady faultload 126
7.9 Communication patterns of TokenFD and MovingSeq in good

runs. 127
7.10 Throughput vs. offered load of the TokenFD algorithm with

a normal-steady faultload . 128
7.11 Early latency vs. Mistake recurrence time TMR of a group

membership and a failure detector based algorithm, simula-
tion results from [USS03] . 129

xiv

List of Figures

8.1 Communication pattern of the Chandra-Toueg and TokenFD
atomic broadcast algorithms in good runs. 139

8.2 Theoretical model of a wide area network with two or three
locations . 142

8.3 Wide area network evaluation environments in decreasing
order of round trip times. 145

8.4 Latency vs. throughput of CT, MR and TokenFD in the WAN
Three Locations setting. 147

8.5 Latency vs. throughput of CT, MR and TokenFD in the WAN 295
setting. 147

8.6 Latency vs. throughput of CT, MR and TokenFD in the WAN 20.1
setting. 149

8.7 Latency vs. throughput of CT, MR and TokenFD in the WAN 3.9
setting. 149

9.1 Execution of the scalable atomic broadcast algorithm. 159
9.2 Geographical distribution of the sites in the Grid’5000 WAN

setup. 167
9.3 Latency vs. throughput of the Chandra-Toueg and TokenFD

algorithms in a LAN . 169
9.4 Latency vs. throughput of the three algorithms for system

sizes of 7, 13 and 21 processes in a LAN 169
9.5 Latency vs. throughput of the scalable atomic broadcast al-

gorithm with a kernel of 3 processes in the LAN. 170
9.6 Latency vs. throughput of the scalable atomic broadcast al-

gorithm with a kernel of 7 processes in the LAN. 170
9.7 Latency vs. system size of the original and scalable atomic

broadcast algorithms in the LAN setup. 172
9.8 Latency vs. throughput of the Chandra-Toueg and TokenFD

algorithms in the WAN setup. 174
9.9 Latency vs. throughput of the three algorithms for system

sizes of 3, 15 and 23 processes in WAN setup. 174
9.10 Latency vs. throughput of the scalable atomic broadcast al-

gorithm with a kernel of 3 processes in the WAN setup. . . . 176
9.11 Latency vs. throughput of the scalable atomic broadcast al-

gorithm with a kernel of 7 processes in the WAN setup. . . . 176
9.12 Latency vs. system size of the original and scalable atomic

broadcast algorithms in the WAN setup. 177

A.1 Communication pattern of the Chandra-Toueg �S consen-
sus algorithm in good runs. 198

A.2 Communication pattern of the Mostéfaoui-Raynal �S con-
sensus algorithm in good runs. 200

xv

List of Figures

A.3 Communication pattern of the Chandra-Toueg atomic broad-
cast algorithm (n = 3 processes). 202

A.4 Communication pattern of the Moving Sequencer atomic broad-
cast algorithm (n = 5 processes). 206

B.1 Execution pattern of the Chandra-Toueg consensus algorithm
in the two-location wide area network model. 219

B.2 Coordinator processes for abroadcast messages. 220
B.3 Token circulation in the two-location wide area network model

and a presentation of which token contains the messages
abroadcast by the three processes. 221

xvi

List of Tables

4.1 Summary of the different approaches that ensure the Uni-
form agreement property of atomic broadcast 64

4.2 Illustration of which processes send and receive messages in
a given round of the token based consensus algorithm in the
Heard-Of model . 67

6.1 Java vs. Robust TCP in the three benchmarks. 108

8.1 Example of the average latency to adeliver a message in the
two-location wide area network model 144

B.1 Average latency to adeliver a message in the three-location
wide area network model, using Chandra-Toueg’s algorithm
(with CT and MR’s consensus algorithm and a fixed initial
coordinator). 212

B.2 CostSendi,j, CostWaiti,j, CostOrderj and OrderedByi,j in the three-
location wide area network model, using Chandra-Toueg’s
algorithm (with CT’s consensus algorithm and a shifting ini-
tial coordinator). 214

B.3 CostSendi,j, CostWaiti,j, CostOrderj and OrderedByi,j in the three-
location wide area network model, using Chandra-Toueg’s
algorithm (with MR’s consensus algorithm and a shifting ini-
tial coordinator). 214

B.4 CostSendi,j, CostWaiti,j, CostOrderj and OrderedByi,j in the three-
location wide area network model, using the TokenFD atomic
broadcast algorithm. 215

B.5 Average latency to adeliver a message in the two-location wide
area network model, using Chandra-Toueg’s algorithm (with
CT or MR’s consensus algorithm) or the TokenFD algorithm.
Results are given for an initial coordinator (MR, CT) on a lo-
cal location, on the distant location or that shifts at each new
consensus execution. 216

xvii

List of Tables

xviii

Chapter 1

Introduction

1.1 Research context and motivation
The need for dependable computing Within only a couple of gener-
ations, the so-called digital revolution has taken the world by storm: to-
day, almost all human beings interact, directly or indirectly, at some point
in their life, with a computer system. Computers are present on our desks,
computer systems control the antilock braking system and the stability con-
trol in cars, they collect usage statistics in elevators in order to anticipate
maintenance and repair operations. Computer systems also operate criti-
cal systems, such as nuclear power plants, airplane control systems [TLS05]
or space rockets [Lan97]. Furthermore, computer systems are not only om-
nipresent, but also increasingly networked.

As the use of computer systems has increased dramatically over the
past decades, the needs and expectations associated with these systems
have also increased. In the case of critical systems, dependability has al-
ways been a major concern, as the price of a system failure is high, in terms
of human lives or economical loss. However, even in the case of non-critical
systems, one of the crucial properties is availability [Hen99] (i.e. the frac-
tion of the time during which the system provides a service to the users):
the costs and negative publicity of a system outage (be it a commercial web
site or a stock exchange for example) are often considerable.

High availability is achieved in two ways: (1) by increasing the time a
system is up1 (by avoiding that the system ever goes down) or (2) by reduc-
ing the recovery time in case it is down. The second approach is difficult or
even impossible to apply to critical systems where the slightest interruption
of service is unacceptable.

In the first approach, several system designs are possible. The first de-
sign choice is to avoid system failures (fault avoidance), while the second
one is to tolerate and hide failures within the system (fault tolerance). These

1When a system provides its service, we say that it is up. Otherwise, it is down.

1

Chapter 1. Introduction

designs are of course complementary and can be combined [TLS05]. The
second design is however appealing, as it can be implemented by replica-
tion: instead of having a single machine (a replica) providing a service, the
system is composed of several replicas running the service. Thus, if one of
the replicas fails, the service is still provided by the remaining replicas. Fur-
thermore, replication is interesting as it can be achieved by using software
running on commodity hardware, thus avoiding the high cost of special
purpose hardware.

Dependability through replication Replication, although intuitive to
understand, is complex to implement in practice, as several system compo-
nents (the replicas) have to interact in order to ensure the consistency of the
system as a whole. Since the replication is mostly transparent to the user of
the service (i.e., the user should not notice that several replicas, rather than
a single machine, handle its request), the replicas must coordinate their ac-
tions and replies to a user request. This coordination contributes to the
complexity of replication.

The complexity depends on factors such as the degree of consistency
between replicas or the amount of shared state. A strong consistency isn’t
necessary, for example, between two servers providing a domain name ser-
vice or Google’s web page indexing, and thus requires less complex repli-
cation techniques. The most implemented replicated services in practice
are precisely those with relatively weak consistency requirements.

On the other hand, systems with stronger consistency between replicas
are less deployed in practice. Replication techniques, such as quorum sys-
tems and group communication (atomic broadcast in particular), provide
services that simplify the replication problem, by hiding issues such as the
communication between the processes, process crashes and synchrony.

Group communication: hiding the complexity of replication Group
communication [HT94] provides primitives that allow one-to-many and
many-to-many communication between a set of replicas, called processes.
The primitives address problems such as reliable delivery of messages, to-
tal order of delivery on all processes and resilience to process failures. An
agreement problem is at the center of most primitives: the group of pro-
cesses have to agree on the outcome of some operation, in order to fulfill the
specification of the primitives.

Agreement problems are difficult to solve. If no assumptions are made
on the relative speed of different components in the system for example,
some agreement problems are impossible to solve [FLP85]. Atomic broad-
cast – a group communication primitive at the heart of this work – allows
processes to broadcast messages to the group and then deliver them in
the same total order, even if processes broadcast messages quasi simul-

2

1.1. Research context and motivation

taneously. Atomic broadcast is especially useful for replication: since all
replicas deliver messages in the same order, their state is kept consistent
(assuming that the state evolves deterministically as a function of the de-
livered messages).

Different approaches for solving atomic broadcast Atomic broadcast
is one of the agreement problems that is impossible to solve in an asyn-
chronous system (without any assumptions on the relative speed of the pro-
cesses or the network) when processes may crash [FLP85, CT96]. In order
to circumvent the impossibility of atomic broadcast (and consensus), the
asynchronous system can be extended with oracles that provide some ad-
ditional information about the state of the system.

One such oracle is the unreliable failure detector [CT96], which provides
(unreliable) information about process failures and thus allows previously
impossible agreement problems to be solved [CHT96]. Furthermore, any
algorithm that uses a failure detector is directly exposed to process fail-
ures and suspicions (unlike algorithms which delegate the handling of sus-
pected process failures to a separate module providing a group member-
ship service, for example). As a consequence, such algorithms are gener-
ally designed to tolerate wrong suspicions (i.e. when a process is incorrectly
suspected of having crashed), since the unreliable nature of the failure de-
tectors implies that suspicions shouldn’t generate too costly operations.

Atomic broadcast algorithms can also be classified following the order-
ing mechanism that they use [DSU04]. In the fixed sequencer approach, for
example, a single process is responsible for ordering messages, whereas in
a destinations agreement approach, the destination processes of a message m
agree on the order of delivery of m with respect to the other broadcast mes-
sages. Other ordering mechanisms include the moving sequencer or privilege
based approaches which are both related to token based algorithms and dis-
cussed below.

Token based ordering mechanisms implicitly provide a flow control
that limits the contention on the network and the processes, and thus al-
lows high system loads. A token can be used in several ways: in [Cri91]
the token aggregates the ordered messages. The token can also limit the
access to the network: in [AMMS+95, CMA97], only the token holder is al-
lowed to send messages on the network (and the messages are thus easily
ordered, since a single sender exists at a given point in time). Finally, the
token can be used to select a sequencer process [CM84, MS01, WMK94] that
receives the messages from all other processes and assigns sequence num-
bers. Since the token circulates, the load of assigning sequence numbers to
messages is distributed among the processes in the system.

3

Chapter 1. Introduction

1.2 Research contributions
Replication: Understanding the advantage of atomic broadcast over
quorum systems In the context of software replication for fault-tolerant
services, several techniques have been presented. Quorum systems was the
first of these techniques to be introduced and since then, the understand-
ing of problems related to replication has made significant progress. An
important step was the introduction of group communication (and atomic
broadcast) which defines a middleware layer that hides most of the hard
problems related to replication.

Quorum systems have, after a decrease of interest, recently garnered re-
newed attention in the context of Byzantine faults. Additionally, questions
have arisen on the advantages of group communication over quorum sys-
tems for replication. We attempt to clarify this issue, and point out precisely
when and why group communication is a better solution than quorum sys-
tems.

A token based atomic broadcast algorithm As mentioned previously,
atomic broadcast allows processes, organized in a group, to broadcast mes-
sages and deliver them in the same total order. A large number of atomic
broadcast algorithms have been presented in the literature. Several ap-
proaches exist (1) to tolerate failures and (2) to order messages.

We present a new algorithm that uses a token based mechanism (to or-
der messages) and unreliable failure detectors (to tolerate failures). The
goal of the algorithm is to benefit from the chacteristics generally associated
with failure detector based algorithms (the low cost of wrong suspicions)
and token based algorithms (efficiency in terms of throughput, due to the
natural flow control provided by the token). The performance of our token
based algorithm is simulated and compared to two other failure detector
based algorithms. The simulation shows that the new token based algo-
rithm achieves lower latencies and a higher throughput than both other
algorithms in most settings.

Solving atomic broadcast with indirect consensus Atomic broadcast
can be reduced to consensus, as shown by Chandra and Toueg [CT96]. In
this reduction, consensus is run on sets of messages, in order to determine
the delivery order of those messages. While this is correct from a theo-
retical point of view, it is inefficient in practice, especially if messages are
large. Instead, if consensus is executed on message identifiers, the mes-
sages themselves only need to be diffused once and the ordering process is
done on light-weight message identifiers.

Executing consensus on message identifiers has always been seen as
being easy, given a consensus algorithm on messages. We show that this is

4

1.2. Research contributions

not necessarily the case: if at least one process can crash, then Chandra and
Toueg’s reduction of atomic broadcast to consensus on message identifiers
can lead to a faulty execution. We address this issue and show how to adapt
the atomic broadcast and consensus algorithms. The modifications are not
trivial for all consensus algorithms and can affect their resilience.

Robust TCP connections: implementing quasi-reliable channels A
number of algorithms in fault-tolerant computing assume so-called quasi-
reliable channels: if a process p sends a message m to another process q,
then q eventually receives m if neither p nor q fail. An obvious way to im-
plement these channels is to use TCP connections, which hides most prob-
lems of the communication channel from the programmer: message loss,
duplicates and short losses of connectivity. Unfortunately, TCP does not
adequately handle link failures: TCP breaks the connection if connectivity
is lost for some duration.

Robust TCP connections address this problem: they present the same
interface as regular TCP connections, but never break due to network prob-
lems. We define a session-layer protocol on top of TCP that ensures possible
reconnections and provides exactly-once delivery for all transmitted data.
A prototype, implemented in Java, has less than 10% overhead over TCP
sockets with respect to response time and throughput.

Comparing atomic broadcast algorithms in a local area network
The first approach in evaluating the performance of distributed algorithms
is by simulation or by analyzing the message complexity and time com-
plexity. This, however, only gives partial information on the performance
of an algorithm once it is deployed in a real environment. To complete the
performance analysis, it is necessary to experimentally evaluate the algo-
rithm in its target deployment environment.

The first environment that is considered is a local area network. In this
setting, we evaluate the new token based algorithm (noted TokenFD), as
well as two failure detector based algorithms and another token based al-
gorithm that uses a group membership service to tolerate failures.

This experimental evaluation confirms that among the failure detector
based algorithms, TokenFD achieves the highest throughput when neither
failures nor suspicions occur. Secondly, when wrong suspicions occur fre-
quently, the latency of TokenFD is less affected than the latency of the two
other algorithms using failure detectors. Finally, compared to the algo-
rithm using a group membership service, TokenFD cannot sustain as high a
throughput in good runs, i.e. runs without failures nor suspicions. How-
ever, when wrong suspicions occur, the group membership service per-
forms costly operations that are not necessary when failure detectors are
used, as in the case of TokenFD.

5

Chapter 1. Introduction

Evaluating the performance of atomic broadcast algorithms in high
latency networks The second setting in which we evaluate atomic broad-
cast algorithms is wide area networks. We start by modeling the perfor-
mance of the three algorithms using failure detectors in a simple system
model with three processes, distributed on two or three different locations.

We then experimentally evaluate the algorithms in four different wide
area networks, with varying round trip times. The experiments show that
for moderate throughputs, the modeled performance is close to the exper-
imental results. Furthermore, we also show the main characteristic that
affects the performance of an atomic broadcast algorithm in a wide area
network is the number of communication steps it needs, rather than the
number of messages it sends. This result remains true, whether a network
with large (295 ms) or small (4 ms) round trip times is considered.

On the scalability of atomic broadcast algorithms The final exper-
imental evaluation in this thesis examines the impact of the size of the
system on the performance of the three atomic broadcast algorithms using
failure detectors. The size of the system varies between 3 and 23 processes,
running on a local area network or on a wide area network with seven dif-
ferent locations.

The performance evaluation shows that the latency of all three algo-
rithms is strongly affected by the size of the system. As a consequence, we
present an algorithm that limits the actual ordering algorithm to a kernel,
i.e. a subset of the system, and only sends updates to the other processes.
We show that the performance of this scalable algorithm (with the three or-
dering algorithms running only on the kernel) is hardly affected by the size
of the system and instead depends on the size of the kernel. Thus, the
kernel can be tailored to suit the fault tolerance needs of the application,
and additional processes (that act as a cache of the distributed state) can be
added to the system at a low cost.

1.3 Structure of the thesis

Preliminaries Chapter 2 discusses the advantages of using group com-
munication instead of quorum systems to implement replicated services.
Chapter 3 starts the first part of the thesis by introducing the model of
distributed systems that we consider and defines concepts such as faulty
components or communication channel types. This chapter also includes
formal descriptions of the problems that are considered throughout this
thesis.

6

1.3. Structure of the thesis

Solving atomic broadcast Chapter 4 presents a novel atomic broadcast
algorithm that uses a token to order messages and an unreliable failure
detector to tolerate process failures. The chapter also includes a discussion
on possible optimizations of the algorithm, as well as a presentation of the
algorithm in a different system model.

Chapter 5 discusses the reduction of atomic broadcast to a sequence of
consensus executions on message identifiers. This reduction is not always
trivial: we show examples of a consensus algorithm that is easily trans-
formed to handle message identifiers, and an algorithm whose resilience is
affected by the transformation.

Performance evaluations The second part of the thesis presents sev-
eral experimental performance evaluations of atomic broadcast algorithms.
Chapter 6 proposes an implementation of quasi-reliable channels, based on
TCP. Chapter 7 compares four atomic broadcast algorithms in a local area
network. The performance of the algorithms is examined in systems where
no failures or failure suspicions occur, and in the case of frequent wrong
suspicions. Chapter 8 examines the performance of three failure detector
based atomic broadcast algorithms in several wide area networks. A sim-
ple model for the performance of the algorithms is presented first and later
validated by the experimental results. Finally, Chapter 9 examines the im-
pact of the system size on the three same failure detector based algorithms,
in local and wide area networks. We also present a scalable algorithm that
limits the ordering of messages to a fixed subset of the system.

Conclusion Finally, the main contributions of this work are summarized
in Chapter 10 and future research directions are discussed.

7

Chapter 1. Introduction

8

Chapter 2

Replication: understanding
the advantage of atomic

broadcast over quorum
systems

The requirement for highly reliable and available services has been contin-
uously increasing in many domains for the last decade. Several approaches
for designing fault-tolerant services exist. The focus of this chapter is on
software replication. Replication allows a number of replicas to crash with-
out affecting the availability of the service.

Quorum systems [Tho79, Gif79] was the first technique introduced to
manage replication. Since this period, a lot of progress has been accom-
plished in the understanding of the problems related to replication. An
important step has been the introduction of group communication, which
defines a middleware layer that hides most of the hard problems related to
replication [Sch03]. The advent of group communication has temporarily
led to a decrease of interest in quorum systems. However, there has been
recently a renewed interest in quorum systems for Byzantine faults [MR98],
an issue not addressed previously. Moreover, there are now here and there
people disagreeing on the advantage of group communication over quo-
rum systems for replication. The goal of this chapter is to clarify this issue,
and point out precisely when and why group communication is a better
solution.

The rest of the chapter is organized as follows. Section 2.1 introduces
our system model and three isolation degrees, a key issue to understand
the respective scope of quorum systems and atomic broadcast. Section 2.2
discusses the absence of isolation requirements. Section 2.3 discusses the
case when only read-write isolation is required. Section 2.4 discusses gen-
eral isolation requirements. Finally, a discussion in Section 2.5 concludes

9

Chapter 2. Atomic Broadcast vs. Quorum Systems

this chapter.

2.1 Different isolation degrees
In the context of replication, one of the key issues is the semantics that
have to be provided. We consider in this chapter a finite set of processes,
where each process issues a sequence of operations over a finite quantity
of replicated data. Without restriction of generality, we consider that each
operation is either a read or a write. A read operation reads one replicated
data; a write operation writes one replicated data. The semantics define
the result of each of these read and write operations. One key aspect of
the semantics is the isolation property, as defined in the context of database
systems [WV02]. We distinguish the following degrees of isolation:

No isolation Any interleaving of operations is possible; only the semantics
of each individual read or write operation is defined.

Read-write isolation In addition to the individual semantics of read and
write operations, a read followed by a write on the same data are
executed in isolation.

General isolation In addition to the individual semantics of read and write
operations, any sequence of operations can be executed in isolation.

To illustrate the three cases, consider two processes p, q, two replicated
data X, Y, and the following sequences of operations:1

• Sequence of operations issued by p: rp(X), wp(X), rp(Y), wp(Y)

• Sequence of operations issued by q: rq(Y), wp(Y), rq(X), wq(X)

With no isolation, any interleaving of operations of the two processes is
possible.

We express isolation using [. . .] brackets. Here is the same same se-
quence of operations with read-write isolation (the consecutive read-write
operations are executed in isolation):

• Sequence of operations issued by p: [rp(X), wp(X)], [rp(Y), wp(Y)]

• Sequence of operations issued by q: [rq(X), wq(X)], [rq(Y), wp(Y)]

Finally, general isolation allows us to specify for example the following
isolation requirement:

• Sequence of operations issued by p: [rp(X), wp(X), rp(Y), wp(Y)]

• Sequence of operations issued by q: [rq(X), wq(X), rq(Y), wp(Y)]

1rp(X) (respectively wp(X)) denotes a read (respectively a write) of data X by process p.

10

2.2. No isolation

2.2 No isolation
Read-write operations with no isolation corresponds to the notion of regis-
ter [Lam86]. The strongest register semantics, called atomic register, ensure
that the read and write operations behave as if each operation op issued
by process p happened instantaneously at some time t ∈ [opstart, opend] ,
where opstart is the time at which the op is issued by process p, and opend is
the time at which op has completed on p [Lam86].

Atomic registers can be implemented in an asynchronous system (which
is defined as a system in which there is no bound on the transmission delay
of messages, nor on the relative speed of processes). Quorums are here well
suited to implement atomic registers. As an example, consider the data X
replicated on several servers Xi, where each server Xi manages (1) a copy
of the data and (2) a version number. A quorum is defined as any subset
of servers. Quorum systems distinguish read quorums and write quorums,
which must satisfy the following properties [Gif79]:

• Any read quorum has a non-empty intersection with any write quo-
rum.

• Any two write quorums have a non-empty intersection.

Let n be the number of replicas. One standard way to satisfy these prop-
erties is the following [Gif79]:

• A read quorum is any subset of servers of size � n+1
2 �.

• A write quorum is also any subset of servers of size � n+1
2 �.

The operation wp(X ← val) (write val to X) by p is performed as fol-
lows: (1) p reads the version number from a read quorum, (2) then the local
variable vn is set to the highest version number read, and finally (3) the
value val with version number vn + 1 is written to a write quorum.

The read operation rp(X) is slightly less intuitive: (1) the client reads the
pair (value, version) from a read quorum, (2) the read operation returns the
value val with the highest version number, and finally (3) the value val is
written to a write quorum.2

The specificity of this solution can be summarized as follows: (1) data is
sent back and forth between the servers Xi and the client process p, and (2)
servers only send and receive data. We will come back to this point later.

2Without (3), the atomic register semantics is not ensured. To see this, consider (a)
wp1 (X ← w) by p1 that starts at t = 1 and ends at t = 6, (b) a read operation rp2 (X)
by p2 that starts at t = 2, reads w, and terminates at t = 3, and (c) a read operation rp3 (X)
by p3 that starts at t = 4 and ends at t = 5. Without (3), p3 could read an old value rather
than w, which is required by the atomic register semantics.

11

Chapter 2. Atomic Broadcast vs. Quorum Systems

2.3 ”Read-write” isolation only
To show the limitations of the atomic register semantics, and the need for
read-write isolation, consider the following sequence of operations, where
process p wants to increment X, while process q wants to decrement X. If
X is initially 0, then without read-write isolation, the following execution
is possible:3

• rp(X ⇒ 0), rq(X ⇒ 0), wp(X ← 1), wq(X ← −1)

This execution is clearly not desired (the final value of X must be 0). A
correct execution requires that p and q execute the read-write sequence in
mutual exclusion, i.e., in isolation. This can be expressed as follows, where
ECS/LCS allows a process to enter/leave the critical section:

• Operations issued by p:4 ECS, rp(X → u), u ← u + 1, wp(X ← u),
LCS

• Operations issued by q: ECS, rq(X → u), u← u− 1, wq(X ← u), LCS

2.3.1 Read-write isolation and the consensus problem
We first show that read-write isolation cannot be solved in an asynchronous
system with crash failures. Then we discuss the implementation of read-
write isolation (1) with quorum systems and (2) with atomic broadcast (a
group communication primitive).

Consensus is a well known problem defined over a finite set of pro-
cesses, in which each process has an initial value and all processes that
do not crash have to agree on a common value that is the initial value of
one of the processes [CT96]. Consensus is not solvable in an asynchronous
system if processes may crash [FLP85]. This impossibility also applies to
read-write isolation; it follows directly from the fact that read-write isola-
tion is powerful enough to solve consensus (see also [Her88, Her91]). To
show this, consider consensus to be solved among n processes p1, . . . , pn,
with vali the initial value of process pi. Let the data be here a vector V of
n + 1 elements V[0], . . . , V[n]. Initially, we assume V[0] = 0, and all other
elements V[j] undefined. Each process pi executes Algorithm 2.1, where
V[0] is incremented and V[V[0]] written inside a critical section (lines 2-5).

If at least one process pi is correct, then V[1] is written (with the ini-
tial value of one of the processes). Moreover, since all processes decide on
the value V[1], they all decide the same value, which is the initial value of

3rp(X ⇒ v) denotes a read operation that returns the value v.
4rp(X → u) denotes that the value returned by the read operation is stored into the local

variable u.

12

2.3. ”Read-write” isolation only

Algorithm 2.1: Solving consensus with read-write isolation (code of pro-
cess pi)

1: ECS {Enter Critical Section}
2: rpi (V → u) {Read vector V into local vector u}
3: u[0]← u[0] + 1
4: u[u[0]]← vali
5: wpi (V ← u) {Write u to vector V}
6: LCS {Leave Critical Section}
7: rpi (V → u) {Read vector V into local vector u}
8: decide u[1] {Consensus decision}

one of the processes. So read-write isolation allows us to solve consensus,
which shows the contradiction, i.e., read-write isolation cannot be imple-
mented in an asynchronous system with process crashes.

2.3.2 Implementing read-write isolation with quorums
Since read-write isolation cannot be implemented in an asynchronous sys-
tem with process crashes, we need additional assumptions. The quorum
solution of Section 2.2 can be extended to provide read-write isolation if
we can solve the mutual exclusion problem. Implementing mutual exclu-
sion requires to handle the following situation:

• Process p executes ECS and gets permission to enter the critical sec-
tion.

• Process p crashes before leaving the critical section.

In this case, p will never release the critical section, i.e., the critical sec-
tion must be released on behalf of p. This requires a crash detection mech-
anism that detects the crash of p if and only if p has crashed (the critical
section must be released if and only if p has crashed). This corresponds to
a perfect failure detector [CT96], which is a strong requirement. Note that in
addition to a perfect failure detector, if the read/write quorums are defined
as in Section 2.2, the solution also requires a majority of correct processes
(to always ensure the existence of a read quorum and of a write quorum).

2.3.3 Implementing read-write isolation with atomic broad-
cast

We now describe a different solution to read-write isolation, which uses
a group communication primitive, namely atomic broadcast (also called total
order broadcast). Atomic broadcast allows to broadcast messages to a group
of processes, while ensuring that messages are delivered by all members of

13

Chapter 2. Atomic Broadcast vs. Quorum Systems

Algorithm 2.2: Model for read-write isolation (code of process p)
1: ECS {Enter Critical Section}
2: rp(X → u) {Read X into local variable u}
3: u← f (u) {Update u}
4: wp(X ← u) {Write u to X}
5: LCS {Leave Critical Section}

the group in the same order. A formal definition can be found in Chapter 3.
To show the implementation of read-write isolation with atomic broadcast,
we model the execution of each process as shown in Algorithm 2.2.

Process p first reads X into a local variable u, then does some local com-
puting expressed by the function f (u), and finally writes the new value of
u to X.

With atomic broadcast, denoted by abroadcast(), the above schema can
be implemented as follows, using a technique called state machine ap-
proach [Lam78, Sch93a]. The technique distinguishes between (1) the code
of process p (Algorithm 2.3) and (2) the code of a server Xi that manages a
copy xi of the data X (Algorithm 2.4).

Algorithm 2.3: Read-write isolation (code of process p)
1: abroadcast(f) to gX {gX is the group of servers Xi}
2: wait to receive done from at least one server Xi

Algorithm 2.4: Read-write isolation (code of server Xi)
1: loop
2: wait for the adelivery of f sent by some process p
3: xi ← f (xi) {xi is the local copy of X managed by server Xi}
4: send(done) to p

Every server Xi receives the update functions f in the same order, and
updates its copy xi using the same update function. Moreover, each server
xi executes one update function before considering the next one. So Al-
gorithms 2.3 and 2.4 correctly implement atomic registers with read-write
isolation. Indeed, the solution requires to solve atomic broadcast. Atomic
broadcast is solvable in an asynchronous system augmented with the fail-
ure detector �S in a group gX,5 and a majority of correct servers [CT96].

5�S satisfies the following properties: (1) Eventually every process in gX that crashes is
permanently suspected by every correct process in gX , and (2) there is a time after which
some correct process in gX is never suspected by any correct process in gX [CT96].

14

2.4. General isolation

2.3.4 Discussion

If we compare the requirements of the quorum solution and of the atomic
broadcast solution, we observe the following. The two solutions require a
majority of correct processes; the quorum solution requires a perfect failure
detector, whereas the atomic broadcast solution only requires the weaker
failure detector �S (see [CT96] for a comparison of failure detectors). To
understand how much �S is weaker than a perfect failure detector, note
that �S allows an unbounded number of false crash suspicions, while a per-
fect failure detector does not allow a single false suspicion.

What makes the difference? In the quorum solution, the update function
f is executed by the client process itself. In the atomic broadcast solution, the
update function f is executed by the servers. The former solution requires (1)
mutual exclusion, and (2) to send data back and forth between the client
and the servers. The atomic broadcast solution requires only to send the
update function f to the servers. Executing f on the servers is a more clever
solution than executing f on the client!

2.4 General isolation
We now discuss the implementation of general isolation. The quorum solu-
tion can trivially be extended to handle general isolation. Indeed, whether
mutual exclusion protects two operations or more than two operations does
not make a difference.

Can the atomic broadcast solution be extended to handle general isola-
tion? Yes, if specific conditions are met (which also means that the solution
is not always applicable):

• when the update function f can be defined statically, e.g., when the
application can be implemented using stored procedures, and

• when the identity of the servers to which f must be sent is statically
known.

The atomic broadcast solution may also require atomic broadcasts to multi-
ple groups [GS01]. We now give two examples where these conditions are
satisfied.

Example 1: Consider two replicated data X and Y, representing two bank
accounts. Assume a user that wants to withdraw an amount w from ac-
count X and deposit w on the account Y. This can be expressed by the
following update function:

f ≡ (sub(X, w); add(Y, w))

15

Chapter 2. Atomic Broadcast vs. Quorum Systems

The user simply issues abroadcast(f) to gX ∪ gY, where gX, respectively
gY, are the group of replicas of X, respectively Y. Upon delivery of f , a
server Xi decrements its local copy xi by w, and a server Yi increments its
local copy yi by w.

Example 2: Let us modify slightly Example 1, such that the transfer of w
from account X to account Y takes place if and only if X ≥ w. This can be
expressed as follows:

f ≡ (if X ≥ w then sub(X, w); add(Y, w) endif)

This leads to the following problem: while a server xi can evaluate the
condition X ≥ w, a server yi cannot. Nevertheless, this case can still be
implemented using atomic broadcast: each server xi after the evaluation of
the condition X ≥ w, sends true or f alse to the servers in gY. A server in gY
waits for this message to know whether or not to execute the add operation.

In these two examples the set of data to be accessed is known statically.
If this condition is not met, which is quite common in the case of database
transactions, then the atomic broadcast solution cannot be used (since it
cannot be known to which servers to send the update function). Note that
the function could be sent to all servers, but this solution might be too costly
or even impossible to implement.

2.5 Discussion
There is a common misunderstanding of the advantage of group commu-
nication over quorum systems to manage replicated data. We have tried
to clarify this issue by showing the basic difference between the two tech-
niques: when isolation needs to be provided, group communication consists
in sending the update function to the data servers, while with quorum systems
servers send the data to the clients where the update function is performed. The
first solution requires weaker extensions to the asynchronous system, and
so has obvious advantages. We have also shown that the use of group
communication is not restricted to read-write isolation. This contradicts
the claim of Cheriton and Skeen in [CS93] in the context of the CATOCS
controversy,6 where they write that CATOCS cannot ensure serializable or-
dering between operations that correspond to a group of messages (...) Locking is
the standard solution.7 As shown, this argument is not correct. Apart from
this specific issue, we believe that this chapter should allow in the future to
clearly understand the merits of group communication over quorum sys-
tems to manage replication. It also underlines the relevance of using group

6CATOCS = Causally and totally ordered communication support.
7Note that atomic broadcast can be used for locking

16

2.5. Discussion

communication (as opposed to other techniques) to achieve fault tolerance.
This thus justifies the study of atomic broadcast in the following chapters.

17

Part I

Solving Atomic Broadcast
with Failure Detectors and
Token based Algorithms

Chapter 3

System models and
definitions

3.1 System models
We consider a distributed system where a set of n processes interact by
passing messages on a communication subsystem. The set of processes is
noted Π = {p0, . . . , pn−1}. These processes all have their own memory
space and do not have access to any shared memory. Furthermore, we
assume that there is an implicit order on the processes and the kth successor
of a process pi is p(i+k) mod n (which is, from now on, simply noted pi+k for
the sake of clarity).

We consider that each pair of processes in the system is connected by a
point-to-point communication channel. This point-to-point model is basic
and can be emulated in other network models. All the messages sent on
the network are unique (and are identified, for example, by the identifier of
the sender process and a sequence number) and taken from a setM.

This system definition is general and needs to be refined in order to be
useful for developing distributed algorithms. The rest of this chapter thus
specifies the characteristics of the different elements of the system. We now
discuss the two main characteristics of the system: the failure modes and
synchrony.

3.1.1 Failure modes
The work in this thesis is centered around dependability and fault-tolerance.
The distributed systems considered thus naturally allow components, be it
processes or communication channels, to fail. The behavior of faulty com-
ponents is important when solving problems in a distributed system. The
following paragraphs specify what failure modes we consider, i.e. how
processes are expected to fail, as well as the reliability properties of the

21

Chapter 3. System Models and Definitions

considered communication channels.

3.1.1.A Process failures

The general classes of process failures considered in distributed systems
are the following:

Fail-stop Upon failing, a process stops executing any further computation
step and does not send or receive any further message. Once a pro-
cess has crashed it never recovers. This type of failure is also referred
to as crash failures.

Omission A faulty process can omit to send or receive some of the mes-
sages and still continue executing.

Byzantine The byzantine failure class is the most general. Indeed, a byzan-
tine process may behave arbitrarily: it can alter messages, omit to
execute send or receive actions, create spurious messages or exhibit
any other malicious behavior. Byzantine failures are not supported
by the algorithms presented in this thesis and are consequently not
discussed any further.

Most of the algorithms presented in this thesis assume that processes
are only affected by fail-stop faults [SS83]. Omission failures are shortly
considered by the algorithm presented in Section 4.3.

A process that never crashes is said to be correct, otherwise it is faulty.
Furthermore, a process that crashes is faulty even before the time of the
crash: the correct/faulty property of a process is tied to the entire execution
of the system. Out of the n processes in the system, at most f may be faulty.
The value of f depends on n, on the failure type and on the algorithm that
is considered.

The fail-stop failure model is interesting for several reasons. Despite its
apparent simplicity, it affects the solvability of problems, as discussed later
in the context of system synchrony (Section 3.1.2). Furthermore, the fail-
ure model often matches the behavior of processes in real-world systems
(if we exclude systems subject to malicious attacks). Indeed, errors that oc-
cur in a real environment, such as memory and message corruption, can be
resolved by error correction techniques or by redundant executions of the
same code [Avi85, Ran75]. Other incidents, such as power outages, cause
behaviors that are close to the fail-stop model. Finally, programming tech-
niques, such as the frequent use of assertions, limit the risk of processes
behaving arbitrarily.

Experimental studies in which errors are injected into distributed sys-
tems, such as [CC98] and [MBK+05], confirm that a fail-stop behavior is

22

3.1. System models

often observed. The authors also propose slight modifications to the sys-
tems that increase the proportion of errors that lead to clean crashes, rather
than arbitrary behaviors.

3.1.1.B Communication channels

We now present the reliability properties of the communication channels
that define the network subsystem. The communication channels are de-
fined by the following properties:

No creation If a process q receives a message m from another process p,
then p sent m to q.

No duplication A process q receives a given message m at most once.

No loss If a correct process p sends a message m to a correct process q, then
q eventually receives m.

Fair loss If a correct process p sends a message m infinitely often to a cor-
rect process q, then q receives m an infinite number of times. The Fair
loss property is weaker than No loss: if a channel satisfies the No loss
property, it also satisfies the Fair loss property.

The algorithms in this thesis require one of the two following types of
channels (that are defined by three of the four properties above).

Quasi-reliable channels are used by most of the algorithms presented and
studied in this thesis. This type of channels is defined by the No cre-
ation, No duplication and No loss properties.

Fair-lossy The fair-lossy channel is defined by the No creation, No duplica-
tion and Fair loss properties.

The quasi-reliable channels are needed by the algorithms defined in the
asynchronous system model augmented with unreliable failure detectors
(see Section 3.1.2.D). The fair-lossy channels are used in the context of the
Heard-Of system model, presented in Section 3.1.3.

3.1.2 Synchrony
The definition of a system presented above gives the elements (processes
and communication channels) that constitute the distributed system, as
well as their expected behavior in the case of failures. The timing assump-
tions on the operations of the processes and channels are defined by the
synchrony of the system.

23

Chapter 3. System Models and Definitions

More specifically, the synchrony addresses two main characteristics of a
distributed system: the ratio between the processing speeds of the different
processes and the time needed to transmit a message on the network.

The synchrony of a system is important as it has a direct impact on the
set of problems that are solvable in that system. A system S with strong
synchrony constraints allows more problems to be solved than a system S′
with weaker synchrony. Conversely, an algorithm that solves a problem in
a system S′ also solves the problem in a system S with stronger synchrony.

The following paragraphs present the asynchronous and synchronous
system models, the two extremes of the synchrony spectrum. Models with
intermediate synchrony characteristics are then also presented.

3.1.2.A Asynchronous system

In an asynchronous system, there are no assumptions on the relative speed of
processes or the time needed to transmit a message on the network [Sch93b].
As mentioned above, this minimal synchrony has two consequences: (1)
the set of problems that can be solved in this model is smaller than the same
set in any other model and (2) algorithms designed for the asynchronous
model are implementable in virtually any real system, since such a real sys-
tem has stronger synchrony characteristics than the asynchronous system
model.

The first consequence implies that a large number of distributed prob-
lems are not solvable in the asynchronous model in the presence of faulty
processes [Lyn89, FR03], such as for example consensus [FLP85] and atomic
broadcast (presented in Section 3.2), terminating reliable broadcast [Lar03,
FRT99], non-blocking atomic commitment [BT93, CB03] or termination de-
tection [MFVP05]. Only the class of easy problems, following the termi-
nology in [FRT99], are solvable in an asynchronous system with process
crashes (such as for example the reliable broadcast problem, presented be-
low in Section 3.2.2).

However, following the second consequence above, an algorithm that
solves a problem in the asynchronous model can be implemented in almost
any kind of real system, ranging from a group of identical computers on a
local area network (where strong synchrony characteristics are expected) to
a group of computers with unknown processor speeds, communicating on
a wide area network (where a large variability in processing and network-
ing delays is expected).

3.1.2.B Synchronous system

In a synchronous system, there are known bounds on the time needed to
send a message between any pair of processes and on the ratio between the

24

3.1. System models

processing speed of any processes (there is also a bound on the drift rates
of the local clocks of each process) [Lyn96].

These bounds allow a large number of distributed problems to be solved.
However, this model also has a price: the complexity of handling the vari-
ation inherent to a real system is pushed from the algorithms down to the
model itself [Fet00, BL91, Jah94, KG94].

The synchronous system requires worst case analyses of execution times
of all components in the system. Any modifications to the software or hard-
ware in the system generally require the analysis to be redone, at least par-
tially. Finally, since the bounds on the various delays in a synchronous sys-
tem must hold even in worst case scenarios, this leads to bounds that are
potentially much higher than the most commonly observed values, which
can in turn affect the responsiveness of the system.

3.1.2.C Partial synchrony

As seen above, the asynchronous and synchronous system models both
have drawbacks: in the former, many fundamental distributed problems
are not solvable, whereas the implementation of the latter model is com-
plex. A number of models that address these shortcomings have thus been
developed.

Two such models are the partially synchronous system [DDS87, DLS88]
and the timed asynchronous model [CF99]. These models weaken the prop-
erties of the synchronous model by either assuming that known bounds
exist but only eventually hold forever, or bounds always hold but are un-
known. Since these models are weaker than the synchronous model, a real
system is more often correctly modeled. The partially synchronous models
are however strong enough to allow the solvability of many fundamental
distributed problems.

3.1.2.D Oracles

The partially synchronous models weaken the synchronous model to ac-
count for the asynchrony that exists in a real system. It is also possible to
use another approach that allows distributed problems to be solved: the
asynchronous model can be extended with oracles. These oracles provide
additional information to the processes and thus allow previously impos-
sible problems to be solved.

Many different oracles exist. We focus on one specific type of oracle,
the failure detector, since it is used by most of the algorithms studied in
this thesis. Other oracles are shortly mentioned thereafter.

Unreliable failure detectors With the unreliable failure detector oracle
presented in [CT96], each process pi has a failure detector module FDi that,

25

Chapter 3. System Models and Definitions

at any time, provides a set of processes it suspects to have crashed. This in-
formation may be incorrect (crashed processes might not be suspected and
correct processes can be suspected) and may be different for all processes:
at a given time t, the failure detector module FDi of pi does not necessarily
suspect the same set of processes as pj’s module FDj .

A failure detector is characterized by two properties: Completeness de-
fines which crashed processes are eventually suspected by whom. This
property characterizes the failure detector’s ability to correctly identify pro-
cesses that have crashed. The Accuracy property restricts the mistakes (i.e.
suspicions of correct processes) that the failure detector can make.

Together, the completeness and accuracy properties ensure that the fail-
ure detector provides useful information. Indeed, if completeness or accu-
racy were considered alone, then a failure detector suspecting all (i.e. all
crashed processes), respectively none (i.e. no correct process), of the pro-
cesses would trivially satisfy the considered property. Such a failure detec-
tor would however provide no useful information for solving distributed
problems.

We now introduce the following properties and define the unreliable
failure detectors that are used later on:

Strong completeness Eventually, every process that crashes is permanently
suspected by every correct process.

Eventual strong accuracy: There is a time after which correct processes are
not suspected by any correct process.

Eventual weak accuracy: There is a time after which some correct process
is never suspected by any correct process.

The Eventually perfect failure detector �P is defined by the Strong com-
pleteness and Eventual strong accuracy properties; the Eventually strong fail-
ure detector �S is defined by the Strong completeness and Eventual weak
accuracy properties. Both of these failure detectors allow us to solve all the
distributed problems that we consider hereafter in the asynchronous sys-
tem.

Other oracles This paragraph presents some of the other oracles that
extend the asynchronous system model and allow consensus and atomic
broadcast to be solved.

Coin toss All processes have access to an oracle that outputs random bi-
nary values [Ben83]. With such an oracle, consensus can be solved
with a probability of 1 [CD89].

Weak ordering oracles A weak ordering oracle allows atomic broadcast to
be solved in an asynchronous system by providing processes with

26

3.1. System models

spontaneous ordering of some messages that are broadcast [PSUC02b,
PSUC02a]. In local area networks, such a spontaneous ordering nat-
urally occurs.

3.1.3 The Heard-Of model
The Heard-Of model, presented in [CBS06], questions two common as-
sumptions in distributed models: (1) synchrony and failure models are
independent characteristics of a distributed model and (2) failures are nec-
essary to analyze the behavior of a distributed algorithm. In the Heard-Of
model (noted HO model hereafter), (1) the synchrony and failures are hid-
den inside a single abstract module and (2) the notion of faulty components
is no longer needed. The following paragraphs present the model in further
detail.

Algorithms In the HO model, processes communicate in rounds. At the
beginning of each round, a process can send a message to the other group
members. At the end of the round, each process is then presented with the
set of received messages and computes its next state. A message is bound to
a round, which implies that if a message m is sent in round r, it can only be
received in round r (and is discarded otherwise). If a message is discarded,
the HO model does not try to designate a culprit: the message loss could
be explained by several factors, including a link failure, a process failure
or simply because the message took too long to reach its destination (i.e. a
synchrony issue).

Each process p has a state statep (and an initial state initp), a send func-
tion Sr

p (that is applied at the beginning of each round r), as well as a state
transition function Tr

p. This state transition function maps the state statep
and the set of received messages in round r to a new state. Furthermore,
the heard-of set HO(p, r) represents the set of processes from which p re-
ceives a message in round r . An algorithm A in the HO model is defined
by the statep and initp states, and the Sr

p and Tr
p functions.

Figure 3.1 presents an example run of an algorithm in the HO model,
from the perspective of process p1. At the beginning of round r, p1 calls its
send function Sr

p1
, which sends messages to p0 and p2. Before the end of

round r, p1 receives a message from p0. At the end of round r, p1 applies
the state transition function Tr

p1
to its state, with a heard-of set HO(p1, r)

equal to {p0}. Round r + 1 starts by a call to the Sr+1
p1

function (which sends
a message to p0). This time, messages are received from p0 and p2. The
state transition function Tr+1

p1
is thus applied with HO(p1, r + 1) = {p0, p2}.

Predicates The execution of an algorithm in the HO model depends heav-
ily on the HO(p, r) set of processes that a process p hears of during round r.

27

Chapter 3. System Models and Definitions

p0 p0

p2

HO(p1, r) = {p0}

Srp1
p2

p0p0

HO(p1, r+ 1) = {p0, p2}

Trp1 Sr+1p1 Tr+1p1
p1

round r

time

round r+ 1

Figure 3.1: Example of two rounds r and r + 1 in the Heard-Of model, from
the point of view of a process p1

In order for the algorithm to solve a problem, the HO(p, r) set must provide
a number of properties. Consequently, we define a communication predicate
P as a predicate over the collections of heard-of sets. For example, the fol-
lowing predicate (noted Psp_unif , for space uniform, in [CBS06]) ensures that
all processes hear of the same processes in all rounds:

Psp_unif ≡ ∀r > 0, ∀p, q ∈ Π2 : HO(p, r) = HO(q, r)

The algorithmA and its predicate P are tightly coupled, since P is gen-
erally tailored to ensure the correctness of A. A and P together define a
Heard-Of machine as a pair M = (A,P).

3.2 Agreement problems

Agreement problems are central to distributed systems. In this class of
problems, a group of processes have to agree on a common decision, which
depends on the problem that is being solved (for example, delivering mes-
sages in the same order on all processes or deciding whether to commit or
abort a distributed transaction).

Agreement problems are also fundamental in the context of group com-
munication. Group communication aims at providing one-to-many and
many-to-many communication to a set of processes: the processes are or-
ganized in a group and primitives that allow to communicate directly with
the group are provided. These primitives have strong semantics (which are
typically not available when using point-to-point connections to communi-
cate with the other processes) which include features such as fault tolerance
and message ordering.

The agreement problems that are considered in this thesis and that arise
in the context of group communication are presented in the following para-
graphs.

28

3.2. Agreement problems

3.2.1 Consensus

In the consensus problem, a group of processes Π have to agree on a com-
mon value based on proposals of the processes [Fis83, CT96]. Consensus
is defined by two primitives: propose and decide. When a process p calls
propose(v), we say that p proposes v. Similarly, whenever p calls decide(v), it
decides v.

As in [CT96], we specify the (uniform) consensus problem by the four
following properties:

Termination: Every correct process eventually decides some value.

Uniform integrity: Every process decides at most once.

Uniform agreement: No two processes (correct or not) decide a different
value.

Uniform validity: If a process decides v, then v was proposed by some
process in Π.

3.2.2 Reliable broadcast

In the reliable broadcast problem, the correct processes among Π need to
eventually agree on a common set of delivered messages. Formally, reliable
broadcast is defined by two primitives, rbroadcast and rdeliver, and the three
following properties [HT94]:

Validity If a correct process rbroadcasts a message m, then it eventually
rdelivers m.

Agreement If a correct process rdelivers m, then all correct processes even-
tually rdeliver m.

Uniform integrity For any message m, every process rdelivers m at most
once, and only if m was previously rbroadcast.

The Agreement property of reliable broadcast allows a faulty process to
rdeliver a message m without ensuring that all correct processes also rdeliver
m. Uniform reliable broadcast addresses this and is defined by the Validity
and Uniform integrity properties of reliable broadcast, and strengthens the
Agreement property by extending its definition to all processes:

Uniform agreement If any process rdelivers m, then all correct processes
eventually rdeliver m.

29

Chapter 3. System Models and Definitions

3.2.3 Atomic broadcast
In the atomic broadcast problem, defined by the primitives abroadcast and
adeliver, processes have to agree on a the order of delivery of a set of mes-
sages, i.e. all processes have to deliver the same sequence of messages. For-
mally, we define (uniform) atomic broadcast by the three properties of uni-
form reliable broadcast (Validity, Uniform agreement and Uniform integrity)
and an additional order property [ADGFT00]:

Uniform total order If some process, correct or faulty, adelivers m before
m′, then every process adelivers m′ only after it has adelivered m.

This Uniform total order property of atomic broadcast is useful, for ex-
ample, to implement state machine replication [Sch93a], where a set of pro-
cesses visit the same states by taking deterministic actions based on the
same input (the adelivered messages).

30

Chapter 4

Token based atomic
broadcast

In this chapter, we present a novel atomic broadcast algorithm based on
token circulation. We start by discussing the advantages of token based
algorithms, then describe the new algorithm in the failure detector system
model (see Section 3.1.2.D) and study its performance in a simulated en-
vironment. Different variants and optimizations of the algorithm are then
discussed, and finally we present the algorithm in the Heard-Of system
model (see Section 3.1.3).

4.1 Token based atomic broadcast using
unreliable failure detectors

4.1.1 Introduction
4.1.1.A Context

Many atomic broadcast algorithms have been published in the last twenty
years. These algorithms can be classified according to the mechanism used
for message ordering [DSU04]. Token circulation is one important ordering
mechanism. In these algorithms, a token circulates among the processes,
and the token holder has the privilege to order messages that have been
broadcast. Additionally, sometimes only the token holder is allowed to
broadcast messages. However, the ordering mechanism is not the only key
mechanism of an atomic broadcast algorithm. The mechanism used to tol-
erate failures is another important characteristic of these algorithms. If we
consider asynchronous systems with crash failures, the two most widely
used mechanisms to tolerate failures in the context of atomic broadcast
algorithms are (i) unreliable failure detectors [CT96] and (ii) group member-
ship [CKV01]. For example, the atomic broadcast algorithm in [CT96] (to-

31

Chapter 4. Token based Atomic Broadcast

gether with a consensus algorithm using the failure detector �S [CT96])
falls into the first category; the atomic broadcast algorithm in [BSS91] falls
into the second category.

4.1.1.B Group membership mechanism vs. failure detector mechanism.

A group membership service provides a consistent membership informa-
tion to all the members of a group [CKV01]. Its main feature is to remove
processes that are suspected to have crashed.1 In contrast, an unreliable
failure detector, e.g., �S , does not provide consistent information about
the failure status of processes. For example, it can tell to process p that r
has crashed, while telling at the same time to process q that r is alive.

Both mechanisms can make mistakes, e.g., by incorrectly suspecting cor-
rect processes. However, the cost of a wrong failure suspicion is higher
when using a group membership service than when using failure detectors.
This is because the group membership service removes suspected processes
from the group, a costly operation. This removal is absolutely necessary for the
atomic broadcast algorithm that relies on the membership service: the notification
of the removal allows the atomic broadcast algorithm to avoid being blocked. There
is no such removal of suspected processes with a failure detector. More-
over, with a group membership service, the removal of a process is usually
followed by the addition of another (or the same) process, in order to keep
the same replication degree. So, with a group membership service, a wrong
suspicion leads to two costly membership operations: removal of a process
followed by the addition of another process.

In an environment where wrong failure suspicions are frequent,2 algo-
rithms based on failure detectors thus have advantages over algorithms
based on a group membership service. The cost difference has been ex-
perimentally evaluated in [USS03] in the context of two specific (not token
based) atomic broadcast algorithm.

Atomic broadcast algorithms based on a failure detector have another
important advantage over algorithms based on group membership: they
can be used to implement the group membership service! Indeed, since a (pri-
mary partition) group membership service orders views, it seems intuitive
to solve group membership using atomic broadcast: this leads to a much
simpler protocol stack than implementing atomic broadcast using group
membership [MSW03]. However, this is not possible if atomic broadcast
relies on group membership.

1The comment applies to the so-called primary-partition membership [CKV01].
2This typically happens if the timeouts used to suspect processes have been set to small

values (i.e., in the order of the average message transmission delay), in order to reduce the
time needed to detect the crash of processes.

32

4.1. Token and failure detector based atomic broadcast

4.1.1.C Why token based algorithms?

According to [WMK94, AMMS+95, MS01], token based atomic broadcast
algorithms are extremely efficient in terms of throughput, i.e., the number
of messages that can be delivered per time unit. The reason is that these
algorithms manage to reduce network contention by using the token (1) to
avoid the ack explosion problem (which happens if each broadcast message
generates one acknowledgment per receiving process), and/or (2) to per-
form flow control (e.g., a process is allowed to broadcast a message only
when holding the token). However, none of the token based algorithms
use failure detectors: they all rely on a group membership service.3 It is
therefore interesting to try to design token based atomic broadcast algo-
rithms that rely on failure detectors, in order to combine the advantage of
failure detectors and of token based algorithms: good throughput (without
sacrificing latency) in stable environments, but adapted to frequent wrong
failure suspicions.

4.1.1.D Contribution of the chapter

The chapter presents the first token based atomic broadcast algorithm that
uses unreliable failure detectors instead of group membership. This result
is obtained in several steps. We first give a new and more general defi-
nition for token based algorithms (Sect. 4.1.2) and introduce a new failure
detector, denoted by R, adapted to token based algorithms (Sect. 4.1.3).
The failure detector R is shown to be strictly weaker than �P , and strictly
stronger than �S . Although �S is strong enough to solve consensus and
atomic broadcast,R has an interesting feature: the failure detector module
of a process pi only needs to give information about the (estimated) state
of pi−1. For pi−1, this can be done by sending I am alive messages to pi
only, which is extremely cheap compared to failure detectors where each
process monitors all other processes. Moreover, in the case of three pro-
cesses (a frequent case in practice, tolerating one crash), our token based
algorithm works with �S .

Section 4.1.4 concentrates on the consensus problem. First we define
two classes of token based algorithms: token-accumulation algorithms and
token-coordinated algorithms. We then focus on the token-accumulation ap-
proach and give a consensus algorithm based on the failure detectorR.

An algorithm that solves atomic broadcast is presented in Section 4.1.5.
The algorithm is inspired from the token based consensus algorithm of Sec-
tion 4.1.4. Note that a standard solution consists in solving atomic broad-
cast by reduction to consensus [CT96]. However, this solution is not ade-
quate here, because the resulting algorithm is highly inefficient. Our atomic

3The group membership mechanism does not necessarily appear explicitly in the algo-
rithm, e.g., in [MS01]. It can be implemented in an ad-hoc way.

33

Chapter 4. Token based Atomic Broadcast

broadcast algorithm is derived from our consensus algorithm in a more
complex manner. Note that we could have presented only the token based
atomic broadcast algorithm. However, the detour through the consensus
algorithm makes the explanation easier to understand. Section 4.1.6 com-
pares the performance of our new atomic broadcast algorithm with the
Chandra-Toueg atomic broadcast algorithm. Related work is presented in
Section 4.1.7 and Section 4.1.8 concludes Section 4.1.

4.1.2 System model and definitions
We assume an asynchronous system composed of n processes, detailed in
Chapter 3. The kth successor of a process pi is p(i+k) mod n, which is noted
pi+k for the sake of clarity. Similarly the kth predecessor of pi is simply de-
noted by pi−k. Processes can only fail by crashing. A process that never
crashes is said to be correct, otherwise it is faulty. At most f processes
are faulty. Finally, the system is augmented with unreliable failure detec-
tors [CT96] (see below).

4.1.2.A Agreement problems

The agreement problems considered in this chapter are shortly reminded.
The formal specifications of the problems are presented in Section 3.2.

In the consensus problem, the processes have to agree on a common
value, based on the initial proposals of the processes. In the atomic broad-
cast problem, the processes agree on a common total order delivery of a set
of messages.

4.1.2.B Token based algorithms

In a traditional token based algorithm, processes are organized in a logical
ring and, for token transmission, communicate only with their immediate
predecessor and successor (except during changes in the composition of
the ring). This definition is too restrictive for failure detector-based algo-
rithms. We define an algorithm to be token based if (1) processes are orga-
nized in a logical ring, (2) each process pi has a failure detector module
FDi that provides information only about its immediate predecessor pi−1
and (3) each process communicates only with its f + 1 predecessors and
successors, where f is the number of tolerated failures.

4.1.2.C Failure detectors

We refer below to two failure detectors introduced in [CT96]: �P and �S .
The eventual perfect failure detector �P is defined by the following prop-
erties: (i) Strong completeness: Eventually every process that crashes is per-

34

4.1. Token and failure detector based atomic broadcast

manently suspected by every correct process, and (ii) Eventual strong accu-
racy: there is a time after which correct processes are not suspected by any
correct process. The �S failure detector is defined by (i) Strong complete-
ness and (ii) Eventual weak accuracy: there is a time after which some correct
process is never suspected by any correct process.

4.1.3 Failure detector R
For token based algorithms we define a new failure detector denoted R
(stands for Ring). Given process pi, the failure detector attached to pi only
gives information about the immediate predecessor pi−1. For every process
pi,R ensures the following properties:

Completeness If pi−1 crashes and pi is correct, then pi−1 is eventually per-
manently suspected by pi, and

Accuracy If pi−1 and pi are correct, there is a time t after which pi−1 is never
suspected by pi.

The weaker/stronger relationship between failure detectors has been defined
in [CT96]. We show that (a) �P is strictly stronger than R (denoted �P

R), and (b) R is strictly stronger than �S if n ≥ f (f + 1) + 1 (denoted
R
 �S).

Lemma 4.1.1. �P is strictly stronger thanR if f > 1.

Proof. This result is easy to establish. From the definition it follows directly
that �P is stronger or equivalent to R, denoted by �P � R. Moreover,
when pi is faulty, thenR provides no information about pi−1:4 so �P � R
(�P not equivalent toR). With �P � R we have that �P
 R.

The relationship between R and �S is more difficult to establish. We
first introduce a new failure detector �S2 (Sect. 4.1.3.A), then show that
�S2
 �S (Sect. 4.1.3.B) and R � �S2 if n ≥ f (f + 1) + 1 (Sect. 4.1.3.C).
By transitivity, we haveR
 �S if n ≥ f (f + 1) + 1.

4.1.3.A Failure detector �S2

For the purpose of establishing the relation between R and �S we intro-
duce the failure detector �S2 defined as follows:

Strong completeness Eventually every process that crashes is permanently
suspected by every correct process and

Eventual “Double” Accuracy There is a time after which two correct pro-
cesses are never suspected by any correct process.

4In the special case of f = 1, the information about pi−1 can be obtained indirectly, i.e.,
if f = 1, the relation between ♦P andR is not strict: ♦P � R.

35

Chapter 4. Token based Atomic Broadcast

4.1.3.B �S2 strictly stronger than �S
�S and �S2 differ in the accuracy property only: while �S requires even-
tually one correct process to be no longer suspected by all correct processes,
�S2 requires the same to hold for two correct processes. From the defini-
tion, it follows directly that �S2
 �S .

4.1.3.C R stronger than �S2 if n ≥ f (f + 1) + 1

We show that R is stronger than �S2 if n ≥ f (f + 1) + 1 by giving a
transformation ofR into the failure detector �S2.

Transformation ofR into �S2: Each process pj maintains a set correctj
of processes that pj believes are correct.

(i) This set is updated as follows. Each time some process pi changes its
mind about pi−1 (based on R), pi broadcasts (using a FIFO reliable broad-
cast communication primitive [HT94]) the message (pi−1, faulty), respec-
tively (pi−1, correct). Whenever pj receives (pi, faulty), then pj removes pi
from correctj; whenever pj receives (pi, correct), then pj adds pi to correctj.

(iia) For process pi, if correcti is equal to Π (no suspected process), the
output of the transformation (the two non-suspected processes) is p0 and
p1. All other processes are suspected.

(iib) For process pi, if correcti is not equal to Π (at least one suspected
process), the output of the transformation (the two non-suspected pro-
cesses) is pk and pk+1 such that k is the smallest index satisfying the fol-
lowing conditions: (a) pk−1 is not in correcti, and (b) the f − 1 immediate
successors pk+1,. . . ,pk+ f−1 are in correcti. Apart from pk and pk+1, all other
processes are suspected.

For example, for n = 7, f = 2, and correcti = {p0, p2, p3, p5}, the non-
suspected processes for pi are p2 and p3. All other processes are suspected.
If correcti = {p0, p1, p2, p3, p5}, the non-suspected processes for pi are p0
and p1 (the predecessor of p0 is p6, not in correcti). All other processes are
suspected.

Lemma 4.1.2. Consider a system with n ≥ f (f + 1) + 1 processes and the fail-
ure detector R. The above transformation guarantees that eventually all correct
processes do not suspect the same two correct processes.

Proof. (i) Consider t such that after t all faulty processes have crashed and
each correct process pi has accurate information about its predecessor pi−1.
It is easy to see that there is a time t′ > t such that after t′ all correct pro-
cesses agree on the same set correcti. Let us denote this set by correct(t′).

(ii) The condition n ≥ f (f + 1) + 1 guarantees that the set correct(t′)
contains a sequence of f consecutive processes. Consider the following
sequence of processes: 1 faulty, f correct, 1 faulty, f correct, etc. If we
repeat the pattern f times, we have f faulty processes in a set of f (f + 1)

36

4.1. Token and failure detector based atomic broadcast

processes. If we add one correct process to the set of f (f + 1) processes,
there is necessarily a sequence of f + 1 correct processes. With a sequence
of f + 1 correct processes, there is a sequence of f consecutive processes in
correct(t′).

(iii) In the case correct(t′) = Π, p0 and p1 are trivially correct.

(iv) In the case correct(t′) �= Π, consider the sequence of f + 1 processes
pk, . . . , pk+ f . Since there are at most f faulty processes, at least one process
pl in pk, . . . , pk+ f is correct. If pl = pk, we are done. Otherwise, if pl is
correct, pl−1 is correct as well, since the failure detector of pl is accurate
after t′ and does not suspect pl−1. By the same argument, if pl−1 is correct,
pl−2 is correct. By repeating the same argument at most f − 1 times, we
have that pk is correct.

(v) In the case correct(t′) �= Π, we prove now that pk+1 is correct.
Since pk is correct and pk−1 is not in correct(t′) (by the selection rule of pk
and pk+1), pk−1 is faulty. Thus, there are at most f − 1 faulty processes
in the sequence of f processes pk+1,. . . ,pk+ f . In the special case f = 1
({pk+1, . . . , pk+ f−1} = ∅), all processes in pk+1,. . . ,pk+ f are correct. In the
case f > 1, there is a non-empty sequence pk+1,. . . ,pk+ f−1 in correct(t′).
Furthermore, there are at most f − 1 faulty processes among the f pro-
cesses pk+1,. . . ,pk+ f . By the same argument used to show that pk is correct,
we can show that pk+1 is correct.

The transformation of R into �S2 ensures the Eventual “double” accu-
racy property if n ≥ f (f + 1) + 1. Since all processes except two correct
processes are suspected, the Strong completeness property also holds. Con-
sequently, if n ≥ f (f + 1) + 1 we haveR � �S2.

4.1.4 Token based consensus

4.1.4.A Two classes of algorithms

We identify two classes of token based consensus algorithms: token-accumu-
lation algorithms and token-coordinated algorithms. In the token-accumulation
algorithms, each token holder votes for the proposal transported in the to-
ken. Votes are accumulated as the token circulates and once enough votes
have been collected, the token holder can decide. In this class of algorithms,
the only communication is related to the circulation of the token. This is
not the case of token-coordinated algorithms. In these algorithms the token
holds a proposal, but, in order to decide, the token holder can communi-
cate with all other processes. Algorithms based on the rotating-coordinator
paradigm (such as the Chandra-Toueg �S consensus algorithm [CT96]) can
easily be adapted to this class ([MK00] describes such a transformation).
Token-accumulation algorithms are more genuine token based algorithms,

37

Chapter 4. Token based Atomic Broadcast

and the chapter concentrates on this class of algorithms. Henceforth, token-
accumulation algorithms will simply be referred to as token based algorithms.

4.1.4.B Token circulation

The token circulation is as follows. To avoid the loss of the token due to
crashes, process pi sends the token to its f + 1 successors in the ring, i.e., to
pi+1, . . . , pi+ f +1.5 Furthermore, when awaiting the token, process pi waits
to get the token from pi−1, unless it suspects pi−1. If pi suspects pi−1, it
accepts the token from any of its predecessors (see Algorithm 4.1).

Algorithm 4.1: Receive token (code of process pi)
1: wait until received token from pi−1 or pi−1 ∈ Dpi {query failure detector Dpi }
2: if token not received then {accept from anyone}
3: wait until received token from p ∈ {pi− f−1, . . . , pi−1}

4.1.4.C Token based consensus algorithm

Basic idea Consensus is achieved by passing a token between the differ-
ent processes. The token contains information regarding the current pro-
posal (or the decision once it has been taken). The token is passed between
the processes on a logical ring p0, p1, . . . , pn−1. Each token holder “votes”
for the proposal in the token and then sends it to its neighbors. As soon as
a sufficient number of token holders have voted for some proposal v, then
v is decided. The decision is then propagated as the token circulates along
the ring.

Naive algorithm We start by presenting a naive algorithm that illustrates
both the basic idea behind our algorithm and its difficulty. Let the token
carry an estimate value (denoted by token.estimate) and the number of votes
for this estimate (denoted token.votes). Let each process pi, upon receiving
the token, blindly adopt the token proposal (which is stored in estimatei
and add its vote to the proposal (see Algorithm 4.2). Obviously, this naive
algorithm does not work: it would solve consensus in an asynchronous
system, in contradiction with the FLP impossibility result [FLP85].

Overview of the token based consensus algorithm As just shown,
a token based algorithm cannot blindly increase the votes accumulated.
We slightly change the above behavior. The processes need one additional

5The token should be seen as a logical token. Multiple backup copies circulate in the ring,
but they are discarded by the algorithm if no suspicion occurs. Henceforth, the logical token
will simply be referred to as ”the token”.

38

4.1. Token and failure detector based atomic broadcast

Algorithm 4.2: Token handling by pi (option 1)
estimatei ← token.estimate
token.votes← token.votes + 1
if token.votes ≥ f + 1 then

decide(token.estimate)
send token to {pi+1, . . . , pi+ f +1}

information: the gap in the circulation of the token. When a process pi
receives the token from process sender ≡ pj, the gap is i − j − 1, denoted
by gap(sender → pi). We have gap(sender → pi) = 0 only if the token
is received from the immediate predecessor. Upon receiving the token, a
process does the following (see Algorithm 4.3):

As long as there is no gap in the token circulation token.votes is incre-
mented by the receiver pi. If at that point token.votes is greater than the
vote threshold f + 1, pi decides on the estimate of the token. The decision
is then propagated with the token.

Algorithm 4.3: Token handling by pi (option 2)

if (gap(sender→ pi) �= 0) then
token.votes← 0 {reset token}

estimatei ← token.estimate
token.votes← token.votes + 1
if token.votes ≥ f + 1 then

decide(token.estimate)
send token to {pi+1, . . . , pi+ f +1}

Conditions for Agreement vs. Termination In the above algorithm,
where votes are reset as soon as a gap in the token circulation is detected,
Agreement holds if the vote threshold is greater or equal than f + 1. Termi-
nation additionally requires the failure detectorR and that there be at least
n ≥ (f + 1) f + 1 processes in the system.

Remark: The condition gap(sender → pi) = 0 is not a necessary con-
dition for Agreement in a token based consensus algorithm. In [ES03], we
present an algorithm without this condition and which is instead param-
eterized with gapThreshold (the number of gaps in the token circulation
before resetting the vote counter) and voteThreshold (the number of votes
required to decide). Agreement holds if voteThreshold ≥ (gapThreshold +
1) f + 1. However Termination still requires gapThreshold = 0 (in addition to
n ≥ (f + 1) f + 1 andR).

The algorithm that allows gapThreshold > 0 is not further presented
here since (1) it is more complex than the algorithm that does not allow

39

Chapter 4. Token based Atomic Broadcast

gaps in the token circulation, (2) it anyhow requires gapThreshold = 0 for
Termination to hold and (3) the generalized algorithm does not improve
the message complexity or time complexity of the algorithm that requires
gap(sender→ pi) = 0.

Details of the algorithm The token contains the following fields: round
(round number), estimate, votes (accumulated votes for the estimate value)
and decision (a boolean indicating if estimate is the decision).

Algorithm 4.4: Token-accumulation consensus (code of pi)

1: upon propose(vi) do
2: estimatei ← vi; decidedi ← f alse; roundi ← 0

3: if pi = p0 then {send token with (round, estimate, votes, decision flag)}
4: send(0,v0,1,false) to {p1,. . . ,p f +1}
5: else if pi ∈ {pn− f , . . . , pn−1} then {send “dummy” token}
6: send(-1,vi,0,false) to {p1, . . . , pi+ f +1}

7: Token handling by pi:
8: loop
9: token← receive-token(roundi) {see Proc. 4.1}

10: if not decidedi then
11: estimatei ← token.estimate
12: if (gap(sender→ pi) = 0) then
13: votesi ← token.votes + 1 {add vote}
14: else
15: votesi ← 1; {reset votes}
16: if (votesi ≥ f + 1) or token.decision then
17: decide(estimatei); decidedi ← true
18: token← (roundi, estimatei, votesi, decidedi)
19: send token to {pi+1,. . . ,pi+ f +1}
20: roundi ← roundi + 1

21: upon reception of token s.t. token.round < roundi do
22: if token.decision and (not decidedi) then
23: estimatei ← token.estimate
24: decide(estimatei); decidedi ← true

The initialization code is given by lines 1 to 6 in Algorithm 4.4. Lines
5-6 show the dummy token sent to prevent blocking in the case processes
p0, . . . , p f−1 are initially crashed. A dummy token has round = −1 and
votes = 0, and is sent only to processes {p1, . . . , p f }. The estimate of this
token is the proposed value vi of the sender process pi.

The token handling code is given by lines 7 to 24 in Algorithm 4.4. At

40

4.1. Token and failure detector based atomic broadcast

decide(v0)

decide(v0)

time

propose(v1)

propose(v2)

〈0, v0, 2, true〉

propose(v0)p0

p1

p2

〈0, v0, 1, false〉

decide(v0)

〈−1, v2, 1, false〉
〈0, v0, 3, true〉

(a) No crash, no suspicion

time

propose(v1)

propose(v2)

propose(v0)p0

p1

p2

crash

〈0, v2, 1, false〉

〈−1, v2, 1, false〉

decide(v2)

decide(v2)

〈0, v2, 2, true〉

(b) p0 crashes

Figure 4.1: Example execution of the consensus algorithm

41

Chapter 4. Token based Atomic Broadcast

line 9, process pi starts by receiving the token (see Algorithm 4.1) for the
expected roundi.6 If pi has not yet decided, then pi starts by updating its
estimate (line 11). If there was no gap in the token circulation, then the
votes are incremented (line 13). Otherwise, the votes are reset to 1 (line 15),
which starts a new sequence of vote accumulation. At line 16, process pi
checks whether there are enough votes for a decision to be taken. If so, pi
decides (line 17). Finally, the token with the updated fields is sent to the
f + 1 successors (line 19), and process pi increments roundi (line 20).

Lines 8-20 ensure that at least one correct process eventually decides.
However, if f > 1, this does not ensure that all correct processes eventually
decide. Consider the following example: pi is the first process to decide,
pi+1 is faulty. In this case, pi+2 may always receive the token from pi−1, a
token that does not carry a decision; pi might be the only process to ever
decide. Lines 21-24 ensure that every correct process eventually decides.
The token received at line 8, for roundi, follows Algorithm 4.1. Other tokens
are received at line 21: if the token carries a decision, process pi decides.
Note that the stopping of the algorithm is not discussed here. It can easily
be added.

Figure 4.1 presents an example execution of the consensus algorithm in
a system with n = 3 processes. The dashed arrows correspond to “backup”
tokens (that are used only when failures or suspicions occur) whereas the
solid arrows show the main token (transmitted between process pi and
pi+1). When no crashes nor suspicions occur (Figure 4.1(a)), process p1
receives p0’s token and increments the votes for p0’s proposal v0. With two
votes, p1 decides v0. The token is then passed on to p2 (with the decided flag
set to true) who decides. Finally, p0 decides after the last token transmis-
sion.

In the case of a crash of p0, p1 eventually suspects p0 and thus accepts
p2’s token (with p2’s proposal v2). Since there is a gap in the token circula-
tion, the votes are reset (no decision can be taken) and the token is sent from
p1 to p2. Process p2 receives the token, increments the votes and decides v2.
Process p1 then decides one communication step later after receiving the
token (with the decision flag).

Proof of the token based algorithm The proofs of the Uniform validity
and Uniform integrity properties are easy and omitted. A proof of the Uni-
form agreement and Termination properties of the token-accumulation con-
sensus algorithm are presented in the following paragraphs.

Uniform agreement. Let pi be the first process to decide (say at time t), and
let v be the decision value. By line 16 of Algorithm 4.4, we have votesi ≥

6To avoid complicated notation, we implicitly assume that, for process pi, waiting a
token for roundi means either (1) waiting a token from pj, j < i, with token.round = roundi,
or (2) waiting a token from pj, j > i, with token.round = roundi − 1.

42

4.1. Token and failure detector based atomic broadcast

f + 1. Votes are reset for each gap. So, votesi ≥ f + 1 ensures that at time
t, all processes pj ∈ {pi−1, . . . , pi− f }, have estimatej = v. Any process pk,
successor of pi in the ring, receives the token from one of the processes
pi, . . . , pi− f . Since all these processes have their estimate equal to v, the
token received by pk necessarily carries the estimate v. So after t, the only
value carried by the token is v, i.e., any process that decides will decide
v.

Termination. Assume at most f faulty processes and the failure detectorR.
We show that, if n ≥ f (f + 1) + 1, then every correct process eventually
decides.

First it is easy to see that the token circulation never stops: if pi is a
correct process that does not have the token at time t, then there exists some
time t′ > t such that pi receives the token at time t′. This follows from (1)
the fact that the token is sent by a process to its f + 1 successors, (2) the
receive token procedure (Algorithm 4.1), and (3) the completeness property
of R (which ensures that if pi waits for the token from pi−1 and pi−1 has
crashed, then pi eventually suspects pi−1 and accepts the token from any of
its f + 1 predecessors).

The second step is to show that at least one correct process eventually
decides. Assume the failure detectorR, and let t be such that after t no cor-
rect process pi is suspected by its immediate correct successor pi+1. Since
we have n ≥ f (f + 1) + 1 there is a sequence of f + 1 correct processes in
the ring. Let pi, . . . , pi+ f be this sequence. After t, processes pi+1, . . . , pi+ f
only accept the token from their immediate predecessor. Thus, after t, the
token sent by pi is received by pi+1, the token sent by pi+1 is received by
pi+2, and so forth until the token sent by pi+ f−1 is received by pi+ f . Once
pi+ f has executed line 13 of Algorithm 4.4, we have votesi ≥ f + 1. Conse-
quently, pi+ f decides.

Finally, if one correct process pk decides, and sends the token with the
decision to its f + 1 successors, the first correct successor of pk, by line 21 or
line 9, eventually receives the token with the decision and decides (if it has
not yet done so). By a simple induction, every correct process eventually
also decides.

4.1.5 Token based atomic broadcast algorithms

In this section we show how to transform the token based consensus algo-
rithm into an atomic broadcast algorithm. Note that we could have pre-
sented the atomic broadcast algorithm directly. However, since the con-
sensus algorithm is simpler than the atomic broadcast algorithm, we be-
lieve that a two-step presentation makes it easier to understand the atomic
broadcast algorithm.

43

Chapter 4. Token based Atomic Broadcast

Note also that it is well known how to solve atomic broadcast by re-
duction to consensus [CT96]. However, the reduction, which transforms
atomic broadcast into a sequence of consensus, yields an inefficient algo-
rithm here. The reduction would lead to multiple instances of consensus,
with one token per consensus instance. We want a single token to “glue”
the various instances of consensus.

To be correct, the atomic broadcast algorithm requires the failure detec-
torR, a number of processes n ≥ f (f + 1) + 1, and a vote threshold at f + 1
in order to decide, as was the case in the consensus algorithm above.

4.1.5.A Overview

In the token based atomic broadcast algorithm, the token transports (i) sets
of messages and (ii) sequences of messages. More precisely, the token car-
ries the following information: (round, proposalSeq, votes, adeliv, nextSet).
Messages in the sequence proposalSeq are delivered as soon as a sufficient
number of consecutive “votes” have been collected. The field adeliv is the
set of all consensus decisions that the token is aware of (i.e., a set of pairs as-
sociating a consensus number to a sequence of messages). When a process
receives the token, it can therefore, if needed, catch up with the message
deliveries performed by other processes.

Finally, while the token accumulates votes for proposalSeq, it simulta-
neously collects in nextSet the messages that have been abroadcast, but not
adelivered yet. The set nextSet grows as the token circulates. Whenever mes-
sages in proposalSeq can be delivered, nextSet is used as the proposal for the
next decision.

4.1.5.B Details

Each process pi manages the following data structures (see Algorithm 4.5):
roundi (the current round number), abroadcasti (the set of all messages
that have been abroadcast by pi or another process, and not yet ordered),
adelivi (the set of all ordered messages that pi knows of, represented as
a set of pairs associating a consensus number to a sequence of messages)
and nextConsi (the sequence number of the next consensus execution). For
reasons of space, the algorithm is split into two parts.

Algorithm 4.5 presents the initialization of the atomic broadcast algo-
rithm, as well as the abroadcast and adelivery of messages: delivery(seq) is
called by Algorithm 4.6.

Algorithm 4.6 describes the token-handling. Lines 4 to 14 of Algo-
rithm 4.6 correspond to lines 9 to 17 of the consensus algorithm (presented
in Algorithm 4.4). The procedure delivery() is called to adeliver messages
(line 13). When this happens, a new sequence of messages can be proposed
for delivery. This is done at lines 15 to 17. Finally, lines 21-24 handle the

44

4.1. Token and failure detector based atomic broadcast

Algorithm 4.5: Token-accumulation atomic broadcast – part 1 (code of pi)
1: Initialisation:
2: abroadcasti ← ∅; adelivi ← ∅: roundi ← 0
3: nextConsi ← 1

4: if pi = p0 then {send token with (round, proposalSeq, votes, adeliv, nextSet)}
5: send(0, abroadcast0, 1, ∅, abroadcast0) to {p1,. . . ,p f +1}
6: else if pi ∈ {pn− f , . . . , pn−1} then {send “dummy” token}
7: send(−1, ∅, 0, ∅, ∅) to {p1,. . . ,pi+ f +1}

8: abroadcast and adeliver
9: To execute abroadcast(m) :

10: abroadcasti ← abroadcasti ∪ {m}
11: To execute delivery(seq):
12: while ∃(nextConsi, msgs) ∈ seq do
13: adelivi ← adelivi ∪ {(nextConsi, msgs)}
14: abroadcasti ← abroadcasti \msgs
15: adeliver messages in msgs
16: nextConsi ← nextConsi + 1

reception of other tokens. This is needed for Uniform agreement and Validity
when f > 1. Lines 22 and 23 are for Uniform agreement (they play the same
role as lines 22-24 of Algorithm 4.4). Line 24 is for Validity (consider f = 2,
pi correct and pi+1 faulty; without line 24, process pi+2 might, in all rounds,
receive the token only from pi−1; if this happens, messages abroadcast by pi
would never be adelivered).

The proof of the algorithm can be derived from the proof of the token
based consensus algorithm.

4.1.5.C Optimizations

The following paragraphs present optimizations that can be applied to the
token based atomic broadcast algorithm presented in Algorithms 4.5 and 4.6.
Later, in Section 4.2, we further discuss different variants of the algorithm
that all ensure the Uniform agreement property of atomic broadcast, but with
different requirements on memory and token transmissions.

In our algorithm, the token carries whole messages, rather than only
message identifiers. This solution is certainly inefficient. The algorithm
can be optimized so that only the message identifiers are included in the
token. This can be addressed by adapting techniques presented in other
token based atomic broadcast algorithms, e.g., [CM84, MS01], and is thus
not discussed further.

The optimization above reduces the size of the token but does not pre-

45

Chapter 4. Token based Atomic Broadcast

Algorithm 4.6: Atomic broadcast: token handling by pi – part 2
1: loop
2: token← receive-token(roundi) {see Algorithm 4.1}

3: abroadcasti ← abroadcasti ∪ token.proposalSeq ∪ token.nextSet \
{msgs|(−, msgs) ∈ adelivi}

4: if |token.adeliv| < |adelivi| then {“old” token}
5: token.proposalSeq← ∅
6: else {token with new information}
7: delivery(token.adeliv)
8: if (token received from pi−1) and (token.proposalSeq �= ∅) then
9: token.votes← token.votes + 1

10: else
11: token.votes← 1

12: if (token.votes ≥ f + 1) then
13: delivery({(nextConsi, token.proposalSeq)})
14: token.proposalSeq← ∅

15: if token.proposalSeq = ∅ then {new proposal}
16: token.proposalSeq← abroadcasti
17: token.votes = 1
18: token← (roundi, token.proposalSeq, token.votes, adelivi, abroadcasti)
19: send token to {pi+1, . . . , pi+ f +1}
20: roundi ← roundi + 1

21: upon reception of token s.t. token.round < roundi do
22: if |token.adeliv| > |adelivi| then
23: delivery(token.adeliv)
24: abroadcasti ← abroadcasti ∪ token.nextSet

46

4.1. Token and failure detector based atomic broadcast

vent it from growing indefinitely. This can be handled as follows. Consider
a process p that receives the token with the sequence s1 in the field adeliv
and later, in a different round, receives the token with a longer sequence
s2 in the same field (s1 is a subsequence of s2). When p receives the token
with the sequence s2, the token containing sequence s1 has been received
by at least f + 1 processes, i.e., by at least one correct process. The sequence
s1 can thus be removed from the token. In nice runs (no failures, no sus-
picions), this means that a process that delivers new messages in round i
(thus increasing the size of the adeliv sequence in the token) then removes
those messages from the token in round i + 1.

The circulation of the token can also be optimized. If all processes are
correct, each process actually only needs to send the token to its immediate
successor. So, by default each process pi only sends the token to pi+1. This
approach requires that if process pi suspects its predecessor pi−1, it must
send a message to its predecessors pi− f to pi−2, requesting the token.7 A
process, upon receiving such a message, sends the token to pi. If all pro-
cesses are correct, this optimization requires only a single copy of the token
to be sent by each token-holder instead of f + 1 copies, thus reducing the
network contention due to the token circulation by a factor f + 1.

Finally, with Algorithm 4.6, a single proposal is contained in the to-
ken. Since a consensus decision is taken after f communication steps, this
means that as f increases, consensus decisions are taken at an increasingly
slower rate. To achieve higher throughputs, it is thus essential to be able
to fit several proposals in a single token. This can be done by associating
votes separately to several proposals (instead of a single proposal with a
single vote in Algorithm 4.6). Moreover, each proposal is associated with
the number of the consensus execution it has been proposed in, which is
used as a tie-breaker in case several proposals reach f + 1 votes at the same
time. This optimization does however have one drawback on the perfor-
mance of the algorithm: the additional proposals increase the size of the
token. This implies that even with this optimization, the throughput of the
algorithm in the case of f > 1 remains lower than in the case of f = 1.

4.1.6 Simulation Results
In this section we compare the performance of our new atomic broadcast
algorithm with the Chandra-Toueg algorithm, in which atomic broadcast
is solved by reduction to consensus [CT96]. The Chandra-Toueg algorithm
does not use failure detectors directly, but relies solely on consensus (which
in turn relies on failure detectors).8 For consensus, we consider two differ-

7This request should only be sent once during each round, to avoid an explosion of
request messages in the case of very frequent wrong suspicions

8This allows us to compare two different atomic broadcast algorithms, both using failure
detectors (directly, as in the token based algorithm, or indirectly, as in the reduction to

47

Chapter 4. Token based Atomic Broadcast

(1 time unit)Network

R
ec
ei
vi
ng
pr
oc
es
s
p j

(λ time units)
CPUj

deliver()send()

CPUi
(λ time units)

Se
nd
in
g
pr
oc
es
s
p i

Figure 4.2: The Neko simulation model

ent algorithms: (1) the Chandra-Toueg consensus algorithm (CT), based
on a centralized communication schema [CT96], and (2) the Mostéfaoui-
Raynal consensus algorithm (MR), based on a decentralized communica-
tion schema [MR99]. The two algorithms use the failure detector �S and
require f < n/2. The details of the atomic broadcast and consensus al-
gorithms are presented in Appendix A. The implementation of our new
token based algorithm (noted TokenFD) is optimized in that messages that
are abroadcast are initially sent to all processes (so that they are added to a
token faster) and decisions are broadcast as soon as they are taken (so that
the decision reaches all processes faster, allowing messages to be adelivered
faster). The comparison is done by simulation.

4.1.6.A Simulation model and parameters

The results have been obtained using the Neko simulation and prototyp-
ing framework [UDS02]. Using this framework, the same (Java) imple-
mentation of a protocol can be used in a simulated environment and on a
real network. The message transmission has been modeled as in [USS03]
and [UDS00] and is illustrated in Figure 4.2.

Both the network and the hosts can be a bottleneck. Each CPU (for send-
ing and receiving messages) and the network are modeled as resources that
need to be acquired, used, and finally released. A message m transmitted
from process pi to process pj (i) first uses the CPU of pi (with a cost of λ),
(ii) then the network (with a cost of 1), and (iii) finally the CPU of pj (with
a cost of λ), as shown in Figure 4.2. If a resource (the CPU or the network)
is already in use, message m is enqueued until the resource is free. The
parameter λ (λ ≥ 0) models the relative speed of processing a message
on a host compared to transmitting it over the network: λ = 1 indicates
that CPU processing and transmitting over the network have the same cost,
λ > 1 indicate that CPU processing is expensive compared to transmitting

consensus algorithm, where consensus uses failure detectors).

48

4.1. Token and failure detector based atomic broadcast

over the network, λ < 1 indicates that transmitting over the network is ex-
pensive compared to CPU processing. We use three representative values
{0.1, 1, 10} for λ and simulate the algorithms on a multicast network.

4.1.6.B Performance Metric : Latency versus Throughput

We evaluate the performance of the algorithms with four types of fault-
loads, as in [USS03]: normal-steady (no failures, no suspicions), crash-steady
(one or two failures occur before the start of the run, no wrong suspicions),
crash-transient (failures are injected during the run and detected after a de-
tection time TD, the performance is measured during the period of instabil-
ity that follows a crash) and suspicion-steady (no failures, but wrong suspi-
cions). In the suspicion-steady faultload, wrong suspicions occur on average
every TMR time units (the mistake recurrence time) and last on average TM
time units (the average duration). When TMR is low, wrong suspicions oc-
cur frequently, whereas when TM is high, wrong suspicions take a long time
to be corrected.

All of these tests were run with two system settings: (1) f = 1: one
tolerated failure (n = 3 processes for CT, MR and TokenFD) and (2) f = 2:
two tolerated failures (n = 5 processes for CT and MR, compared to n = 7
processes for TokenFD).9

We use a simple symmetric workload: all processes send atomic broad-
casts at the same rate, and the overall rate is called throughput. The perfor-
mance metric for the algorithms is the latency, defined as the average (over
all correct processes) of the elapsed time between sending a message m and
the delivery of m.

The results are shown in Figures 4.3 to 4.14. The graphs give the latency
as a function of the overall throughput or the mistake recurrence time (in
the suspicion-steady faultload). We set the time unit of the network simu-
lation model to 1 ms, to make sure that the reader is not distracted by an
unfamiliar presentation of time/frequency values (one that refers to time
units). Any other value could have been used. The 95% confidence interval
is shown for each point in the graphs.

4.1.6.C One tolerated failure (f = 1)

In the case f = 1, all algorithms need a system with n = 3 processes to
guarantee liveness. In such a setting, and with a normal-steady faultload
(i.e. no failures, no wrong suspicions), the TokenFD algorithm needs two

9 The number of processes might seem small, but is adequate to implement scalable
atomic broadcast algorithms. Indeed, in a system with a large amount of processes, there is
typically a small kernel of “servers” that order the messages and then broadcast them to all
other processes. This issue is further discussed in Chapter 9.

49

Chapter 4. Token based Atomic Broadcast

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 150 300 450 600 750 900

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 3, no failures, no suspicions, λ = 0.1

MR
CT

TokenFD

(a) λ = 0.1

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 150 300 450 600 750 900

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 3, no failures, no suspicions, λ = 1

MR
CT

TokenFD

(b) λ = 1

 0
 100
 200
 300
 400
 500
 600
 700

 0 10 20 30 40 50 60 70 80 90

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 3, no failures, no suspicions, λ = 10

MR
CT

TokenFD

(c) λ = 10

Figure 4.3: Latency vs. through-
put with a normal-steady fault-

load, n = 3 correct processes

 0

 10

 20

 30

 40

 50

 60

 0 150 300 450 600 750 900

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 3, one crashed process, λ = 0.1

TokenFD
CT

MR

(a) λ = 0.1

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 150 300 450 600 750 900

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 3, one crashed process, λ = 1

TokenFD
CT

MR

(b) λ = 1

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 3, one crashed process, λ = 10

TokenFD
CT

MR

(c) λ = 10

Figure 4.4: Latency vs. through-
put with a crash-steady faultload,
one crashed process (n = 3 pro-

cesses)

50

4.1. Token and failure detector based atomic broadcast

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 3, TD = 0 ms, λ = 0.1

MR
CT

TokenFD

(a) λ = 0.1

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 3, TD = 0 ms, λ = 1

MR
CT

TokenFD

(b) λ = 1

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 10 20 30 40 50 60 70 80

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 3, TD = 0 ms, λ = 10

MR
CT

TokenFD

(c) λ = 10

Figure 4.5: Latency overhead vs.
throughput with a crash-transient
faultload, one crash (in a group of
n = 3 processes), detection time

TD = 0ms

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 3, TD = 100 ms, λ = 0.1

MR
CT

TokenFD

(a) λ = 0.1

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 3, TD = 100 ms, λ = 1

MR
CT

TokenFD

(b) λ = 1

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 10 20 30 40 50 60 70 80

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 3, TD = 100 ms, λ = 10

MR
CT

TokenFD

(c) λ = 10

Figure 4.6: Latency overhead vs.
throughput with a crash-transient
faultload, one crash (in a group of
n = 3 processes), detection time

TD = 100ms

51

Chapter 4. Token based Atomic Broadcast

 0

 20

 40

 60

 80

 100

 1e+06 10000 100 10 1

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 10 1/s,
TM = 0 ms, λ = 0.1

CT
MR

TokenFD

(a) λ = 0.1

 0

 20

 40

 60

 80

 100

 1e+06 10000 100 10 1

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 10 1/s,
TM = 0 ms, λ = 1

CT
MR

TokenFD

(b) λ = 1

 0

 200

 400

 600

 800

 1000

 1e+06 10000 100 10

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 1 1/s,
TM = 0 ms, λ = 10

CT
MR

TokenFD

(c) λ = 10

Figure 4.7: Latency vs. mis-
take recurrence time TMR with
a suspicion-steady faultload, n =
3 processes, mistake duration
TM = 0ms, throughput of 10 (λ =
0.1, 1) or 1 (λ = 10) abroadcasts per

second

 0

 20

 40

 60

 80

 100

 1e+06 10000 100 10 1

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 300 1/s,
TM = 0 ms, λ = 0.1

CT
MR

TokenFD

(a) λ = 0.1

 0

 20

 40

 60

 80

 100

 1e+06 10000 100 10 1

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 300 1/s,
TM = 0 ms, λ = 1

CT
MR

TokenFD

(b) λ = 1

 0

 200

 400

 600

 800

 1000

 1e+06 10000 100 10

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 30 1/s,
TM = 0 ms, λ = 10

CT
MR

TokenFD

(c) λ = 10

Figure 4.8: Latency vs. mis-
take recurrence time TMR with
a suspicion-steady faultload, n =
3 processes, mistake duration
TM = 0ms, throughput of 300
(λ = 0.1, 1) or 30 (λ = 10)

abroadcasts per second

52

4.1. Token and failure detector based atomic broadcast

broadcast messages and one point-to-point message (i.e. three communi-
cation steps) for all processes to abroadcast and adeliver a message. The CT
(atomic broadcast and consensus) algorithm needs n = 3 point-to-point
messages and 3 broadcast messages, for a total of 4 communication steps.
Finally, the MR algorithm (coupled with Chandra-Toueg atomic broadcast)
needs 2n + 1 = 7 broadcasts, for a total of 3 communication steps. Ac-
cording to this complexity analysis, the TokenFD algorithm should perform
better than the CT and MR algorithms in a system with 3 processes. Figure
4.3 confirms this analysis in the case of a run without failures: the TokenFD
algorithm achieves lower latencies than both other algorithms for all loads
but the lowest.

In the case of one faulty process (crash-steady faultload), the perfor-
mance gap between the TokenFD algorithm and both other algorithms is
negligible (Figure 4.4), due to two factors: (1) the decrease of the network
contention (only two processes try to access the network) which is favor-
able to the CT and MR algorithms and (2) the reduced number of deci-
sions that the TokenFD atomic broadcast algorithm can take when a process
crashes: if pi crashes, then the votes in the token sent from pi−1 to pi+1 are
always reset. If no crashes (and no suspicions occur), the TokenFD algo-
rithm never needs to reset votes. In the scenario of one crash in a system
with three processes, the communication patterns of the CT, MR and To-
kenFD algorithms are almost identical, which explains the similar perfor-
mance.

In runs with a crash-transient faultload, if the detection is very fast (mod-
eled as detection time TD = 0), the TokenFD algorithm performs better than
both other algorithms, as is shown in Figure 4.5. When the detection time
is TD = 100ms, the TokenFD algorithm still achieves a slightly lower latency
overhead than both other algorithms (Figure 4.6).

Finally, in runs with wrong suspicions (suspicion-steady faultload), the
TokenFD algorithm achieves lower latencies than the other algorithms, es-
pecially when failure detector mistakes are frequent (small values of TMR.
Figures 4.7 and 4.8 illustrate this for low and high throughputs respectively.

4.1.6.D Two tolerated failures (f = 2)

In the case of f = 2, CT and MR need a system with n = 5 processes,
whereas the TokenFD algorithm needs n = 7 processes to guarantee live-
ness. In such a setting, and with a normal-steady faultload (i.e. no wrong
suspicions), the TokenFD algorithm needs two broadcast messages and 2
point-to-point messages (i.e. four communication steps). The results for
the CT and MR consensus algorithms are as before: n = 5 point-to-point
messages and 3 broadcasts for a total of 4 communication steps for CT,
2n + 1 = 11 broadcasts for a total of 3 communication steps for MR.

So, roughly speaking, the TokenFD algorithm appears better in terms

53

Chapter 4. Token based Atomic Broadcast

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 150 300 450 600 750 900

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
No failures, no suspicions, λ = 0.1

MR, n = 5
CT, n = 5

TokenFD, n = 7

(a) λ = 0.1

 0

 20

 40

 60

 80

 100

 120

 0 150 300 450 600 750 900

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
No failures, no suspicions, λ = 1

MR, n = 5
CT, n = 5

TokenFD, n = 7

(b) λ = 1

 0
 100
 200
 300
 400
 500
 600
 700

 0 10 20 30 40 50 60 70 80 90

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
No failures, no suspicions, λ = 10

MR, n = 5
CT, n = 5

TokenFD, n = 7

(c) λ = 10

Figure 4.9: Latency vs. through-
put with a normal-steady fault-
load, n = 5 (CT, MR) and n = 7

(TokenFD) correct processes

 0
 20
 40
 60
 80

 100
 120
 140

 0 100 200 300 400 500 600 700 800 900

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 5 (CT, MR) or n = 7 (TokenFD),
two crashed processes, λ = 0.1

TokenFD (worst)
MR, n = 5
CT, n = 5

TokenFD (best)

(a) λ = 0.1

 0
 20
 40
 60
 80

 100
 120

 0 100 200 300 400 500 600 700 800 900

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 5 (CT, MR) or n = 7 (TokenFD),
two crashed processes, λ = 1

TokenFD (worst)
MR, n = 5
CT, n = 5

TokenFD (best)

(b) λ = 1

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 10 20 30 40 50 60 70 80 90

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

n = 5 (CT, MR) or n = 7 (TokenFD),
two crashed processes, λ = 10

TokenFD (worst)
MR, n = 5
CT, n = 5

TokenFD (best)

(c) λ = 10

Figure 4.10: Latency vs. through-
put with a crash-steady faultload,
two crashed processes (in a group
of n = 5 (CT, MR) and n = 7 (To-

kenFD) processes)

54

4.1. Token and failure detector based atomic broadcast

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600 700 800

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
TD = 0 ms, λ = 0.1

MR, n = 5
CT, n = 5

TokenFD, n = 7

(a) λ = 0.1

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
TD = 0 ms, λ = 1

MR, n = 5
CT, n = 5

TokenFD, n = 7

(b) λ = 1

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
TD = 0 ms, λ = 10

MR, n = 5
CT, n = 5

TokenFD, n = 7

(c) λ = 10

Figure 4.11: Latency overhead
vs. throughput with a crash-
transient faultload, two crashes
(in a group of n = 5 (CT, MR)
and n = 7 (TokenFD) processes),

detection time TD = 0ms

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600 700 800

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
TD = 100 ms, λ = 0.1

MR, n = 5
CT, n = 5

TokenFD, n = 7

(a) λ = 0.1

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
TD = 100 ms, λ = 1

MR, n = 5
CT, n = 5

TokenFD, n = 7

(b) λ = 1

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80

a
ve

ra
g

e
 la

te
n

c
y

o
ve

rh
e

a
d

 [
m

s]

throughput [1/s]

n = 5 (CT,MR) or n = 7 (TokenFD),
TD = 100 ms, λ = 10

MR, n = 5
CT, n = 5

TokenFD, n = 7

(c) λ = 10

Figure 4.12: Latency overhead
vs. throughput with a crash-
transient faultload, two crashes
(in a group of n = 5 (CT, MR) and
n = 7 (Token) processes), detec-

tion time TD = 100ms

55

Chapter 4. Token based Atomic Broadcast

 0

 20

 40

 60

 80

 100

 1e+06 10000 100 10 1

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 5 (CT, MR) or n = 7 (TokenFD),
throughput = 10 1/s, TM = 0 ms, λ = 0.1

MR
CT

TokenFD

(a) λ = 0.1

 0

 20

 40

 60

 80

 100

 1e+06 10000 100 10 1

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 5 (CT, MR) or n = 7 (TokenFD),
throughput = 10 1/s, TM = 0 ms, λ = 1

MR
CT

TokenFD

(b) λ = 1

 0

 200

 400

 600

 800

 1000

 1e+06 10000 100 10

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 5 (CT, MR) or n = 7 (TokenFD),
throughput = 1 1/s, TM = 0 ms, λ = 10

MR
CT

TokenFD

(c) λ = 10

Figure 4.13: Latency vs. mis-
take recurrence time TMR with
a suspicion-steady faultload, n =
5 (CT, MR) and n = 7 (To-
kenFD) processes, mistake dura-
tion TM = 0ms, throughput of
10 (λ = 0.1, 1) or 1 (λ = 10)

abroadcasts per second

 0

 20

 40

 60

 80

 100

 1e+06 10000 100 10 1

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 5 (CT, MR) or n = 7 (TokenFD),
throughput = 300 1/s, TM = 0 ms, λ = 0.1

MR
CT

TokenFD

(a) λ = 0.1

 0

 20

 40

 60

 80

 100

 1e+06 10000 100 10 1

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 5 (CT, MR) or n = 7 (TokenFD),
throughput = 300 1/s, TM = 0 ms, λ = 1

MR
CT

TokenFD

(b) λ = 1

 0

 200

 400

 600

 800

 1000

 1e+06 10000 100 10

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

n = 5 (CT, MR) or n = 7 (TokenFD),
throughput = 30 1/s, TM = 0 ms, λ = 10

MR
CT

TokenFD

(c) λ = 10

Figure 4.14: Latency vs. mis-
take recurrence time TMR with
a suspicion-steady faultload, n =
5 (CT, MR) and n = 7 (To-
kenFD) processes, mistake dura-
tion TM = 0ms, throughput of
300 (λ = 0.1, 1) or 30 (λ = 10)

abroadcasts per second

56

4.1. Token and failure detector based atomic broadcast

of number of messages, but slightly worse (compared to MR) in terms of
communication steps. Figure 4.9 shows that in the normal-steady faultload,
the TokenFD algorithm performs better than CT and MR for all values of λ,
except in the case of very low loads. Again, the token-passing mechanism
(and overall low message complexity) of the TokenFD algorithm leads to
low contention on the network and the processor, which in turn leads to
good simulated performance figures.

In the case of two failures, however, the results are slightly different
as illustrated by Figure 4.10. In the case of the CT and MR algorithms,
the (non-coordinator) process crashes are symmetrical and lead to reduced
contention, thus improving the performance of the algorithms. In the case
of the TokenFD algorithm, the position of the two crashed processes in the
token ring determines the performance hit on the algorithm. Indeed, if the
two crashed processes are side-by-side (best case scenario, noted “TokenFD
(best)” in Figure 4.10), the performance hit is low: the votes in the token
are reset a single time during the token circulation. Instead of deciding up
to n = 7 times per revolution, the TokenFD algorithm only decides up to 3
times. If the two crashed processes have f correct processes between them
(worst case scenario, noted “TokenFD (worst)” in Figure 4.10), the votes in
the token are reset twice, precisely when f votes have already been accu-
mulated and thus, a single decision can be taken during each token revo-
lution. Figure 4.10 illustrates this: in the worst case scenario, the TokenFD
performance is worse than CT and MR, whereas in the best case scenario,
TokenFD achieves slightly lower latencies than CT and MR.

The performance graphs of the runs with a crash-transient faultload (with
a detection time TD = 0 in Figure 4.11 and TD = 100ms in Figure 4.12) show
characteristics that are similar to the runs in a failure free system. With this
faultload, the TokenFD algorithm achieves lower latencies than the other al-
gorithms. Notice that in the crash-transient faultload, we only considered
the impact on performance after a single crash.

Finally, in runs with a suspicion-steady faultload (wrong suspicions), il-
lustrated in Figures 4.13 and 4.14, the TokenFD algorithm performs better
than CT and MR as the mistake recurrence time TMR decreases (more fre-
quent wrong suspicions).

To wrap up, the simulation results show that the TokenFD algorithm is a
better alternative to other failure detector based algorithms in various sys-
tem settings, especially in the case f = 1 (and except at the lowest loads).
In such a case, according to the simulation results, the TokenFD algorithm
achieves lower latencies than both other algorithms, while reaching higher
throughput levels. This is also the case when up to f = 2 failures are sup-
ported, but no crashes (nor wrong suspicions) occur. In the case of crashes
in the case f = 2, the location of the crashed processes in the token ring
largely determines the impact of the crashes on the performance of the al-
gorithm.

57

Chapter 4. Token based Atomic Broadcast

4.1.7 Related work
As was mentioned in Section 4.1.1, previous atomic broadcast protocols
based on tokens need group membership or an equivalent mechanism.
In Chang and Maxemchuk’s Reliable Broadcast Protocol [CM84], and its
newer variant [MS01], an ad-hoc reformation mechanism is called when-
ever a host fails. Group membership is used explicitly in other atomic
broadcast protocols such as Totem [AMMS+95], the Reliable Multicast Pro-
tocol by Whetten et al. [WMK94] (derived from [CM84]), and in [CMA97].

These atomic broadcast protocols also have different approaches with
respect to message broadcasting and delivery. In [CM84, WMK94], the mov-
ing sequencer approach is used: any process can broadcast a message at any
time. The token holder then orders the messages that have been broadcast.
Other protocols, such as Totem [AMMS+95] or On-Demand [CMA97] on
the other hand use the privilege based approach, enabling only the token-
holder to broadcast (and simultaneously order) messages.

Finally, the different token based atomic broadcast protocols deliver
messages in different ways. In [CMA97], the token holder issues an “up-
date dissemination message” which effectively contains messages and their
global order. A host can deliver a message as soon as it knows that pre-
viously ordered messages have been delivered. “Agreed delivery” in the
Totem protocol (which corresponds to adeliver in the protocol presented in
this chapter) is also done in a similar way. On the other hand, in the Chang-
Maxemchuk atomic broadcast protocol [CM84], a message is only delivered
once f + 1 sites have received the message. Finally, the Train protocol pre-
sented in [Cri91] transports the ordered messages in a token that is passed
among all processes (and is in this respect related to the token based proto-
cols presented in this chapter).

Larrea et al. [LAF99] also consider a logical ring of processes, however
with a different goal. They use a ring for an efficient implementation of the
failure detectors �W , �S and �P in a partially synchronous system.

4.1.8 Discussion
According to various authors, token based atomic broadcast algorithms are
more efficient in terms of throughput than other atomic broadcast algo-
rithms. The reason is that the token can be used to reduce network con-
tention. However, all published token based algorithms rely on a group
membership service, i.e., none of them use unreliable failure detectors di-
rectly. The first part of this chapter presented the first token based atomic
broadcast algorithms that solely relies on a failure detector, namely the new
failure detector calledR. Such an algorithm has the advantage of tolerating
failures directly (i.e., it also tolerates wrong failure suspicions). Algorithms
that do not tolerate failures directly, need to rely on a membership service

58

4.2. Variants and optimizations of the token based algorithm

to exclude crashed processes. As a side-effect, these algorithms also ex-
clude correct processes that have been incorrectly suspected. Thus, failure
detector based algorithms have advantages over group membership based
algorithms, in case of wrong failure suspicions, and possibly also in the
case of real crashes.

Finally, although token based atomic broadcast algorithms are usually
considered to be efficient only in terms of throughput, our performance
evaluation has shown that for small values of n, our algorithm compares
favorably with the Chandra-Toueg atomic broadcast algorithm (using the
Chandra-Toueg or Mostéfaoui-Raynal consensus algorithm) in terms of la-
tency as well, at all but the lowest loads.

Finally, the performance comparison in this chapter was based on sim-
ulated results. The second part of this thesis focuses on the experimental
performance evaluation of atomic broadcast algorithms. As a consequence,
the experimental evaluation of our new algorithm and the comparison with
the Chandra-Toueg algorithm and a token based algorithm using group
membership is presented in Chapter 7. Chapters 8 and 9 also present ex-
perimental performance results of our new token and failure detector based
algorithm.

4.2 Variants and optimizations of the token
based algorithm
In the previous section, we presented a novel token-passing atomic broad-
cast algorithm that uses a failure detector. The Uniform agreement property
(which corresponds to termination) of atomic broadcast in the algorithm
presented in Section 4.1.5.B is ensured by passing the entire set of consen-
sus decisions in the token: whenever a process receives the token, it can
catch up on all decisions taken up to that point. Although the algorithm is
correct, this is of course extremely inefficient in practice. Realistically, the
token based algorithm needs to be implemented so that data structures that
are sent on the network do not grow indefinitely (or at least, that grow very
slowly, i.e., logarithmically).

With this constraint in mind, we now modify the token based atomic
broadcast algorithm in order to bound the size of the set of decisions trans-
ported in the token, without affecting the Uniform agreement of atomic broad-
cast: If a process adelivers m, then all correct processes eventually adelivers m.

Specifically, we focus on the case where a correct process adelivers m
and show how to guarantee that all correct processes eventually adeliver
m (from the algorithm and the properties of the failure detector R, it is
easy to show that if a faulty process adelivers m, then some correct process
eventually adelivers m). Ensuring that all correct process adeliver m once

59

Chapter 4. Token based Atomic Broadcast

one of them has adelivered m is easy, but allows several alternatives. These
alternatives are discussed in the following section.

Let us assume that a correct process adelivers m as part of decision num-
ber dm. We show how to ensure that all correct processes eventually re-
ceive decision number dm and discuss the effects on the amount of mem-
ory needed, the number of backup tokens that are sent and the diffusion
of new decisions. We start by examining the case where the process pi can
locally store an unbounded set adelivi (Section 4.2.1) and then show how
to achieve similar properties while limiting the size of the adelivi sequence
(Section 4.2.2). These results are summarized in Table 4.1 (page 64).

4.2.1 Unbounded adelivi set of ordered messages

Each process pi has an adelivi set of consensus decisions containing mes-
sages that have been delivered. If we assume that this sequence can grow
indefinitely, then the Agreement property of atomic broadcast is ensured as
follows. All processes keep a copy of each consensus decision that is taken.
If a process detects that a decision is missing (upon receiving a token con-
taining a decision with a number that is higher than expected for example),
it sends a decision request to all processes. A process that receives such a
request and has a subset of the requested decisions replies to the sender
and includes the asked-for decisions.

This approach is one of those currently implemented and is close to Al-
gorithms 4.5 and 4.6. It needs an ad-hoc retransmission mechanism and
an unbounded adelivi set. The backup tokens (i.e. those sent by pi to
pi+2, . . . , pi+ f +1) are not necessary as long as there aren’t any suspicions,
but are sent if a request is received from a process pk suspecting its pre-
decessor pk−1. As in Algorithm 4.6, decisions do not need to be broadcast
(using reliable broadcast or send-to-all) but are instead diffused within the
token.

Proof. Let a correct process p reach decision number dm. From the token
circulation and the properties of the failure detector R, it is easy to show
that all correct processes eventually receive a token with a decision number
dt ≥ dm. Let q be a correct process that has not decided in consensus dm.
Upon receiving a token with dt ≥ dm either (i) dt = dm and thus q reaches
a decision in consensus dm or (ii) dt > dm and q sends a request message
to all for all decisions whose number is smaller than dt and that q has not
received. By the properties of quasi-reliable channels, q eventually receives
the decision taken in instance dm from p.

60

4.2. Variants and optimizations

4.2.2 Bounded-size adelivi set of ordered messages
In the Chandra-Toueg atomic broadcast algorithm, a process pi can garbage
collect all decisions whose messages have already been adelivered. This can
be done because each decision is reliably broadcast to all processes (thus, if
a correct process receives a decision, all correct processes eventually receive
it). In Algorithm 4.6 and in the case of the approach presented in the previ-
ous paragraph, the consensus decisions are conveyed in the token. When
backup tokens are not sent, it is impossible to determine which correct pro-
cesses have received all batches of ordered messages (i.e., the consensus
decisions) and thus, the adelivi set of a process pi cannot be bounded (since
any previous consensus decision can potentially be requested by a correct
process).

On the other hand, if the consensus decisions of the token based atomic
broadcast algorithm are reliably broadcast, the size of the adelivi set can be
bounded, as in the case of the Chandra-Toueg atomic broadcast algorithm.
This result is presented in the following paragraphs. After that, a second
approach that does not need decisions to be broadcast is also presented.

4.2.2.A Reliable broadcast of new decisions

The first variant of the token based atomic broadcast algorithm that allows
to bound the set of consensus decisions that need to be stored inside the
token and by the processes is the following. Whenever a decision is taken,
the token holder reliably broadcasts the decision to all processes. Conse-
quently, the first time a process receives a decision, it is either (1) in the
token or (2) in an rdeliver. In case (1), whenever a process receives a deci-
sion in the token that has not yet been rdelivered, it rbroadcasts that decision
to all processes: this is necessary in order to ensure that all correct pro-
cesses eventually rdeliver all decisions. Otherwise, a faulty process could
decide a value, send it in the token and crash before rbroadcasting it: the de-
cision in the token would never be rdelivered. When a process has rdelivered
a decision and processed it, the decision can be garbage collected.

This approach requires at least one reliable broadcast per decision that
is taken. However, it removes the need for sending backup tokens in good
runs and avoids having to save the entire set of consensus decisions in the
token.

Proof. With the reliable broadcasts of new decisions, we ensure that if a
correct process receives a decision, all correct processes receive it. Indeed,
a correct process can receive a decision either (i) in an rdeliver, (ii) by being
the first process that takes that decision or (iii) by receiving the decision in
a token. In case (i), all correct processes eventually rdeliver the decision. In
cases (ii) and (iii), the correct process rbroadcasts the decision and thus, all
correct processes eventually rdeliver it.

61

Chapter 4. Token based Atomic Broadcast

decided x− 2

received x− 2

decided x− 1

received x− 1

decides x

received
x− �

gap(pj→pi)+1
f �

≥ x− �n−1f �

pi−2 f

pi− f−1

pi− f pi−1

pi

pj

token circulation

Figure 4.15: Illustration of Lemma 4.2.2: the token holder, pi, takes decision
number x. All processes have received at least decision number x− � n−1

f �
in the same round.

4.2.2.B No reliable broadcast of the decision

The second approach that allows us to bound the set of consensus deci-
sions that need to be stored by all processes does not require decisions to
be rbroadcast (or broadcast at all for that matter). It assumes that all cor-
rect processes receive at least one token in each round. This is achieved by
forcing a token holder to always send the token to its f + 1 neighbors (i.e.,
always send the backup tokens).

Let’s analyze the situation where a process pi takes decision number
x in round r. We claim that all processes have received at least decision
number x − � n−2

f � − 1, either in round r or in round r − 1. The result is
shown in two parts:

Lemma 4.2.1. We assume that decisions are only transported in the token. If pi
decides x in round r, then pi− f , . . . , pi−1 eventually receive at least decision x− 1
in that round.

Proof. Just before deciding in round r, either (1) pi receives a token with
decision x − 1, reaches the vote threshold f + 1 and is the first process to
decide x, or (2) pi receives a token that already contains decision x (and
some other process decided x before pi). In case (1), pi receives a token with
f votes. Processes pi− f to pi−1 have thus voted for the future decision x and
have received decision x − 1 in the token. In case (2), pi receives a token

62

4.2. Variants and optimizations

which contains decision x in round r. From the algorithm, all processes in
pi− f , . . . , pi−1 eventually receive a token with decision x or x− 1.

Lemma 4.2.2. Let pi be a process that has taken decision number x. All other
processes then eventually receive a token with decision number x− � n−1

f �.
Proof. Let us assume that process pi takes decision x in round r. From
Lemma 4.2.1, processes pi− f , . . . , pi−1 (and in particular pi− f) eventually
receive the decision x− 1 in that round. By induction, the set of processes
pi−k· f , . . . , pi−(k−1) f−1, with k ∈ [1, � n

f �], eventually receive decision x − k.

In particular pi−n+1 = pi+1, eventually receives at least decision x− � n−1
f �

in round r if pi = pn−1, round r− 1 otherwise.

Figure 4.15 illustrates Lemma 4.2.2: process pi, the token holder, is the
first process to take decision number x (in round r). Processes pi− f to pi−1
have thus received decision x − 1. In general, any process, by the end of
round r, has received at least decision number x− � n−1

f �.
If multiple proposals are allowed in the same token, then whenever a

decision x is taken, all other processes will at least receive a token with
decision x− n + 1.

Impacts on garbage collection After the xth decision in round r and
since all processes receive a token in a given round, all processes have at
least decision x− � n−1

f � (or x− n + 1 if multiple proposals are used) after
round r. The process that takes the decision can thus garbage collect all
decisions with numbers up to x− � n−1

f �. Similarly, a process that receives
a token with decision x can garbage collect decisions with numbers smaller
than x− � n−1

f �.

4.2.2.C Summary

Table 4.1 summarizes the three approaches that allow the token based atomic
broadcast algorithm to limit the size of the tokens that are sent, while en-
suring that the Uniform agreement property of atomic broadcast holds.

1. If the processes have an unbounded amount of memory, Uniform agree-
ment is guaranteed by storing all known decisions locally and re-
transmitting all decisions that are requested by other processes. This
approach has the following advantages: a process can skip rounds
[r + 1, r′ − 1] if it receives a token from round r′ > r + 1 where r is the
round of the previously held token. Furthermore, backup tokens are
not needed in runs without failures or suspicions, which is one of the
optimizations described in Section 4.1.5.C. Finally, decisions do not
need to be broadcast as soon as they are taken. This solution is the
one that requires the least number of messages.

63

Chapter 4. Token based Atomic Broadcast

Table 4.1: Summary of the different approaches that ensure the Uniform
agreement property of atomic broadcast
Unbounded memory Bounded memory

Backup tokens
always sent —

3. Rounds cannot be skipped,
new decisions don’t need to
be broadcast

No backup to-
kens in good
runs

1. Retransmission mecha-
nism for lost decisions, new
decisions don’t need to be
broadcast

2. New decisions must be re-
liably broadcast

2. If the processes have a bounded memory, then decisions can be re-
liably broadcast instead of including all of them in the token. This
approach also avoids sending backup tokens, but requires (costly)
reliable broadcasts of all decisions. This approach is the closest in
terms of message complexity to the Chandra-Toueg atomic broadcast
and consensus algorithms, where consensus decisions are also reli-
ably broadcast.

3. Finally, if processes have a bounded memory and reliable broadcast
cannot be used, the third approach is to always send the f backup
tokens. With this approach, the decisions no longer need to be broad-
cast and the token only needs to transport the n last decisions that
have been taken. The drawback of this approach is that processes
need to receive a token in each round (by always sending the f backup
tokens, we ensure that a correct process receives at least one token per
round).

4.3 Adapting the algorithm to the Heard-Of
model
The token based consensus (and atomic broadcast) algorithm presented in
Section 4.1 uses an unreliable failure detector to ensure that a decision is
eventually taken (or that abroadcast messages are eventually adelivered).
The failure detector model approach to fault tolerance is characterized by a
strong emphasis on process failures, and in particular on the fail-stop class
of failures. In the case of fail-stop, a process simply stops executing pro-
cessing steps and remains crashed forever. Other types of (benign) crashes
such as send and receive omission failures, where a faulty process fails to
send or receive some messages, cannot be handled by the failure detector
model.

64

4.3. Adapting the algorithm to the Heard-Of model

Furthermore, failure detector based consensus algorithms (e.g. [CT96]
and [MR99]) often assume reliable (or quasi-reliable) channels and thus do
not support the loss of messages on the network (link failures).

The Heard-Of model (noted HO model hereafter and presented in Sec-
tion 3.1.3) addresses these problems: processes communicate in rounds
(each composed of send and state transition stages). Instead of being in-
formed on (potentially) faulty processes, a process receives a set of mes-
sages (the heard-of set) at the beginning of the state transition stage of each
round. If a process pi expects a message from process pj in round r and that
the message is not in the received set of round r, this loss can be explained
by several reasons: pj might have crashed or might be subject to send-
omission, the message might have been lost by the network or pi might be
subject to receive-omission. In any case, the HO model does not try to in-
terpret the loss of a message: it only provides the set of received messages,
which are then used to solve consensus. The sets of received messages can
of course not be arbitrary (for instance, how can one solve consensus if the
received sets are empty for all rounds and all processes?) and thus, each al-
gorithm has an associated predicate that imposes conditions on the heard-of
sets.

In this section, our goal is to evaluate the HO model in the context of the
token algorithm. We first present the token based consensus algorithm in
the context of the HO model and then discuss what predicate is needed by
the algorithm to ensure the Termination of consensus. We consider a group
Π = {p0, . . . , pn−1} of n processes. Each phase φ of the algorithm has n
rounds r = {nφ, . . . , n(φ + 1)− 1} (i.e. r− nφ = r mod n ∈ {0, . . . , n− 1}).
Rounds start at r = 1.

4.3.1 Description of the algorithm
In the HO model, algorithms proceed in rounds consisting of sending and
state transition stages. For the sake of clarity, rounds can then be grouped
into phases. In the token based consensus algorithm, processes pass a token
along a logical ring and we associate a phase to a complete revolution of the
token. Each phase thus naturally corresponds to n consecutive rounds.10

Furthermore, in each phase, a process only receives tokens in one round
(in phase k, the reception round of pi is k · n + i) but sends tokens in f +
1 rounds (i.e. one round for sending the logical token and f rounds for
sending the backup tokens). The dual approach (sending in a single round
and receiving in f + 1 rounds) is also possible, but yields an algorithm that
is slightly longer.

Algorithm 4.7 presents the token accumulation consensus algorithm in

10In the token based consensus algorithm, a round in the failure detector model (Sec-
tion 4.1.4.C) corresponds to a phase in the HO model. . .

65

Chapter 4. Token based Atomic Broadcast

Algorithm 4.7: Token accumulation consensus in the Heard-Of model
(code of process pi)

1: upon propose(vi) do
2: estimatei ← vi
3: decidedi ← false
4: votesi ← 1
5: tokenToSendi ← 〈1, estimatei, false〉

6: Round r (phase φ = � r
n �):

7: Sr :
8: if r− nφ ∈ {(i + 1) mod n, . . . , (i + f + 1) mod n} then
9: send tokenToSendi to pr−nφ {Send token to the receiver pr mod n}

10: Tr :
11: if i �= r− nφ or decidedi then {Not a reception round or already decided.}
12: skip Tr

13: if received 〈−, estimate, true〉 then {if one of the tokens has a decision}
14: decidedi ← true
15: estimatei ← estimate
16: decide(estimatei)
17: else
18: pk ← process pj with the smallest gap(pj → pi) s.t. received

〈votes, estimate, false〉 from pj
19: estimatei ← estimate {adopt the estimate in the token}
20: if pk = p(i−1) mod n then
21: votesi ← votes + 1 {token received from predecessor: increment votes}
22: else
23: votesi ← 1 {gap in token circulation: reset votes}

24: if votesi ≥ f + 1 then {if enough votes have been gathered: decide}
25: decidedi ← true
26: decide(estimatei)
27: tokenToSendi ← 〈votesi, estimatei, decidedi〉 {Save the token to send}

66

4.3. Adapting the algorithm to the Heard-Of model

Table 4.2: Illustration of which processes send and receive messages in a
given round of the token based consensus algorithm in the Heard-Of model

phase round Sr Tr

φ = 0

⎧⎨
⎩

r = 0 skipped - -
r = 1 p2, p0 p1
r = 2 p0, p1 p2

φ = 1

⎧⎨
⎩

r = 3 p1, p2 p0
r = 4 p2, p0 p1
r = 5 p0, p1 p2

... ...
...

...

φ = k

⎧⎨
⎩

r = n · k p1, p2 p0
r = n · k + 1 p2, p0 p1
r = n · k + 2 p0, p1 p2

the HO model. During the initialization (upon proposing a value) process
pi sets its estimate to its own proposal (line 2) and the decidedi flag to false
(line 3).

For each round r, process pi then first executes the send stage Sr (lines
7 to 9). In this stage, pi checks if r is the reception round of one of its f + 1
successors (line 8) and if so sends the token that was previously saved (line
9).

In the state transition stage Tr of round r (lines 10 to 27), pi starts by
verifying if r is its own reception round (r = nφ + i) on line 11. If this
is not the case Tr is skipped. Tr is also skipped if pi has decided: in this
case, the variable tokenToSendi contains the decided value and should not
be modified.

If pi has not decided and r is its reception round, pi examines its re-
ceived set (line 13): either (1) a token with a decision has been received
(lines 14 to 16) or (2) only regular tokens were received (lines 18 to 26). In
the first case (1), pi sets its decidedi flag, adopts the estimate in the token
and decides (line 16). In the second case (2), pi selects the token that was
received from the process with the smallest gap on line 18 (and adopts the
estimate contained in the token on line 19). Process pi then increments the
votes if the token was received from the immediate predecessor (line 21)
and resets the votes otherwise (line 23). If enough votes have been col-
lected, pi decides (lines 24 to 26). Finally, if a token was received, pi sets
tokenToSendi with the new values of votesi, estimatei and the decision flag
decidedi (line 27). This token is then sent in the sending stage of the next
f + 1 rounds.

67

Chapter 4. Token based Atomic Broadcast

Table 4.2 shows which processes send (Sr column) and receive (Tr col-
umn) tokens in a given round in a system with n = 3 processes. Notice
that, as explained above, there is a single receiving process per round (but
f + 1 = 2 senders) and that each phase φ > 0 corresponds to n = 3 rounds:
a complete token revolution.

4.3.2 Heard-Of predicates
A number of conditions, defined by predicates on the sets of messages re-
ceived in each round, must be met for Algorithm 4.7 to solve consensus
in the HO model. These conditions form the predicate. We now present
the predicates which ensure that the algorithm above satisfies the Uniform
agreement and Termination properties of consensus. Algorithm 4.7 also sat-
isfies the Uniform validity and Uniform integrity properties of consensus,
which is easy to show and omitted here.

4.3.2.A Uniform agreement

Algorithm 4.7 above ensures Uniform agreement of consensus (no two pro-
cesses decide a different value) without the need for any predicate.

Proof. The proof of Uniform agreement is identical to the corresponding proof
of the failure detector based version of the token algorithm (presented in
Section 4.1.4.C on page 38).

4.3.2.B Termination

As mentioned earlier, Algorithm 4.7 needs a predicate to ensure that con-
sensus eventually terminates (otherwise, the FLP impossibility result would
be violated). The following section discusses how the predicate for Termi-
nation is derived.

Note on token circulation We start by presenting a predicatePtokensForever
on the token circulation. The predicate states that each process must receive
at least one message (a token) in its reception round (which, for a process
pi is all rounds such that r mod n = i). This predicate is sufficient, but not
necessary, to ensure that there is always at least one token in circulation.

PtokensForever ≡ ∀r : HO(pr mod n, r) �= ∅

Ptoken predicate The PtokensForever predicate only ensures that tokens cir-
culate forever, which is not sufficient for eventually reaching a decision.
The following predicate, Ptoken (which is stronger than PtokensForever) ensures
Termination of Algorithm 4.7.

68

4.3. Adapting the algorithm to the Heard-Of model

Ptoken ≡ ∀r : HO(pr mod n, r) �= ∅ and
∃Πf ⊆ Π : |Πf | ≥ n− f and ∃φ : ∀φ′ ∈ [φ, φ + 2] : ∀pi ∈ Π :
HO(pi, i + nφ′) = Πf ∩ {p(i− f−1) mod n, . . . , p(i−1) mod n}

The Ptoken predicate ensures (1) that PtokensForever holds and (2) that there
is a set of processes Πf of cardinality n− f or greater and a phase φ after
which the system ensures the following: for all phases φ′ ∈ [φ, φ + 2], each
process pi receives a message during its reception round (i + nφ′) from all
of its predecessors that are in Πf . This set Πf remains unchanged for the
three phases [φ, φ + 2].

For example, consider a system with n = 7 processes {p0, . . . , p6} and
f = 2. If Πf = {p0, p1, p3, p4, p6} and φ = 6, then the predicate ensures that
for all values of φ′ between 6 and 8, we have, for p0 and p2, HO(p0, 7φ′) =
{p4, p6} and HO(p2, 2 + 7φ′) = {p6, p0, p1}.

The Ptoken predicates, with n ≥ f (f + 1) + 1, allows Algorithm 4.7 to
ensure the Termination property of consensus.

Proof. We assume that n ≥ f (f + 1) + 1. Consequently, |Πf | ≥ n − f ≥
f 2 + 1. Πf is formed of at most f sets of consecutive processes. One of
these sets thus contains f + 1 processes:

∃pi s.t. {pi, . . . , p(i+ f) mod n} ⊆ Πf (4.1)

We now show that a decision is taken at the latest in phase φ + 1 by
process p(i+ f) mod n. First of all, the PtokensForever predicate ensures that a least
one token circulates until phase φ. Then, from Equation 4.1 and Ptoken, we
have

∀k ∈ 0, . . . , f − 1 : p(i+k) mod n ∈ Πf ∩ {pi, . . . , p(i+ f) mod n}
⇒ ∀k ∈ 0, . . . , f − 1 : p(i+k) mod n ∈ HO(p(i+k+1) mod n, i + k + 1 + φ · n)

Let us assume that pi sets tokenToSendi to 〈1,−,−〉 in round i + φ · n.
Processes p(i+1) mod n to p(i+ f) mod n receive a token from from their immedi-
ate predecessors in rounds i + 1 + φ · n to i + f + φ · n and all execute line
21. Consequently, p(i+ f) mod n sets votesi to f + 1 and decides (lines 25 and
26) in round i + f + φ · n (which is in phase φ if i + f < n, φ + 1 otherwise).

From the Ptoken predicate and since pi+ f ∈ Πf , it is easy to show that
all other processes receive a token with a decision in one of the phases φ to
φ + 2.

4.3.3 Discussion
The predicate PtokensForever is weaker than the requirement of quasi reliable
channels of the failure detector solution. However, PtokensForever requires

69

Chapter 4. Token based Atomic Broadcast

a stronger assumption than fair-lossy channels. A detailed quantitative
analysis is needed to determine whether the solution expressed in the HO
model presents, for the token algorithm, a real advantage over the solution
based on failure detectors.

70

Chapter 5

Solving atomic broadcast
with indirect consensus

As seen in the previous chapters, atomic broadcast and consensus are im-
portant abstractions in fault tolerant distributed computing. In [CT96], the
authors present a reduction of atomic broadcast to consensus. In this re-
duction, the atomic broadcast algorithm performs consensus runs on sets
of messages in order to determine the delivery order of those messages.

While this is correct from a theoretical point of view, it is inefficient
in practice. Indeed, executing consensus on messages can lead to heavy
network usage if the messages are large. Instead, if consensus is executed
on message identifiers (indirect consensus), the messages themselves only
need to be diffused once and the ordering process is then done on light-
weight message identifiers.

Executing consensus on message identifiers has already been done in
previous group communication implementations [Fel98, UDS02] and has
always been seen as being easy, given a consensus algorithm on messages.
However, in these group communication implementations, the consensus
algorithms were not adapted to handle message identifiers instead of mes-
sages. As a consequence, if at least one process can crash, it can lead to a
faulty execution, as we show in this chapter.

To correctly implement a group communication stack, the consensus
and atomic broadcast algorithms need to be adapted to the case where the
decision is taken on identifiers instead of messages. We show that these
modifications are not trivial for all consensus algorithms and can affect
their resilience.

Contributions We start by discussing and illustrating the advantages of
executing consensus indirectly on message identifiers rather than on mes-
sages. Two contributions are then presented in this chapter: we (1) start
by presenting indirect consensus, and show what guarantees it must pro-

71

Chapter 5. Indirect Consensus

vide to ensure the correctness of the atomic broadcast algorithm. We then
(2) show that the transformation of failure-detector based consensus algo-
rithms on messages into indirect consensus algorithms on message identi-
fiers is far from trivial: the resilience (i.e. the number of supported failures)
of some consensus algorithms can be affected by the modifications. To il-
lustrate this, two �S-based consensus algorithms (proposed by Chandra
and Toueg, and Mostéfaoui and Raynal respectively) are adapted into indi-
rect consensus algorithms that work on message identifiers. The resilience
of one of the algorithms is affected by the modifications whereas the other
one isn’t.

The chapter is structured as follows. In Section 5.1, we motivate the use
of consensus on message identifiers rather than on messages and present
the formal specification of indirect consensus. Section 5.2 illustrates the
modifications that are needed to transform two consensus algorithms with
the failure detector �S into indirect consensus algorithms. The section em-
phasizes the fact that not all consensus algorithms on messages can be triv-
ially modified into indirect consensus algorithms on message identifiers.
Section 5.3 compares the performance of the consensus and indirect con-
sensus algorithms presented in Section 5.2. Finally, Section 5.4 concludes
this chapter.

5.1 Motivation and indirect consensus

5.1.1 Atomic broadcast on message identifiers
In the following paragraphs, we discuss the use of message identifiers in
atomic broadcast algorithms. We start by giving a short reminder of the
specifications of reliable and atomic broadcast. We then recall the reduc-
tion of atomic broadcast to consensus and show performance comparisons
between executions of atomic broadcast using messages and executions us-
ing message identifiers. The specifications and the short reminder on the
reduction of atomic broadcast to consensus help in understanding the prob-
lems involved when executing consensus on message identifiers.

We consider an asynchronous system composed of n processes taken
from a set Π = {p0, . . . , pn−1}. The processes communicate by passing
messages over reliable channels and can only fail by crashing (no Byzantine
failures). A process that never crashes is said to be correct, otherwise it is
faulty.

We now give an informal reminder of the agreement problems that are
considered in this chapter. The formal definitions of the problems are pre-
sented in Section 3.2.

Informally, reliable broadcast guarantees that all correct processes de-
liver the same set of messages. The (uniform) atomic broadcast problem

72

5.1. Motivation and indirect consensus

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 3, Throughput = 100 msgs/s

Consensus
Indirect consensus

(a) 100 msgs/s

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 3, Throughput = 800 msgs/s

Consensus
Indirect consensus

(b) 800 msgs/s

Figure 5.1: Latency vs. message size in a system with 3 processes

is reliable broadcast augmented with an additional total order property on
the delivered messages. Finally, consensus allows a group of processes to
reach a common decision.

In [CT96], the authors present a reduction of atomic broadcast to con-
sensus. In this reduction, whenever a message m is abroadcast, m is reliably
broadcast to all processes. Following this, whenever a process receives a
message that it hasn’t already adelivered, it executes consensus in order to
reach a decision with the other processes on the next message to adeliver.
In the reduction of atomic broadcast to consensus in [CT96], the processes
thus execute a sequence of consensus runs on sets of messages as long as
new messages are abroadcast.

This reduction is correct. However, in a system where the messages
are large, the consensus runs are executed on sets of large messages. Thus,
the size of the data exchanged by the consensus algorithm is large and can

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 5, Throughput = 100 msgs/s

Consensus
Indirect consensus

(a) 100 msgs/s

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 5, Throughput = 400 msgs/s

Consensus
Indirect consensus

(b) 400 msgs/s

Figure 5.2: Latency vs. message size in a system with 5 processes

73

Chapter 5. Indirect Consensus

potentially saturate the system. In order to avoid this, consensus can be
executed on message identifiers instead of the messages themselves. This
decouples the size of the messages from the size of the data exchanged by
consensus. Since the relationship between the messages and their identi-
fiers is bijective, the delivery order of the messages can easily be inferred
from the ordered sequence of message identifiers (which ensures the Uni-
form total order property of atomic broadcast).

The performance gain when using message identifiers instead of mes-
sages in consensus is not negligible. Indeed, the size of a message identifier
is independent of the size of the message itself. Thus, the size of the data
exchanged by consensus remains constant as the size of the messages in-
creases. Figures 5.1 and 5.2 illustrates the performance difference between
executing consensus on messages or message identifiers in the context of
atomic broadcast. The performance metric for atomic broadcast is the aver-
age latency, defined as the average (over all processes) of the elapsed time
between abroadcasting a message m and adelivering m. The figure shows the
latency of atomic broadcast as a function of the size of the messages. The
results are shown for two throughputs (the overall rate of atomic broadcasts
in the system: 100 or 800 msgs/s for n = 3, 100 or 400 msgs/s for n = 5).
The tests were done using the Neko framework on a local area network
with Pentium III machines. More details on the framework and the system
setup can be found in Section 5.3.

One can clearly see that as the size of the messages increases, the la-
tency of consensus on message identifiers (noted Indirect consensus in the
figure) is lower than the latency when using entire messages (noted Con-
sensus). This result becomes clearer as the throughput of atomic broadcasts
increases and as the size of the system increases. As a consequence, ex-
cept for trivial conditions (low throughputs and small systems), executing
consensus on message identifiers rather than on entire messages is clearly
justified.

5.1.2 Violating the Validity of atomic broadcast

Executing consensus on message identifiers implies that the consensus and
atomic broadcast algorithms must be adapted to explicitly handle message
identifiers instead of messages, as we now show. More specifically, we
show that if the atomic broadcast algorithm directly executes the original
consensus algorithm in [CT96] on message identifiers, the Validity property
of atomic broadcast could be violated. The scenario is illustrated in Fig-
ure 5.3 and is described below. Imagine that a faulty process p0 abroadcasts
a new message m: p0 reliably broadcasts m and starts executing consensus
on its message identifier id(m). Let us assume that the consensus algo-
rithm decides on id(m), p0 crashes and no other process receives a copy of

74

5.1. Motivation and indirect consensus

reliable b’cast ordering

received by p1 or p2
Message m is not

the decision of consensus
The identifier of m is

on msg.
consensus

identifiers

m

m

p0

p1

p2 id(m)

id(m)

id(m)id(m)

id(x)

id(y)

m

?

?

time

Figure 5.3: Illustration of the violation of the Validity of atomic broadcast if
consensus is executed directly on message identifiers

m. No other process than p0 is able to deliver m (and thus any message
ordered after m). Furthermore, in order to guarantee the Uniform total order
property of atomic broadcast, id(m) cannot be removed from the sequence
of ordered message identifiers. As a consequence, the Validity property of
atomic broadcast is violated in such an execution, since m and any follow-
ing message in the ordered sequence cannot be delivered.

The problem described above could be avoided by using uniform re-
liable broadcast instead of reliable broadcast in the atomic broadcast al-
gorithm. Uniform reliable broadcast guarantees that if at least one process
(correct or not) delivers a message, then all correct processes eventually de-
liver that message [HT94]. Since the atomic broadcast algorithm in [CT96]
only executes consensus on messages that have been uniformly reliably
delivered, this solution guarantees that all correct processes eventually re-
ceive a copy of any message ordered by consensus. However, the cost of
using uniform reliable broadcast is higher than that of reliable broadcast
(this is later illustrated in Section 5.3.4).

Instead of using uniform reliable broadcast and incurring its cost, we
suggest to adapt the consensus algorithm to handle message identifiers and
provide additional properties that ensure the correctness of atomic broad-
cast.

5.1.3 Indirect consensus
The motivation of introducing indirect consensus is to capture the differ-
ences between executing consensus on messages and on message identi-
fiers. Instead of executing consensus directly on messages, we want to
indirectly execute consensus on message identifiers. Simultaneously, indi-
rect consensus has to offer guarantees to atomic broadcast so that all the
messages whose identifiers have been ordered can be delivered by atomic

75

Chapter 5. Indirect Consensus

broadcast.
In indirect consensus, each proposal is a pair (v, rcv), where v is a set

of message identifiers (and msgs(v) are the messages whose identifiers are
in v). rcv is a function such that rcv(v) returns true only if the process has
received msgs(v). Whenever a decision is taken on v, indirect consensus
must ensure that all correct processes eventually receive msgs(v). In the
context of indirect consensus, we introduce the following hypothesis on
the rcv function:
Hypothesis A: If rcv(v) is true for a correct process, then rcv(v) is eventually
true for all correct processes.

Formally, we specify indirect consensus similarly to consensus, in terms
of two primitives: propose(v, rcv) and decide(v). The (uniform) indirect con-
sensus problem is then specified by five properties. The four first properties
are (almost) identical to (uniform) consensus:

Termination If the Hypothesis A holds, then every correct process eventu-
ally decides some value.

Uniform integrity Every process decides at most once.

Uniform agreement No two processes (correct or not) decide a different
value.

Uniform validity If a process decides v, then (v, rcv) was proposed by
some process in Π.

No loss If a process decides v at time t, then at least one correct process has
received msgs(v) at time t.

The No loss property implies that indirect consensus has to be able to
know if given v, the messages msgs(v) have been received. This informa-
tion is provided by the rcv function (the function typically operates on the
data structures of the atomic broadcast algorithm that uses indirect consen-
sus).

5.1.4 Reducing atomic broadcast to indirect consensus
The reduction of atomic broadcast to indirect consensus is almost identi-
cal to the reduction of atomic broadcast to consensus in [CT96]. The main
difference resides in the fact that instead of executing consensus on a set
of messages, indirect consensus is executed on a pair (set of message iden-
tifiers, rcv function). The Validity of atomic broadcast is ensured by the No
loss property of indirect consensus and the Agreement property of reliable
broadcast: the messages in msgs(v) corresponding to the decision v of in-
direct consensus are rdelivered by at least one correct process (and thus all
correct processes eventually rdeliver msgs(v)).

76

5.2. Solving indirect consensus

The atomic broadcast algorithm using indirect consensus is shown in
Algorithm 5.1. It shows the following: whenever abroadcast is called on a
message m, then m is rbroadcast to all processes (line 8). If a process rdelivers
a message that hasn’t been ordered yet (line 13), consensus is executed
on the unordered message identifiers (lines 15 to 18). The rcv function is
shown in lines 9 and 10 of Algorithm 5.1.

We now show that the rcv function of atomic broadcast satisfies the Hy-
pothesis A above. If rcv(v) is true for a correct process, then all messages
msgs(v) whose identifier is in v have been previously rdelivered. Following
the Agreement property of reliable broadcast, all correct processes eventu-
ally rdeliver msgs(v) and thus rcv(v) is eventually true for all correct pro-
cesses.

5.2 Solving indirect consensus
We now show how to solve indirect consensus. We start by discussing what
properties an indirect consensus algorithm must enforce in order to guar-
antee the No loss property. Two consensus algorithms are then adapted into
indirect consensus algorithms: (1) the Chandra-Toueg �S consensus algo-
rithm (CT) and (2) the Mostéfaoui-Raynal �S consensus algorithm (MR).
These two algorithms illustrate two cases. CT illustrates the case of a con-
sensus algorithm that is fairly easy to adapt into an indirect consensus al-
gorithm; MR illustrates the case of a consensus algorithm whose resilience
is reduced by the adaptation into an indirect consensus algorithm (the indi-
rect consensus algorithm requires

⌈ 2n+1
3

⌉
correct processes where the orig-

inal consensus algorithm required
⌈ n+1

2

⌉
correct processes).

5.2.1 Conditions on the correctness of indirect consensus
algorithms
We present the conditions that indirect consensus algorithms must fulfill
in order to ensure the No loss property. To do this we introduce the two
following definitions:

Definition: v-valent configuration. As in [FLP85], we say that a config-
uration is v-valent at time t if any decision that is taken after t can only be v.
As an example, consider a configuration where all processes start consen-
sus at time t0 with the same initial value v. Such a configuration is v-valent
at time t0 (although the first process to decide only does so after t0).

Definition: v-stable configuration. We say that a configuration is v-
stable at time t if f + 1 processes have received msgs(v) at time t (f is the

77

Chapter 5. Indirect Consensus

Algorithm 5.1: Atomic broadcast algorithm using message identifiers

1: Initialisation:
2: receivedp ← ∅ {set of messages received by process p}
3: unorderedp ← ∅ {set of identifiers of messages received but not yet ordered by process p}
4: {each message m has a unique identifier denoted by id(m)}
5: orderedp ← ε {sequence of identifiers of messages ordered but not yet adelivered by p}
6: k← 0 {serial number for consensus executions}

7: procedure abroadcast(m) {To abroadcast a message m}
8: rbroadcast(m) to all

9: procedure rcv(ids)
10: return ∀ id ∈ ids : ∃m ∈ receivedp such that id(m) = id

11: when rdeliver(m)
12: receivedp ← receivedp ∪ {m}
13: if id(m) �∈ orderedp then
14: unorderedp ← unorderedp ∪ {id(m)}

15: when unorderedp �= ∅ {a consensus is run whenever there are unordered messages}
16: k← k + 1
17: propose(k, unorderedp, rcv) {k distinguishes independent consensus executions}
18: wait until decide(k, idSetk)
19: unorderedp ← unorderedp \ idSetk

20: idSeqk ← elements of idSetk in some deterministic order
21: orderedp ← orderedp � idSeqk

22: {delivers messages ordered and received}
23: when orderedp �= ∅ and ∃m ∈ receivedp such that head.orderedp = id(m)
24: adeliver(m)
25: orderedp ← tail.orderedp

maximum number of processes that may crash). v-stability ensures that at
least one correct process has received msgs(v).

From these definitions, if a configuration is v-valent or v-stable at time
t, any configuration at time t′ > t is also v-valent, respectively v-stable.

Ensuring the No loss property We now show that for the No loss prop-
erty to hold, it is necessary and sufficient that any configuration that is
v-valent at some time t is also v-stable at t.

We first show that the No loss property of an algorithm holds, if the
algorithm guarantees that a v-valent configuration is also v-stable. Let us
assume that the first decision on a value v is taken at some time t0. From the
Uniform agreement property of the indirect consensus algorithm, the config-
uration is v-valent at time t0. Since the v-valence of a configuration implies
that the configuration is also v-stable, v-stability also holds at time t0. Thus,
the No loss property holds.

78

5.2. Solving indirect consensus

Now, we show that if an algorithm allows a v-valent configuration that
is not v-stable, then the No loss property of the algorithm does not hold. Let
us assume that the system reaches a v-valent configuration at time t that
is not v-stable. Since the configuration is not v-stable, at most f processes
have received msgs(v) at time t. If those f processes crash, all copies of
msgs(v) are lost and no correct process ever receives msgs(v). Either no
decision is taken after time t (and the Termination property of the algorithm
is violated) or a decision is taken on v, since the system is v-valent at time t.
Since msgs(v) are never received by a correct process, the No loss property
of the algorithm is violated in the latter case.

As a consequence of this result, any indirect consensus algorithm needs
to ensure that the relationship “v-valence ⇒ v-stability” for any config-
uration holds. This relationship between v-valence and v-stability is not
trivially satisfied by a consensus algorithm.

5.2.2 Adapting Chandra-Toueg’s �S consensus algorithm

The following paragraphs present the modification of the CT �S consen-
sus algorithm [CT96] into an indirect consensus algorithm. First of all, a
brief overview of the original �S consensus algorithm is presented, as it
helps in understanding the proposed modifications. Then, the necessary
modification to that algorithm and v-valence and v-stability are discussed.
Finally, the adapted indirect consensus algorithm is presented and proved.

5.2.2.A Chandra-Toueg’s �S consensus algorithm

The CT �S consensus algorithm proceeds in rounds and requires a major-
ity (f < n

2) of correct processes. It behaves as follows: at the beginning of
each round, each process sends its estimate of the decision to the process
acting as a coordinator in that round. The coordinator waits for a major-
ity of estimates and selects the most recent one (based on its timestamp)
and sends it to all processes. At this point, each process either receives the
coordinator’s proposal, or suspects the coordinator of having crashed. In
the former case, the process sets its own estimate to the coordinator’s pro-
posal, updates its timestamp and sends a positive acknowledgment (ack)
to the coordinator. In the latter case, a negative acknowledgment (nack)
is sent. In both cases, the non-coordinator processes proceed to the next
round.

The coordinator waits for a majority (f + 1) of answers. If all answers
are acks, the coordinator decides and informs the other processes of its de-
cision. If at least one nack is received, the coordinator proceeds to the next
round without deciding. It is easy to show that if

⌈ n+1
2

⌉
of processes have

accepted the coordinator’s proposal v, then the system is in a v-valent con-

79

Chapter 5. Indirect Consensus

figuration (i.e., any future decision is v), although the decision on v might
only be taken in a later round.

Additional details on the CT consensus algorithm are presented in Ap-
pendix A.2.1.

5.2.2.B Adapting the algorithm into an indirect consensus algorithm

In the original CT algorithm, a process that receives the coordinator’s pro-
posal in a given round updates its own estimate to match the proposal of
the coordinator (and sends an ack). This is precisely the operation that al-
lows the incorrect scenario presented in Section 5.1.2 to occur. Indeed, if
all processes blindly adopt the coordinator’s proposal v (thus leading to
a v-valent configuration, with v a set of message identifiers) and that the
originator of msgs(v) crashes, then msgs(v) might be lost and no v-stable
configuration of the system can be reached.

In order to avoid this situation, we propose the following modifica-
tion: whenever a process receives the coordinator’s proposal v, it checks
if msgs(v) have been received (using the rcv function). If so, an ack is sent
to the coordinator (the proposal is accepted); otherwise, a nack is sent (the
proposal is refused). Similar approaches have been taken in [CL99, Lam98].

The modified algorithm The pseudo-code of the adapted indirect con-
sensus algorithm is shown in Algorithm 5.2 (the parts that were modified
with respect to the original CT algorithm have bold line numbers).

The lines 25 to 30 correspond to the modification described above. The
rcv function is called at line 25 to test if all messages whose identifiers are
in the coordinator’s proposal have been received. The additional variable
estimatec (lines 2, 18, 20, 21 and 37) represents the coordinator’s proposal
and can be different from the coordinator’s own estimate estimatep (in case
the coordinator does not have the messages corresponding to the estimate
v with the highest timestamp). This is explained in the next paragraph.

The need for estimatec and estimatep Consider a coordinator c at line
21 that sends v to all in round 1 (c has received msgs(v)), and a process
pi that accepts this estimate at line 25 (pi has received msgs(v)). In round
2, the coordinator c′, if it receives the estimate from c or pi selects it, even
if it has not received msgs(v). However, if c and pi crash later, and no
other process has received msgs(v), no correct process might ever receive
msgs(v). So, in round 2 the coordinator c′ updates estimatec with v, but
estimatep is still equal to a different value. Once c and pi crash, the estimate
v with timestamp 1 will disappear, and an estimate with timestamp 0 will
again be chosen.

80

5.2. Solving indirect consensus

Algorithm 5.2: Chandra-Toueg based �S indirect consensus algorithm
(code of process p)

1: procedure propose(vp, rcv)
2: estimatep ← vp, estimatec ←⊥ {p’s and the coordinator’s estimate of the decision value}
3: statep ← undecided
4: rp ← 0 {rp is p’s current round number}
5: tsp ← 0 {tsp is the last round in which p updated estimatep }
6: while statep = undecided do {rotate through coordinators until decision reached}
7: rp ← rp + 1
8: cp ←

(
rp mod n

)
+ 1 {cp is the current coordinator}

9: Phase 1: {all processes p send estimatep to the current coordinator}
10: if rp > 1 then
11: send (p, rp, estimatep, tsp) to cp

12: Phase 2: {coordinator gathers
⌈

n+1
2

⌉
estimates and proposes new estimate}

13: if p = cp then
14: if rp > 1 then

15: wait until [for
⌈

n+1
2

⌉
processes q : received (q, rp, estimateq, tsq) from q]

16: msgsp[rp] ← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}

17: t← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
18: estimatec ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
19: else
20: estimatec ← estimatep {In the first round, the coordinator selects its own

estimate}
21: send (p, rp, estimatec) to all

22: Phase 3: {all processes wait for new estimate proposed by current coordinator}
23: wait until [received (cp, rp, estimatecp) from cp or cp ∈ Dp] {query failure

detector Dp}
24: if [received (cp, rp, estimatecp) from cp] then {p received estimatecp from cp}
25: if rcv(estimatecp) then {check if all messages in estimatecp have been received}
26: estimatep ← estimatecp

27: tsp ← rp
28: send (p, rp, ack) to cp
29: else {p received an estimate v from the coordinator but V is missing}
30: send (p, rp, nack) to cp
31: else {p suspects that cp crashed}
32: send (p, rp, nack) to cp

33: Phase 4: {the coordinator waits for
⌈

n+1
2

⌉
replies. If all replies adopt its estimate, the

coordinator rbroadcasts a decide message}
34: if p = cp then

35: wait until [for
⌈

n+1
2

⌉
processes q : received (q, rp, ack) or for 1 process q:

(q, rp, nack)]

36: if [for
⌈

n+1
2

⌉
processes q : received (q, rp, ack)] then

37: rbroadcast(p, estimatec, decide) to all

38: when rdeliver(q, estimateq, decide) {if p rdelivers a decide message, p decides accordingly.}
39: if statep = undecided then
40: decide(estimateq)
41: statep ← decided

81

Chapter 5. Indirect Consensus

This scenario illustrates that a process, including the coordinator, only
accepts to modify its estimate if it has all the messages corresponding to the
identifiers in the new estimate. Since only non-crashed processes send their
estimates to the coordinator at the beginning of each round, eventually,
only estimates adopted by at least one correct process are received by the
coordinator.

5.2.2.C Proof of the algorithm

The Uniform integrity and Uniform validity properties are trivially proven
and are not shown here.

Uniform agreement. The modifications to the algorithm do not affect the
Uniform agreement property of the original algorithm. Consequently, the
proof of the modified algorithm is the same as for the original algorithm by
Chandra and Toueg [CT96].

Indeed, the modified algorithm adds a condition on the acceptance of
the coordinator’s proposal (and the sending of an ack). As a consequence,
if a decision is taken in the modified algorithm, it would also have been
taken in the original algorithm. Thus, since Uniform agreement holds in the
original algorithm, it also holds in the modified algorithm.

Termination. There is a time t such that all faulty processes have crashed.
After this time t, all correct processes have an estimate v such that rcv(v)
holds. From Hypothesis A, there is thus a time t′ such that rcv(v) holds for
all correct processes and for the estimate v of any correct process. After this
time t′, the indirect consensus algorithm behaves exactly like the original
consensus algorithm. Thus, if a decision hasn’t been taken before t′, the Ter-
mination property of Chandra-Toueg’s �S consensus algorithm guarantees
that the indirect consensus algorithm terminates.

No loss. We show that any v-valent configuration is also v-stable. If a con-
figuration is v-valent, it implies that the coordinator always selects v as its
proposal. Since the proposal selected by the coordinator is one of the

⌈ n+1
2

⌉
received estimates, and that the coordinator always receives v at least once,
at least a majority of processes have an estimate equal to v.

These
⌈ n+1

2

⌉
processes that have an estimate equal to v can either (1)

have started consensus with v or (2) adopted the proposal v of a previous
coordinator, in which case the rcv function on v is verified. In both cases,
msgs(v) have been received by a majority of processes and the configura-
tion is v-stable. Since any v-valent configuration is also v-stable, the No loss
property holds.

82

5.2. Solving indirect consensus

5.2.3 Adapting Mostéfaoui-Raynal’s �S consensus algo-
rithm
We start by presenting an informal overview of the original MR consensus
algorithm. The problems encountered when adapting this algorithm into
an indirect consensus algorithm are then discussed. The solution to these
problems, which modifies the resilience of the algorithm, is then presented.
Finally, the adapted indirect consensus algorithm is presented and proven
correct.

5.2.3.A Mostéfaoui-Raynal’s �S consensus algorithm

In [MR99], the authors present a consensus algorithm based on unreliable
failure detectors and quorums. We consider their �S based algorithm here.
As in the CT consensus algorithm, the MR algorithm proceeds in rounds
and requires a majority (f < n

2) of correct processes. In rounds without
failures and without suspicions, a decision can be taken within two com-
munication steps by all processes.

Each round consists of two phases. At the beginning of Phase 1, the
coordinator of that round sends its estimate to all processes. Each process
then either receives the coordinator’s proposal, or suspects the coordinator
of having crashed. In the latter case, the process considers that an invalid
value (⊥) was received from the coordinator. In both cases, the process
sends the estimate received from the coordinator (a valid value or ⊥) to all
processes, which concludes Phase 1 of the algorithm.

In Phase 2, each process waits for a majority of estimates (including the
one possibly received from the coordinator). If all received estimates are
the same value v, the process decides v and informs all other processes of
its decision. If this is not the case, but at least one received estimate is valid
(not⊥), the process sets its own estimate to the received valid estimate and
proceeds to the next round.

The Uniform agreement property of consensus is ensured by the fact that
if p decides v, then p has received the estimate v from

⌈ n+1
2

⌉
processes. This

in turn ensures that all processes have received at least one estimate equal
to v and have thus set their own estimate to v. Since the estimates of all
processes are equal to v, any subsequent decision can only be done on v.

5.2.3.B Problems adapting the Mostéfaoui-Raynal consensus algorithm
into an indirect consensus algorithm

As described above, one of the constraints for Uniform agreement to hold in
the MR consensus algorithm is that any process that receives at least one
valid estimate must accept that estimate, i.e., modify its own estimate to
match the received one. Accepting such an estimate might however lead to

83

Chapter 5. Indirect Consensus

a violation of the No loss property of indirect consensus. This is shown by
two executions that are indistinguishable for some process p: in one exe-
cution the configuration is v-valent but not v-stable; in the other execution
the configuration is v-valent and v-stable.

We assume a system with n processes and p a non-coordinator process
in the current round of the algorithm. Process p suspects the coordinator
and p does not have the messages corresponding to the coordinator’s pro-
posal v. The two executions are the following:

(1) the coordinator is correct.
⌈ n+1

2

⌉
processes accept the proposal of

the coordinator, whereas � n−1
2 � suspect the coordinator. The coordinator

receives
⌈ n+1

2

⌉
estimates equal to its own proposal whereas p receives one

estimate equal to the coordinator’s proposal and � n−1
2 � invalid⊥ values. In

this execution, the coordinator decides. To guarantee the Uniform agreement
property of consensus, p must accept the coordinator’s proposal v (and
thus modify its own estimate), although it doesn’t have msgs(v).

(2) the coordinator is faulty. Let us assume that the n− 1 non-coordinator
processes suspect the coordinator and do not have the messages corre-
sponding to the coordinator’s proposal v. They thus all send a ⊥ value.
Process p receives the coordinator’s proposal as well as � n−1

2 � invalid ⊥
values. If the coordinator crashes before any process receives msgs(v), then
msgs(v) might be lost. In this execution, p must not accept the coordina-
tor’s proposal v.

If p takes a conservative approach and only accepts a proposal v if it has
msgs(v) (or that at least one correct process has msgs(v)), then the Uniform
agreement property would be violated in the first execution. If, on the other
hand, p takes the optimistic approach of accepting a proposal v even if it
doesn’t have msgs(v), this could lead to a v-valent configuration that is not
v-stable. The No loss property of indirect consensus could thus be violated.
Therefore, any of the approaches that the algorithm chooses to implement
leads to the violation of one of the indirect consensus properties.

The modifications must thus ensure both of the following properties:
(i) a process should only accept v if it has msgs(v) or f + 1 processes have
msgs(v); (ii) if a process decides v in round r, then all non-crashed processes
must adopt v during round r. Property (i) and (ii) aim at guaranteeing No
loss, respectively Uniform agreement.

5.2.3.C Modified Mostéfaoui-Raynal algorithm

Consequences on the resilience From the paragraph above, we must
modify the MR algorithm. In Phase 1 of the algorithm, a process can only
accept the coordinator’s proposal v if it has received msgs(v) (at this point,
a process does not know if any other process has adopted v and can there-
fore not know if v is stable, which is the second possible condition for

84

5.2. Solving indirect consensus

Minimum intersection n− 2 f = 3 msgs

Messages
received by p
(n− f = 5 msgs)

Messages
received by q
(n− f = 5 msgs)

Figure 5.4: Intersection of the estimates received by two processes p and q
(n = 7 processes and f = 2 above).

adopting v). Thus, at the end of Phase 1, when a process p sends the esti-
mate v to all processes, this estimate is a non-⊥ value only if p has received
msgs(v).

In Phase 2 of the consensus algorithm, all processes wait for n− f es-
timates from the other processes. If all of these estimates are identical, a
decision can be taken. If they are not, a process p can accept a valid esti-
mate v if (1) p has received msgs(v) or (2) if the estimate v was received
from at least f + 1 processes (i.e., from at least one correct process that has
received msgs(v)).

To ensure Uniform agreement, we have seen that if a decision is taken on
v, then all processes must accept v as their own estimate. Not all processes
have necessarily received msgs(v) (which means that condition (1) above
might not be true for all processes). Therefore, if a decision is taken, the
algorithm must ensure that the condition (2) above is true for all processes
(i.e., all processes receive at least f + 1 estimates equal to v). This can be
ensured as follows.

Each process waits for n− f estimates at the beginning of Phase 2. Since
there are at most n estimates in the system, each pair of processes receives
a common set of estimates. The minimum size of this common set is n− 2 f
(assuming f < n

2), as illustrated in Figure 5.4 (in the case of a system with
n = 7 processes and at most f = 2 failures). So condition (2) is ensured if
n− 2 f ≥ f + 1, which leads to f < n

3 .

The modified MR algorithm The pseudo-code of the adapted MR indi-
rect consensus algorithm is shown in Algorithm 5.3 (the parts that were
modified with respect to the original algorithm have bold line numbers).

The lines 16 to 19 correspond to the modifications to the first phase
of the algorithm. With these modifications, a process accepts the coordi-
nator’s proposal est_from_ccp only if it received msgs(est_from_ccp) (in the
original consensus algorithm, est_from_ccp is always accepted). In Phase 2,
the modifications are two-fold. First of all, the condition f < n

3 forces each
process to wait for

⌈ 2n+1
3

⌉
estimates at the beginning of Phase 2 (lines 21

85

Chapter 5. Indirect Consensus

Algorithm 5.3: Mostéfaoui-Raynal based �S indirect consensus algorithm
(code of process p)

1: procedure propose(vp, rcv)
2: estimatep ← vp {estimatep is p’s estimate of the decision value}
3: statep ← undecided
4: rp ← 0 {rp is p’s current round number}
5: while statep = undecided do {rotate through coordinators until decision reached}
6: rp ← rp + 1
7: cp ←

(
rp mod n

)
+ 1 {cp is the current coordinator}

8: est_from_cp ←⊥ {estimate received from the coordinator or invalid (⊥)}

9: Phase 1: {coordinator proposes new estimate; other processes wait for this new estimate}
10: if p = cp then
11: est_from_cp ← estimatep
12: send (p, rp, est_from_cp) to all
13: else
14: wait until [received (cp, rp, est_from_ccp) from cp or cp ∈ Dp] {query fail. det.

Dp}
15: if received (cp, rp, est_from_ccp) from cp then {p received est_from_ccp from cp}
16: if rcv(est_from_ccp) then
17: est_from_cp ← est_from_ccp

18: else
19: est_from_cp ←⊥
20: send (p, rp, est_from_cp) to all

21: Phase 2: {each process waits for
⌈

2n+1
3

⌉
replies. If they indicate that

⌈
2n+1

3

⌉
processes

adopted the proposal, the process rbroadcasts a decide message}
22: wait until for

⌈
2n+1

3

⌉
processes q : received (q, rp, est_from_cq)

23: recp ← {est_from_cq | p received (q, rp, est_from_cq) from q}
24: if recp = {v} then
25: estimatep ← v
26: call takedecision
27: else if recp = {v,⊥} then {accept v if rcv(v) is true or v received

⌈
n+1

3

⌉
times}

28: if rcv(v) or p received (−, rp, v) from more than
⌈

n+1
3

⌉
processes then

29: estimatep ← v

30: procedure takedecision
31: decide(estimatep)
32: statep ← decided
33: send (p, estimatep, decide) to all {ad-hoc reliable broadcast}

34: when receive (q, estimateq, decide) {if p receives a decide message, p decides accordingly}
35: if statep = undecided then
36: estimatep ← estimateq
37: call takedecision

86

5.2. Solving indirect consensus

and 22). Secondly, if a process receives a valid estimate v as well as ⊥ val-
ues, the valid estimate is adopted if (1) the process has msgs(v) or (2) if the
estimate v was received from more than one third of the processes (lines 28
and 29).

The remaining parts of the indirect consensus algorithm are identical to
the original MR consensus algorithm.

5.2.3.D Proof of the algorithm

The Uniform integrity and Uniform validity properties are trivially proven
and are therefore not shown here.

Uniform agreement. Let process p be the first process that sends a decision
message and then decides on some value v. Process p previously received
the estimate v from

⌈ 2n+1
3

⌉
processes in Phase 2 of a given round r. All

other processes also received
⌈ 2n+1

3

⌉
values in round r and thus received

at least
⌈ n+1

3

⌉
identical values to p. Thus, all processes eventually execute

line 25 or 29 in round r and set their own estimate to v. After round r, the
estimate of all processes is thus equal to v.

Termination. The proof of Termination is similar to the case of the Chandra-
Toueg based indirect consensus algorithm. There is a time t such that all
faulty processes have crashed. After this time t, all correct processes have
an estimate v such that rcv(v) holds for at least one correct process. From
Hypothesis A, there is thus a time t′ such that rcv(v) holds for all correct
processes and for the estimate v of any correct process. After this time t′, the
indirect consensus algorithm behaves exactly like the original consensus
algorithm (albeit with the different level of resilience). Thus, if a decision
hasn’t been taken before t′, the Termination property of Mostéfaoui-Raynal’s
�S consensus algorithm guarantees that the indirect consensus algorithm
also terminates.

No loss. In the modified Mostéfaoui-Raynal indirect consensus algorithm,
a system is in a v-valent configuration if

⌈ 2n+1
3

⌉
processes accept the same

estimate v in a given round r. The estimate of a process is equal to v in
three cases : (1) consensus was executed with v as the initial proposal, (2)
the process received v in Phase 1 or 2 and accepted it because msgs(v) had
been previously received or (3) the process received v in Phase 2 from at
least f + 1 processes. Since at least

⌈ 2n+1
3

⌉
processes have the same estimate

v in the v-valent configuration, at least f + 1 processes must have modified
their estimate following cases (1) or (2) above. In both of these cases, the
processes have msgs(v). The configuration is thus v-stable, since at least
f + 1 processes have msgs(v). Since any v-valent configuration is also v-
stable, the No loss property is verified.

87

Chapter 5. Indirect Consensus

5.3 Performance measurements
In Section 5.1, we presented a performance comparison between atomic
broadcast with consensus on messages and consensus on message identi-
fiers. In the following paragraphs, we present measurements comparing
atomic broadcast using reliable broadcast and indirect consensus to (the
faulty implementation of) atomic broadcast using reliable broadcast and
consensus directly on message identifiers, in order to estimate the over-
head introduced by the indirect consensus solution.

We also present a comparison between atomic broadcast using indirect
consensus to (the correct implementation of) atomic broadcast using uni-
form reliable broadcast and consensus directly on message identifiers.

This section starts by a presentation of the system setup and the Neko
framework that was used in the experiments. Several comparisons be-
tween indirect consensus and the faulty and correct implementations using
consensus are then presented.

5.3.1 System setup and the Neko framework
The benchmarks were run on two setups:

Setup 1 is a cluster of PCs running Red Hat Linux (kernel 2.4.18). The PCs
have Pentium III 766 MHz processors and 128 MB of RAM, and are
interconnected by a 100 Base-TX Ethernet. The Java Virtual Machine
was Sun’s JDK 1.4.1_01.

Setup 2 is a cluster of machines running SuSE Linux (kernel 2.6.11). The
machines have Pentium 4 processors at 3.2 GHz and have 1 GB of
RAM. They are interconnected by Gigabit Ethernet and run Sun’s
1.5.0 Java Virtual Machine.

The protocols are implemented as layers of a stack in the Neko frame-
work [UDS02]. The CT atomic broadcast algorithm was implemented and
executed either on messages or on message identifiers, according to the test
configuration. The indirect consensus algorithm was implemented based
on an already existing implementation of the CT �S consensus algorithm
that was used in previous performance studies [USS03, UHSK04] and for
the simulations in Section 4.1.6. All the results presented here were ob-
tained on the real networks described above.

5.3.2 Performance metric: latency versus throughput and
message size
The performance metric for atomic broadcast is the latency, defined as the
average (over all processes) of the elapsed time between abroadcasting a

88

5.3. Performance measurements

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10 100 1000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [msgs/s]

n = 3, size of messages = 1 byte

Indirect consensus
(Faulty) Consensus

(a) n = 3 processes

 0

 5

 10

 15

 20

 25

 10 100 1000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [msgs/s]

n = 5, size of messages = 1 byte

Indirect consensus
(Faulty) Consensus

(b) n = 5 processes

Figure 5.5: Latency vs. throughput of the atomic broadcast algorithm using
indirect consensus or (faulty) consensus on message identifiers in a system

with 3 and 5 processes, in Setup 1.

 0
 2
 4
 6
 8

 10
 12
 14

 0 1000 2000 3000 4000 5000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 5, Throughput = 10 msgs/s

Indirect consensus
(Faulty) consensus

(a) 10 msgs/s

 0
 2
 4
 6
 8

 10
 12
 14

 0 1000 2000 3000 4000 5000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 5, Throughput = 100 msgs/s

Indirect consensus
(Faulty) consensus

(b) 100 msgs/s

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 5, Throughput = 400 msgs/s

Indirect consensus
(Faulty) consensus

(c) 400 msgs/s

 0

 50

 100

 150

 200

 0 1000 2000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 5, Throughput = 800 msgs/s

Indirect consensus
(Faulty) consensus

(d) 800 msgs/s

Figure 5.6: Latency vs. payload of the atomic broadcast algorithm using
indirect consensus or (faulty) consensus on message identifiers in a system

with 5 processes, in Setup 1.

89

Chapter 5. Indirect Consensus

message m and adelivering m. A simple symmetric workload is used: all
processes abroadcast messages at the same rate and the global rate is called
the throughput.

To quantify and compare the performance of indirect consensus with
the faulty and correct implementations of atomic broadcast using consen-
sus directly on message identifiers, we present figures showing the latency
of atomic broadcast as a function of the message size (for low and high
throughputs) and as a function of the throughput (for a given message
size).

5.3.3 Performance results: overhead of indirect consensus

Overhead as a function of the throughput Figure 5.5 presents the per-
formance comparison between indirect consensus and the faulty imple-
mentation of consensus directly on message identifiers. The size of the
messages is set to one byte. Figure 5.5 shows that the overhead of indi-
rect consensus increases as the throughput increases in a system with 3 or
5 processes in Setup 1.

This result is not surprising: as the throughput increases, consensus is
done on larger sets of messages. The calls to the rcv function (to verify if
the messages whose identifiers are in a consensus proposal have been re-
ceived) thus take more and more time. When the throughput is low (10
or 100 messages per second), the overhead of indirect consensus is negligi-
ble. As the system throughput increases, the overhead also increases and
reaches at most 1.3 ms in a system with 3 processes and 9.5 ms in a sys-
tem with 5 processes. This is the price to pay for a correct implementation,
since executing an unmodified consensus algorithm directly on message
identifiers can lead to a violation of atomic broadcast’s validity property in
a system where one process fails.

Overhead as a function of the payload Figure 5.6 compares the per-
formance of indirect consensus and consensus directly on message identi-
fiers as the size of the messages increases (in Setup 1). The overhead ratio
remains stable as the size of the messages varies. In the case of low through-
puts (10 messages per second), the overhead is negligible for all message
sizes. For higher throughputs, the overhead is clearly measurable, but does
not vary much as the size of the messages increases. These results are ex-
pected: since both algorithms only use the message identifiers to reach a
decision, the messages themselves (and thus their size) do not affect the
performance of the indirect consensus and consensus algorithms.

90

5.3. Performance measurements

5.3.4 Performance results: comparison of two correct ap-
proaches
Overhead as a function of the payload Figures 5.7 and 5.8 presents
the latency of atomic broadcast as a function of the payload of the messages
in a system with 3 processes in Setup 2. Atomic broadcast uses either (i)
reliable broadcast and indirect consensus or (ii) uniform reliable consensus
and consensus directly on message identifiers. Both solutions are correct.
The uniform reliable broadcast algorithm that we consider supports up to
f < n

2 crash-failures and requires O(n2) messages and 2 communication
steps to deliver a message that was previously broadcast.

Figure 5.7 shows that if reliable broadcast needs O(n2) messages (as
in [CT96]), then indirect consensus and reliable broadcast achieve slightly
lower latencies than consensus on message identifiers and uniform reliable
broadcast. This slight difference is attributed to the additional communica-
tion step (and message processing) that uniform reliable broadcast needs,
compared to reliable broadcast.

Figure 5.8 shows that if reliable broadcast only needs O(n) messages in
good runs (when using a failure detector for example), the performance of
indirect consensus is clearly better than if consensus and uniform reliable
broadcast are used to solve atomic broadcast.

Overhead as a function of the throughput Figure 5.9 presents the la-
tency of the atomic broadcast algorithm (using either indirect consensus
and reliable broadcast or consensus and uniform reliable broadcast) as a
function of the throughput in Setup 2. The payload of all messages is one
byte. The figure shows that the performance of atomic broadcast using con-
sensus and uniform reliable broadcast degrades significantly as the through-
put increases. Atomic broadcast using indirect consensus and reliable broad-
cast behaves similarly (although slightly better) if reliable broadcast needs
O(n2) messages (Figure 5.9(a)). If a reliable broadcast algorithm requiring
O(n) messages is used however, then the performance of atomic broadcast
using indirect consensus is much less affected by the throughput than be-
fore (Figure 5.9(b)).

5.3.5 Overview of the performance results
In Section 5.1, we saw that executing atomic broadcast using indirect con-
sensus (on message identifiers) provides better performance than using
consensus on messages, especially as the sizes of the system or the mes-
sages increase. In previous group communication stack implementations,
consensus was often executed directly on message identifiers, which can
lead to faulty executions if a process crashes. The indirect consensus ap-

91

Chapter 5. Indirect Consensus

 0

 1

 2

 3

 4

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 3, Throughput = 500 msgs/s
Reliable broadcast in O(n2) messages

Consensus w/ unif. rbcast
Indirect cons. w/ rbcast

(a) 500 msgs/s

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 3, Throughput = 1500 msgs/s
Reliable broadcast in O(n2) messages

Consensus w/ unif. rbcast
Indirect cons. w/ rbcast

(b) 1500 msgs/s

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 3, Throughput = 2000 msgs/s
Reliable broadcast in O(n2) messages

Consensus w/ unif. rbcast
Indirect cons. w/ rbcast

(c) 2000 msgs/s

Figure 5.7: Latency vs. pay-
load of the atomic broadcast al-
gorithm using indirect consensus
and reliable broadcast or consen-
sus on message identifiers and
uniform reliable broadcast in a
system with 3 processes on Setup
2. The reliable broadcast algo-
rithm uses O(n2) messages for

each rbroadcast.

 0

 1

 2

 3

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 3, Throughput = 500 msgs/s
Reliable broadcast in O(n) messages

Consensus w/ unif. rbcast
Indirect cons. w/ rbcast

(a) 500 msgs/s

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 3, Throughput = 1500 msgs/s
Reliable broadcast in O(n) messages

Consensus w/ unif. rbcast
Indirect cons. w/ rbcast

(b) 1500 msgs/s

 0

 2

 4

 6

 8

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

size of messages [bytes]

n = 3, Throughput = 2000 msgs/s
Reliable broadcast in O(n) messages

Consensus w/ unif. rbcast
Indirect cons. w/ rbcast

(c) 2000 msgs/s

Figure 5.8: Latency vs. pay-
load of the atomic broadcast al-
gorithm using indirect consensus
and reliable broadcast or consen-
sus on message identifiers and
uniform reliable broadcast in a
system with 3 processes on Setup
2. The reliable broadcast algo-
rithm uses O(n) messages for

each rbroadcast.

92

5.4. Discussion

 0
 1
 2
 3
 4
 5
 6
 7

 500 750 1000 1250 1500 1750 2000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [msgs/s]

n = 3, size of messages = 1 byte
Reliable broadcast in O(n2) messages

Consensus w/ unif. rbcast
Indirect cons. w/ rbcast

(a) Reliable broadcast in O(n2)

 0

 1

 2

 3

 4

 5

 500 750 1000 1250 1500 1750 2000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [msgs/s]

n = 3, size of messages = 1 byte
Reliable broadcast in O(n) messages

Consensus w/ unif. rbcast
Indirect cons. w/ rbcast

(b) Reliable broadcast in O(n)

Figure 5.9: Latency vs. throughput of the atomic broadcast algorithm using
indirect consensus and reliable broadcast or consensus on message identi-
fiers and uniform reliable broadcast in a system with 3 processes on Setup
2. The reliable broadcast algorithm uses either O(n2) or O(n) messages for

each rbroadcast. The payload of each message is 1 byte.

proach, which solves this problem, yields performance results that are com-
parable to the faulty solution (in the case of an indirect consensus algorithm
with the same degree of resilience as the corresponding consensus algo-
rithm), as Figures 5.5 and 5.6 show.

Furthermore, compared to the other correct solution (atomic broadcast
using uniform reliable broadcast and consensus directly on message identi-
fiers), the combination of atomic broadcast and indirect consensus achieves
better performance (especially if one considers a reliable broadcast algo-
rithm that only needs O(n) messages per rbroadcast), as illustrated by Fig-
ures 5.7, 5.8 and 5.9.

The cost of adopting a correct implementation of atomic broadcast on
message identifiers is thus fairly low and ensures that the properties of
atomic broadcast hold, even if processes crash.

5.4 Discussion

In [CT96], atomic broadcast is reduced to consensus on messages. This re-
duction is correct, but since consensus is executed on sets of messages, it
yields poor performance as the size of the messages increases. Instead, con-
sensus can be executed on message identifiers, which decouples the con-
sensus algorithm from the size of the messages. This can however lead to
the violation of the Validity property of atomic broadcast. Indirect consen-
sus addresses this issue by providing a No loss property, which guarantees
that all messages whose identifiers have been decided upon are eventually

93

Chapter 5. Indirect Consensus

delivered by atomic broadcast. To ensure the No loss property, the indirect
consensus algorithm must guarantee that any v-valent configuration (any
future decision is v) is also v-stable (at least one correct process has received
the messages whose identifiers are in v).

This chapter has shown that adapting a consensus algorithm into an
indirect consensus algorithm is not trivial. The resilience of the adapted
Mostéfaoui-Raynal �S indirect consensus algorithm is f < n

3 whereas the
original consensus algorithm supports f < n

2 failures. Chandra-Toueg’s
�S-based consensus algorithm does not have this problem and was easy
to adapt.

Finally, the performance of the Chandra-Toueg based indirect consen-
sus algorithm is better than the original consensus algorithm on messages
and comparable to the performance of the faulty implementation of the
consensus algorithm directly on message identifiers. The performance of
the implementation using indirect consensus algorithm is also better than
the performance of atomic broadcast using uniform reliable broadcast and
consensus.

94

Part II

Experimental Evaluation of
Atomic Broadcast Algorithms

Chapter 6

Robust TCP connections for
fault tolerant computing

When processes on two different machines communicate, they most often
do so using the TCP protocol [Ste94]. The reasons for the popularity of
TCP are threefold. Firstly, it offers a convenient interface to communica-
tion: a bi-directional byte stream. Secondly, it hides most problems of the
communication channel from the programmer: message losses, duplicates
and short losses of connectivity. Thirdly, it is extremely flexible and well
engineered: it suits needs as different as short lived HTTP sessions, long
lived file transfers, and continuous low traffic sessions like a remote login.
Moreover, TCP can work on low-latency reliable local networks and on the
high-latency not-so-reliable Internet with acceptable performance.

While TCP is appropriate for a wide range of applications, it has short-
comings in other application areas. One of these areas is fault-tolerant dis-
tributed computing. Many algorithms in fault-tolerant distributed com-
puting assume so called quasi-reliable channels: if a process p sends a mes-
sage m to process q, m will eventually be received by q if neither p nor q
fails [BCBT96]. An obvious way to implement quasi-reliable channels is to
use a TCP connection between p and q. Unfortunately, TCP does not ad-
dress link failures adequately: TCP breaks the connection if connectivity
is lost for some duration (typically minutes, but the connection is only bro-
ken if TCP actually wants to send data or if keepalives are sent). This might
sometimes be undesirable, and hence we need a way to recover from bro-
ken TCP connections. Potential applications that would benefit from such
a feature are all applications that are willing to wait for connectivity longer
than the default TCP parameters allow. Examples include long-lived re-
mote login sessions on a computer not permanently connected to the In-
ternet (mobile devices or a PC with a modem). There are more elaborate
examples from fault tolerant distributed computing. The explanation re-
quires some additional context.

In fault-tolerant distributed computing, process failures and link fail-

97

Chapter 6. Robust TCP Connections

ures are often abstracted using group membership. A group membership
service offers each process a view of the system, the set of processes the
process can currently communicate with. The view changes over time
as (1) processes crashes and recover, or (2) link failures occur and are re-
paired [CBDS02]. There are two kinds of group membership: (1) primary
partition group membership, in which processes agree on the sequence of
views, and (2) partitionable group membership in which multiple concur-
rent views can simultaneously exist. In each case, broken TCP connections
can be used to trigger changes in views [CBDS02]. We shall argue here that
this is not a good idea when using primary partition group membership;
consequently, link failures should be transparent, and we can achieve this
by robust TCP connections. Consider a replicated server with three repli-
cas s1, s2, s3. Assume a partition failure which partitions s3 away from s1
and s2. If link/partition failures are transparent, nothing needs to be done
when the partition failure is repaired. In contrast, if failures are not trans-
parent, all server updates that took place during the partition failure need
to be explicitly forwarded to s3 (by s1 or s2). A detailed discussion of this
issue can be found in [CKV01].

Robust TCP connections present a solution to the problem of broken
TCP connections. Robust TCP connections have the same interface and
properties as standard TCP connections, except that these connections never
break due to network problems (and thus implement the quasi-reliable
channel abstraction). We define a session layer protocol on top of TCP that
ensures reconnection, and provides exactly-once delivery for all transmit-
ted data. A prototype has been implemented as a Java library (however,
nothing prevents a C implementation). The prototype has less than 10%
overhead on TCP sockets with respect to the most important performance
characteristics: response time and throughput. Robust TCP sockets inte-
grate seamlessly into Java. Source code integration is done by replacing oc-
currences of new Socket and new ServerSocket by calls that create instances
of our replacement classes. Binary integration requires a few changes in the
Java core libraries: these changes would make it possible to replace sock-
ets with robust sockets in a Java application without re-compilation and
without changing the application.

The rest of the chapter is structured as follows. Section 6.1 discusses
design issues for robust TCP connections. Section 6.2 presents the protocol.
Section 6.3 discusses the implementation of robust TCP connections in Java.
Performance figures are given in Section 6.4. Related work is discussed in
Section 6.5, and Section 6.6 concludes the chapter.

98

6.1. Design of the protocol

6.1 Design of the protocol

6.1.1 Requirements
In this section, we present our requirements for robust TCP connections,
along with their implications for the design of the protocol.

Using robust TCP should be as transparent for the user as possible.
Therefore robust TCP should have the same interface as standard TCP con-
nections and offer the same service: a bidirectional stream of bytes. For
our prototype, this implies that robust TCP should offer the Java sockets
interface (integration into Java is discussed in detail in Section 6.3.2). Our
functional and non-functional requirements are the following:

Duration of connection. In standard TCP connections, the connection is
closed whenever data is sent on the connection, but no acknowledg-
ment is received for several minutes. Robust TCP connections should
only be closed if the application explicitly requests this. This means
that robust TCP does not have any timeout mechanism that might
lead to break the connection. Specifically, robust TCP connections
must survive link failures and network partitions.

Flow/congestion control. Robust TCP should have the same flow control
/ congestion control mechanisms and behavior as TCP. It should use
buffers of limited size.

Performance. Robust TCP should incur an overhead of less than 10% on
normal operation, with respect to all relevant performance figures:
response time, throughput. The overhead on the time to open/close
connections is less important, as robust TCP connections are long-
lived. Also, the overhead on the network should be a small fraction
of the overall traffic.

Easy deployment. The implementation should be lightweight and deploy-
ment should be easy. Robust TCP will require extensions at both end-
points of the connection, as losses of connectivity affect both sides:
modifying just one endpoint is not sufficient. However, we do not
want to rely on daemons supporting our protocol. Moreover, we
want a user space implementation, with no need to modify the kernel
or to have administrator privileges.

The easy deployment requirement implies that we can modify neither
TCP nor any of the lower layers, nor can we configure the parameters of
these layers.

Modifications to the TCP kernel code would be very small and would
essentially mean changing a timeout value from some number of minutes

99

Chapter 6. Robust TCP Connections

session layer

transport layer

robust TCP robust TCP

TCP TCP

lower layers

Figure 6.1: The robust TCP protocol in the OSI reference model.

to timeout = ∞. This would guarantee that TCP never closes connections
due to a timeout.

However, modifying TCP has several disadvantages: first of all, it would
require modifications to kernel code. This would of course reduce the
portability of the code since many different TCP stack implementations ex-
ist and would all need to be modified. For non-open-source platforms, the
integration of robust TCP would be complicated, if possible at all.

Secondly, the user of the protocol would have to re-compile the kernel
in order to be able to use robust TCP. The average user is not necessarily
comfortable with this and most users will not blindly trust new kernel code
(an unintentional or malicious misbehavior can never be excluded).

For these reasons, we decided to implement a protocol on top of TCP,
in the session layer of the OSI reference model (Figure 6.1). The purpose
of the protocol is to deal with broken TCP connections. Most performance
requirements are easily fulfilled if the overhead of the session protocol is
always just a small fraction of the traffic generated by TCP. We discuss per-
formance issues in more detail in Section 6.4.

In addition to the standard TCP interface, the application might want
to be informed about the state of session connections (robust TCP connec-
tions do not need to be the same black box to the application as standard
TCP connections). We plan to extend the interface to provide the follow-
ing information: the number of bytes sent but not acknowledged, the time
elapsed since the last send operation whose data was not acknowledged,
and the duration for which a receive (or send) operation has been blocked.

6.1.2 Issues at the session layer
TCP will close a connection if two hosts cannot contact each other for sev-
eral minutes and data is being exchanged. When this happens, the session
protocol (1) must reconnect the two parties, (2) must be able to uniquely
identify a connection, and (3) must ensure that all data sent is received ex-
actly once.

The issues related to reconnection are the following. First of all, the
client (the party that did an active open) must initiate the reconnection to
the server (the party that did a passive open), and not vice-versa. The rea-
son is simply that only the server has a static address to connect to (further-

100

6.1. Design of the protocol

t

t

session layer

transport layer

open close

breakingopen open open closebreaking

IP, port, CID

IP, port IP, port IP, port

Figure 6.2: Lifetime of session and transport layer connections.

more, server to client connections are problematic if the communication
parties are separated by firewalls). This implies that the server cannot close
the socket on which it listens for TCP connections when it is no longer will-
ing to accept new connections. This socket needs to remain open as long
as there are active session layer connections. The second issue is that the
reconnection attempt might fail. In this case, the client should repeatedly
try reconnecting.

A session layer connection is potentially associated with multiple trans-
port layer connections (Figure 6.2). This means that we need to identify the
session layer connection upon reopening a TCP connection. A session layer
connection is uniquely identified by the combination of (1) the IP address
and the port number of the TCP socket on the server side, along with (2)
a unique connection identifier (CID) generated by the robust TCP server
(session layer) upon the first connection attempt. This also allows us to dis-
tinguish a reconnection attempt from the first connection attempt of a new
session layer connection.

When a TCP connection is broken, we do not know how much data has
been successfully transmitted (we cannot access the information in TCP
acknowledgments). Therefore all transmitted data must be buffered and
retransmitted upon reconnection if necessary. As the protocol should only
use a buffer of limited size, it has to exchange control messages to acknowl-
edge received data. Upon reception of such a message, a part of the buffer
can be discarded. We must make sure that the acknowledgments consti-
tute only a small portion of the overall traffic generated by the connection.
Also, flow control issues arise if the buffer fills up.

6.1.3 The problem of control messages

The control messages can be passed between the client and the server in
two ways: either the messages are passed in-band, multiplexed with ap-
plication data, or out-of-band, on a different channel. We have chosen an
out-of-band solution, primarily because the in-band solution poses severe
performance problems, and secondarily because it is more complex. To
understand why, let us first explain how an out-of-band solution could be
implemented. The idea is simple: the session layer send operation buffers

101

Chapter 6. Robust TCP Connections

outgoing data, and the session layer receive operation sends acknowledg-
ments. Also, a lightweight flow control mechanism is needed that blocks
the send operation as long as the outgoing data buffer is full.

Let us contrast this implementation to the in-band solution. The prob-
lems are the following:

• Multiplexing and demultiplexing two streams may be costly in itself,
especially if data is transmitted in small chunks. This is the easiest
problem: a solution similar to Nagle’s algorithm [Nag84] could offer
acceptable performance.

• The data stream and the stream of control messages are independent:
even if no data is sent to one of the communication parties, that party
may still receive control messages. For this reason, each party has to
constantly read the TCP stream to check for control messages. This re-
quires a dedicated control thread to read the socket. So, when data ar-
rives, it has to pass through the control thread before reaching the ap-
plication thread that reads the socket. This leads to context switching
and one extra copy of the data to an intermediate buffer, and yields
poor performance.

• The solution requires a rather complex flow control mechanism. If the
control thread receives a lot of data and the application is not ready to
receive data, the intermediate buffer fills up. The control thread must
continue reading, in order not to miss control messages. This implies
that the protocol has to discard any further data, and has to ask the
other side for retransmission. In contrast, an out-of-band solution
only needs retransmission of data when the TCP connection breaks.

The question remains how to pass out-of-band control messages. The
two choices are (1) UDP datagrams and (2) a separate TCP connection. We
chose the UDP solution for reasons of performance and resource utilization.
Indeed, the TCP solution needs twice as many TCP connections and TCP
ports on each side (2 per session layer connection). In contrast, a server can
share the UDP control port among all the connections it manages. Also, the
TCP solution exchanges more IP packets during the whole lifecycle of the
connection (open, data transfer and close).

The UDP solution might seem more complex at first: (1) we need to
identify the connection in each control message, and (2) we need to ensure
reliable delivery and FIFO order of control messages (we can afford losing
some acknowledgments, though). However, the TCP solution would result
in an equally complex implementation, as it would have to ensure reliable
delivery and FIFO order as well (in case the TCP connection for control
messages breaks).

Finally, note that the TCP solution should be preferred if the connection
passes through a firewall, as firewalls are usually configured to reject UDP

102

6.2. The session layer protocol

packets. However, this was not a problem for us, and if the need arises, the
protocol can be easily modified to use TCP.

6.2 The session layer protocol

A robust TCP session has three phases: (1) connection establishment (open-
ing), (2) data exchange, and (3) connection termination (closing). Whenever
TCP errors occur, the protocol enters the reconnection phase. We now de-
scribe each of these phases in detail, and then discuss how TCP errors are
handled.

0 43 5

UDP portnew connection (0)client

0 43 5

UDP portconn. identifier

0 43 5

reasonrefusal (0)

server

accepted

refused

client server

open

accept

usual 3−way handshake

tim
e

Figure 6.3: Opening phase of robust TCP

0 43 5

server

accepted

refused

conn. identifier

reasonrefusal (0)

0 43

next requested byte

7

client next requested byte

0 43 7

conn. identifier

tim
e

client server

open

accept

usual 3−way handshake

lost data

Figure 6.4: Reconnection phase of robust TCP

103

Chapter 6. Robust TCP Connections

6.2.1 Opening a connection and reconnection
The client starts by establishing a TCP connection with the server, sends (on
the TCP connection) the new connection control message together with the
number of the UDP port used for exchanging control messages (Figure 6.3),
and then waits for a unique connection identifier (CID) from the server. The
server assigns CIDs in the order k, k + 1, k + 2, etc. k is chosen randomly
when the server starts up, in order to avoid that clients of a server that used
to listen on the same port (and that quit or crashed) confuse the server (one
faces a similar issue when choosing initial TCP sequence numbers).

The CID is always chosen to be different from 0, in order to give a spe-
cial meaning to 0: it is used to distinguish a new session from an existing
session that re-opens its TCP connection. If the server accepts the connec-
tion, a new unique session identifier is sent to the client, together with the
server UDP control port. The details of the protocol are shown in Figure 6.3.

New robust TCP sessions can be refused. This happens when the server
has closed the session layer socket, or when it temporarily runs out of re-
sources (too many open connections). In that case, the server sends a refusal
(0) control message (instead of a non-null connection identifier) and a rea-
son code. The client will try to reconnect if the reason code indicates a
temporary reason for refusal.

If the TCP connection breaks during data exchange, re-establishing the
TCP connection uses a similar protocol, shown in Figure 6.4. The client
opens a new TCP connection to the server, then sends the session layer
connection identifier and the number of bytes received on this session (we
use a 32 bit counter that wraps around to 0 when it reaches 232). The
server answers by re-sending the connection identifier to confirm that the
re-connection has been accepted and the number of bytes received. As soon
as any of the parties knows how many bytes have been received by the
other party, it starts retransmitting data that was lost. Finally, the session
is ready again for exchange of data. To the user, the session appears to
be open during the whole reconnection process, i.e., send and receive calls
return normally.

6.2.2 Data exchange
Anytime the user writes some data on the robust TCP connection, the data
is stored in a buffer and then sent on the TCP connection. The proto-
col also maintains a counter for the total number of bytes sent on the ro-
bust TCP connection. Whenever an acknowledgment is received, acknowl-
edged data is removed from the buffer. The acknowledgment, similarly
to TCP’s acknowledgments, points to the next byte that the reader process
is expecting to receive. The exact format of acknowledgments and other
control messages is discussed later.

104

6.2. The session layer protocol

The buffer for outgoing data is of limited size, hence some flow control
is needed. When the buffer fills up, the protocol blocks send operations.
Also, it sends a control message that forces the other party to acknowledge
data. We set the default parameters such that send operations hardly ever
block: acks are sent after every 8 kilobytes received and the outgoing buffer
is of size 16 kilobytes (these parameters can be configured by the user to
suit its execution environment). Also note that the default setting yields
few acknowledgment packets compared to the number of data packets.

6.2.3 Closing the connection
We only discuss how the session is closed; handling of half-close is analo-
gous. Closing the session is done by closing the TCP connection; control is
returned immediately to the application. However, the two sides have to
notify each other that the connection is closed, in order to free up resources
associated to the connection. This notification is done asynchronously, us-
ing control messages. Thus, the UDP control ports are active until these
notifications have been exchanged.

If the server closes the session and the client still wants to use it, TCP
generates an error. It is possible that the server could not notify the client
about the closing of the session at this point. In this case, the client will try
to reconnect, and the server implicitly notifies the client about the closing
of the session by rejecting the reconnection attempt.

6.2.4 Handling TCP errors
Whenever a TCP socket operation returns an error, the protocol first tries
to gracefully close the TCP socket. Then, if the error occurred during the
opening phase, the opening phase is restarted. Otherwise, the protocol
enters the reconnection phase — or re-enters the reconnection phase if the
error occurred in the reconnection phase.

The protocol allows to increase the delay between two consecutive re-
connection attempts, using an exponential backoff strategy. Furthermore,
some TCP errors indicate the failure of the other party rather than the loss
of connectivity [NF97]. We could use this information to avoid unnecessary
reconnection attempts.

6.2.5 UDP control messages
The structure of the UDP control messages is presented in Figure 6.5. The
message starts with eight header bytes. The first four bytes of this header
store the identifier of the connection. The next byte defines the type of the
message: ACK to acknowledge data, REQ_ACK to force the other side to

105

Chapter 6. Robust TCP Connections

0 3

type flag

(max 24 bytes)
data

connection identifier

msg ID

Figure 6.5: Structure of robust TCP control messages.

send an acknowledgment, and CLOSE, HALF_CLOSE and RESET to man-
age closing connections. Since UDP does not guarantee delivery, control
messages that need to be acknowledged (such as a CLOSE message initi-
ating a three-way handshake) are flagged using the flag byte. The header
ends with a two byte identifier of the control message. These two bytes
have a meaning only if the control message needs to be acknowledged,
as specified by the flag byte. An acknowledgment control message (type
CONF) will carry this identifier to indicate that the message has been re-
ceived. Finally, the message ends with a data section. For acknowledging
data (ACK and REQ_ACK) four bytes represent the number of bytes re-
ceived. The other control messages have no data section.

Note that we could have compressed the data in control messages. How-
ever, this is not worthwhile as the overhead is negligible compared to the
overhead of UDP, IP and the lower layers. In particular, control messages
easily fit into the smallest Ethernet frame.

6.3 Java Implementation

6.3.1 Classes
The implementation of robust TCP provides the same interface as the sock-
ets in java.net. For a smooth integration into existing programs, the classes
implementing robust TCP sockets, i.e., RSocket (client side) and RServer-
Socket (server side), extend the classes Socket and ServerSocket of the stan-
dard Java TCP interface. The slight differences between the client and
server side of a connection (in the reconnection procedure) are handled
by a class that extends RSocket and implements the server side specifici-
ties (e.g., the reconnection procedure and the notifications that complete a
close). This class is package-private and is instantiated only by the RServer-
Socket whenever a new connection is created.

Both endpoints also each need a dedicated thread that constantly reads
control messages from the UDP socket. All connections in the same JVM
(both client and server side) share this UDP socket. This means that a single

106

6.4. Performance

control thread is used to read the control messages and dispatch them to
the right connection. Using few threads is essential for achieving good
performance on the server side.

6.3.2 Integration into Java
Since the robust TCP sockets extend the Java sockets, the user can simply
replace any call to the constructor of Socket or ServerSocket by a similar
call to RSocket and RServerSocket. This is a rather easy way to integrate
robust TCP connections into new applications or code available in source
code form.

Let us now discuss how to integrate robust TCP connections into exist-
ing applications without changing the source code. Java provides a way to
use modified sockets instead of the standard ones without modifying or re-
compiling the application. The user of the Java libraries can call the method
ServerSocket.setSocketFactory (for the server side) and Socket.setSocket-
ImplFactory (for the client side) with as parameter an object that will serve
as a factory for socket implementations. Socket implementations extend the
SocketImpl class. Similarly to C sockets, this class provides a client inter-
face to connect to a remote host (bind and connect), and a server interface
to accept connections (bind, listen and accept).

Unfortunately, Java socket factories are not flexible enough to allow
the integration of robust TCP sockets (that is, without modifying the Java
core libraries). The methods setSocketFactory and setSocketImplFactory
can only be called once in an application and no plain Java sockets can be
created after the call. This is a problem for us, as we access TCP by plain
Java sockets. However, several requests are present in the Java bug track-
ing database [Soc99] that aim at making the socket factory features more
flexible. Once an improved socket factory framework is released by Sun,
we will be able to achieve fully transparent integration of robust TCP sock-
ets into existing code. The integration will not require any modifications to
the Java core libraries (java.net).

6.4 Performance
The benchmarks used to measure the performance of the robust TCP sock-
ets are taken from IBM’s SockPerf socket micro-benchmark suite, version
1.2 [IBM00]. These experiments do not benchmark all aspects of commu-
nication with sockets. Nevertheless, they should give an indication of the
overhead of the robust TCP sockets with respect to plain TCP sockets. The
benchmarks are the following:

TCP_RR A message (request) is sent using TCP to another machine, which

107

Chapter 6. Robust TCP Connections

Table 6.1: Java vs. Robust TCP in the three benchmarks.

Benchmark Robust TCP Java TCP Overhead

TCP_RR 8572 tr./s 9061 tr./s 5.7%
TCP_Stream 10785 kB/s 10889 kB/s 0.95%
TCP_CRR 3.34 ms 1.30 ms 157%

echoes it back (response). The TCP connection is set up in advance.
The results are reported as a throughput rate of transactions per sec-
ond, which is the inverse of the request / response round-trip time.
The benchmark is run several times with different message lengths.
The default length in SockPerf is one byte.

TCP_STREAM A continuous stream of messages is sent to another ma-
chine, which continuously receives them. The results are bulk through-
puts in kilobytes per second. The TCP_STREAM benchmark is run
with several different message lengths. The default message length
in SockPerf is 8 kilobytes.

TCP_CRR First, a connection is established between the two machines
(connect). Then, a message (request, by default 64 bytes) is sent using
TCP, and is replied to (by default 8 kilobytes). This reflects the mes-
sage size of a typical HTTP query. The costs included in the bench-
marks are those of the connection establishment, the data exchange
and the closing of the connection.

The benchmarks were run with two PCs running Red Hat Linux 7.2
(kernel 2.4.9). The PCs have Pentium III 766 MHz processors and 128 MB of
RAM, and are interconnected by a 100 Base-TX Ethernet. The Java Virtual
Machine is Sun’s JDK 1.4.0.

The results, as well as the relative performance of the robust TCP sock-
ets versus Java sockets, are summarized in Table 6.1 and Figure 6.6. They
show that the overhead of the robust TCP sockets over Java sockets is low
(5.7% and 1%) for the TCP_RR and TCP_Stream tests, except for small mes-
sage lengths in the TCP_Stream test. The overhead for these tests is proba-
bly due to (1) the one extra copy of transmitted data into the retransmission
buffer at the session layer, and (2) the control message processing.

The TCP_CRR test shows a bigger overhead. The overhead is due to the
message exchange upon opening the connection (see Figure 6.3). However,
this benchmark measures the performance of short-lived TCP connections,
whereas robust TCP connections only make sense for long-lived connec-
tions – short-lived connections are not likely to break. For this reason, we
did not put any effort into optimizing for the TCP_CRR benchmark. A pos-

108

6.5. Related work

 9500

 10000

 10500

 11000

 11500

 16384 8192 2048 512 128

th
ro

ug
h

p
ut

 [
kb

yt
e

s/
s]

message length [bytes]

Java TCP
Robust TCP

Figure 6.6: Results of the TCP Stream benchmark.

sible optimization is to wait for the first data packet such that the session
layer messages can be piggybacked.

6.5 Related work
We start with papers about fault-tolerant TCP connections. Zhang and Dao
describe persistent connections [ZD95], which can recover from broken trans-
port layer connections, just like our robust connections. As ours, their pro-
totype is also implemented in a library on top of sockets. However, Zhang
and Dao both (1) have a more ambitious goal, and (2) do not meet our re-
quirements. Zhang and Dao provide connections where the transport layer
endpoints might change their location and/or identity. For example, one
endpoint might be a mobile device that migrates, or a process that crashes
and then recovers. As the goal is more ambitious, the solution is more com-
plex: it involves an addressing scheme distinct from TCP addressing and
a name service used to store information about endpoints. On the other
hand, data loss is possible if a connection breaks in an unanticipated man-
ner, while our protocol avoids this. The authors did not avoid data loss be-
cause they focused on connections that break due to process crashes, rather
than network problems. In such a setting, a session layer mechanism is
not enough to provide exactly-once delivery: some help is needed from the
application.

The FT-TCP protocol [ABEK+01], and STCP [SXM+00] to some extent,
also aim at making TCP connections fault-tolerant to the crash of one end-
point (while our protocol makes the connection fault-tolerant to link fail-
ures). After the crash, either another node has to take over the connection,
or the failed node has to recover. Even though the problem is different from
ours, the solutions involves a lot of common tasks: buffering data and syn-
chronizing the new node to the state of the stream with the help of the
buffered data. A difference is that FT-TCP and STCP require changes in the
kernel, as they augment or modify the transport layer. An interesting point

109

Chapter 6. Robust TCP Connections

in FT-TCP is that the other (non-fault tolerant) endpoint of the connection
runs TCP without any changes: we cannot provide this property, though,
as a broken connection affects both endpoints.

The protocols in [BS97, RM98] adapt TCP to wireless environments.
Connectivity can be lost in such environments for a long time. The solu-
tions usually passivate the TCP connection when connectivity is lost, to
avoid that TCP reacts to this condition by reducing the size of its conges-
tion window or by breaking the connection. These protocols necessitate
changes in the kernel.

Finally, the session layer in the ISO/OSI reference model [ISO96] of-
fers some functionality to re-establish broken transport layer connections.
The communicating parties can put synchronization points into the session
layer stream, and it is possible to recover the state of the stream at these
synchronization points later. It is the application’s responsibility to set syn-
chronization points and to buffer data that might need to be retransmit-
ted. Our solution accomplishes exactly these tasks, making synchroniza-
tion and buffering transparent to the application.

6.6 Discussion
This chapter presented robust TCP connections for fault tolerant distributed
computing. Robust TCP connections, unlike TCP connections, address link
and partition failures in a manner adequate for a range of applications. Ro-
bust TCP connections never break if connectivity is lost.

We implemented robust TCP connections as a session layer protocol on
top of TCP that ensures reconnection, and provides exactly-once delivery
for all transmitted data. Our Java prototype has less than 10% overhead on
TCP sockets with respect to the most important performance features. It
can be easily integrated into existing applications.

Additionally, the interface of the robust TCP connections can be ex-
tended in order to provide information about the state of session connec-
tions to the application. Useful information includes the number of bytes
sent but not acknowledged, the time elapsed since the last send operation
whose data was not acknowledged, and the duration for which a receive
(or send) operation has been blocked. Yet another idea is to add an opera-
tion that allows the application to passivate the connection when there is no
need to send data over a long period. A passivated connection uses fewer
resources: in particular, the associated TCP connection would be closed.

110

Chapter 7

Comparing atomic broadcast
algorithms in a local area

network

In Chapter 4, we presented a new token based atomic broadcast algorithm
using failure detectors. We compared this algorithm to Chandra-Toueg’s
atomic broadcast reduction to consensus (using two different failure detec-
tor based consensus algorithms) in a simulated environment. The simula-
tion model that was considered in Chapter 4 focuses on the contention on
two main system resources: the network and the processors. The model
does however not take into account other important factors that affect the
performance of the algorithms, such as the size of the messages or the time
needed to serialize (or marshal) these messages in order to send them on
the network.

For this reason, the experimental evaluation of the algorithms in a real
environment is important when assessing their performance. This chapter
starts by comparing the performance of the token based atomic broadcast
algorithm with the Chandra-Toueg algorithm (coupled with the Chandra-
Toueg or Mostéfaoui-Raynal consensus algorithms) in a local area network.
We focus on the case of a system without any process failures and exam-
ine the situations where (1) no suspicions occur and those where (2) wrong
suspicions occur repeatedly. Situation (2) assesses one of the desired prop-
erties of the new token based algorithm: a good performance in a system
with frequent wrong failure suspicions.

The second part of the experimental evaluation compares our new to-
ken based algorithm using failure detectors to another token based atomic
broadcast algorithm using group membership to tolerate failures. Token
based atomic broadcast algorithms published in the past are known for
their high achievable throughput. This second part thus focuses on assess-
ing the second desired property of our new failure detector based algo-

111

Chapter 7. Atomic Broadcast in a Local Area Network

rithm: its behavior when high throughputs are reached.
The chapter is structured as follows: Section 7.1 presents the algorithms

that are considered in this performance study and briefly recalls their ex-
pected (analytical) performance. The metrics and setup issues of the perfor-
mance evaluation are then presented in Section 7.2. The results of the per-
formance study are then presented in Section 7.3 in two parts: Section 7.3.1
compares the performance of the Chandra-Toueg atomic broadcast algo-
rithm with our new token based algorithm and in Section 7.3.2, the com-
parison is done with a moving sequencer (token based) algorithm using
group membership.

7.1 Algorithms
We now present the two atomic broadcast algorithms that are compared
with the token based atomic broadcast algorithm presented in Chapter 4.
The first algorithm uses failure detectors (indirectly), whereas the second
one uses group membership for fault tolerance. As in [USS03], all the algo-
rithms are optimized (1) for runs without failures and without suspicions,
(2) to minimize the latency when the load on the system is low (rather than
minimizing the number of sent messages) and (3) to tolerate high loads.

7.1.1 Chandra-Toueg atomic broadcast algorithm
The atomic broadcast algorithm proposed by Chandra and Toueg [CT96]
reduces atomic broadcast to a sequence of consensus. The algorithm is
shortly reminded below (the details of the algorithm are presented in Ap-
pendix A.3.1).

Whenever a message m is abroadcast, it is first reliably broadcast to all
processes. The order of the abroadcast messages that have not yet been
adelivered is then determined by consecutive consensus executions 1, 2,
Each consensus execution is performed on a set of messages (the proposal
of process pi is the set of messages that have been abroadcast but that pi
has not adelivered yet, the decision of consensus is one of these sets). To
adeliver a message m that is abroadcast, the algorithm thus needs one reliable
broadcast and one consensus execution. The cost (in terms of communica-
tion steps and sent messages) of adelivering an application message thus
depends on the choice of the underlying consensus and reliable broadcast
algorithms.

In our performance study, we consider the reliable broadcast algorithm
presented in [CT96], that requires one communication step and n2 mes-
sages per reliable broadcast. Furthermore, we consider the two same con-
sensus implementations that were already used in the simulated perfor-
mance study in Section 4.1.6. Both algorithms use an unreliable failure

112

7.1. Algorithms

detector �S [CT96] to solve consensus and require at least a majority of
correct processes to reach a decision. The characteristics of the two algo-
rithms are shortly recalled in the following paragraphs.

7.1.1.A Chandra-Toueg consensus

The Chandra-Toueg algorithm solves consensus using a centralized com-
munication scheme. A coordinator collects the estimates of all processes
and proposes a value. All processes then acknowledge this proposal to the
coordinator or refuse it if the coordinator is suspected. If the proposal is
accepted, the coordinator reliably broadcasts the decision to all processes.

If neither failures nor suspicions occur, this algorithm requires 2n mes-
sages and one reliable broadcast to reach a decision. The decision is re-
ceived after 3 communication steps by all processes (2 in the case of the
coordinator). The details of the algorithm are presented in Appendix A.2.1.

7.1.1.B Mostéfaoui-Raynal consensus

The Mostéfaoui-Raynal algorithm solves consensus using a decentralized
communication scheme. Again, a coordinator collects the estimates of all
processes and proposes a value. This time, all processes retransmit this
proposal to all other processes or send an invalid value (⊥) if the coordina-
tor is suspected. Any process that receives a majority of acknowledgments
decides and informs the other processes of its decision.

If neither failures nor suspicions occur, this algorithm requires 2n2 mes-
sages to reach a decision. The decision is received after 2 communica-
tion steps by all processes (or a single step in the case of non-coordinator
processes if n = 3). The details of the algorithm are presented in Ap-
pendix A.2.2.

7.1.2 Moving sequencer atomic broadcast algorithm
The second uniform atomic broadcast algorithm that is considered in this
performance study orders the abroadcast messages by using a moving se-
quencer (i.e. a token based mechanism) and is based on the algorithms
described in [CM84, CM95, CMA97, DSU04, WMK94]. The algorithm does
not tolerate failures directly and requires an underlying group membership
service to exclude faulty processes. Its communication pattern is however
similar to that of the TokenFD algorithm. We assume that at least a majority
of the processes in the current view do not crash before installing the next
view. The following paragraphs briefly describes the algorithm, whereas a
detailed presentation is in Appendix A.3.2.

When a message m is abroadcast, it is first sent to all processes, including
the sequencer (the process that currently holds the token). The sequencer

113

Chapter 7. Atomic Broadcast in a Local Area Network

then assigns an order to all messages it receives and informs all the other
processes of the sequence numbers assigned to the new messages. Further-
more, this also passes the token to the next process which then acts as the
sequencer for the next batch of unordered messages.

Since we consider uniform atomic broadcast (and in particular its uni-
form total order property), a process cannot adeliver a message m as soon
as it knows its sequence number. Indeed, imagine that a faulty process p
is the sequencer and assigns the next sequence number to a message m.
If p immediately adelivers m and crashes shortly after, the other processes
might never know that a sequence number was assigned to m. This in turn
implies that when p is later excluded from the group (by the group mem-
bership service), the other processes can adeliver another message instead
of m and thus violate the uniform total order property of atomic broadcast.

As a consequence, the token also transports the set of assigned sequence
numbers that each process knows of. Whenever a sequence number s is ac-
knowledged by a majority of processes, the messages that were ordered
in batch number s can be adelivered. This ensures that the sequence num-
bers of all adelivered messages are not lost in case of process crashes. Fi-
nally, adelivered messages are garbage collected only once they have been
acknowledged by all processes.

For an abroadcast of a message m, the moving sequencer atomic broad-
cast algorithm sends n · (1 +

⌈ n+1
2

⌉
) messages and requires 1 +

⌈ n+1
2

⌉
com-

munication steps for all processes to decide.1

7.2 Elements of our performance study
The following paragraphs describe the benchmarks (i.e. the performance
metrics, the workloads and the faultloads) that were used to evaluate the
performance of the four implementations of atomic broadcast (three atomic
broadcast algorithms, one of which uses two different consensus algorithms).
Similar benchmarks have been presented in [Urb03, USS03]. The four al-
gorithms that are compared are noted TokenFD (token based algorithm us-
ing failure detectors, presented in Chapter 4), CT (Chandra-Toueg’s atomic
broadcast with Chandra-Toueg’s �S consensus), MR (Chandra-Toueg’s ato-
mic broadcast with Mostéfaoui-Raynal �S consensus) and MovingSeq (to-
ken based atomic broadcast algorithm using group membership to tolerate
failures).

1By refraining from sending the token to all processes after each token possession, the

algorithm can be adapted so that only 3n +
⌈

n+1
2

⌉
− 3 messages are needed for all processes

to adeliver an abroadcast message. However, in this case, the last process to adeliver only does

so after n +
⌈

n+1
2

⌉
− 1 communication steps. Since all algorithms minimize the latency

when the throughput is low, the approach necessitating more messages was chosen.

114

7.2. Elements of our performance study

7.2.1 Performance metrics and workloads
The performance metric that was used to evaluate the algorithms is the
latency of atomic broadcast. For a single atomic broadcast, the latency L
is defined as follows. Let ta be the time at which the abroadcast(m) event
occurred and let ti be the time at which adeliver(m) occurred on process pi,

with i ∈ 0, . . . , n− 1. The latency L is then defined as L
def
= (1

n ∑n−1
i=0 ti)− ta.

In our performance evaluation, the mean for L is computed over many
messages and for several executions. 95% confidence intervals are shown
for all the results.

Other metrics could have been used, such as the early latency, where
the smallest measured latency among all processes is used (as opposed to
the mean in our case), and which was used in [USS03, UHSK04]. However,
such a metric has a strong bias towards the lowest adelivery times, which is
rather favorable to token based atomic broadcast algorithms.

The latency L is measured for a certain workload, which specifies how
the abroadcast events are generated. We chose a simple symmetric work-
load where all processes send atomic broadcast messages2 at the same con-
stant rate and the abroadcast events come from a Poisson stochastic process.
The global rate of atomic broadcasts is called the throughput T, which is
expressed in messages per second (or msgs/s).

Furthermore, we only consider the system in a stationary state, when
the rate of abroadcast messages is equal to the rate of adelivered messages.
This state can only be reached if the throughput is below some maximum
threshold Tmax. Beyond Tmax, some processes are left behind. We ensure
that the system stays in a stationary state by verifying that the latencies of
all processes stabilize over time.

7.2.2 Faultloads
The faultload specifies the events related to process failures that occur dur-
ing the performance evaluation [KMA02, Urb03]. In our experiments, the
faultload focuses on the process crashes and the behavior of the unreli-
able failure detectors. We evaluate the atomic broadcast algorithms in the
normal-steady and suspicion-steady faultloads [Urb03] which are presented
below.

Normal-steady In the normal-steady faultload, only runs without process
failures or wrong suspicions are considered. The parameters that influence
the latency are n (the number of processes), the algorithm (TokenFD, CT,
MR or MovingSeq), and the throughput.

2The atomic broadcast messages do not contain any payload, in order to reach the max-
imum possible performance when comparing the algorithms

115

Chapter 7. Atomic Broadcast in a Local Area Network

Suspicion-steady In the suspicion-steady faultload, no processes fail, but
wrong suspicions occur. These wrong suspicions can occur in two ways: (1)
by using a real failure detector implementation and, for example, setting
very low timeout values or (2) by simulating the behavior of the failure
detector modules.

The first approach, although closest to the implementation of a system
in practice, has several drawbacks that make it unsuitable for our perfor-
mance evaluation: first of all, the wrong suspicions are difficult to repro-
duce. Indeed, they depend on the network utilization, packet loss and the
processing taking place, among others. Thus, it is difficult, if not impos-
sible, to evaluate the different algorithms in identical (or at least similar)
conditions. The second drawback is that the rate of wrong suspicions is
difficult to predict. Thus, setting up experiments that evaluate the per-
formance of the algorithms for different wrong suspicion rates is hardly
feasible.

The second approach, which simulates the failure detector modules,
does not have any of the drawbacks presented above. Furthermore, the
quality of service of the simulated failure detectors is easily reproducible
and customized. In [CTA02], Chen, Toueg and Aguilera present a model of
the quality of service of failure detectors which we use here for the simu-
lated wrong suspicions in the suspicion-steady faultload.

The two quality of service metrics presented in [CTA02] that apply to
the (failure free) suspicion-steady faultload are presented in Figure 7.1 and
detailed below:

• The mistake recurrence time TMR: The time between two consecutive
mistakes (the failure detector module on process q wrongly suspects
process p).

• The mistake duration TM: The time needed to correct the mistake of the
failure detector (the time needed for q to trust p again).

These two quality of service metrics are random variables that are asso-
ciated with each pair of processes (where one process monitors the other).
In the CT and MR algorithms, each process monitors the n− 1 other pro-
cesses and we thus have n · (n− 1) failure detectors in the sense of [CTA02].
In TokenFD, each process only monitors its predecessor, and we thus have
n failure detectors in this second case.

As in [Urb03], and to keep the model as simple as possible, we con-
sider that the two random variables associated with each failure detector
are all independent and identically distributed. Furthermore, the random
variables TMR and TM both follow an exponential distribution with a (dif-
ferent) constant parameter. This model is a starting point and does not take
into account the correlation that exists between the failure detectors in a
real system (i.e., in CT and MR, if q suspects p, other processes probably

116

7.2. Elements of our performance study

suspect

trust

suspect

trust

up (no failure)

FD on q

Process p

mistake duration TM

mistake recurrence time TMR

Figure 7.1: Quality of service model of a failure detector in the suspicion-
steady faultload. Process q monitors process p.

also suspect p). This correlation is less pronounced in TokenFD than in both
other algorithms, since each process is only monitored by a single other
process.

Finally, this simulated failure detector model does not put any load on
the system (since no messages are exchanged between the failure detec-
tor modules). However, since in a real failure detector implementation, a
good quality of service can often be achieved without sending messages
frequently, this trade-off is acceptable.

7.2.3 Implementation framework and issues

The algorithms are implemented in Java, using the Neko framework. The
implementation of the CT, MR and TokenFD algorithms for the experimen-
tal evaluation is the same as the one used for the simulated evaluation in
Section 4.1.6. Furthermore, in the experimental setup, all processes are con-
nected pair-wise through TCP channels3

Finally, we enabled Java’s Just-In-Time (JIT) compilation [CFM+97], that
transforms often-executed Java bytecode into native machine code. The
JIT compilation process adversely affects the performance measurements,
since the execution of the code is interrupted while it is compiled. To avoid
any interference between the measurements and the JIT compilation, each
execution was preceded by a warm-up phase that lasted long enough for
the Java Virtual Machine to compile the parts of the code that would be
executed often during the performance measurements.

3We also tested the algorithms with a simple UDP and IP multicast implementation
of reliable channels. The results were however comparable or worse than with the TCP
implementation, due to serialization issues.

117

Chapter 7. Atomic Broadcast in a Local Area Network

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast in a system
with n = 3 processes (LAN).

MR
CT

TokenFD

(a) n = 3

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast.
n = 5 (CT, MR) or n = 7 (TokenFD) proc.

MR
CT

TokenFD

(b) n = 5 (CT, MR), n = 7 (TokenFD)

Figure 7.2: Latency vs. throughput with a normal-steady faultload

7.2.4 Evaluation environment
The experiments were executed on a local area network of nodes with a
Pentium 4 processor, model number 630, at 3 GHz and with 2 MB of L2
cache. The size of the main memory on each node is 1 GB and the nodes
are interconnected by a single Gigabit Ethernet switch. The round-trip time
between two nodes is approximately 0.1 ms. All nodes run a SuSE Linux
distribution (with a 2.6.11 kernel) and Sun’s Java 1.5.0_05 64-bit Server Vir-
tual Machine.

7.3 Results

7.3.1 Comparing failure detector based implementations
We start by comparing the performance of the three failure detector based
atomic broadcast implementations (TokenFD, CT and MR) with two fault-
loads: normal-steady, where good runs without failures nor suspicions are
considered (Section 7.3.1.A) and suspicion-steady, where processes do not
crash but wrong suspicions occur (Section 7.3.1.B).

7.3.1.A Normal-steady faultload

The performance of the three algorithms in a system without failures nor
suspicions is presented in Figure 7.2. The horizontal axis shows the through-
put (in messages per second) that is considered, whereas the latency of the
algorithms for a given throughput is shown vertically.

In a system with three processes (Figure 7.2(a)), in which all three algo-
rithms support one failure, CT achieves slightly lower latencies than MR,

118

7.3. Results

while TokenFD reaches the highest throughput and lowest latencies of the
three algorithms. There are two main explanations to the difference be-
tween TokenFD and CT or MR. First of all, each abroadcast message m in
CT and MR results in an rbroadcast of m, whereas TokenFD only sends m to
all processes and thus generates less network traffic and processing costs.
Secondly, in CT and MR, the order of m (i.e., the decision of consensus) is
reliably broadcast to all processes, whereas in TokenFD, the order is once
again simply sent to all processes. The slight difference between CT and
MR is due to the additional messages needed by MR to solve consensus.

The situation is similar in a system where two failures are tolerated (Fig-
ure 7.2(b)), except that TokenFD has a higher latency than CT and MR when
the throughput is low. The explanation is the following: in TokenFD, the
number of communication steps needed to adeliver a message is equal to
f + 2 (with f the tolerated failures) and thus, as f increases, the latency of
adeliver also increases. In MR and CT however, the number of communi-
cation steps does not depend on f and the latency of the algorithms is less
affected by the increase of the system size.

To summarize, in a system with n = 3 processes, the latency of atomic
broadcast is lower when using TokenFD than CT or MR. Furthermore, To-
kenFD allows a higher rate of abroadcasts while maintaining the system in
a stationary state. When two failures are tolerated (requiring 5 processes
with CT and MR, 7 processes with TokenFD), CT and MR achieve lower
latencies than TokenFD when the system load is low. As soon as the load
reaches about 1000 msgs/s, TokenFD again outperforms both other algo-
rithms.

7.3.1.B Suspicion-steady faultload

The performance of the TokenFD, CT and MR algorithms in a system with
wrong suspicions (but without process failures) is discussed in the follow-
ing paragraphs. We start by considering the case where the frequency of
these wrong suspicions varies (but the duration of wrong suspicions is
fixed) and then consider the dual case, where wrong suspicions occur at
a given frequency, but with varying durations.

Impact of the frequency of wrong suspicions Figures 7.3 and 7.4 il-
lustrate the performance of the three algorithms in a system supporting
one, respectively two, failures. In each set of four graphs, the two columns
group the wrong suspicion durations that are considered (1 and 5 ms),
whereas each row represents a system load (800 and 1500 msgs/s). The
horizontal axis of each graph represents the recurrence time of wrong sus-
picions (the frequency of suspicions is high on the left side and low on the
right side of the graph) and the vertical axis once again represents the la-
tency of atomic broadcast.

119

Chapter 7. Atomic Broadcast in a Local Area Network

 0
 2
 4
 6
 8

 10
 12
 14

 1 10 100 1000 10000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

Latency of atomic broadcast.
TM = 1 ms, n = 3, throughput = 1500 1/s

CT
MR

TokenFD

(a) 1500 msgs/s, TM = 1ms

 0

 2

 4

 6

 8

 10

 10 100 1000 10000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

Latency of atomic broadcast.
TM = 5 ms, n = 3, throughput = 1500 1/s

CT
MR

TokenFD

(b) 1500 msgs/s, TM = 5ms

 0
 2
 4
 6
 8

 10
 12
 14

 1 10 100 1000 10000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

Latency of atomic broadcast.
TM = 1 ms, n = 3, throughput = 800 1/s

CT
MR

TokenFD

(c) 800 msgs/s, TM = 1ms

 0

 1

 2

 3

 4

 5

 6

 10 100 1000 10000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR [ms]

Latency of atomic broadcast.
TM = 5 ms, n = 3, throughput = 800 1/s

CT
MR

TokenFD

(d) 800 msgs/s, TM = 5ms

Figure 7.3: Latency vs. mistake recurrence time TMR with a suspicion-steady
faultload in a system with n = 3 processes

120

7.3. Results

 0

 10

 20

 30

 40

 50

 1 10 100 1000 10000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR[ms]

Latency of atomic broadcast.
TM = 1 ms, n = 5 or 7, t’put = 1500 1/s

MR
CT

TokenFD

(a) 1500 msgs/s, TM = 1ms

 0

 10

 20

 30

 40

 50

 10 100 1000 10000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR[ms]

Latency of atomic broadcast.
TM = 5 ms, n = 5 or 7, t’put = 1500 1/s

MR
CT

TokenFD

(b) 1500 msgs/s, TM = 5ms

 0

 5

 10

 15

 20

 1 10 100 1000 10000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR[ms]

Latency of atomic broadcast.
TM = 1 ms, n = 5 or 7, t’put = 800 1/s

MR
CT

TokenFD

(c) 800 msgs/s, TM = 1ms

 0

 5

 10

 15

 20

 10 100 1000 10000

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake recurrence time TMR[ms]

Latency of atomic broadcast.
TM = 5 ms, n = 5 or 7, t’put = 800 1/s

MR
CT

TokenFD

(d) 800 msgs/s, TM = 5ms

Figure 7.4: Latency vs. mistake recurrence time TMR with a suspicion-steady
faultload in a system with n = 5 (CT, MR) or n = 7 (TokenFD) processes

No suspicion:

Wrong suspicion:

proposal decision

proposal nack abort estimate proposal ack decision

ack
p0

p1

p2
timeack

ack

p0

p1

p2
timeack

nack

Figure 7.5: Communication pattern of CT in a run without (top) and with
(bottom) a wrong suspicion.

121

Chapter 7. Atomic Broadcast in a Local Area Network

No suspicion:

Wrong suspicion:

proposal

proposal nack

ack

proposal ack

p0

p1

p2

p0

p1

p2

nack

ack time

time

Figure 7.6: Communication pattern of MR in a run without (top) and with
(bottom) a wrong suspicion.

In the case of a system with three processes supporting one failure
(Figure 7.3), the TokenFD algorithm achieves lower latencies than CT and
MR, both in the case of rare wrong suspicions (as TMR, the mistake re-
currence time, grows the suspicion-steady faultload approaches the normal-
steady faultload presented previously) and when wrong suspicions occur
extremely frequently (in Figures 7.3(a) and 7.3(c), TokenFD adelivers mes-
sages even when wrong suspicions occur on average every millisecond).
TokenFD achieves lower latencies than CT and MR in a system with three
processes for two reasons: first of all, TokenFD can order messages as soon
as there exists one process that is not suspected by its successor, whereas
in CT and MR, a consensus execution can be delayed if only a single pro-
cess suspects the coordinator. Secondly, a wrong suspicion is more costly in
CT and MR : if consensus cannot be reached in a given round, the consen-
sus algorithm starts a new round and needs to send at least an additional
4n = 12 (CT, see Figure 7.5) or n + n2 = 12 (MR, see Figure 7.6) mes-
sages in 4 and 2 additional communication steps respectively4. The abort
communication step in Figure 7.5 is the result of an optimization of the CT
algorithm that reduces contention in runs without failures nor suspicions
(see Appendix A.2.1 for additional details). In the case of TokenFD, a wrong
suspicion incurs a cost of at least an additional f + 1 = 2 messages and
one communication step. The cost of a wrong suspicion also explains why

4In a system with n = 3 processes, the estimate step of CT shown in Figure 7.5 is skipped
since p1 only needs two estimates (its own and p0’s) and does not need to wait one com-
munication step for p2’s estimate. Furthermore, in MR, process p2 can decide at the end of
the nack step depicted in Figure 7.6 if it receives p0’s proposal (and its own ack) before p1’s
nack value (⊥).

122

7.3. Results

the latency of MR is lower than that of CT when suspicions are frequent,
whereas CT outperforms MR when (almost) no wrong suspicions occur.

When a system that supports two failures is considered (Figure 7.4), the
results are slightly different. Indeed, when the interval between wrong sus-
picions is low enough — around 20 ms (Figures 7.4(a) and 7.4(b)) and 5 ms
(Figures 7.4(c) and 7.4(d)) when a load of 1500, respectively 800, msgs/s is
considered — the algorithms cannot adeliver messages at the offered load
and the latency increases sharply. In the case of CT and MR in a system
with n = 5 processes, 4 processes can potentially suspect the coordinator
in a round of consensus (up from 2 processes in the previous case of n = 3)
which increases the chances that wrong suspicions affect consensus. The
increased fault tolerance also affects TokenFD : indeed, in a system support-
ing two failures (i.e., n = 7), a batch of messages can only be ordered if two
consecutive process do not suspect their predecessor.

The ranking between the algorithms is also modified in this second set-
ting: when the load on the system is 1500 msgs/s, CT achieves lower la-
tencies than MR, even as the mistake recurrence time TMR decreases (Fig-
ures 7.4(a) and 7.4(b)). The increased system size affects MR more than CT,
due to the O(n2) messages that MR’s consensus uses when the coordina-
tor and the other processes exchange their estimates and acknowledgments
(CT only needs O(n) messages for this).

Impact of the duration of wrong suspicions Figure 7.7 presents the
performance of the three algorithms in a system where wrong suspicions
occur on average every 100 ms. The duration of these wrong suspicions
varies between 1 and 100 ms and is shown on the horizontal axis of each
graph. The latency of the algorithms is shown on the vertical axis, as previ-
ously. In each set of four graphs, each column shows the results for a given
system size (supporting 1 or 2 failures). Each row represents a system load
(800 and 1500 msgs/s).

Once again, when n = 3, the latency of adelivery of CT is lower than
that of MR when the duration of failures is short (Figures 7.7(a) and 7.7(c),
left hand side of the graphs). In such a setting, most of the consensus ex-
ecutions (which only last about one millisecond) terminate without being
affected by a wrong suspicion and the performance of the algorithm is thus
close to what was observed in the normal-steady faultload. As the duration
of wrong suspicions increases, a growing number of consensus executions
are affected by the suspicions. As discussed above, CT pays a higher price
than MR when a consensus execution is delayed by a suspicion and thus,
as the suspicion duration increases, MR achieves lower latencies than CT
(Figures 7.7(a) and 7.7(c), right hand side of the graphs). Finally, when
n = 3, wrong suspicions do not affect TokenFD as much as both other al-
gorithms and TokenFD thus achieves the lowest latency of the three algo-

123

Chapter 7. Atomic Broadcast in a Local Area Network

 0

 5

 10

 15

 20

 1 10 100

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake duration TM [ms]

Latency of atomic broadcast.
TMR = 100 ms, n = 3, throughput = 1500 1/s

CT
MR

TokenFD

(a) n = 3, 1500 msgs/s

 0

 10

 20

 30

 40

 50

 1 10 100

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake duration TM [ms]

Latency of atomic broadcast.
TMR = 100 ms, n = 5 or 7, t’put=1500 1/s

MR
CT

TokenFD

(b) n = 5 (CT, MR) and 7 (TokenFD),
1500 msgs/s

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 10 100

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake duration TM [ms]

Latency of atomic broadcast.
TMR = 100 ms, n = 3, throughput = 800 1/s

CT
MR

TokenFD

(c) n = 3, 800 msgs/s

 0

 5

 10

 15

 20

 1 10 100

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

mistake duration TM [ms]

Latency of atomic broadcast.
TMR = 100 ms, n = 5 or 7, t’put=800 1/s

MR
CT

TokenFD

(d) n = 5 (CT, MR) or 7 (TokenFD),
800 msgs/s

Figure 7.7: Latency vs. mistake duration TM with a suspicion-steady fault-
load in a system with a mistake recurrence time of 100ms.

124

7.3. Results

rithms, whether the throughput is moderate (800 msgs/s) or higher (1500
msgs/s).

In a system with two tolerated failures, presented in the Figures 7.7(b)
and 7.7(d), MR’s performance drops compared to CT and TokenFD (again,
MR sends O(n2) messages during the proposal and acknowledgment phases
of consensus). When the throughput is moderate however (800 msgs/s, see
Figure 7.7(d)), MR achieves lower latencies than CT as soon as the duration
of the wrong suspicions exceeds 30 ms. As in the case n = 3, the latency of
TokenFD is lower than CT and MR when the duration of wrong suspicions
is high, but the performance advantage is less substantial than in a system
where a single failure is tolerated.

Summary In [USS03], the authors present a performance study of two
atomic broadcast algorithms: one based on failure detectors and the other
one on group membership. Their performance evaluation confirms that
wrong suspicions are better dealt with by failure detectors than by a group
membership service that has to carry out several costly operations when-
ever a suspicion occurs.

The first part of this chapter shows that the performance of the TokenFD
algorithm is slightly better than both CT (the failure detector based algo-
rithm in [USS03]) and MR when the interval between wrong suspicions is
short. These results confirm that one of the desired properties of the To-
kenFD algorithm holds: wrong failure suspicions do not drastically reduce
the performance of the algorithm. This in turn allows an implementation of
the failure detector with aggressive timeouts, which consequently allows
actual failures to be detected fast. If the failure detector implementation
commits a mistake and wrongly suspects a process that is still alive, this
mistake does not cost much in terms of performance.

Secondly, the performance evaluation of the three algorithms in the
suspicion-steady faultload shows a symmetry: the algorithms behave sim-
ilarly if wrong suspicions occur at an increasing rate but last a constant (on
average) amount of time, or if the duration of wrong suspicions increases
but that they occur at a constant rate. Indeed, the main factor that influ-
ences the performance of the algorithms when wrong suspicions occur is
the fraction of time without suspicions. In the case of CT and MR, this then
corresponds to the fraction of consensus executions that are unaffected by
wrong suspicions.

7.3.2 Comparing token based implementations
The second part of this chapter compares two token based atomic broad-
cast: TokenFD (which uses failure detectors) and MovingSeq (which uses
group membership). Token based algorithms are known for the high through-

125

Chapter 7. Atomic Broadcast in a Local Area Network

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast in a system
with n = 3 processes (LAN).

TokenFD
Mov. Seq. (GM)

(a) n = 3

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast.
n = 5 (Mov. Seq.) or n = 7 (TokenFD) proc.

TokenFD
Mov. Seq. (GM)

(b) n = 5 (MovingSeq), n = 7 (TokenFD)

Figure 7.8: Latency vs. throughput with a normal-steady faultload

put that they achieve. The second part of this chapter thus focuses on the
performance of the algorithm in the normal-steady faultload, and assesses
the second desired property of the TokenFD algorithm: high throughput.

Figure 7.8 presents the latency of the TokenFD and MovingSeq atomic
broadcast algorithms as a function of the throughput in a system support-
ing a single failure (Figure 7.8(a)) and two failures (Figure 7.8(b)). The re-
sults in both systems are presented and analyzed in the following para-
graphs.

7.3.2.A One tolerated failure

In a system with three processes, presented in Figure 7.8(a), both algo-
rithms achieve similar results when the throughput is moderate (until about
3000 msgs/s). For higher loads however, the performance of TokenFD de-
grades faster than MovingSeq and above 6000 msgs/s, the latency of To-
kenFD does not stabilize (the rate of message adelivery is lower than the rate
of abroadcasts). The MovingSeq algorithm, on the other hand, still achieves
stable latencies at 9000 msgs/s. This behavior is explained by several factors
that are detailed in the following paragraphs.

After a single communication step (i.e., one token transmission) of Mov-
ingSeq, all the processes that receive the token can adeliver a message, as
shown in Figure 7.9(b) (at the end of the first communication step, pro-
cesses p1 and p2 both adeliver message batch 1). Indeed, to adeliver a mes-
sage m, a process must ensure that at least f + 1 processes agree on the
order of m. When n = 3 (and f = 1), the f + 1 processes are the token
sender and the token receiver. In the case of TokenFD (Figure 7.9(a)), only
the immediate successor of the token sender can adeliver the message (since
the votes for the proposal in the token are only incremented if there is no
gap in the token circulation). The other n− 1 processes then get this infor-

126

7.3. Results

p0

p1

p2
time

1

2

2

2 3

3

3

1

1

(a) TokenFD

p0

p1

p2
time

1 2

31

1 2

2

3

3

(b) MovingSeq

Figure 7.9: Communication patterns of TokenFD and MovingSeq in good
runs. Each triangle with a number i denotes the adelivery of the ith message

batch.

mation one communication step later. Thus, as Figure 7.9(a) shows, only p1
adelivers message batch 1 after the first communication step, while p0 and
p2 do so after the second step.

This effect however only explains the small difference between TokenFD
and MovingSeq when the throughput is low. When the throughput in-
creases, other elements affect the performance of the algorithms. First of
all, the token transported in TokenFD is larger than the one in MovingSeq : in
TokenFD, the token contains the current proposal and a subsequence of the
adelivered messages. In MovingSeq, only the current proposal is transported
(the group membership algorithm in MovingSeq ensures that all processes
have the same adelivered sequence if process suspicions or failures occur).
The additional data transported by TokenFD incurs additional serialization
and networking costs. Furthermore, suspicions and failures must be han-
dled by TokenFD directly, which creates additional processing costs related
to the token circulation (such as comparing the sequence of adelivered mes-
sages in the token to the local copy of that same sequence). These costs
are not present in MovingSeq, since the algorithm does not need to handle
failures (whenever a failure does occur, it is handled by the group member-
ship service, which ensures that all processes are in a consistent state before
installing the next view of the group).

7.3.2.B Two tolerated failures

When two failures are tolerated, in a system with n = 5 and n = 7 pro-
cesses for the MovingSeq and TokenFD algorithms respectively, the results

127

Chapter 7. Atomic Broadcast in a Local Area Network

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000

th
ro

ug
h

p
ut

 [
1/

s]

offered load [1/s]

Throughput of TokenFD in a LAN.

n = 3
n = 5
n = 7
n = 9

n = 11
n = 13
n = 15

Figure 7.10: Throughput vs. offered load of the TokenFD algorithm with a
normal-steady faultload

are slightly different. Indeed, in this setting, the latency of TokenFD is
higher than that of MovingSeq even for low throughputs, even though both
algorithms achieve quasi-constant latencies for throughputs under 1500
msgs/s. When the throughput increases, the latency of TokenFD stabilizes at
increasingly higher values. Finally, above 3500 msgs/s, TokenFD no longer
reaches a stationary state. The same limit for the MovingSeq algorithm is
above 8000 msgs/s.

The difference between both algorithms is again explained by the dif-
ferent data structures that the algorithms operate on. The token in TokenFD
transports up to two proposals (i.e., f proposals) and a subsequence of the
adelivered messages, whereas MovingSeq again only needs to send the cur-
rent proposal in the token to all processes. The size of the MovingSeq token
is thus the same in a system with n = 3 or n = 5 processes, whereas for
TokenFD, the size of the token increases linearly with f (the token is thus
roughly two times larger when n = 7 and two failures are tolerated, than
when n = 3). Finally, since TokenFD requires n = 7 processes to support
two failures (versus n = 5 for MovingSeq), TokenFD needs to inform 6 other
processes each time the order of a message batch is decided. MovingSeq
only needs to inform 4 processes.

7.3.2.C Impact of the number of tolerated failures on TokenFD

Figure 7.8(a) shows that the highest throughput achievable by TokenFD de-
creases sharply as the size of the system increases. The following para-
graph examines the correlation between the system size and the highest
throughput that TokenFD can reach. Figure 7.10 presents the throughput of
TokenFD as a function of the offered system load, for 7 different system sizes

128

7.3. Results

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

m
in

 la
te

nc
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 10 1/s, lambda = 1

FD
GM

(a) n = 3, 10 msgs/s

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

m
in

 la
te

nc
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 300 1/s, lambda = 1

FD
GM

(b) n = 3, 300 msgs/s

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

m
in

 la
te

nc
y

[m
s]

mistake recurrence time TMR [ms]

n = 7, throughput = 10 1/s, lambda = 1

FD
GM

(c) n = 7, 10 msgs/s

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

m
in

 la
te

nc
y

[m
s]

mistake recurrence time TMR [ms]

n = 7, throughput = 300 1/s, lambda = 1

FD
GM

(d) n = 7, 300 msgs/s

Figure 7.11: Early latency vs. Mistake recurrence time TMR of a group
membership and a failure detector based algorithm, simulation results

from [USS03]

n = 3, 5, . . . , 15. Unlike the previous figures, this figure does not present the
latency of atomic broadcast, as it considers system states in which the la-
tency is not necessarily stationary (more precisely, the latency of the system
is not stationary as soon as the offered load is higher than the throughput).

The highest throughput of TokenFD is heavily influenced by the fault
tolerance f of the system, as shown in Figure 7.10. As expected, the smaller
systems allow higher throughputs to be reached. What is interesting is the
performance gap associated with different levels of the fault tolerance f .
Figure 7.10 shows a gap between n = {3, 5} (one tolerated failure) and n =
{7, 9, 11} (two tolerated failures) and n = {13, 15} (three tolerated failures).
The differences within these three sets are less important. In theory (and in
good runs), the latency depends heavily on f (it takes f + 2 communication
steps to adeliver a message), but the maximum throughput should hardly
be affected by f , since the token contains several proposals that are being
decided upon in parallel. Thus, if the rate of abroadcasts is high enough,
a batch of messages is ordered at each token possession, independently of
the value of f . In practice however, the maximum throughput is affected

129

Chapter 7. Atomic Broadcast in a Local Area Network

by the value of f and in particular by the size of the token (which depends
on the number of transported proposals, hence f).

7.3.2.D Impact of wrong suspicions on group membership algorithms

In [USS03], the authors compare failure detectors and group membership
algorithms. The failure detector algorithm is the CT algorithm considered
in this chapter and the group membership algorithm uses a fixed sequencer
to order messages (and implements its group membership service similarly
to the MovingSeq algorithm). The evaluation of the algorithms is done by
simulation in the Neko framework, with λ = 1 (sending a message on the
network and processing it takes the same time: 1 time unit).

Figure 7.11, taken from [USS03], shows the latency as a function of the
mistake recurrence time TMR (and the mistakes are immediately corrected:
TM = 0) for two systems (n = 3, n = 7) and two throughputs (10 msgs/s
and 300 msgs/s). The figure shows that as the frequency of wrong suspi-
cions increases, the latency of the group membership algorithm increases
sharply. The CT algorithm, on the other hand, is less affected by the wrong
suspicions (especially when the throughput is high).

These results, although simulated and not experimental, show the rel-
ative cost of a wrong suspicion in failure detector and group membership
algorithms. Since the implementation of the group membership service of
MovingSeq is similar to the one presented in [USS03], it is probable that
wrong suspicions affect the performance of MovingSeq more than they af-
fect TokenFD.

7.4 Discussion
This chapter presented the performance evaluation of four atomic broad-
cast and consensus implementations in a local area network with a small
number of processes. The four algorithms were chosen in order to ex-
plore two of the dimensions that characterize atomic broadcast algorithms:
(1) the fault tolerance mechanism, which was either failure detectors (CT,
MR and TokenFD) or group membership (MovingSeq) and (2) the order-
ing mechanism, which was either token based (TokenFD, MovingSeq) or a
reduction to consensus (CT, MR). Consequently, we also evaluated if the
TokenFD algorithm displayed the qualities associated with token based al-
gorithms (high throughput) and failure detector based algorithms (good
performance even in the presence of wrong suspicions).

The first part of the evaluation (in systems without failures nor suspi-
cions) showed that the latency of TokenFD is lower than that of CT and MR,
especially as the throughput increases. Furthermore, the highest through-
put achieved by CT and MR was 3500 msgs/s (n = 3) and 2000 msgs/s

130

7.4. Discussion

(n = 5), whereas TokenFD reached 5500 msgs/s (n = 3) and 3000 msgs/s
(n = 7). These results show that TokenFD reaches higher throughputs than
other failure detector based algorithms in systems that tolerate one or two
failures. Since TokenFD requires f (f + 1) + 1 processes (i.e. O(f 2)) to toler-
ate f failures, its use is mainly targeted at these systems with limited fault
tolerance needs.

Secondly, this chapter addressed the case of a system where wrong
suspicions occur (but without process failures). Again, TokenFD achieved
lower latencies than CT and MR when the rate of wrong suspicions in-
creased, in a system supporting one or two failures. This confirms one
of the expected qualities of TokenFD : handling frequent wrong suspicions
while limiting the impact on performance. In [USS03], the authors com-
pared CT with a group membership algorithm (using a fixed sequencer
to order messages) and showed that, in simulation, CT outperformed the
group membership algorithm when the recurrence time between wrong
suspicions was low. In this chapter, we showed (in a real experimental set-
ting, not in simulation) that TokenFD achieves yet lower latencies than CT
when wrong suspicions are frequent.

Finally, we compared TokenFD to another token based algorithm, Mov-
ingSeq, that relies on a group membership service to support process fail-
ures. This comparison showed that TokenFD does not reach as high through-
puts as MovingSeq in runs without process failures or suspicions. Since both
algorithms have similar communication patterns, the performance gap is
explained in part by the additional processing costs and the larger mes-
sages needed to support failures directly in TokenFD. These costs are re-
duced in MovingSeq, since the algorithm delegates the handling of failures
to an underlying group membership service. However, when wrong sus-
picions occur, a costly protocol is needed in MovingSeq to ensure that all
processes have the same view of the group membership.

As mentioned above, TokenFD was designed with two properties in
mind: good performance when wrong suspicions are frequent (with the
use of unreliable failure detectors to support process crashes) and high
throughput when no failures or suspicions occur (with the use of a token to
reduce network contention). This chapter confirms that the first property is
clearly implemented by TokenFD. In the case of the high throughput prop-
erty, the experimental evaluation of TokenFD shows that it sustains higher
system loads than CT and MR, the two other failure detector based algo-
rithms, but falls behind MovingSeq, the group membership and token based
algorithm. The MovingSeq algorithm however has other shortcomings, es-
pecially when wrong suspicions of correct processes occur.

131

Chapter 7. Atomic Broadcast in a Local Area Network

132

Chapter 8

Modeling and validating the
performance of atomic

broadcast algorithms in high
latency networks

Chandra and Toueg introduced the concept of failure detectors in [CT96].
Since then, several atomic broadcast [ESU04a] and consensus [CT96, MR99,
Lam98] algorithms based on failure detectors have been published.

The performance of these algorithms is affected by a trade-off between
the number of communication steps and the number of messages needed to
reach a decision. Some algorithms reach decisions in few communication
steps but require more messages to do so. Others save messages at the
expense of additional communication steps (to diffuse the decision to all
processes in the system for example). This trade-off is heavily influenced
by the message transmission and processing times. When deploying an
atomic broadcast algorithm, the user must take these factors into account
in order to choose the algorithm that is best adapted for the given network
environment.

The performance of these algorithms has been evaluated in several en-
vironments, both real as in [ESU04a, CUBS02] and in Chapter 7, and simu-
lated [UHSK04, USS03]. However, these evaluations are limited to a sym-
metrical setup: all processes are on the same local area network and have
identical peer-to-peer round-trip times. Furthermore, they only consider
low round-trip times between processes (and thus comparatively high mes-
sage processing costs): a setting which is favorable to algorithms that limit
the number of sent messages, at the expense of additional communication
steps.

133

Chapter 8. Atomic Broadcast in Wide Area Networks

Contributions In this chapter, we model and evaluate the performance
of three atomic broadcast algorithms using failure detectors with three dif-
ferent communication patterns (the first based on a reduction to a central-
ized consensus algorithm [CT96], the second based on a reduction to a de-
centralized consensus algorithm [MR99] and the third one, the new token
based algorithm presented in Chapter 4) in wide area networks. We specif-
ically focus on the case of a system with three processes — i.e., supporting
one failure — where either (i) all three processes are on different locations
and (ii) the three processes are on two locations only (and thus one of the
locations hosts two processes). The algorithms are evaluated with a large
variation in link latency (e.g., round-trip times ranging from 4 to 300 ms).

We propose a simple model of the wide area network to analytically
predict the performance of the three algorithms. The experimental evalua-
tion confirms that the model correctly predicts the performance for average
system loads and for all round-trip times that we considered.

The experimental evaluation of the algorithms leads to the following
conclusions. First, the number of communication steps of the algorithms
is the predominant factor in wide area networks, whether the round-trip
time is high (300 ms) or, more surprisingly (since message processing times
are no longer negligible), if it is low (4 ms). The performance ranking of
the three algorithms is the same in all the wide area networks considered,
despite the two orders of magnitude difference between the smallest and
largest round trip times. Secondly, the performance of each of the algo-
rithms heavily depends on setup issues that are orthogonal to the algo-
rithm (typically the choice of the process that starts each iteration of the
algorithm, which can be always the same process, or which can shift from
one process to another at each iteration). These setup issues also deter-
mine the maximum achievable throughput. Finally, when comparing the
measurements presented in Chapter 7 with those in this chapter, the per-
formance ranking of the three algorithms is fundamentally different in a
wide area network than in a local area network, as expected.

The chapter is structured as follows. Section 8.1 discusses the motiva-
tion for evaluating the atomic broadcast algorithms in wide area networks.
Sections 8.2 and 8.3 present respectively the system model and the perfor-
mance metrics that are used. The evaluation of the algorithms is then pre-
sented in Section 8.4 (analytical evaluation) and Section 8.5 (experimental
evaluation). Finally, Section 8.6 concludes the chapter.

8.1 Motivation and Related Work
In [FLP85], the authors show that consensus cannot be solved in an asyn-
chronous system with a single crash failure. Several extensions to the asyn-
chronous model, such as failure detectors [CT96], have circumvented this

134

8.1. Motivation and Related Work

impossibility and agreement algorithms [CT96, MR99, ESU04a] have been
developed in this extended model.

The performance of these atomic broadcast algorithms is evaluated in
different ways. Usually, the formal presentation of the agreement algo-
rithms is accompanied by analytical bounds on the number of messages
and communication steps that are needed to solve the problem [CT96, MR99,
VR02]. This coarse-grained evaluation of the performance of the algorithms
is however not sufficiently representative of the situation in a real environ-
ment.

To get a more accurate estimation of the performance of the atomic
broadcast algorithms, they have often been evaluated in local area net-
works [ESU04a, CUBS02], simulated in a symmetrical environment where
all links between processes have identical round-trip times [UHSK04, USS03]
or evaluated in hybrid models that introduce artificial delays to simulate
wide area networks [VR02].

Although these performance evaluations do provide a representative
estimate of the performance of atomic broadcast on a local area network,
they cannot be used to extrapolate the performance of the algorithms on a
wide area network, where the ratio between communication and process-
ing costs is completely different. Furthermore, evaluating the performance
of atomic broadcast on wide area networks is not only of theoretical inter-
est. As [LKPMJP05] shows, it is feasible to use atomic broadcast as a service
to provide consistent data replication on wide area networks. In this chap-
ter, we model the performance of these algorithms and validate this analysis
by experimentally evaluating the algorithms in wide area networks.

We now discuss the central trade-off that explains the impact of net-
work latency on the performance of atomic broadcast algorithms.

8.1.1 The trade-off between number of messages and com-
munication steps
The processes executing the atomic broadcast algorithms that we consider
in this chapter communicate with each other to agree on a common mes-
sage delivery sequence. To do so, they need to exchange a minimum num-
ber of messages in a number of communication steps. There is here a
trade-off on the number of communication steps and the number of sent
messages. Usually, a higher number of messages enables the algorithm to
reach a decision in fewer communication steps and vice-versa.

Each communication step has a cost. Indeed, each additional commu-
nication step induces a delay on the solution to the problem. This cost is
typically low in a local area network, whereas it increases with the latency
in a wide area network.

Sending messages also has a cost. Whenever a message is sent, it has

135

Chapter 8. Atomic Broadcast in Wide Area Networks

to be handled by the system. This handling includes costs related to al-
gorithmic computations on its content, serialization (i.e. transforming the
message to and from an array of bytes that is sent on the network) and
bandwidth used for the transmission.

These costs characterize the trade-off between the number of messages
sent and communication steps needed by the algorithm. If a communica-
tion step costs nothing, then the algorithm that sends the least number of
messages performs the best. If, on the other hand, a communication step
is very expensive, the algorithm that sends most messages (and thus saves
on the number of communication steps) has the best performance. In this
performance study, several network latencies are studied to evaluate their
impact on this trade-off.

8.1.2 Related work

In [ADGS03], the authors study the influence of network loss on the per-
formance of two atomic broadcast algorithms in a wide area network. To
do this, the authors combine experimental results obtained on a real net-
work with an emulation of the atomic broadcast algorithms. The scope
of the work in [ADGS03] is different from ours: they evaluate the impact
that message loss has on the performance of atomic broadcast algorithms
whereas we model and evaluate the impact of network latency on the rel-
ative performance of different algorithms. Furthermore, the experimental
performance evaluation in [ADGS03] does not take the processing time of
messages into account (the results are based on message logs and emulated
algorithms). Arguably, this processing time is negligible when a network
with large round-trip times is considered (as was the case in [ADGS03]),
but its importance increases as the round-trip times decrease.

Bakr and Keidar evaluate the duration of a communication round on
the Internet in [BK02]. Their work focuses on the running time of four dis-
tributed algorithms with different message exchange patterns, and in par-
ticular, the effect of message loss on these algorithms. Their experiments
are run on a large number of hosts (10) and the algorithms that they ex-
amine do not allow messages to be lost (i.e. an algorithm waits until it
has received all messages it is expecting). The scope of [BK02] is similar to
ours in that they analyze the relative performance of algorithms with dif-
ferent communication patterns on a wide area network. However, their al-
gorithms are not representative of failure detector based atomic broadcast
algorithms. Indeed, in the three algorithms we consider, processes never
need to wait for messages from all the other processes. Thus, if messages
from one process are delayed because of a high-latency link, it does not nec-
essarily affect the performance of the atomic broadcast algorithm (whereas
it would in [BK02]).

136

8.2. System model

In [VR02], an atomic broadcast algorithm that is specifically targeted
towards high latency networks is presented. The authors also evaluate the
performance of the algorithm in a local area network with added artificial
delays (to simulate the high latency links). The artificial delay is however
not sufficient to adequately represent the network links of a wide area net-
work. Indeed, such links are also characterized by a lower bandwidth than
local area network links. In our performance measurements, we show that
in some cases, the low bandwidth of the wide area links strongly limits the
performance of the algorithms that are considered.

Several other papers [USS03, UHSK04, CUBS02, SPMO02, GLPQ06] have
studied the performance of atomic broadcast algorithms that use failure
detectors or properties related to the spontaneous ordering of messages in
local area networks. These papers however, either study the performance
of the algorithms in a local area network or through simulation. None of
these evaluations adequately models the impact of the high latency links in
a wide area network on the performance trade-off between the number of
messages that are sent and the number of communication steps needed by
the agreement algorithm.

8.2 System model
We consider an asynchronous system of n processes p0, . . . , pn−1. The pro-
cesses communicate by message passing over reliable channels and at most
f processes may fail by crashing (i.e. we do not consider Byzantine faults).
A process that never crashes is said to be correct, otherwise it is faulty. The
system is augmented with unreliable failure detectors and is presented in
further detail in Chapter 3.

In the following paragraphs, we informally present reliable broadcast,
consensus and atomic broadcast (the formal definition of the three prob-
lems can be found in Section 3.2). Reliable broadcast and consensus are
building blocks for solving atomic broadcast in two of the atomic broad-
cast algorithms that we consider. In Sections 8.2.2 and 8.2.3, we shortly
present the algorithms that are evaluated later.

8.2.1 Reliable broadcast, consensus and atomic broad-
cast
In the reliable broadcast problem, defined by the primitives rbroadcast and
rdeliver, all processes need to agree on a common set of delivered mes-
sages. In this chapter, we consider the reliable broadcast algorithm pre-
sented in [CT96], which requires O(n2) messages and a single communica-
tion step to rbroadcast and rdeliver a message m.

137

Chapter 8. Atomic Broadcast in Wide Area Networks

Informally, in the consensus problem, defined by the two primitives pro-
pose and decide, a group of processes have to agree on a common decision.
In this chapter, we consider the two consensus algorithms that use the �S
failure detector [CT96] that were considered in the previous chapters (pre-
sented in Section 8.2.2).

In the atomic broadcast problem, defined by the two primitives abroad-
cast and adeliver, a set of processes have to agree on a common total order
delivery of a set of messages. It is a generalization of the reliable broad-
cast problem with an additional ordering constraint. In this chapter, we
consider the two atomic broadcast algorithms (Chandra and Toueg, and
TokenFD) that are shortly described in Section 8.2.3.

8.2.2 Two consensus algorithms

The first consensus algorithm, proposed by Chandra and Toueg [CT96] and
noted CT, is a centralized algorithm that requires 3 communication steps,
O(n) messages and 1 reliable broadcast for all processes to reach a deci-
sion in good runs (i.e. runs without any crashes or wrong suspicions). The
behavior of the CT algorithm is detailed in Appendix A.2.1.

The second consensus algorithm, proposed by Mostéfaoui and Ray-
nal [MR99] and noted MR, is a decentralized algorithm that requires 2 com-
munication steps and O(n2) messages1 for all processes to reach a decision
in good runs. The behavior of the MR consensus algorithm in good runs
and in a system with n = 3 processes is detailed in Appendix A.2.2.

On the choice of a coordinator: Both the CT and MR consensus algo-
rithms use a coordinator that proposes the value that is to be decided upon.
This coordinator can be any process in the system, as long as it can be deter-
ministically chosen by all processes (based only on information that is lo-
cally held by each process). In the analytical and experimental evaluations
of these algorithms, we examine how the choice of the first coordinator in-
fluences the performance of the algorithms. We also study the case where
the first coordinator changes between instance number k of consensus and
the next instance k + 1.

8.2.3 Two atomic broadcast algorithms

Chandra-Toueg atomic broadcast [CT96]: Figure 8.1(a) shows the commu-
nication pattern of Chandra and Toueg’s atomic broadcast algorithm. It
requires at least one reliable broadcast and a consensus execution for all
processes to abroadcast and adeliver messages.

1The MR consensus algorithm does not use reliable broadcast as a building block. In-
stead, reliable diffusion of the decision is ensured by an ad-hoc protocol using n2 messages.

138

8.2. System model

(1)
diffuse

(2)
wait

(3)
order

p0

p1

p2
time

abcast(m)

adel(m)

adel(m)

adel(m)
(CT or MR)
Consensus

(a) Chandra-Toueg

(1)
diffuse

(2)
wait

p0

p1

p2 adel(m)

abcast(m) adel(m)

adel(m)
time

(3)
order

(b) TokenFD

Figure 8.1: Communication pattern of the Chandra-Toueg and TokenFD
atomic broadcast algorithms in runs without failures or wrong suspicions.

Whenever a message m is abroadcast, it is reliably broadcast to all pro-
cesses (first communication step in good runs). The processes then execute
consensus on the messages that haven’t been adelivered yet (using the CT
or MR algorithm in our case). If m is in the decision of consensus, then m
is adelivered. The waiting period that is shown in Figure 8.1(a) happens if a
consensus execution is already in progress and therefore prevents m from
being proposed at once for a new consensus.

Token using an unreliable failure detector [ESU04a]: The token based
atomic broadcast algorithm (noted TokenFD) presented in Section 4.1 solves
atomic broadcast by using an unreliable failure detector noted R and by
passing a token among the processes in the system. It requires three com-
munication steps in a system with n = 3 processes and O(n) messages for
all processes to abroadcast and adeliver messages. In runs without failures
and suspicions, the TokenFD algorithm behaves as in Figure 8.1(b).

Whenever a message m is abroadcast, it is sent to all processes (first com-
munication step). Message m is then added to the token that circulates
among the processes (in Figure 8.1(b), the token circulates between p1 and
p2 in communication step 2). After the second communication step, m is
adelivered by the token-holder which sends an update to all other processes
about this delivery (third communication step). Again, the waiting period
that is depicted in Figure 8.1(b) only happens if the token is already being
sent on the network and therefore prevents m from being ordered immedi-
ately.

The two atomic broadcast and two consensus algorithms are represen-
tative of a large spectrum of failure detector based algorithms (that require
a system size of three processes to support one failure). Indeed, these algo-
rithms all have different communication patterns (centralized, decentral-
ized and token based) and require a varying number of communication
steps (between 2 and 4 steps for all processes) and messages (between O(n)
and O(n2)) to solve atomic broadcast.

139

Chapter 8. Atomic Broadcast in Wide Area Networks

8.3 Performance metrics and workloads

The following paragraphs describe the benchmarks (i.e., the performance
metrics and the workloads) that were used to evaluate the performance
of the three atomic broadcast algorithms (reduction to CT consensus; re-
duction to MR consensus; TokenFD algorithm). The benchmarks in [Urb03,
USS03, ESU04a] and in the previous chapters are similar to the ones we use
here.

8.3.1 Performance metric – latency vs. throughput:

The performance metric that was used to evaluate the algorithms is the
latency of atomic broadcast. For a single atomic broadcast, the latency L
is defined as follows. Let ta be the time at which the abroadcast(m) event
occurred and let ti be the time at which adeliver(m) occurred on process pi,

with i ∈ 0, . . . , n− 1. The latency L is then defined as L
def
= (1

n ∑n−1
i=0 ti)− ta.

In our performance evaluation, the mean for L is computed over many
messages and for several executions. 95% confidence intervals are shown
for all the results.

8.3.2 Workloads:

The latency L is measured for a certain workload, which specifies how the
abroadcast events are generated. We chose a simple symmetric workload
where all processes send atomic broadcast messages (without any payload)
at the same constant rate and the abroadcast events follow a Poisson distri-
bution. The global rate of atomic broadcasts is called the throughput T. We
then evaluate the dependency between the latency L and the throughput
T.

Furthermore, we only consider the system in a stationary state, when
the rate of abroadcast messages is equal to the rate of adelivered messages.
This state can only be reached if the throughput is below some maximum
threshold Tmax. Beyond Tmax, some processes are left behind. We ensure
that the system stays in a stationary state by verifying that the latencies of
all processes stabilize over time.

Finally, we only evaluate the performance of the algorithms in good
runs, i.e., without any process failures or wrong suspicions. The latency
of the algorithms is measured once the system has reached a stationary
state (at a sufficiently long time after the start up). The parameters that
influence the latency are n (the number of processes), the algorithm (To-
kenFD, Chandra-Toueg atomic broadcast with CT or MR consensus) and
the throughput.

140

8.4. Modeling the performance of the algorithms

We specifically focus on the case of a system with three processes, sup-
porting one failure. This system size might seem small. However, atomic
broadcast provides strong consistency guarantees (that can be used to im-
plement active replication for example [Sch93a]) and is limited to relatively
small degrees of replication. If a large degree of replication is needed, then
alternatives that provide weaker consistency should be considered [AM98].

8.4 Modeling the performance of the
algorithms
This section discusses the analytical performance evaluation of the two
atomic broadcast (and consensus) algorithms in a wide area network. We
start by describing the different phases that are common to both atomic
broadcast algorithms and then present the two wide area network models
that are considered. For the sake of clarity, we only present a partial deriva-
tion of the average latency of the Chandra-Toueg algorithm in the simplest
wide area network model that we consider. The average latencies of the
algorithms in all other settings can be found in Appendices B.1 and B.2.
Finally, the predictions of the model are shown alongside the experimental
evaluation of the algorithms in Section 8.5.

8.4.1 The three phases of atomic broadcast.
Both atomic broadcast algorithms work in three phases, as previously il-
lustrated in Figure 8.1: upon abroadcasting a message m, (1) m is sent to all
processes and (2) waits to be ordered. Its order is then decided (3), using
consensus or directly within the TokenFD atomic broadcast algorithm, and
m is adelivered. The cost of the different phases (and thus the average la-
tency) is of course directly related to the atomic broadcast and consensus
algorithms that are used. Furthermore, in all three algorithms, one of the
processes, say pj, has a privileged role: in the CT and MR algorithms it is
the coordinator and in the TokenFD algorithm, it is the token holder. The
choice of pj determines the cost of the three phases presented above.

In phase (1), a message m is broadcast by a process pi to all processes,
and in particular to the privileged process pj, who’s in charge of ordering
m. The cost of this transmission from pi to pj is noted CostSendi,j. The cost
of the waiting phase (2) depends on the duration of ordering phase (3),
since unordered messages cannot be ordered until the end of the currently
running consensus instance (CT and MR) or token circulation (TokenFD).
The cost of the waiting phase for a message m sent from pi to the privileged
process pj is noted CostWaiti,j. Finally, the cost of the ordering phase (3) is

141

Chapter 8. Atomic Broadcast in Wide Area Networks

1

0

2

d0
d2 d1

(a) Sending a message between location i and i + 1 takes
di time units.

0

2

distant
location

1

local location

D

(b) Sending a message between the local and the distant
location takes D time units.

Figure 8.2: Theoretical model of a wide area network with three locations
(8.2(a)) or two locations (8.2(b)). The processing times of messages are con-

sidered negligible.

only determined by the choice of the privileged process pj and is noted
CostOrderj. The average latency for pi abroadcasting a message m with pj as
privileged process is thus:

CostSendi,j + CostWaiti,j + CostOrderj

Moreover, all messages sent by a process pi are not necessarily ordered
by the same process pj. We define OrderedByi,j to represent the fraction
of all messages in the system that are abroadcast by pi and ordered by the
privileged process pj (and we have ∑i ∑j OrderedByi,j = 1). Thus, by taking
into account all sending processes pi in the system, we have the average
cost of abroadcasting a message m:

∑
i

∑
j
(CostSendi,j + CostWaiti,j + CostOrderj) OrderedByi,j

8.4.2 Wide-area network with three locations.
Figure 8.2(a) presents the model of a wide area network system with three
processes on three different locations. The network latency between loca-
tion i and location i + 1 is noted di. Without loss of generality, we assume
that d0 ≥ d1 ≥ d2. The model is simplified, in the sense that the processing
costs of the messages are considered negligible. This assumption is rea-
sonable if the latencies di between locations are much larger than the pro-
cessing times of the messages on the critical path of the atomic broadcast

142

8.4. Modeling the performance of the algorithms

algorithms (which is reasonable in a wide area network, but does not hold
in a local area network). Furthermore, the model does not take other fac-
tors into account, such as the bandwidth of the links or message loss. The
analytical expression of the average latency of the three atomic broadcast
algorithms in this model can be found in Appendix B.1.

The performance of the algorithms in this model depends heavily on
the relationship between the values d0, d1 and d2. The analytical compar-
ison between TokenFD, MR and CT with shifting coordinators when d0, d1
and d2 can take any value is complex and omitted here. In the experimental
evaluation of the algorithm, where the values of d0, d1 and d2 are known,
the modeled performance is easily calculated and is presented alongside
the experimental results.

8.4.3 Wide-area network with two locations.

The algorithms that are evaluated require a system with at least three pro-
cesses to tolerate one failure. These three processes can be distributed on
up to three different locations. The situation where three locations are used
is modeled above and the case where all three processes are on a single lo-
cation is outside the scope of this chapter, since a wide area network is no
longer necessary. The second case, where the processes are on two locations,
is however interesting: this setup limits the damage due to a catastrophic
event at one of the locations and offers the possibility of serving clients
from two separate locations (thus reducing the response latency in some
circumstances). The model of the two-location system is presented in the
following paragraphs.

Figure 8.2(b) presents the model of a system with three processes, one
of which is on a distant location. The network latency between the distant
location and the local location is noted D. The two-location model is a special
case of the previous model, with d0 = d1 = D and d2 = 0.

We now model the performance of the Chandra-Toueg atomic broad-
cast algorithm (with CT or MR consensus) in the case of a fixed initial coor-
dinator p1 on the distant location, summarized in Table 8.1. The other cases
are presented in Appendix B.2.

The cost of the message diffusion phase (1) is the following: the coor-
dinator (on the distant location) receives messages from the two processes
on the local location (both with a cost of CostSend0,1 = CostSend2,1 = D)
and from itself (with a negligible cost). The average cost for diffusing the
message to the distant initial coordinator is thus 2D

3 .
The waiting phase (2) takes the following amount of time: in the CT

and MR consensus algorithms, the coordinator decides after 2 communi-
cation steps and atomic broadcast immediately starts a new consensus (if
unordered messages are waiting). The cost of these two communication

143

Chapter 8. Atomic Broadcast in Wide Area Networks

Table 8.1: Average latency to adeliver a message in the two-location wide
area network model, using Chandra-Toueg’s atomic broadcast algorithm
with CT or MR’s consensus algorithm and a consensus coordinator on the

distant location.

Consensus alg.:
(1) diffusion:
(2) waiting:
(3) ordering:
Average latency:

CT MR
2D
3

2D
3

D D
8D
3

4D
3

13D
3 3D

steps is equal to 2D time units (i.e. one round-trip between the distant and
local locations) and the messages thus wait on average CostWait∗,1 = D
time units to be proposed in a consensus (since messages are abroadcast fol-
lowing a Poisson process).

Finally, the cost of the CT consensus phase (3) is the following. The
coordinator can decide after two communication steps and all other pro-
cesses after three steps. The coordinator p1 thus decides after 2D time units,
whereas the processes on both local locations decide one communication
step later (thus after a total of 3D time units). The average decision duration
of phase (3) when the CT algorithm is used is therefore CostOrder1 = 8D

3 .
The cost of the consensus phase (3) using the MR algorithm is similar.

However, with MR, both local locations decide as soon as they receive the
coordinator’s proposal and their own acknowledgment, after a total of D
time units (i.e. they decide before the coordinator). As in CT, the coordi-
nator decides as soon as it gets an acknowledgment from a local location,
after a total time of 2D. The average latency over all processes is therefore
CostOrder1 = 4D

3 .
After summing up these three phases, the Chandra-Toueg atomic broad-

cast algorithm using Chandra-Toueg’s consensus algorithm with a fixed
initial coordinator on the distant location adelivers a message on average
13D

3 time units after it was abroadcast. If the Mostéfaoui-Raynal consensus
algorithm is used instead, 3D time units are necessary on average to adeliver
an abroadcast message.

8.5 Experimental performance evaluation
In the following section, the experimental performance of the atomic broad-
cast algorithms presented in Section 8.2 are compared. First, we briefly
present the evaluation environments that were considered and then the
results that were obtained are presented, analyzed and compared to the

144

8.5. Experimental performance evaluation

1
0

2 12.5 ms
10.6 ms

17.2 ms
Nancy

(France, Grid’5000)

Bordeaux

Sophia

(a) WAN Three Locations

1
2

0
(Switzerland)
EPFL JAIST

(Japan)

1.74 Mb/s

295 ms

(b) WAN 295

1
2

0
Rennes Grenoble

32.8 Mb/s

20.1 ms

(France, Grid’5000)

(c) WAN 20.1

1
2

0 152 Mb/s
Toulouse Bordeaux

3.9 ms

(France, Grid’5000)

(d) WAN 3.9

Figure 8.3: Wide area network evaluation environments in decreasing or-
der of round trip times.

analytical evaluation of Section 8.4. The algorithms presented in this chap-
ter are all implemented in Java, using the Neko framework [UDS02]. The
various algorithms are implemented as micro-protocols and composed to
form the final protocol stack. Every process in the system runs one of these
Neko protocol stacks. Furthermore, all processes are connected pair-wise
through TCP channels.

8.5.1 Evaluation environments
Four wide area network environments were used to evaluate the perfor-
mance of the three atomic broadcast and consensus algorithms. Figure 8.3
shows a schematic representation of these four environments. All machines
run a Linux distribution (2.6.8 to 2.6.12 kernels) and a Sun Java 1.5.0 vir-
tual machine. The following paragraphs describe the different wide area
network environments in which the atomic broadcast algorithms are eval-
uated.

Three-location wide area network The first evaluation environment
(noted WAN Three Locations, Figure 8.3(a)) is a system with three loca-
tions on Grid’5000 [CCD+05], a French grid of interconnected clusters de-
signed for the experimental evaluation of distributed and grid computing
applications. The round-trip times of the links between the three processes
are respectively 2d0 = 17.2 ms, 2d1 = 12.5 ms and 2d2 = 10.6 ms. The
observed bandwidth of the three links are respectively 30.1 Mbits/s, 41.4
Mbits/s and 48.7 Mbits/s.

Two-location wide area networks Three environments were used to
evaluate the performance of atomic broadcast on wide area networks with
two different locations:
−WAN 295 (Figure 8.3(b)): The first two-location environment consists

145

Chapter 8. Atomic Broadcast in Wide Area Networks

of one location in Switzerland and one in Japan. The round-trip time be-
tween the locations is 2D = 295 ms and the bandwidth of the connecting
link is 1.74 Mb/s.
− WAN 20.1 and WAN 3.9 : The two following environments are sys-

tems with both locations on Grid’5000. The WAN 20.1 system (Figure 8.3(c))
features a round-trip time between locations of 2D = 20.1 ms and a link
bandwidth of 32.8 Mb/s. The WAN 3.9 system (Figure 8.3(d)) features a
round-trip time between locations of 2D = 3.9 ms and a link bandwidth of
152 Mb/s.

8.5.2 Validation of the model with the experimental results

We now discuss the validation of the model presented in Section 8.4 by the
experimental evaluation of the three atomic broadcast algorithms. As men-
tioned in Section 8.3, the performance graphs present the average latency
as a function of the throughput in the system. Furthermore, for the CT and
MR consensus algorithms, the results are given for an initial coordinator
that is fixed in one location or shifting with each new consensus execution.
The TokenFD algorithm has no concept of coordinator and its results are the
same for all three settings (they are repeated to give a point of comparison
with respect to CT and MR). As mentioned earlier, all processes abroadcast
messages at the same rate. The modeled performance of the algorithms is
shown on the far-left of each graph (noted “model”). In all performance
graphs, the horizontal axis represents the throughput (i.e. the global rate at
which messages are abroadcast) and the vertical axis represents the average
latency achieved for a given throughput.

In all experimental setups, the measurements confirm the estimations
of the three-location model (Figure 8.4) and in the two-location model (Fig-
ures 8.5 to 8.7), especially in the case of moderate throughputs. When
the throughput increases, the load on the processors and on the network
(which is not modeled) affects the latency of the algorithms (illustrated in
particular in Figures 8.5 and 8.6(c)), which increases the gap between the
model’s estimation and the actual measurements.

Furthermore, when the throughput is very low, as well as in the WAN 3.9
setting, the measured latencies of CT and MR are lower than what the
model predicts. Indeed, our analysis assumes a load in which messages
are abroadcast often enough that there is always a consensus execution in
progress. In the low throughput executions however, there is a pause be-
tween the consensus executions. An unordered message that is received
during this pause is immediately proposed in a new consensus execution
and thus, the waiting phase presented in Section 8.4 does not apply to that
message. Similarly, in the WAN 3.9 setting, the consensus executions termi-
nate fast enough that the waiting phase for many abroadcast messages only

146

8.5. Experimental performance evaluation

 15
 20
 25
 30
 35

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (init. coord. on loc. 1)
and TokenFD, n = 3, WAN Three Locations

model

CT (loc. 1)
MR (loc. 1)

TokenFD

(a) Init. coord. on location 1.

 15
 20
 25
 30
 35

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (shifting init. coord.)
and TokenFD, n = 3, WAN Three Locations

model

CT (shifting)
TokenFD

MR (shifting)

(b) Shifting init. coord.

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (init. coord. on loc. 2)
and TokenFD, n = 3, WAN Three Locations

model

CT (loc. 2)
TokenFD

MR (loc. 2)

(c) Init. coord. on location 2

Figure 8.4: Latency vs. throughput
of CT, MR and TokenFD in the WAN

Three Locations setting.

 250

 500

 750

 1000

 1250

 50 100 150 200 250 300
a

ve
ra

g
e

 la
te

n
c

y
[m

s]
throughput [1/s]

Latency of CT, MR (distant init. coord.)
and TokenFD n = 3, WAN 295 ms

model

CT (distant)
MR (distant)

TokenFD

(a) Distant init. coord.

 250

 500

 750

 1000

 1250

 50 100 150 200 250

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (shifting init. coord.)
and TokenFD, n = 3, WAN 295 ms

model

CT (shifting)
MR (shifting)

TokenFD

(b) Shifting init. coord.

 250

 500

 750

 1000

 50 100 150 200 250

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (local init. coord.)
and TokenFD, n = 3, WAN 295 ms

model

TokenFD
CT (local)

MR (local)

(c) Local init. coord.

Figure 8.5: Latency vs. through-
put of CT, MR and TokenFD in the

WAN 295 setting.

147

Chapter 8. Atomic Broadcast in Wide Area Networks

becomes a factor at higher throughputs, where the model is more accurate
(Figures 8.7(a) and 8.7(b)).

Finally, the point that was not predicted by the analytical model is the
result for high throughputs when the initial coordinator of CT and MR is
on a local location, illustrated by Figures 8.5(c) and 8.6(c). Indeed, in this
setting, the system never reaches a stationary state given a sufficiently high
throughput. The processes on the local location reach consensus decisions
very fast without needing any input from the distant location. The updates
that are then sent to the distant location saturate the link between both lo-
cations (its bandwidth is only 1.74 Mbits/s in WAN 295 and 32.8 Mbits/s in
WAN 20.1). The process on the distant location thus takes decisions slower
than the two local processes and prevents the average latency of atomic
broadcast from stabilizing. This problem does not affect the settings with a
distant or shifting initial coordinator, since the distant location periodically
acts as a consensus coordinator, providing a natural flow control. Setup is-
sues, such as the choice of the initial coordinator, thus affect the maximum
achievable throughput of the algorithms.

8.5.3 Comparing the performance of the three algorithms
The following section discusses the performance ranking of the three com-
binations of atomic broadcast and consensus algorithms.

WAN Three Locations The average latency of the three algorithms in the
WAN Three Locations environment is presented in Figure 8.4. TokenFD
and MR outperform CT for all locations of the initial coordinator and for all
throughputs, due to the additional communication step that is needed by
the CT algorithm. TokenFD and MR perform similarly when the initial MR
coordinator is on site 1 (which is the worst-case scenario for MR), whereas
MR achieves slightly better latencies than TokenFD for both other initial
coordinator locations.

Surprisingly enough, the result of using a shifting initial coordinator in
the CT and MR algorithms are opposite: in the case of MR, the latency is
lower using a shifting initial coordinator than a fixed initial coordinator on
any location, whereas in CT it is higher. The explanation is the following:
MR and CT both start a new consensus execution after two communication
steps if the coordinator is on a fixed location. If the coordinator shifts, a new
execution can start as soon as the next non-coordinator process decides.
This is done after one communication step in MR (if n = 3), but after three
steps in CT, as explained in Appendix A.2 and Section 8.4.3.

WAN 295, WAN 20.1 and WAN 3.9 The average latency of the three
atomic broadcast and consensus algorithms in the WAN 295, WAN 20.1

148

8.5. Experimental performance evaluation

 25

 50

 75

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (distant init. coord.)
and TokenFD n = 3, WAN 20.1 ms

model

CT (distant)
MR (distant)

TokenFD

(a) Distant coord.

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (shifting init. coord.)
and TokenFD, n = 3, WAN 20.1 ms

model

CT (shifting)
MR (shifting)

TokenFD

(b) Shifting init. coord.

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (local init. coord.)
and TokenFD, n = 3, WAN 20.1 ms

model

TokenFD
MR (local)
CT (local)

(c) Local coord.

Figure 8.6: Latency vs. through-
put of CT, MR and TokenFD in the

WAN 20.1 setting.

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500
a

ve
ra

g
e

 la
te

n
c

y
[m

s]
throughput [1/s]

Latency of CT, MR (distant init. coord.)
and TokenFD n = 3, WAN 3.9 ms

model

CT (distant)
MR (distant)

TokenFD

(a) Distant coord.

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (shifting init. coord.)
and TokenFD, n = 3, WAN 3.9 ms

model

CT (shifting)
TokenFD

MR (shifting)

(b) Shifting init. coord.

 0

 2

 4

 6

 8

 0 500 1000 1500 2000 2500

a
ve

ra
g

e
 la

te
n

c
y

[m
s]

throughput [1/s]

Latency of CT, MR (local init. coord.)
and TokenFD, n = 3, WAN 3.9 ms

model

TokenFD
MR (local)
CT (local)

(c) Local coord.

Figure 8.7: Latency vs. through-
put of CT, MR and TokenFD in the

WAN 3.9 setting.

149

Chapter 8. Atomic Broadcast in Wide Area Networks

and WAN 3.9 environments are presented in Figures 8.5 to 8.7. TokenFD has
lower latencies than CT and MR when they use a distant initial coordinator
(Figures 8.5(a), 8.6(a) and 8.7(a)), whereas the situation is reversed when the
coordinator is initially on a local location (Figures 8.5(c), 8.6(c) and 8.7(c)).
When the initial coordinator shifts at each new consensus execution, MR
and TokenFD have similar latencies while CT is slightly slower. Finally, as
mentioned earlier, the low bandwidth of the link between both locations
prevents MR and CT from reaching stable average latencies when the initial
coordinator is on the local locations and the throughput is high.

Communication steps versus number of messages: As expected, the
performance results presented above show that communication steps have
the largest impact on performance in wide area networks, whereas the number of
sent messages is a key to the performance in a local area network.The validity
of this statement however varies with the round-trip time of the network
that is considered. As the network latency decreases, the impact of the
additional messages that need to be sent and processed increases. In the
case of networks with 3.9 ms or even 20.1 ms round-trip times, this impact
is clearly observable.

However, for a given set of parameters, the algorithm with the best per-
formance is generally the same (whether we consider a wide area network
with a 3.9 ms round-trip time or one with a 295 ms round-trip time) and it
is correctly predicted by the model.

Finally, we also saw that choosing a CT and MR coordinator on the local
location (without implementing an additional flow control mechanism) is
not necessarily the best solution performance-wise, since the system can-
not reach a stationary state as the total throughput increases. Shifting the
initial coordinator between locations at each new consensus execution or
choosing the TokenFD algorithm results in a natural flow control which en-
ables the system to remain in a stationary state even for high throughputs
(at the expense of a higher average adelivery latency).

8.6 Discussion

The performance of failure detector based atomic broadcast and consensus
algorithms has been extensively studied in local area networks, but less so
in wide area networks.

In this chapter, we presented a simple analytical model of the perfor-
mance of three atomic broadcast and consensus algorithms using failure
detectors and with different communication patterns. We validated the
model with the experimental evaluation of the algorithms in several wide
area networks. The evaluation was performed in wide area networks with
round-trip times ranging from about 4 to 300 milliseconds to examine the

150

8.6. Discussion

impact on the trade-off between the number of sent messages and the num-
ber of communication steps that the algorithms need to adeliver a message.

This study confirms that the relative performance between the algo-
rithms is fundamentally different between a local area network and a wide
area network (even in wide area networks with small round-trip times): in
the former case, the number of sent messages (i.e. the number of messages
that need to be processed) largely determines the performance of the al-
gorithms, whereas the communication steps have the most impact in the
latter case.

Within wide area networks on the other hand, the performance ranking
of the three algorithms remains the same, despite the (two order of mag-
nitude) difference in the round-trip time between the smallest and largest
wide area networks. Furthermore, this ranking is correctly predicted by our
model. The study also showed that algorithms or parameters which pro-
vide a natural flow control (such as the TokenFD algorithm or the Chandra-
Toueg and Mostéfaoui-Raynal consensus algorithms with an initial coordi-
nator that shifts between locations at each new consensus) are effective in
reaching higher throughputs in wide area networks.

151

Chapter 8. Atomic Broadcast in Wide Area Networks

152

Chapter 9

On the scalability of atomic
broadcast algorithms

Several atomic broadcast [ESU04a] and consensus [CT96, MR99] algorithms
based on failure detectors have been published. The performance of these
algorithms is typically only evaluated in relatively small systems, and the
algorithms have been criticized for not scaling well as the number of pro-
cesses in the system increases. This scalability problem is due to different
factors for each of the considered algorithms. The algorithm in [MR99], for
example, is affected by the O(n2) messages that need to be transmitted and
processed to solve consensus. In the case of [CT96], a fan-in problem arises:
one process needs to receive and handle replies from all other processes
in order to solve consensus and thus becomes a bottleneck for the perfor-
mance of the system. Finally, in the algorithm described in Chapter 4 (and
in [ESU04a]), the number of communication steps needed to solve atomic
broadcast increases with the size of the system.

It is however desirable for the algorithms to scale beyond a small num-
ber of processes: let’s take the example of a distributed database on a wide
area network with a large number of sites in different geographical loca-
tions. The database is replicated across a subset of the sites using active
replication with atomic broadcast [Sch93a] and is accessed from all sites
on the wide area network. We distinguish between two types of database
queries: read-only queries that do not modify the database and can be exe-
cuted on any of the replicas locally (and thus do not need atomic broadcast),
and update queries that need to be disseminated to all replicas using atomic
broadcast. The response time of the database is determined by three fac-
tors: (1) the load on the replicas caused by the arrival of queries from the
clients, (2) the latency of the atomic broadcast algorithm which increases
with the rate of updates to the database and (3) the round-trip time be-
tween the client and the replica that handles its request.

If atomic broadcast does not scale beyond a small number of sites, the
system can be designed in two ways. Either (i) a small number of sites is

153

Chapter 9. Scalability of Atomic Broadcast

used for replication, in which case the performance of atomic broadcast is
acceptable (factor 2), but all database queries need to be handled by the
same small set of processes. The response time of the distributed database
is thus high because all the load is handled by the small set of replicas
(factor 1) and because many of the wide area network sites are not in the
proximity of one of the (few) replica sites (factor 3). If, on the other hand,
(ii) a large number of sites are used for the replication, then the load and
proximity problems described above are reduced (factors 1 and 3), since a
higher number of replicas handle the same number of client queries as be-
fore. However, the high latency of atomic broadcast increases the response
time of the distributed database to update queries.

The solution to the problem of the scalability of atomic broadcast (which
was informally mentioned in a footnote in Section 4.1.6.B on page 49) is to
let a group of kernel processes act as a sequencer: only the kernel processes
execute the agreement algorithm and the non-kernel processes are then in-
formed of the outcome of the agreement algorithm. Since the size of the
kernel is independent of the size of the system, the number of messages
exchanged by the agreement algorithm also becomes independent of the
system size. This in turn reduces the cost associated with adding processes
to the system.

This approach also has its trade-offs, as the fault tolerance of the entire
system is now limited by the fault tolerance of the kernel (but an arbitrary
number of non-kernel processes may fail). This trade-off is acceptable, as
the size of the kernel (and thus the fault-tolerance of the system) can be
tailored to suit the needs of the application and the user.

Surprisingly enough, the performance of this scalable solution to the
atomic broadcast problem has not been evaluated (and in particular in sys-
tems with a large number of processes). This evaluation is however im-
portant: first of all, it confirms that the proposed solution is indeed scal-
able. Secondly, it justifies limiting the evaluation of consensus and atomic
broadcast algorithms to relatively small systems, since in larger systems,
the agreement algorithm anyhow only needs to be executed on a subset of
all processes.

The results show that there are several factors that limit the scalability of
the considered algorithms, but that by limiting the ordering algorithm to a
kernel of processes, the algorithm indeed becomes scalable and its perfor-
mance degrades gracefully as the size of the system increases. Furthermore,
when the system is small, the latency of the scalable atomic broadcast algo-
rithm is close to the latency of the underlying atomic broadcast algorithm
it depends on.

Related work In [RGS98], the authors present a scalable atomic multi-
cast algorithm. The scope of their work is however different from ours,

154

Chapter 9. Scalability of Atomic Broadcast

since they focus on atomic multicast (i.e. a total order broadcast to a subset
of all processes in the system). Their primary concern is to avoid having to
broadcast a message to all processes in the system if only a subset of these
processes are part of the destination of the message. The algorithm pre-
sented in [RGS98] minimizes the number of sent messages for each atomic
multicast, but does so at the expense of the latency of delivery (6 commu-
nication steps are necessary to atomically deliver a message, where other
algorithms such as [CT96] need 4 steps).

In [Urb03], the author studies the scalability of the consensus algo-
rithms presented in [CT96] and [MR99]. However, the study is performed
in a simulated environment and assumes that the network is an exclusive
resource (i.e. two processes cannot send a message on the network at the
same time). As a consequence, the results presented in the study are not
representative of the performance of the algorithms in a real execution en-
vironment. Furthermore, no solution to the scalability problem is proposed
or studied in [Urb03].

Another study that specifically focuses on atomic broadcast in large
scale systems is carried out in [RFV96]. The authors propose an atomic
broadcast algorithm that is a hybrid between a token based and a fully de-
centralized approach (and that relies on an underlying group membership
service). Once again however, the evaluation of this algorithm is done by
simulation.

The Chubby distributed lock service [Bur06] implements some of the
techniques that are also used by the scalable atomic broadcast in this chap-
ter. Also, the kernel and non-kernel processes of the scalable atomic broad-
cast algorithm correspond to, respectively, acceptor and learner agents in the
Paxos consensus algorithm [Lam98].

Finally, in [BK02], the authors examine the performance of distributed
algorithms in a wide area network of 11 hosts. The goal of [BK02] is how-
ever not to study the scalability of the different algorithms, but to evalu-
ate the effect of network latency and network loss on their performance.
Moreover, the constraints on the message flow of the algorithms consid-
ered in [BK02] are not applicable to the algorithms that are studied in this
chapter.

Contributions A formal presentation of the scalable atomic broadcast al-
gorithm is given in this chapter, as well as a sketch of its correctness. We
also discuss under which conditions it is interesting to use the scalable
atomic broadcast algorithm instead of the underlying atomic broadcast al-
gorithm. The major contribution of this chapter is then the performance
evaluation of the scalable algorithm (applied to three underlying atomic
broadcast and consensus implementations), which shows that limiting the
agreement protocol to a kernel of processes is indeed a solution to the scal-

155

Chapter 9. Scalability of Atomic Broadcast

ability of atomic broadcast algorithms based on failure detectors.
The performance of the scalable atomic broadcast algorithm is evalu-

ated in two settings: (1) on a local area network and (2) on a wide area net-
work of seven interconnected clusters. The size of the system varies from 3
to 23 processes and two kernel sizes are considered: 3 processes (support-
ing a single failure) and 7 processes (supporting two or three failures, de-
pending on the underlying atomic broadcast algorithm). In both settings,
the performance of the scalable atomic broadcast algorithm is compared to
the original atomic broadcast algorithm.

The structure of the chapter is the following. In Section 9.1, we present
the system model, as well as the atomic broadcast and consensus algo-
rithms that are considered later. The scalable atomic broadcast algorithm is
presented in Section 9.2 with a discussion on its benefits as well as a sketch
of its proof and the optimizations that were applied. Section 9.3 starts by
detailing the setup of the performance evaluation experiments and the var-
ious parameters that affect the measurements. The results of the measure-
ments in the local and wide area networks are then presented and analyzed.
Finally, Section 9.4 concludes the chapter.

9.1 System model

9.1.1 System model, consensus and atomic broadcast

We consider an asynchronous system of n processes (taken from a set Π)
augmented with failure detectors (see Chapter 3 for additional details).
Among the n processes in Π, a subset of size k, called the kernel, execute
the agreement algorithm. If all processes execute the agreement algorithm,
then kernel = Π.

The processes communicate by message exchange over quasi-reliable
channels and at most f processes among the k kernel processes may fail by
crashing (i.e. no Byzantine faults). A process is correct if it never crashes
and faulty otherwise.

The three following agreement problems are further discussed in this
chapter and are therefore briefly presented here:

9.1.1.A Reliable multicast

Informally, in the reliable multicast problem, a set of processes need to
agree on a common set of delivered messages. Each message m has a tag
group(m) indicating the set of destination processes. The reliable multicast
problem is defined by two primitives rmulticast and rdeliver that satisfy the
three following properties [HT94]:

156

9.1. System model

Validity If a correct process rmulticasts a message m, then some correct pro-
cess in group(m) eventually delivers m or no process in that group is
correct.

Agreement If a correct process rdelivers a message m, then all correct pro-
cesses in group(m) eventually rdeliver m.

Uniform integrity For any message m, every process rdelivers m at most
once and only if p is in group(m) and m was previously rmulticast.

If the destination group group(m) is equal to Π for all messages m, then
Reliable multicast reduces to Reliable broadcast [HT94]. In this chapter,
we consider a reliable multicast algorithm similar to the reliable broadcast
algorithm presented in [CT96]: for each rmulticast message m, whenever a
process in group(m) receives m for the first time, it rdelivers m and sends m
to all processes in group(m). For a group group(m) of size ng, this algorithm
requires O(ng

2) messages and a single communication step to rdeliver a
message m.

Reliable multicast is introduced here since the system is divided into
two sets of processes: non-kernel and kernel processes. To reliably send
messages only to a subset of the system, reliable multicast is needed, rather
than reliable broadcast (which sends messages to all processes).

9.1.1.B Consensus

Informally, in the consensus problem, a group of processes have to reach
a common decision. The formal specification of the consensus problem is
presented in Section 3.2.1.

In this chapter, we consider two consensus algorithms that use the �S
failure detector: (1) the Chandra-Toueg algorithm presented in [CT96] (noted
CT) and (2) the Mostéfaoui-Raynal algorithm presented in [MR99] (noted
MR).

The CT consensus algorithm is a centralized algorithm that reaches a
decision using O(n) messages and one reliable broadcast. It requires 2 to 3
communication steps to reach a decision in runs without failures and with-
out wrong suspicions (good runs). A detailed description of the algorithm
is presented in Appendix A.2.1.

The MR consensus algorithm is a decentralized algorithm that requires
at least 2 communication steps and O(n2) messages for all processes to
reach a decision. The algorithm is described in detail in Appendix A.2.2.

9.1.1.C Atomic broadcast

In the atomic broadcast problem, a set of processes have to agree on a com-
mon order of delivery of a set of messages. It is a generalization of the

157

Chapter 9. Scalability of Atomic Broadcast

reliable broadcast problem with an additional ordering constraint. The for-
mal definition of atomic broadcast is presented in Section 3.2.3.

The scalable atomic broadcast algorithm uses an underlying atomic broad-
cast algorithm. Two such atomic broadcast algorithms are considered in
this chapter: the Chandra-Toueg atomic broadcast algorithm [CT96] (pre-
sented in detail in Appendix A.3.1) and the token based atomic broadcast
algorithm using an unreliable failure detector presented in Section 4 (noted
TokenFD).

9.2 Scalable atomic broadcast

9.2.1 Presentation of the algorithm

Algorithm 9.1: Scalable atomic broadcast algorithm (code of process p)

1: Initialisation:
2: kernel← a subset of Π
3: i← 1 {serial number for adeliver }
4: if p ∈ kernel then
5: originalAbcast← the underlying atomic broadcast implementation

6: procedure abroadcast(m) {To abroadcast a message m}
7: if p ∈ kernel then
8: originalAbcast.abroadcast(m) {Order message m}
9: else

10: send (m, abcast) to kernel {send abroadcast request to kernel}

11: when receive (m, abcast) {abroadcast request from non-kernel process}
12: originalAbcast.abroadcast(m)

13: when originalAbcast.adeliver(m) {only if p ∈ kernel}
14: if m is A-delivered for the first time by originalAbcast then
15: adeliver(m)
16: send (m, adeliver, i) to Π− kernel
17: i← i + 1

18: when receive (m, adeliver, i) {only if p ∈ Π− kernel}
19: adeliver(m)
20: i← i + 1

Algorithm 9.1 presents the code of the scalable atomic broadcast algo-
rithm. To simplify the presentation of the algorithm, optimization issues

158

9.2. Scalable atomic broadcast

kernel
non-

time
kernel

abroadcast(m)

adeliver(m)

adeliver(m)

adeliver(m)

adeliver(m)

adeliver(m)

original
atomic

protocol
broadcast

Figure 9.1: Execution of the scalable atomic broadcast algorithm: the ker-
nel processes act as a sequencer for all messages sent in the system

(some of which depend on the underlying atomic broadcast algorithm) are
discussed later in Section 9.2.4.

To abroadcast a message m, a kernel process calls the abroadcast primitive
of the underlying atomic broadcast algorithm (line 8), whereas a non-kernel
process sends an abroadcast request to all kernel processes (line 10).

Whenever a kernel process receives an abroadcast request from a non-
kernel process (line 11), it abroadcasts the message using the underlying
atomic broadcast implementation (line 12). Notice that this can lead to sev-
eral abroadcast invocations on the underlying atomic broadcast algorithm
for a single abroadcast request from a non-kernel process. This is discussed
in Section 9.2.4.A.

Whenever the underlying atomic broadcast implementation adelivers a
message m for the first time (which can only happen on the kernel pro-
cesses, lines 13 and 14), m is adelivered (line 15) and forwarded to all non-
kernel processes (line 16). Again, this can lead to several (duplicate) trans-
missions for a single adeliver. This is again discussed in Section 9.2.4.B.

Finally, whenever a non-kernel process receives adeliver information for
a message m from a kernel process (line 18), m is adelivered. The counter
i ensures that the order of adeliveries is respected and that no message is
adelivered twice.

The algorithm behaves similarly to sequencer algorithms, where mes-
sages that need to be ordered are sent to a sequencer that assigns a sequence
number to the messages. Here, instead of having a single sequencer pro-
cess, a group of processes (the kernel) acts as a sequencer. This is illustrated
in Figure 9.1: a non-kernel process p abroadcasts a message and sends it to
be sequenced by the kernel. The kernel processes execute the atomic broad-
cast algorithm and send its result to all non-kernel processes. Eventually,
all correct processes adeliver the message.

Finally, if the kernel contains all processes (i.e. all processes participate in
the agreement algorithm), Algorithm 9.1 reduces to the underlying atomic
broadcast algorithm.

159

Chapter 9. Scalability of Atomic Broadcast

9.2.2 Benefits and drawbacks of the scalable algorithm
Algorithm 9.1 transforms an atomic broadcast algorithm into a sequencer-
like algorithm that is well-suited for systems with a large number of pro-
cesses. In this section, we discuss the benefits on time and message com-
plexity of using the scalable algorithm instead of the underlying atomic
broadcast algorithm in large systems. Finally, we also present the draw-
backs of the scalable atomic broadcast on the resilience in large systems.

9.2.2.A Impact on message complexity

First of all, we examine the impact of the scalable atomic broadcast algo-
rithm on the message complexity, i.e. the number of messages exchanged
by the processes. We assume that the underlying atomic broadcast algo-
rithm exchanges cmsg(n) messages per atomic broadcast, where n is the size
of the system and cmsg a function of n. The Chandra-Toueg atomic broad-
cast algorithm (coupled with the CT consensus algorithm and the reliable
broadcast algorithm in [CT96]) needs cmsg(n) = 2n2 + 2n(= n2 + n + n +
n2) messages per atomic broadcast.

With Algorithm 9.1 (and the optimizations discussed in Section 9.2.4
below) and a kernel of k processes, cmsg(k) + (n− k) messages are needed
per atomic broadcast: cmsg(k) to order the message with the underlying
atomic broadcast implementation and (n− k) messages to notify the non-
kernel processes. The scalable atomic broadcast thus reduces the number
of messages that are needed from cmsg(n) to cmsg(k) + (n− k).

If n is large, the scalable atomic broadcast algorithm is interesting as
soon as the number of messages cmsg(n) needed by the underlying atomic
broadcast algorithm is superlinear in n. Indeed, assume that O(cmsg(n)) >
O(n). In this case, we have O(cmsg(k) + (n − k)) = O(n − k) = O(n) <
O(cmsg(n)) (since cmsg(k) is independent of n, we have O(cmsg(k)) = O(1)).
For example, in the case where the Chandra-Toueg atomic broadcast (cou-
pled with the reliable broadcast algorithm in [CT96] and CT or MR con-
sensus) is used as the underlying implementation, we have O(cmsg(n)) =
O(n2) and thus, the scalable atomic broadcast needs significantly less mes-
sages as the system size increases. In the case of the TokenFD algorithm, we
have O(cmsg(n)) = O(n) and the scalable algorithm does not significantly
reduce the number of sent messages as the system size increases.

9.2.2.B Impact on time complexity

We now examine how the scalable atomic affects the time complexity, i.e.
the number of communication steps needed to adeliver messages, as the size
of the system increases. We assume that the underlying atomic broadcast
algorithm needs at least ctime(n) communication steps for all processes to

160

9.2. Scalable atomic broadcast

adeliver a message, where n is the size of the system and ctime is a function
on n.

With Algorithm 9.1 and the optimizations from Section 9.2.4, the non-
kernel processes adeliver a message m one communication step after the
kernel process responsible of sending notifications adelivers m. This kernel
process is the coordinator in the case of CT or MR consensus (used by the
Chandra-Toueg atomic broadcast algorithm) or the token holder in the case
of TokenFD. In the case of the TokenFD and the CT algorithms, the non-
kernel processes adeliver a message m at the same time as the last kernel
processes and thus the scalable algorithm needs ctime(k) communication
steps to adeliver m. In the case of MR, all kernel processes adeliver a message
after three communication steps (reliable broadcast takes 1 step, consensus
2 steps). The non-kernel processes adeliver one communication step later,
i.e. after ctime(k) + 1 steps.

In the case of CT and MR, we have respectively ctime(n) = 3 and ctime(n) =
2, which are both independent of the system size. In the case of TokenFD
however, we have ctime(n) = 2 + f , with f · (f + 1) + 1 ≤ n, and thus
O(ctime(n)) = O(

√
n). In this case, the scalable atomic broadcast algorithm

allows messages to be delivered after a constant number of communication
steps, instead of a number of steps that increases with n.

9.2.2.C Impact on resilience

The resilience of Algorithm 9.1 is equal to the resilience of the underly-
ing atomic broadcast algorithm executed on the kernel processes. The re-
silience of the scalable algorithm in a system with n processes (among
which k are kernel processes) is thus lower than the resilience of the un-
derlying atomic broadcast algorithm if it is executed on all n processes.

At first hand, this seems to be a disadvantage of the scalable algorithm.
However, the scalable atomic broadcast algorithm allows a compromise be-
tween the performance and the resilience of a system. By tailoring the ker-
nel size to match the fault tolerance requirements of the system, higher per-
formance is reached with Algorithm 9.1 than with the underlying atomic
broadcast algorithm (which has a resilience that is higher than the require-
ments of the system). If the kernel includes all processes, then the scalable
atomic broadcast reduces to the underlying atomic broadcast implementa-
tion and (almost) no performance penalty is incurred.

9.2.3 Proof of correctness

The following paragraphs present the proof of correctness of the scalable
atomic broadcast algorithm. We assume that k processes are in the kernel
(k ≤ n). The proof of Uniform integrity is easy and not shown here.

161

Chapter 9. Scalability of Atomic Broadcast

Validity. If a correct process p abroadcasts m, it either (1) abroadcasts m us-
ing the underlying atomic broadcast algorithm (kernel process, line 8) or
(2) sends an abroadcast request to the kernel (non-kernel process, line 10).
From the properties of quasi-reliable channels and lines 11 and 12, case (2)
reduces to case (1). From the Validity property of the underlying atomic
broadcast algorithm, all correct processes in the kernel eventually adeliver
m (line 13) and send a message to the non-kernel processes indicating that
m was adelivered. Since at least one kernel process is correct, all correct
non-kernel processes eventually receive the message (line 18) and adeliver
m (line 19). Process p thus eventually adelivers m.

Uniform agreement. If a process p adelivers m, it either (1) does so at line 15
(if it’s a kernel process) or (2) at line 19 (if it’s a non-kernel process). Case
(2) reduces to case (1): if p adelivers m, it has received (m, adeliver, i) from
a kernel process. From the Uniform agreement property of the underlying
atomic broadcast algorithm, all correct kernel processes eventually adeliver
m (line 15). Finally, from the properties of quasi-reliable channels, all cor-
rect non-kernel processes eventually receive the update concerning m and
adeliver m.

Uniform total order. Assume for contradiction that process p adelivers m be-
fore m′ whereas process q adelivers m′ before m. If p and q are both kernel
processes, this leads to a contradiction, following the Uniform total order of
the underlying atomic broadcast algorithm. If p is a kernel process and q a
non-kernel process, then p sent (m, adeliver, i) and (m′, adeliver, i′) with
i < i′. On the other hand, q received (m, adeliver, i) and (m′, adeliver, i′)
with i > i′ (and the messages were sent by a kernel process). From the
Uniform total order of the underlying atomic broadcast algorithm, this leads
to a contradiction, since all kernel processes adeliver the messages in the
same order (and send the updates with the same values of the counter i).
The reasoning also applies to the case where p and q are both non-kernel
processes.

9.2.4 Optimizations

Algorithm 9.1 presented a scalable atomic broadcast algorithm that can be
combined with any underlying atomic broadcast algorithm. Consequently,
the scalable algorithm contains some inefficiencies that can be avoided by
knowing which underlying atomic broadcast implementation is used. The
three main optimizations that were applied to the scalable algorithm are
now described.

162

9.2. Scalable atomic broadcast

9.2.4.A Avoiding unnecessary abroadcasts

In Algorithm 9.1, each time a non-kernel process abroadcasts a message, it
sends a request to all kernel processes. These kernel processes then invoke
the abroadcast primitive of the underlying atomic broadcast implementa-
tion. If k processes are part of the kernel, this results in k− 1 unnecessary
invocations of abroadcast. This impacts the performance of the algorithm,
since these k− 1 additional messages need to be handled, ordered and de-
livered (and finally discarded).

The number of unnecessary abroadcasts can be limited by taking advan-
tage of the underlying atomic broadcast implementation. For example, in
the Chandra-Toueg atomic broadcast algorithm, whenever a message is
abroadcast, it is first reliably broadcast to all group members. Following
Algorithm 9.1, a non-kernel process that abroadcasts a message m would
thus first send a request containing m to the kernel processes, which would
then (k times) reliably broadcast m to all kernel processes in the underlying
Chandra-Toueg algorithm. To avoid the k− 1 unnecessary reliable broad-
casts, the non-kernel process could, upon abroadcasting m, instead directly
reliably broadcast message m to all kernel processes (instead of sending the
request message that results in k reliable broadcasts). This optimization en-
sures that the cost of each abroadcast message remains the same as the cost
of a single abroadcast invocation of the underlying atomic broadcast imple-
mentation.

When the TokenFD algorithm is used as the underlying atomic broad-
cast and if a non-kernel process abroadcasts a message m, it simply needs to
send m to all kernel processes (as opposed to reliably broadcasting m, if the
Chandra-Toueg atomic broadcast algorithm is used).

9.2.4.B Avoiding redundant adeliver notifications

In Algorithm 9.1, all k kernel processes send adeliver notifications to the
n− k non-kernel processes (line 16). Out of these k · (n− k) notifications,
(k − 1) · (n− k) are redundant. The optimization consists in letting a sin-
gle kernel process send the adeliver notification, instead of all k kernel pro-
cesses. For example, if the Chandra-Toueg algorithm with CT consensus
is used as the underlying atomic broadcast implementation, then the first
kernel process to adeliver a message m is the coordinator of the consensus
execution where m’s order was decided. To minimize the time between a
consensus decision and its dissemination to non-kernel processes, only the
coordinator process sends the message containing the consensus decision
to all non-kernel processes.

In the TokenFD algorithm, the token-holder that adelivers a message for
the first time is responsible for notifying the non-kernel processes, whereas
the CT or MR consensus coordinator takes this role if the Chandra-Toueg

163

Chapter 9. Scalability of Atomic Broadcast

algorithm is the underlying atomic broadcast implementation.
This solution can lead to lost or duplicate decision messages in runs

with failures or suspicions. Duplicate decision messages are discarded
based on their identifier. A simple retransmission mechanism solves the
problem of lost messages: if a non-kernel process detects that it has missed
an adeliver notification, it sends a retransmission request to the kernel pro-
cesses. All correct kernel processes then reply by sending the missing noti-
fication.

9.2.4.C Sending notifications in batches

In the scalable atomic broadcast algorithm presented above, whenever a
message is adelivered, it is sent to all non-kernel processes (lines 13 to 17,
Algorithm 9.1). Thus, even if the underlying atomic broadcast algorithm
orders messages in batches, the delivery notifications for these messages
are all sent individually to the non-kernel processes. These notifications can
easily be sent as a single batch if we know the underlying atomic broadcast
implementation, as was the case for avoiding unnecessary abroadcasts in
Section 9.2.4.A above.

This optimization applies to both the Chandra-Toueg and the TokenFD
atomic broadcast algorithm, as both algorithms order messages in batches.

9.3 Performance evaluation

9.3.1 Performance metrics, workload and the implemen-
tation framework
The following paragraphs describe the benchmarks (i.e. the performance
metrics and the workloads) that were used to evaluate the performance of
the scalable atomic broadcast algorithm. Similar benchmarks have been
presented in Chapters 7 and 8, as well as in [Urb03, USS03, ESU04a]. The
framework in which the algorithm was implemented is detailed at the end
of this section.

9.3.1.A Performance metric: latency vs. throughput

The performance metric that was used to evaluate the algorithms is the
latency of atomic broadcast. For a single atomic broadcast, the latency L
is defined as follows. Let ta be the time at which the abroadcast(m) event
occurred and let ti be the time at which adeliver(m) occurred on process pi,

with i ∈ 0, . . . , n− 1. The latency L is then defined as L
def
= (1

n ∑n−1
i=0 ti)− ta.

In our performance evaluation, the mean for L is computed over many

164

9.3. Performance evaluation

messages and for several executions. 95% confidence intervals are shown
for all the results.

As we already discussed in Section 7.2.1 on page 115, other metrics such
as the early latency could have been used. The early latency metric however
has a bias towards low adelivery times, which, in the scalable atomic broad-
cast algorithm, always occur on kernel processes. The early latency metric
doesn’t take into account the cost of diffusing the results of the agreement
protocol among kernel processes to non-kernel processes and is therefore
not suitable here.

9.3.1.B Workloads

The latency L is measured for a certain workload, which specifies how the
abroadcast events are generated. We chose a simple symmetric workload
where all processes send atomic broadcast messages1 at the same constant
rate and the abroadcast events come from a Poisson stochastic process. The
global rate of atomic broadcasts is called the throughput T, which is ex-
pressed in messages per second (or msgs/s). We then evaluate the depen-
dency between the latency L and the throughput T.

Furthermore, we only consider the system in a stationary state, when
the rate of abroadcast messages is equal to the rate of adelivered messages.
This state can only be reached if the throughput is below some maximum
threshold Tmax. Beyond Tmax, some processes are left behind. We ensure
that the system stays in a stationary state by verifying that the latencies of
all processes stabilize over time.

Finally, we only evaluate the performance of the algorithms in good
runs, i.e. without any process failures or wrong suspicions. The latency of
the algorithms is measured once the system has reached a stationary state
(at a sufficiently long time after the startup). The parameters that influence
the latency are n (the number of processes), the algorithm (scalable or non-
scalable atomic broadcast), the throughput and, in the case of the scalable
algorithm, k (the number of kernel processes).

9.3.1.C Implementation framework and issues

The scalable atomic broadcast algorithm was implemented in Java, using
the Neko framework [UDS02]. In this framework, the various algorithms
are implemented as microprotocols. These microprotocols are then com-
posed together to form the final protocol stack. Every process in the sys-
tem runs one of these Neko protocol stacks. Furthermore, all processes are

1The atomic broadcast messages do not contain any payload, in order to reach the maxi-
mum possible performance when comparing the original and the scalable atomic broadcast
algorithms

165

Chapter 9. Scalability of Atomic Broadcast

connected pair-wise through TCP channels2

The atomic broadcast algorithms already implemented in Neko (that
have been used for the performance evaluations in the previous chapters
and in [USS03, UHSK04, CUBS02, Urb03]) were reused as the underlying
atomic broadcast algorithm for the scalable atomic broadcast algorithm.
Furthermore, the scalable atomic broadcast algorithm was implemented
with all the optimizations described in Section 9.2.4.

9.3.2 Evaluation environment
The following paragraphs present the details of the two experimental se-
tups that were used to evaluate the scalable atomic broadcast algorithm.
We started by measuring the performance of the algorithm on a local area
network of interconnected machines. Then, the same experiments were
repeated on a wide area network of interconnected clusters of machines to
evaluate if the scalability properties of the algorithm hold even if the kernel
processes are on different sites.

9.3.2.A Local Area Network

The first set of experiments were executed on the local area network cluster
previously presented in Chapter 7. Each node in the local area network
has a Pentium 4 processor, model number 630, at 3 GHz and with 2 MB
of L2 cache. The size of the main memory on each node is 1 GB and the
nodes are interconnected by a single Gigabit Ethernet switch. The round-
trip time between two nodes is approximately 0.1 ms. All nodes run a
SuSE Linux distribution (with a 2.6.11 kernel) and Sun’s Java 1.5.0_05 64-
bit Server Virtual Machine.

9.3.2.B Wide Area Network: Grid’5000

The second set of experiments were executed on Grid’5000, which was pre-
viously used in Chapter 8.

Grid’5000 is composed of 14 sites (in 9 geographical locations), among
which seven were used for our measurements: Bordeaux, Lyon-capricorne,
Nancy, Orsay, Rennes-parasol, Sophia and Toulouse. In order to examine
the influence of the round-trip times on the scalable atomic broadcast al-
gorithm, we chose to use 7 sites (in 7 different locations) to ensure that
all kernel processes would always be on separate sites. When more than

2We also tested the algorithms with a simple UDP and IP multicast implementation of
reliable channels. The results were however comparable to the TCP implementation (or
worse than TCP, for high throughputs without flow control), which suggests that in our
setup the main cost of sending a multicast message is its serialization and processing, rather
than the number of copies that are actually transited on the network hardware.

166

9.3. Performance evaluation

Bordeaux

Nancy

Lyon

6.8
8.3

17.8

5.7

Toulouse

11.6

Rennes
9.0

Orsay

Sophia

(a) Geographical locations of the sites

Bo
rd

ea
ux

Ly
on

N
an

cy

O
rs

ay

Ren
ne

s

So
ph

ia

Lyon 10.5
Nancy 12.6 10.6
Orsay 8.3 6.8 5.7

Rennes 8.0 12.6 13.3 9.0
Sophia 10.6 7.2 17.2 17.8 19.2

Toulouse 5.7 8.8 18.7 11.6 20.7 15.3
(b) Round trip times (ms) between sites

Figure 9.2: Geographical distribution of the sites in the Grid’5000 setup
with their round trip times to the Orsay site (9.2(a)) and the round trip

times between all sites (9.2(b))

seven processes participate in a given experiment, the additional processes
are distributed evenly among the seven sites.

The following paragraphs give some additional details on the hardware
on the different sites and the latencies between sites.

The hardware and software setup of the nodes on the different sites are
the following:

Bordeaux, Rennes-parasol, Toulouse Dual-processor nodes with AMD Op-
teron 248 processors at 2.2 GHz and with 1MB of L2 cache. All nodes
have 2GB of main memory and are interconnected by Gigabit Ether-
net. Sun’s Java 1.5.0_06 AMD64 Server Virtual Machine was installed
on the nodes.

Lyon-capricorne, Nancy, Orsay, Sophia Dual-processor nodes with AMD

167

Chapter 9. Scalability of Atomic Broadcast

Opteron 246 processors at 2 GHz and with 1MB of L2 cache. All nodes
have 2GB of main memory and are interconnected by Gigabit Ether-
net. Sun’s Java 1.5.0_06 AMD64 Server Virtual Machine was installed
on the nodes.

All hosts run a Debian Linux distribution (with a 2.6.8 or a 2.6.12 ker-
nel).

The coordinator process of the CT and MR consensus algorithms al-
ways runs on a host of the Orsay site. Figure 9.2(a) shows the geographical
distribution of the seven sites, as well as an estimate of the round-trip times
(in milliseconds) between all sites and the Orsay site. The TokenFD passes
the token among sites in the following order: Orsay – Bordeaux – Nancy –
Lyon – Toulouse – Sophia – Rennes. The (symmetrical) matrix of the round
trip times between sites is shown in Figure 9.2(b).

9.3.3 Results of the performance measurements
The following paragraphs present the results of the performance measure-
ments that were obtained using the two setups previously described.

9.3.3.A Local Area Network

The original algorithm: Figure 9.3 shows the latency versus the through-
put of the Chandra-Toueg (Figures 9.3(a) and 9.3(b)) and TokenFD (Fig-
ure 9.3(c)) atomic broadcast algorithms when all processes in the system
participate in the algorithms. The figure shows results for system sizes
ranging from 3 to 21 processes, supporting from 1 to 10 failures (CT and
MR) or 1 to 4 failures (TokenFD). The horizontal axis shows the load on the
system (in messages per seconds), whereas the average latency is shown
on the vertical axis (in milliseconds).

One clearly sees that as the number of processes increases, the original
atomic broadcast algorithms do not scale well. In the case of a small system
with 3 processes, the latency remains almost constant as the throughput in-
creases, for all three algorithms. In the largest system with 21 processes,
however, the latency increases extremely fast with the throughput, espe-
cially for the CT and MR algorithms, where O(n2) messages are needed to
solve atomic broadcast. Furthermore, the throughput in a system with 21
processes is limited to 300 and 400 messages per second for MR and CT
respectively. In the case of TokenFD, the scalability problem is less severe
(since only O(n) messages are sent by the algorithm) but the latency still in-
creases with the system size, since O(

√
n) communication steps are needed

to adeliver messages.
Finally, the difference between the CT and MR algorithms requiring

O(n2) messages and the TokenFD algorithm requiring O(n) messages is il-

168

9.3. Performance evaluation

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000 1250

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for
the CT algorithm (LAN).

n=21
n=17
n=13
n=9
n=7
n=3

(a) CT

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for
the MR algorithm (LAN).

n=21
n=17
n=13
n=9
n=7
n=3

(b) MR

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for
the TokenFD algorithm (LAN).

n=21
n=17
n=13
n=9
n=7
n=3

(c) TokenFD

Figure 9.3: Latency vs. through-
put of the Chandra-Toueg (with
CT or MR consensus) and To-
kenFD atomic broadcast algo-

rithms in a local area network

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 200 400 600 800 1000 1200 1400

la
te

n
c

y
[m

s]
throughput [1/s]

Latency of atomic broadcast for the three
algorithms. LAN, n = 7 processes.

MR
CT

TokenFD

(a) n = 7 processes

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 200 400 600 800 1000 1200 1400

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for the three
algorithms. LAN, n = 13 processes.

MR
CT

TokenFD

(b) n = 13 processes

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 200 400 600 800 1000 1200 1400

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for the three
algorithms. LAN, n = 21 processes.

MR
CT

TokenFD

(c) n = 21 processes

Figure 9.4: Latency vs. through-
put of the three atomic broadcast
algorithms for system sizes of 7,
13 and 21 processes in a local area

network.

169

Chapter 9. Scalability of Atomic Broadcast

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using CT (kernel: 3 processes).

n=21
n=17
n=13
n=9
n=7
n=5
n=3

(a) CT

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using MR (kernel: 3 processes).

n=21
n=17
n=13
n=9
n=7
n=5
n=3

(b) MR

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using TokenFD (kernel: 3 processes)

n=21
n=17
n=13
n=9
n=7
n=5
n=3

(c) TokenFD

Figure 9.5: Latency vs. through-
put of the scalable atomic broad-
cast algorithm with a kernel of
3 processes in the local area net-

work setup.

 0

 10

 20

 30

 40

 0 250 500 750 1000 1250

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using CT (kernel: 7 processes).

n=21
n=17
n=13
n=9
n=7

(a) CT (f = 3)

 0

 10

 20

 30

 40

 0 250 500 750 1000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using MR (kernel: 7 processes).

n=21
n=17
n=13
n=9
n=7

(b) MR (f = 3)

 0

 10

 20

 30

 40

 0 500 1000 1500 2000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using TokenFD (kernel: 7 processes)

n=21
n=17
n=13
n=9
n=7

(c) TokenFD (f = 2)

Figure 9.6: Latency vs. through-
put of the scalable atomic broad-
cast algorithm with a kernel of
7 processes in the local area net-

work setup.

170

9.3. Performance evaluation

lustrated by Figure 9.4. In the case of a small system of n = 7 processes
(Figure 9.4(a)), all three algorithms achieve relatively low latencies, even
as the throughput increases. On the other hand, when 21 processes form
the system, only TokenFD reaches throughputs larger than 400 msgs/s (Fig-
ure 9.4(c)).

The scalable algorithm: Figures 9.5 and 9.6 show the latency versus the
throughput of the scalable atomic broadcast algorithm which executes the
agreement algorithm only on the kernel, a subset of all processes. Two ker-
nel sizes, k = 3 (supporting 1 failure) and k = 7 (supporting 3 (CT, MR) or
2 (TokenFD) failures) were considered. This time, the dependency between
latency and throughput is similar for all system sizes. In the case of a ker-
nel of three processes (Figure 9.5), the latency only slightly increases with
the throughput, for all system sizes that were considered. For CT and MR,
there is a threshold (around 2000 msgs/s, Figures 9.5(a) and 9.5(b)) above
which the latency quickly degrades, especially for large systems. For the
TokenFD algorithm, this threshold was not met and is above 2500 messages
per second.

In the case of a kernel with seven processes (Figure 9.6), the perfor-
mance of the system is once again strongly correlated to the performance
of the underlying atomic broadcast algorithm running on the kernel (with
a slight overhead due to the diffusion of updates to the non-kernel pro-
cesses). Again, high throughputs (around 1100 msgs/s) are reached by the
scalable algorithm, whether CT, MR or TokenFD is used as the underlying
atomic broadcast algorithm.

The measurements with a kernel of 7 processes confirm the results ob-
served for a kernel of 3 processes. Indeed, the dependency between latency
and throughput is relatively similar for all system sizes and is mainly in-
fluenced by the size of the kernel (the results in Figure 9.6 are similar to the
case n = 7 in Figure 9.3).

Finally, Figure 9.7 shows the latency of atomic broadcast as a function
of the number of processes in the system, for two fixed throughputs and
for the three algorithms CT, MR and TokenFD. For CT and MR, two trends
are visible in this figure: on one hand, the latency of the original atomic
broadcast increases with the system size. This increase is linear when the
throughput is low as shown in Figures 9.7(a) and 9.7(c): the main influence
on the latency of atomic broadcast is the O(n) acknowledgments that need
to be received and processed (by the coordinator in the case of CT, by all
processes in the case of MR) before deciding. The increase is quadratic
when the throughput is higher as shown in Figures 9.7(b) and 9.7(d): the
O(n2) messages needed by reliable broadcast (and that have to be sent and
processed by the different processes) start to influence the latency of atomic
broadcast.

171

Chapter 9. Scalability of Atomic Broadcast

 0
 1
 2
 3
 4
 5
 6
 7
 8

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put = 10 1/s).
Original CT and Scalable algorithms.

Original CT
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(a) CT, 10 msgs/s

 0
 5

 10
 15
 20
 25
 30
 35

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put = 300 1/s).
Original CT and Scalable algorithms.

Original CT
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(b) CT, 300 msgs/s

 0

 2

 4

 6

 8

 10

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put = 10 1/s).
Original MR and Scalable algorithms.

Original MR
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(c) MR, 10 msgs/s

 0

 20

 40

 60

 80

 100

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put = 300 1/s).
Original MR and Scalable algorithms.

Original MR
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(d) MR, 300 msgs/s

 0

 2

 4

 6

 8

 10

 12

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put = 10 1/s).
Original TokenFD and Scalable algorithms.

Original TokenFD
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(e) TokenFD, 10 msgs/s

 0

 2

 4

 6

 8

 10

 12

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put = 300 1/s).
Original TokenFD and Scalable algorithms.

Original TokenFD
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(f) TokenFD, 300 msgs/s

Figure 9.7: Latency vs. system size of the original and scalable atomic
broadcast algorithms, for two different throughputs on the local area net-

work.

172

9.3. Performance evaluation

The second trend in Figure 9.7 is the slow increase of the latency of
the scalable atomic broadcast algorithm as the system size increases. The
figure clearly shows that the latency of the scalable algorithm is mainly in-
fluenced by the kernel size; the additional processes only moderately affect
its performance.

These results strongly confirm the intuition behind the scalable atomic
broadcast algorithm: if only a fixed subset of the entire system executes the
agreement algorithm, then the local area network system can grow in the
number of processes with a limited impact on the performance of atomic
broadcast.

9.3.3.B Wide Area Network: Grid’5000

In the previous paragraphs, we showed that the scalable atomic broadcast
algorithm has interesting performance characteristics as the size of a local
area network system increases.

The second phase of the experimental validation of the algorithm con-
sists in measuring its performance on a wide area network. The intent
of this second validation is to examine how the performance of the scal-
able atomic broadcast algorithm is affected if the kernel processes need
to communicate through channels with higher latencies. As explained in
Section 9.3.2.B, the processes are distributed on 7 different sites and conse-
quently, we set up the system so that kernel processes are always on differ-
ent sites (for both kernel sizes k = 3 and k = 7). The n− k other processes
are evenly distributed among the 7 sites.

The original algorithm: Figure 9.8 shows the latency versus the through-
put of the three atomic broadcast algorithms running on all processes, on
the Grid’5000 wide area network. The figure shows results for system sizes
ranging from three to 23 processes, supporting from 1 to 11 failures (CT
and MR) or 1 to 4 failures (TokenFD).

For a given system size and a given algorithm, the latency of atomic
broadcast remains relatively stable until a threshold is reached. Above that
threshold, the latency quickly increases. This is especially the case for the
smaller systems (n = 3 to n = 15). Again, in a wide area network, the
atomic broadcast algorithms do not scale well as the number of processes
in the system and the throughput increase.

In the wide area network however, the additional communication steps
(which are costly) needed by the TokenFD algorithm as the system size
increases strongly affect the performance of the algorithm. Figure 9.8(c)
shows that if a single failure is supported (n = 3), then the maximum
throughput of the algorithm is above 3250 msgs/s. This threshold drops
to approximately 2000 msgs/s if two failures are supported (n = 7 and 11)
and does not exceed 500 msgs/s when four failures are supported (n = 23).

173

Chapter 9. Scalability of Atomic Broadcast

 0
 20
 40
 60
 80

 100
 120
 140

 0 1000 2000 3000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for
the CT algorithm (WAN).

n=23
n=19
n=15
n=11
n=7
n=3

(a) CT

 0
 20
 40
 60
 80

 100
 120
 140

 0 1000 2000 3000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for
the MR algorithm (WAN).

n=23
n=19
n=15
n=11
n=7
n=3

(b) MR

 0

 50

 100

 150

 200

 1000 2000 3000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for
the TokenFD algorithm (WAN).

n=23
n=19
n=15
n=11

n=7
n=3

(c) TokenFD

Figure 9.8: Latency vs. through-
put of the Chandra-Toueg (with
CT and MR consensus) and To-
kenFD atomic broadcast algo-
rithms in the Grid’5000 wide area

network setup.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 500 1000 1500 2000 2500 3000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for the three
algorithms. WAN, n = 3 processes.

TokenFD
CT

MR

(a) n = 3 processes

 0
 20
 40
 60
 80

 100
 120
 140

 200 400 600 800 1000 1200 1400

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for the three
algorithms. WAN, n = 15 processes.

TokenFD
MR
CT

(b) n = 15 processes

 0

 50

 100

 150

 200

 250

 300

 200 300 400 500 600 700 800 900

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast for the three
algorithms. WAN, n = 23 processes.

TokenFD
MR
CT

(c) n = 23 processes

Figure 9.9: Latency vs. through-
put of the three atomic broad-
cast algorithms for system sizes
of 3, 15 and 23 processes in the

Grid’5000 wide area network.

174

9.3. Performance evaluation

Each additional supported failure requires an additional communication
step to adeliver a message. On average, such a communication step takes
around 12 ms with the token circulation path that we consider.

Finally, Figure 9.9 compares the impact of the system size on the three
algorithms. When n = 3 (Figure 9.9(a)), the three algorithms have simi-
lar latencies (with a slight advantage for MR, that needs less communica-
tion steps) and TokenFD reaches higher throughputs than both other algo-
rithms. The increase of the system size (Figures 9.9(b) and 9.9(c)) has the
strongest negative effect on the latency of the TokenFD algorithm (due to the
additional expensive communication steps). The MR algorithm still has a
slightly lower latency than CT for low throughputs but cannot sustain as
high throughputs as CT (since it sends more messages than CT).

The scalable algorithm: Figures 9.10 and 9.11 show the latency as a
function of the throughput of the scalable atomic broadcast algorithm in
the Grid’5000 wide area network setting. Two kernel sizes, k = 3 and
k = 7, supporting respectively 1 and 3 (CT, MR) or 2 (TokenFD) failures, are
considered. This time, the dependency between latency and throughput is
similar for all system sizes: the latency is almost constant for all through-
puts, both for a kernel size of 3 and 7. The latency of the scalable atomic
broadcast algorithm is once again (as in the case of the local area network
system) strongly correlated to the latency of the underlying atomic broad-
cast on the kernel processes and is hardly influenced by the total number
of processes in the system (as long as the highest throughputs are not con-
sidered).

Finally, Figure 9.12 shows the latency of atomic broadcast as a function
of the number of processes in the system, for two fixed throughputs and
all three atomic broadcast algorithms. For the CT and MR algorithms, in
the case of a small throughput (Figures 9.12(a) and 9.12(c)), the original
and scalable atomic broadcast algorithms achieve similar results. The rea-
son is the following: the consensus coordinator in CT and all processes in
MR need to wait for � n+1

2 � acknowledgments in each execution to decide.
Since all 7 sites have different round-trip times pair-wise and that the pro-
cesses are evenly distributed among the sites, the processes receive the last
needed ack from the site with the median round-trip time. Thus, whether
7 or 21 processes (3 processes on each of the 7 locations) participate in the
algorithm, the process needs to wait a similar amount of time before hav-
ing collected enough acknowledgments to decide (the processing time of
the acknowledgments is negligible compared to the transmission times on
the network). It is interesting to notice that for the scalable algorithm using
CT with a kernel of size 3, the latency is slightly smaller than if a kernel of
7 processes is used. This is simply due to the fact that the median round-
trip time among the 3 kernel processes (on Orsay, Bordeaux and Nancy)

175

Chapter 9. Scalability of Atomic Broadcast

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using CT (kernel: 3 processes).

n=23
n=19
n=15
n=11
n=7
n=3

(a) CT

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using MR (kernel: 3 processes).

n=23
n=19
n=15
n=11
n=7
n=3

(b) MR

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using TokenFD (kernel: 3 processes)

n=23
n=19
n=15
n=11
n=7
n=3

(c) TokenFD

Figure 9.10: Latency vs. through-
put of the scalable atomic broad-
cast algorithm with a kernel of 3
processes in the Grid’5000 wide

area network setup.

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using CT (kernel: 7 processes).

n=23
n=19
n=15
n=11
n=7

(a) CT

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using MR (kernel: 7 processes).

n=23
n=19
n=15
n=11
n=7

(b) MR

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

la
te

n
c

y
[m

s]

throughput [1/s]

Latency of atomic broadcast. Scalable
algorithm using TokenFD (kernel: 7 processes

n=23
n=19
n=15
n=11
n=7

(c) TokenFD

Figure 9.11: Latency vs. through-
put of the scalable atomic broad-
cast algorithm with a kernel of 7
processes in the Grid’5000 wide

area network setup.

176

9.3. Performance evaluation

 10

 15

 20

 25

 30

 35

 40

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put: 250 1/s).
Original CT and Scalable algorithms.

Original CT
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(a) CT, 250 msgs/s

 0
 20
 40
 60
 80

 100
 120
 140

 3 5 7 9 11 13 15 17 19 21 23
la

te
n

c
y

[m
s]

system size (processes)

Latency of atomic b’cast (t’put: 1000 1/s).
Original CT and Scalable algorithms.

Original CT
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(b) CT, 1000 msgs/s

 10

 15

 20

 25

 30

 35

 40

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put: 250 1/s).
Original MR and Scalable algorithms.

Original MR
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(c) MR, 250 msgs/s

 0
 20
 40
 60
 80

 100
 120
 140

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put: 1000 1/s).
Original MR and Scalable algorithms.

Original MR
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(d) MR, 1000 msgs/s

 0
 20
 40
 60
 80

 100
 120
 140

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put: 250 1/s).
Original TokenFD and Scalable algorithms.

Original TokenFD
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(e) TokenFD, 250 msgs/s

 0
 20
 40
 60
 80

 100
 120
 140

 3 5 7 9 11 13 15 17 19 21 23

la
te

n
c

y
[m

s]

system size (processes)

Latency of atomic b’cast (t’put: 1000 1/s).
Original TokenFD and Scalable algorithms.

Original TokenFD
Scalable (7 kernel proc.)
Scalable (3 kernel proc.)

(f) TokenFD, 1000 msgs/s

Figure 9.12: Latency vs. system size of the original and scalable atomic
broadcast algorithms, for two different throughputs on the Grid’5000 Wide

Area Network

177

Chapter 9. Scalability of Atomic Broadcast

is 5.7 ms, whereas the median among all 7 sites is 8.3 ms (the Bordeaux
site). In the case of the TokenFD algorithm (Figure 9.12(e)), the number of
supported failures determines the performance of the algorithm. There are
four sets of values for n inside which the performance is almost identical:
n ∈ {3, 5} (a single supported failure), n ∈ {7, 9, 11} (two possible failures),
n ∈ {13, 15, 17, 19} (three failures) and n ∈ {21, 23} (four possible failures).

In the case of a higher throughput of 1000 msgs/s, the scalable atomic
broadcast algorithm outperforms the original algorithms. In the case of CT
and MR (Figures 9.12(b) and 9.12(d)), the original algorithm cannot sus-
tain a throughput of 1000 msgs/s when the system size exceeds 19 and 15
processes respectively. The latency of the scalable algorithm on the other
hand remains stable for all system sizes, since the scalable algorithm avoids
the bottleneck of the O(n2) messages that need to be transmitted and pro-
cessed. In the case of TokenFD, the original atomic broadcast algorithm can-
not sustain a throughput of 1000 msgs/s if the size of the system is greater
than 17 processes. The latency of the scalable algorithm using TokenFD on
the kernel processes is however stable for all the system sizes that were
considered. As was the case in the local area network, this is again due to
the fact that in the scalable atomic broadcast algorithm, the number of com-
munication steps needed to adeliver a message is determined by the size of
the kernel, which is independent of the system size.

Compared to the original algorithm, the scalable atomic broadcast al-
gorithm allows higher throughputs to be reached in large systems, as was
the case in the local area network setting. These results again confirm the
intuition behind the scalable atomic broadcast algorithm: if the execution
of the agreement algorithm is limited to a subset of all processes, the atomic
broadcast algorithm scales well as the total number of processes in the sys-
tem increases, even if the kernel processes communicate through links with
large round-trip times.

This confirms that to achieve scalable performance characteristics, only
a subset of all processes should execute the actual agreement algorithm.

9.4 Discussion
Many atomic broadcast algorithm based on failure detectors have been
published during the years. The performance of these algorithms has often
been evaluated in small systems and the algorithms were criticized for not
scaling well. A solution to the scaling problem is to let a subset of all pro-
cesses execute the actual agreement algorithm and have them send updates
to all other processes. This solution has two potential benefits: it reduces
the impact of the system size on both the message complexity and the time
complexity.

In this chapter, we presented a formal description of this scalable atomic

178

9.4. Discussion

broadcast algorithm, as well as its proof of correctness. We then evaluated
its performance in two settings: a local area network and a wide area net-
work of 7 interconnected clusters.

The evaluation in a local area network clearly shows that the scalable
atomic broadcast algorithm is only moderately affected by the system size,
whereas the impact of the system size on the latency of the original atomic
broadcast algorithm is much higher. The performance of the scalable atomic
broadcast algorithm is mainly influenced by the size of the kernel of pro-
cesses that participated in the agreement protocol.

In the wide area network, the main factor influencing the latency of
atomic broadcast is the round-trip times between the sites. The impact of
the scalable atomic broadcast algorithm compared to the underlying atomic
broadcast algorithm is thus the highest for the TokenFD algorithm which
needs O(

√
n) communication steps to solve atomic broadcast (whereas CT

and MR need a constant number of steps). For high throughputs, the per-
formance of the scalable atomic broadcast algorithm is much less affected
than the performance of all three underlying algorithms as the size of the
system increases.

The intuition behind the scalable atomic broadcast algorithm is veri-
fied by the performance measurements: if the size of the system increases,
the efficient approach is to let a subset of the processes execute the actual
agreement algorithm. This in turn validates limiting performance measure-
ments to relatively small systems: the main factor behind the performance
of atomic broadcast in a large system is the performance of the agreement
algorithm on the kernel. The kernel is a relatively small subset of the pro-
cesses in the system and can be tailored to achieve the fault-tolerance re-
quired by the application that uses the group communication middleware.

179

Chapter 9. Scalability of Atomic Broadcast

180

Chapter 10

Conclusion

10.1 Research assessment
In Part I, we compared quorum systems and group communication, two
techniques that help in addressing the problem of replication and pointed
out in which case either technique is best adapted. We then presented
a new atomic broadcast algorithm which uses a token to order messages
and a failure detector to tolerate process failures. We also discussed how
to adapt Chandra and Toueg’s atomic broadcast algorithm to run consen-
sus on message identifiers instead of messages. In Part II, we started by
describing the implementation of quasi-reliable channels using a session
layer protocol on top of TCP. We then evaluated the performance of several
atomic broadcast algorithms in various settings, including local and wide
area networks. Each one of these contributions are now assessed in further
detail.

10.1.1 Atomic broadcast

Replication: Understanding the advantage of atomic broadcast over
quorum systems Atomic broadcast and quorum systems are two tech-
niques that hide some of the difficulties of replication, where clients inter-
act with a replicated server. We showed that the two techniques are useful
in different situations, depending on the desired level of isolation on read
and write operations: no isolation, read-write isolation (where reading a
variable and assigning it a new value are executed atomically) and general
isolation (where any sequence of read and write operations are executed in
isolation).

When no isolation is required, quorum systems are well adapted. Read-
write isolation on the other hand, is easier to implement with atomic broad-
cast than with quorums (more precisely, atomic broadcast requires a �S
failure detector, whereas a quorum system requires the stronger P failure

181

Chapter 10. Conclusion

detector). Finally, the atomic broadcast solution can also be extended to
handle general isolation if (1) the function that updates the data on the
servers can be defined statically and (2) the identity of the servers to which
the update function must be sent is known statically. In other cases, the
atomic broadcast solution may not be applicable, in which case quorum
systems should be used.

A token based atomic broadcast algorithm We presented an atomic
broadcast algorithm, noted TokenFD, that orders messages using a token
and tolerates failures with a new unreliable failure detector R, specifically
targeted at (logical) ring network topologies. The algorithm was simulated
and compared to two other implementations of atomic broadcast using fail-
ure detectors: CT and MR. The results showed that the performance of To-
kenFD was superior to both other algorithms, especially for high system
loads (where token based algorithms usually perform well) or when fre-
quent wrong failure suspicions occured (a situation well-adapted to algo-
rithms using failure detectors).

We also discussed several optimizations to the TokenFD algorithm, that
reduce the number of tokens sent or bound the amount of memory that is
needed by the algorithm. Finally, the algorithm was also presented in the
Heard-Of model.

Solving atomic broadcast with indirect consensus Atomic broadcast
can be reduced to consensus on messages, as shown by Chandra and Toueg.
However, in this reduction, the performance of the consensus algorithm is
affected by the (potentially) large messages. As a consequence, a more effi-
cient reduction is for atomic broadcast to use consensus on message identi-
fiers.

We showed that the reduction of atomic broadcast to consensus on mes-
sage identifiers can lead to faulty executions and presented indirect consen-
sus that addresses this issue. Adapting a consensus algorithm to indirect
consensus is not always trivial: the resilience of the Mostéfaoui-Raynal con-
sensus algorithm is reduced when transformed into an indirect consensus
algorithm. On the other hand, the consensus algorithm by Chandra and
Toueg is easily adapted.

Finally, we showed that the performance of the reduction of atomic
broadcast to indirect consensus is better than two other correct approaches
(the reduction of atomic broadcast to consensus on messages, or to con-
sensus on message identifiers, but using uniform reliable broadcast for the
message diffusion).

182

10.1. Research assessment

10.1.2 Experimental performance evaluations
Robust TCP: implementing quasi-reliable channels Quasi-reliable com-
munication channels are commonly used by group communication algo-
rithms. The widespread TCP protocol addresses some of the issues that are
inherent to the implementation of quasi-reliable channels, such as avoiding
duplication or spontaneous creation of messages. However, TCP does not
address link failures that last more than a couple of minutes.

We thus presented a session-layer protocol above TCP (called Robust
TCP) that implements quasi-reliable channels by handling link failures.
The design of the protocol was presented and a prototype was implemented
in Java. Performance measurements in a local area network show that the
Robust TCP protocol introduces less than 10% overhead over regular TCP
connections.

Comparing atomic broadcast algorithms in a local area network
Experimental evaluation is important when assessing the performance of a
distributed algorithms. Consequently, the second part of this work focused
on the performance evaluation of several group communication algorithms
in various real systems.

The first setting considered in this work was a local area network. The
comparison showed that when no failures nor suspicions occur in a sys-
tem supporting one or two failures, TokenFD achieves higher throughputs
and lower latencies than CT and MR. Furthermore, when wrong suspicions
occur (but no processes fail) the latency of the TokenFD algorithm is also
lower than CT and MR. These experimental results confirmed the proper-
ties of TokenFD that were already observed in simulation: the token allows
high throughputs, whereas wrong suspicions are supported well with the
failure detector.

Finally, TokenFD was compared to a group membership and token based
algorithm, namely MovingSeq. In this second comparison, TokenFD reached
lower throughputs than MovingSeq in a system without failures nor suspi-
cions. However, we also explained that whenever a suspicion occurs, the
group membership protocol needs to execute several costly operations and
the performance of MovingSeq is thus strongly affected by frequent wrong
suspicions.

Evaluating the performance of atomic broadcast algorithms in high
latency networks The second setting in which we evaluated atomic broad-
cast algorithms was wide area networks systems with three processes. We
started by modeling the TokenFD, CT and MR algorithms in a wide area net-
work with three processes distributed on two or three different locations.

The algorithms were then experimentally evaluated. This evaluation
showed that our simple model accurately predicts the performance of the

183

Chapter 10. Conclusion

three algorithms for moderate system loads. Furthermore, the main charac-
teristic that influenced the performance of the algorithms was the number
of communication steps needed to adeliver messages. This was not sur-
prising for the wide area network with large round trip times (300 ms) be-
tween locations, but was also true for the network with the lowest round
trip times (4 ms).

Finally, we also showed that some parameters, such as the choice of the
coordinator site in the consensus algorithms, have a large impact on per-
formance. In order to achieve high throughputs, it is advisable to choose
parameters that allow the process on the distant location to actively partic-
ipate in the ordering of messages.

On the scalability of atomic broadcast algorithms Finally, we evalu-
ated the impact of the system size on the performance of the three failure
detector based atomic broadcast algorithms TokenFD, CT and MR. Local
area and wide area networks were considered.

The evaluation showed that all three algorithms were affected by the
system size. When limiting the actual ordering algorithm to a (fixed) sub-
set of the system (the kernel) we showed that the performance of atomic
broadcast was hardly affected by the addition of (non-kernel) processes to
the system. The kernel can thus be tailored to suit the needs of the applica-
tion, and additional processes (acting as caches of the distributed state) can
be added without affecting the performance of the system.

10.2 Open questions and future research
directions
Replication: Understanding the advantage of atomic broadcast over
quorum systems The comparison between atomic broadcast and quo-
rum systems showed in which situations each technique is most adapted.
This comparison could be extended by experimentally evaluating the per-
formance of both techniques.

These techniques both use different approaches to updating data: in
quorum systems, the servers and clients exchange data. The clients modify
the data and then inform the servers of the new state of the data. In con-
trast, in an atomic broadcast system, the clients instead invoke procedures
on the servers to update data. The modification of the data is done directly
by the server and no data needs to be exchanged.

A token based atomic broadcast algorithm Future work on the to-
ken and failure detector based atomic broadcast algorithm includes further
optimizing the token processing. Currently, whenever a token is received,

184

10.2. Open questions and future research directions

relatively costly operations need to be performed on the data structures
contained in the token. Since the rate of adelivers (when the load on the
system is high) is inversely proportional to the time to receive, handle and
send the token, optimizing the token processing directly affects the perfor-
mance of the algorithm in experimental evaluations.

Furthermore, the simulation model that was used to evaluate the To-
kenFD algorithm aims at modeling network and CPU contention as simply
as possible. This model could be extended to take factors such as message
size, processing complexity of messages and inter-process round-trip times
into account. These factors would add some complexity to the simulation
model, but could yield more realistic simulation results.

Solving atomic broadcast with indirect consensus We transformed
two consensus algorithms into indirect consensus algorithms. Transform-
ing the CT consensus algorithm was easy, whereas the transformation of
MR affected the resilience of the algorithm (the indirect consensus algo-
rithm supported at most f < n

3 process failures whereas the original al-
gorithm supported f < n

2). It would be interesting to examine how other
consensus algorithms are affected when transformed into indirect consen-
sus algorithms. Furthermore, this could possibly lead to a more general
classification criterion indicating which consensus algorithms are affected
by a transformation into indirect consensus.

Robust TCP connections: implementing quasi-reliable channels The
Robust TCP sockets that we presented reimplement the interface of the
standard Java TCP. As this interface evolves (with the different versions
of Java), the Robust TCP implementation must be kept up to date. Further-
more, a tighter integration with the Java sockets is also planned, in order to
minimize the source code modifications needed to replace standard sockets
by Robust sockets in an existing application.

Finally, as mentioned in Chapter 6, an implementation of the Robust
sockets in another language is also possible. It would be interesting, for
example, to provide Robust TCP sockets implemented in C (which is used
for a number of group communication implementations).

Comparing atomic broadcast algorithms in a local area network
We compared different atomic broadcast algorithms in several settings. Fu-
ture research contributions include extending these experimental evalua-
tions. Different workloads can for example be considered: in the experi-
ments that we presented, the processes sent messages following a Poisson
stochastic process. Other sending patterns, exposing bursty characteristics
or generated from observed usage patterns, could be included to evaluate
the atomic broadcast algorithms in possibly more realistic conditions.

185

Chapter 10. Conclusion

Furthermore, the evaluations included in this work mainly focused on
failure detector based algorithms (although one group membership based
algorithm was also examined). In the future, the performance evaluation
of atomic broadcast could be extended to other algorithms, using group
membership for example. Algorithms with different resilience levels (at
most f < n

3 possible failure for example) are also interesting candidates.
Finally, additional faultloads could add value to the comparison be-

tween algorithms. The difference, for example, between failure detector
and group membership based algorithms could be evaluated in systems
where frequent wrong suspicions occur. Additionally, the short and long
term impacts of process crashes on the performance of the algorithms could
also be assessed.

Evaluating the performance of atomic broadcast algorithms in high
latency networks The evaluation of atomic broadcast in wide area net-
works was conducted in systems with three processes. This in turn allowed
a preliminary analytical evaluation of three algorithms. In future work, the
size of the system could be extended. The analytical evaluation of the algo-
rithms is then more complex (especially if more than three different loca-
tions are considered) and would probably be replaced by a numerical per-
formance evaluation. The simulation model of the Neko framework could
be extended to address this issue.

Additionally, we showed that the performance of the algorithms was
affected by the bandwidth of the wide area network links. Consequently,
the simple model that we presented could be extended to take the band-
width of the links into account and thus reduce some of the discrepancies
between the currently modeled and experimental results.

On the scalability of atomic broadcast algorithms We evaluated the
performance of atomic broadcast algorithms in systems with a large num-
ber of processes. Future research directions include an evaluation of the
scalable atomic broadcast algorithm in the context of an actively replicated
database. Indeed, one of the advantages of the scalable algorithm is that
the non-kernel processes act as a cache of the state of the system. These
non-kernel processes can thus relieve the load on the kernel processes by
handling queries that do not need to be abroadcast (e.g. a read-only query
that accesses the local state of one of the replicas).

Furthermore, the set of kernel processes needs not necessarily be fixed.
A second research direction is thus to examine how to dynamically adapt
the kernel set as a response to process failures, for example. The goal is
to remove failed processes from the kernel in order to maintain the fault
tolerance degree that the kernel was tailored for.

186

Bibliography

[ABEK+01] L. Alvisi, T. Bressoud, A. El-Khashab, K. Marzullo, and
D. Zagorodnov. Wrapping server-side TCP to mask connec-
tion failures. In Proc. 20th Annual Joint Conf. of the IEEE Com-
puter and Communications Societies (Infocom), Anchorage, AK,
USA, April 2001.

[ADGFT00] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Thrifty generic broadcast. In Proceedings of
the 14th International Symposium on Distributed Computing
(DISC’2000), October 2000.

[ADGS03] T. Anker, D. Dolev, G. Greenman, and I. Shnayderman. Eval-
uating total order algorithms in WAN. In Proc. International
Workshop on Large-Scale Group Communication, Florence, Italy,
October 2003.

[AM98] L. Alvisi and K. Marzullo. Waft: Support for fault-tolerance
in wide-area object oriented systems. In Proceedings of the 2nd
Information Survivability Workshop – ISW ’98, pages 5–10, Los
Alamitos, CA, USA, October 1998. IEEE Computer Society
Press.

[AMMS+95] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P. Ciar-
fella. The Totem single-ring ordering and membership proto-
col. ACM Trans. on Computer Systems, 13(4):311–342, Novem-
ber 1995.

[Avi85] A. Avizienis. The n-version approach to fault-tolerant soft-
ware. IEEE Transactions on Software Engineering, 11(12):1491–
1501, 1985.

[BCBT96] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable
links with unreliable links in the presence of process crashes.
In Int. Workshop on Distributed Algorithms (WDAG’96), LNCS
1151, pages 105–122, Bologna, October 1996.

[Ben83] M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In Proceedings of the Sec-

187

Bibliography

ond ACM Symposium on Principles of Distributed Computing
(PODC-2), pages 27–30, Montreal, Canada, August 1983.

[BK02] O. Bakr and I. Keidar. Evaluating the running time of a com-
munication round over the internet. In PODC ’02: Proceedings
of the twenty-first annual symposium on Principles of distributed
computing, pages 243–252, Monterey, California, USA, 2002.
ACM Press.

[BL91] A. Burns and A. M. Lister. A framework for building depend-
able systems. The Computer Journal, 34(2):173–181, 1991.

[BS97] K. Brown and S. Singh. M-TCP: TCP for mobile cellular net-
works. ACM Computer Communication Review, 27(5), October
1997.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal
and atomic group multicast. ACM Trans. on Computer Systems,
9(3):272–314, August 1991.

[BT93] O. Babaoğlu and S. Toueg. Non-blocking atomic commit-
ment. In S. Mullender, editor, Distributed Systems, ACM Press
Books, chapter 6, pages 147–168. Addison-Wesley, second
edition, 1993.

[Bur06] M. Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), pages 335–350, Seattle,
WA, USA, November 2006.

[CB03] B. Charron-Bost. Comparing the atomic commitment and
consensus problems. In A. Schiper, A. A. Shvartsman,
H. Weatherspoon, and B. Y. Zhao, editors, Future Directions
in Distributed Computing, Research and Position Papers, vol-
ume 2584 of Lecture Notes in Computer Science, pages 29–34.
Springer, 2003.

[CBDS02] B. Charron-Bost, X. Défago, and A. Schiper. Broadcasting
Messages in Fault-Tolerant Distributed Systems: The benefit
of handling input-triggered and output-triggered suspicions
differently. In Proceedings of the 21st IEEE Symposium on Reli-
able Distributed Systems (SRDS), pages 244–249, Osaka, Japan,
October 2002.

[CBS06] B. Charron-Bost and A. Schiper. The Heard-Of Model: Uni-
fying all Benign Failures. Technical Report LSR-Report-2006-
004, EPFL, Lausanne, Switzerland, 2006.

188

Bibliography

[CC98] S. Chandra and P. M. Chen. How fail-stop are faulty pro-
grams? In FTCS ’98: Proceedings of the The Twenty-Eighth
Annual International Symposium on Fault-Tolerant Computing,
pages 240–249, Munich, Germany, June 1998. IEEE Computer
Society.

[CCD+05] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Je-
gou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, and O. Richard. Grid’5000: a large scale, re-
configurable, controlable and monitorable Grid platform.
In Grid’2005 Workshop, Seattle, USA, November 13-14 2005.
IEEE/ACM.

[CD89] B. Chor and C. Dwork. Randomization in Byzantine agree-
ment. In S. Micali, editor, Advances in Computing Research,
Randomness in Computation, volume 5, pages 443–497. JAI
Press, 1989.

[CF99] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. IEEE Trans. on Parallel & Distributed Systems,
10(6):642–657, June 1999.

[CFM+97] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson,
and M. Wolczko. Compiling Java Just in Time. IEEE Micro,
17(3):36–43, 1997.

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest fail-
ure detector for solving consensus. Journal of ACM, 43(4):685–
722, July 1996.

[CKV01] G. Chockler, I. Keidar, and R. Vitenberg. Group Communica-
tion Specifications: A Comprehensive Study. Computing Sur-
veys, 4(33):1–43, December 2001.

[CL99] M. Castro and B. Liskov. Practical byzantine fault tolerance.
In OSDI: Symposium on Operating Systems Design and Imple-
mentation. USENIX Association, Co-sponsored by IEEE TCOS
and ACM SIGOPS, 1999.

[CM84] J. Chang and N. F. Maxemchuk. Reliable broadcast protocols.
ACM Trans. on Computer Systems, 2(3):251–273, August 1984.

[CM95] F. Cristian and S. Mishra. The pinwheel asynchronous atomic
broadcast protocols. In 2nd Int’l Symposium on Autonomous
Decentralized Systems, pages 215–221, Phoenix, AZ, USA,
April 1995.

189

Bibliography

[CMA97] F. Cristian, S. Mishra, and G. Alvarez. High-performance
asynchronous atomic broadcast. Distributed System Engineer-
ing Journal, 4(2):109–128, June 1997.

[Cri91] F. Cristian. Asynchronous atomic broadcast. IBM Technical
Disclosure Bulletin, 33(9):115–116, 1991.

[CS93] D. R. Cheriton and D. Skeen. Understanding the limitations
of causally and totally ordered communication. In Proceedings
of the 14th ACM Symp. on Operating Systems Principles (SoSP-
14), pages 44–57, Asheville, NC, USA, December 1993.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of ACM, 43(2):225–267,
1996.

[CTA02] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. IEEE Transactions on Computers,
51(2):561–580, May 2002.

[CUBS02] A. Coccoli, P. Urbán, A. Bondavalli, and A. Schiper. Perfor-
mance analysis of a consensus algorithm combining Stochas-
tic Activity Networks and measurements. In Proc. Int’l Con-
ference on Dependable Systems and Networks (DSN 2002), pages
551–560, Washington, DC, USA, June 2002.

[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal syn-
chrony needed for distributed consensus. Journal of ACM,
34(1):77–97, January 1987.

[DLS88] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of ACM, 35(2):288–323,
April 1988.

[DSU04] X. Défago, A. Schiper, and P. Urbán. Total Order Broadcast
and Multicast Algorithms: Taxonomy and Survey. ACM Com-
puting Surveys, 36(2):372–421, December 2004.

[ES03] R. Ekwall and A. Schiper. Revisiting token-based atomic
broadcast algorithms. Technical Report IC/2003/39, École
Polytechnique Fédérale de Lausanne, Switzerland, February
2003.

[ESU04] R. Ekwall, A. Schiper, and P. Urbán. Token-based atomic
broadcast using unreliable failure detectors. In Proceedings
of the 23rd IEEE Symposium on Reliable Distributed Systems
(SRDS), Florianópolis, Brazil, October 2004.

190

Bibliography

[Fel98] P. Felber. The CORBA Object Group Service: A Service Approach
to Object Groups in CORBA. PhD thesis, École Polytechnique
Fédérale de Lausanne, Switzerland, 1998. Number 1867.

[Fet00] C. Fetzer. Enforcing synchronous system properties on top
of timed systems. In Proc. 7th IEEE Pacific Rim Symposium on
Dependable Computing (PRDC-7), pages 185–192, Los Angeles,
California, USA, December 2000. IEEE Computer Society.

[Fis83] M. J. Fischer. The consensus problem in unreliable distributed
systems (a brief survey). Technical Report 273, Department of
Computer Science, Yale University, New Haven, Conn., USA,
June 1983.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
ACM, 32(2):374–382, April 1985.

[FR03] F. Fich and E. Ruppert. Hundreds of impossibility results for
distributed computing. Distributed Computing, 16(2-3):121–
163, 2003.

[FRT99] E. Fromentin, M. Raynal, and F. Tronel. On classes of
problems in asynchronous distributed systems with process
crashes. In Proceedings of the 19th International Conference
on Distributed Computing Systems (ICDCS-19), pages 470–477,
Austin, TX, USA, June 1999. IEEE Computer Society Press.

[Gif79] D. Gifford. Weighted Voting for Replicated Data. In Proceed-
ings of the 7th Symposium on Operating Systems Principles, pages
150–159, December 1979.

[GLPQ06] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma. High
Throughput Total Order Broadcast for Cluster Environments.
In IEEE International Conference on Dependable Systems and Net-
works (DSN 2006), Philadelphia, PA, USA, June 2006.

[GS01] R. Guerraoui and A. Schiper. Genuine atomic multicast in
asynchronous distributed systems. Theoretical Computer Sci-
ence (Elsevier), 254:297–316, 2001.

[Hen99] J. Hennessy. The future of systems research. IEEE Computer,
32(8):27–33, 1999.

[Her88] M. Herlihy. Impossibility and universality results for wait-
free synchronization. In Seventh ACM Symposium on Princi-
ples of Distributed Computing (PODC), pages 276–290, August
1988.

191

Bibliography

[Her91] M. Herlihy. Wait-Free Synchronization. ACM Transactions
on Programming Languages and Systems, 11(1):124–149, January
1991.

[HT94] V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcasts and related problems. TR 94-1425, Dept.
of Computer Science, Cornell University, Ithaca, NY, USA,
May 1994.

[IBM00] IBM Corporation. SockPerf: A Peer-to-Peer Socket Bench-
mark Used for Comparing and Measuring Java Socket Perfor-
mance, 2000. http://www.alphaWorks.ibm.com/aw.nsf/
techmain/sockperf.

[ISO96] ISO. Information technology – Open Systems Interconnection
– Connection-oriented Session protocol: Protocol specification.
ISO/IEC 8327-1. International Organization for Standards,
1996.

[Jah94] F. Jahanian. Fault-tolerance in embedded real-time systems.
In Papers of the workshop on Hardware and software architectures
for fault tolerance: experiences and perspectives, pages 237–249,
Le Mont Saint Michel, France, 1994. Springer-Verlag.

[KG94] H. Kopetz and G. Grünsteidl. TTP-a protocol for fault-
tolerant real-time systems. IEEE Computer, 27(1):14–23, 1994.

[KMA02] K. Kanoun, H. Madeira, and J. Arlat. A Framework for
Dependability Benchmarking. In Workshop on Dependability
Benchmarking (jointly organized with DSN-2002), pages F7–F8,
Bethesda, Maryland, USA, June 2002.

[LAF99] M. Larrea, S. Arevalo, and A. Fernandez. Efficient algorithms
to implement unreliable failure detectors in partially syn-
chronous systems. In International Symposium on Distributed
Computing, pages 34–48, 1999.

[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Comm. ACM, 21(7):558–565, July 1978.

[Lam86] L. Lamport. On interprocess communications, i, ii. Distributed
Computing, 1(2):77–101, October 1986.

[Lam98] L. Lamport. The part-time parliament. ACM Trans. on Com-
puter Systems, 16(2):133–169, 1998.

[Lan97] G. L. Lann. An analysis of the Ariane 5 flight 501 failure-a sys-
tem engineering perspective. In Proceedings of the International

192

Bibliography

Conference and Workshop on Engineering of Computer-Based Sys-
tems (ECBS ’97), pages 339–246, Monterey, CA, USA, March
1997. IEEE Computer Society.

[Lar03] M. Larrea. On the weakest failure detector for hard agree-
ment problems. Journal of Systems Architecture, 49(7):345–353,
October 2003.

[LKPMJP05] Y. Lin, B. Kemme, M. Patiño-Martínez, and R. Jiménez-Peris.
Consistent data replication: Is it feasible in WANs?. In Proc.
11th International Euro-Par Conference, pages 633–643, Lisbon,
Portugal, September 2005.

[Lyn89] N. Lynch. A hundred impossibility proofs for distributed
computing. In Proceedings of the 8th ACM Symposium on Prin-
ciples of Distributed Computing (PODC-8), pages 1–28, Edmon-
ton, Alberta, Canada, August 1989. ACM Press.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MBK+05] S. Mena, C. Basile, Z. Kalbarczyk, A. Schiper, and R. K. Iyer.
Assessing the crash-failure assumption of group communica-
tion protocols. In ISSRE ’05: Proceedings of the 16th IEEE Inter-
national Symposium on Software Reliability Engineering, pages
107–116, Chicago, Illinois, USA, November 2005. IEEE Com-
puter Society.

[MFVP05] N. Mittal, F. C. Freiling, S. Venkatesan, and L. D. Penso. Effi-
cient reduction for wait-free termination detection in a crash-
prone distributed system. In Proceedings of the 19th Interna-
tional Symposium on Distributed Computing (DISC), pages 93–
107, Cracow, Poland, September 2005.

[MK00] S. Mishra and S. M. Kuntur. Newsmonger: A technique to im-
prove the performance of atomic broadcast protocols. Journal
of Systems and Software, 55(2):167–183, December 2000.

[MR98] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Dis-
tributed Computing, 11(4):203–213, 1998.

[MR99] A. Mostéfaoui and M. Raynal. Solving consensus using
Chandra-Toueg’s unreliable failure detectors: A general
quorum-based approach. In Proceedings of the 13th Inter-
national Symposium on Distributed Computing (DISC), num-
ber 1693 in Lecture Notes in Computer Science, pages 49–
63, Bratislava, Slovak Republic, September 1999. Springer-
Verlag.

193

Bibliography

[MS01] N. F. Maxemchuk and D. H. Shur. An Internet multicast sys-
tem for the stock market. ACM Trans. on Computer Systems,
19(3):384–412, August 2001.

[MSW03] S. Mena, A. Schiper, and P. Wojciechowski. A step towards a
new generation of group communication systems. In Proceed-
ings of Int’l Middleware Conference, pages 414–432. Springer,
June 2003.

[Nag84] J. Nagle. RFC 896: Congestion control in IP/TCP internet-
works, January 1984. Status: UNKNOWN.

[NF97] N. Neves and W. Fuchs. Fault detection using hints from the
socket layer. In Proceedings of the 16th Symposium on Reliable
Distributed Systems (SRDS), pages 64–71, Durham, North Car-
olina, USA, October 1997. IEEE.

[PSUC02a] F. Pedone, A. Schiper, P. Urbán, and D. Cavin. Solving agree-
ment problems with weak ordering oracles. In Proc. 4th Eu-
ropean Dependable Computing Conference (EDCC-4), Toulouse,
France, October 2002. To appear.

[PSUC02b] F. Pedone, A. Schiper, P. Urbán, and D. Cavin. Weak ordering
oracles for failure detection-free systems. In Proc. Int’l Conf. on
Dependable Systems and Networks (DSN), sup plemental volume,
pages B–32–33, June 2002. Fast abstract.

[Ran75] B. Randell. System structure for fault tolerance. IEEE Trans-
actions on Software Engineering, 1:220–232, 1975.

[RFV96] L. Rodrigues, H. Fonseca, and P. Veríssimo. Totally or-
dered multicast in large-scale systems. In Proceedings of the
16th International Conference on Distributed Computing Systems
(ICDCS-16), pages 503–510, Hong Kong, May 1996.

[RGS98] L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic
multicast. In Proceedings of the 7th IEEE International Conference
on Computer Communications and Networks (IC3N’98), pages
840–847, Lafayette, Louisiana, USA, October 1998.

[RM98] K. Ratnam and I. Matta. WTCP: An efficient transmission
control protocol for networks with wireless links. Proc. Third
IEEE Symposium on Computers and Communications (ISCC ’98),
Athens, Greece, June 1998.

[Sch93a] F. B. Schneider. Replication Management using the State-
Machine Approach. In S. Mullender, editor, Distributed Sys-
tems, pages 169–197. ACM Press, 1993.

194

Bibliography

[Sch93b] F. B. Schneider. What good are models and what models are
good? In S. Mullender, editor, Distributed Systems, ACM Press
Books, chapter 2, pages 17–26. Addison-Wesley, second edi-
tion, 1993.

[Sch03] A. Schiper. Practical Impact of Group Communication The-
ory. In Future Directions in Distributed Computing, pages 1–10.
Springer, LNCS 2584, 2003.

[Soc99] Shortcomings of SocketImplFactory. Bug report on Sun’s Java
Developer Connection site, 1999. http://developer.java.
sun.com/developer/bugParade/bugs/4245730.html.

[SPMO02] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic
Total Order in Wide Area Networks. In Proceedings of the 21st
IEEE Symposium on Reliable Distributed Systems (SRDS), pages
190–199, Osaka, Japan, October 2002.

[SS83] R. Schlichting and F. B. Schneider. Fail-stop processors:
An approach to designing fault-tolerant computing systems.
ACM Trans. on Computer Systems, 1(3):222–238, August 1983.

[Ste94] R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley, January 1994.

[SXM+00] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream
control transmission protocol. IETF, April 2000.

[Tho79] R. Thomas. A majority consensus approach to concurrency
control for multiple copies databases. ACM Trans. on Database
Systems, 4(2):180–209, 1979.

[TLS05] P. Traverse, I. Lacaze, and J. Souyris. A process toward total
dependability - airbus fly-by-wire paradigm. In M. D. Cin,
M. Kaâniche, and A. Pataricza, editors, Dependable Computing
– EDCC-5, volume 3463 of Lecture Notes in Computer Science,
page 1. Springer-Verlag Inc., 2005.

[UDS00] P. Urbán, X. Défago, and A. Schiper. Contention-aware met-
rics for distributed algorithms: Comparison of atomic broad-
cast algorithms. In Proc. 9th IEEE Int’l Conf. on Computer Com-
munications and Networks (IC3N 2000), pages 582–589, October
2000.

[UDS02] P. Urbán, X. Défago, and A. Schiper. Neko: A single envi-
ronment to simulate and prototype distributed algorithms.

195

Bibliography

Journal of Information Science and Engineering, 18(6):981–997,
November 2002.

[UHSK04] P. Urbán, N. Hayashibara, A. Schiper, and T. Katayama. Per-
formance comparison of a rotating coordinator and a leader
based consensus algorithm. In Proceedings of the 23rd IEEE
Symposium on Reliable Distributed Systems (SRDS), pages 4–17,
Florianópolis, Brazil, October 2004.

[Urb03] P. Urbán. Evaluating the Performance of Distributed Agreement
Algorithms: Tools, Methodology and Case Studies. PhD thesis,
École Polytechnique Fédérale de Lausanne, Switzerland, Au-
gust 2003. Number 2824.

[USS03] P. Urbán, I. Shnayderman, and A. Schiper. Comparison of
failure detectors and group membership: Performance study
of two atomic broadcast algorithms. In Proc. of the Int’l Conf.
on Dependable Systems and Networks (DSN), pages 645–654,
June 2003.

[VR02] P. Vicente and L. Rodrigues. An Indulgent Total Order Al-
gorithm with Optimistic Delivery. In Proceedings of the 21st
IEEE Symposium on Reliable Distributed Systems (SRDS), pages
92–101, Osaka, Japan, October 2002.

[WMK94] B. Whetten, T. Montgomery, and S. Kaplan. A high perfor-
mance totally ordered multicast protocol. In Springer-Verlag,
editor, Theory and Practice in Distributed Systems, number 938
in Lecture Notes in Computer Science, pages 33–57, Dagstuhl
Castle, Germany, September 1994.

[WV02] G. Weikum and G. Vossen. Transactional Information Systems.
Morgan Kaufmann, 2002.

[ZD95] Y. Zhang and S. Dao. A persistent connection model for mo-
bile and distributed systems. In Proc. 4th Int’l Conf. on Com-
puter Communications and Networks (ICCCN), Las Vegas, NV,
USA, September 1995.

196

Appendix A

Agreement algorithms

The following section describes the consensus, reliable broadcast and atomic
broadcast algorithms that are considered in this thesis. We present the
pseudo code of the algorithms, as well as a short analysis of their time and
message complexities. Reliable broadcast and consensus algorithms are
introduced first, since they serve as building blocks for one of the atomic
broadcast algorithms.

A.1 Reliable broadcast

The reliable broadcast algorithm that is considered in most of the chapters
is proposed in [CT96] and is presented in Algorithm A.1.

Algorithm A.1: Reliable broadcast algorithm (code of process p)
1: procedure rbroadcast(m)
2: send m to all (including p)

3: when receive m for the first time {rdeliver occurs as follows}
4: if sender(m) �= p then
5: send m to all
6: rdeliver(m)

Whenever a message m is rbroadcast, it is sent to all processes (including
the sender). Then, when a process p receives a message m for the first time,
p retransmits it to everyone (if p is not the original sender) and then rdelivers
m.

This reliable broadcast algorithm needs one communication step and
sends n2 messages on the network for each rbroadcast.

197

Appendix A. Agreement Algorithms

proposal ack decision

time
p2

p1

p0: coord

Figure A.1: Communication pattern of the Chandra-Toueg �S consensus
algorithm in runs without failures or wrong suspicions (n = 3 processes).

A.2 Consensus
In this thesis, we consider two consensus algorithms that require a major-
ity of correct processes, quasi-reliable channels, and use the �S unreliable
failure detector [CT96] to reach a decision. The algorithms are presented
respectively by Chandra and Toueg in [CT96], and Mostéfaoui and Raynal
in [MR99].

A.2.1 Chandra-Toueg consensus
The Chandra-Toueg �S consensus algorithm [CT96] is a centralized algo-
rithm that uses the �S unreliable failure detector to ensure termination of
consensus. The algorithm proceeds in rounds and is presented in Algo-
rithm A.2.

At the beginning of each round, in Phase 1, each process sends its es-
timate of the decision to the process acting as a coordinator in that round
(line 11). In Phase 2, the coordinator waits for a majority of estimates and
selects the most recent one (based on its timestamp) and sends it to all pro-
cesses (lines 15 to 19). In the first round of the algorithm, the coordinator
always selects its own estimate (with a timestamp equal to 0) and the al-
gorithm is thus optimized to skip the initial estimate exchange in Phases 1
and 2 (hence the conditions on lines 10 and 14).

During Phase 3, each process either receives the coordinator’s proposal,
or suspects the coordinator of having crashed (line 21). In the former case,
the process sets its own estimate to the coordinator’s proposal, updates its
timestamp and sends a positive acknowledgment (ack) to the coordinator
(lines 22 to 25). In the latter case, a negative acknowledgment (nack) is sent
(lines 26 and 27). In both cases, before proceeding, the non-coordinator
processes wait until (1) the coordinator is suspected or (2) a message (abort
or decision) is received from the coordinator (lines 28 and 29).

In [CT96], the non-coordinator processes do not wait before proceeding
to the next round and immediately send their estimate to the next coordina-
tor. However, in good runs (without failures or suspicions), these messages
are not useful, since a decision is always taken in the first round. By intro-

198

A.2. Consensus

Algorithm A.2: Chandra-Toueg �S consensus algorithm (code of proc. p)
1: procedure propose(vp)
2: estimatep ← vp {p’s estimate of the decision value}
3: statep ← undecided
4: rp ← 0 {p’s current round number}
5: tsp ← 0 {tsp is the last round in which p updated estimatep }

6: while statep = undecided do {rotate through coordinators until decision reached}
7: rp ← rp + 1
8: cp ←

(
rp mod n

)
+ 1 {cp is the current coordinator}

9: Phase 1: {all processes p send estimatep to the current coordinator}
10: if rp > 1 then
11: send (p, rp, estimatep, tsp) to cp

12: Phase 2: {coordinator gathers
⌈

n+1
2

⌉
estimates and proposes new estimate}

13: if p = cp then
14: if rp > 1 then

15: wait until [for
⌈

n+1
2

⌉
processes q : received (q, rp, estimateq, tsq) from q]

16: msgsp[rp] ← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}

17: t← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
18: estimatep ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
19: send (p, rp, estimatep) to all

20: Phase 3: {all processes wait for new estimate proposed by current coordinator}
21: wait until [received (cp, rp, estimatecp) from cp or cp ∈ Dp] {query failure det.

Dp}
22: if [received (cp, rp, estimatecp) from cp] then {p received estimatecp from cp}
23: estimatep ← estimatecp

24: tsp ← rp
25: send (p, rp, ack) to cp
26: else {p suspects that cp crashed}
27: send (p, rp, nack) to cp
28: if p �= cp then {non-coord. processes wait before proceeding to the next round}
29: wait until cp ∈ Dp or received (abort, rp) from cp or statep = decided

30: Phase 4: {the coordinator waits for
⌈

n+1
2

⌉
replies. If all replies adopt its estimate, the

coordinator rbroadcasts a decide message}
31: if p = cp then

32: wait until [for
⌈

n+1
2

⌉
processes q : received (q, rp, ack) or for 1 process q:

(q, rp, nack)]

33: if [for
⌈

n+1
2

⌉
processes q : received (q, rp, ack)] then

34: rbroadcast(p, estimatep, decide) to all
35: else {a nack was received}
36: send (abort, rp) to all

37: when rdeliver(q, estimateq, decide) {if p rdelivers a decide message, p decides accordingly.}
38: if statep = undecided then
39: decide(estimateq)
40: statep ← decided

199

Appendix A. Agreement Algorithms

proposal ack

p2

p1

p0: coord

time

Figure A.2: Communication pattern of the Mostéfaoui-Raynal �S consen-
sus algorithm in runs without failures or wrong suspicions (n = 3).

ducing the abort message [Urb03], processes do not start a new round in
runs where no suspicions occur, thus reducing the contention in the system
in these runs.

In Phase 4, the coordinator waits for a majority (f + 1) of answers (lines
31 and 32). If all answers are acks, the coordinator reliably broadcasts the
decision to all processes (lines 33 and 34). If at least one nack is received, the
coordinator sends an abort message for round rp and proceeds to the next
round without deciding (line 36). One can show that if

⌈ n+1
2

⌉
of processes

have accepted the coordinator’s proposal v, then any future decision is v,
although the decision on v might only be taken in a later round.

Finally, whenever a process reliably delivers a decision, it decides if it
hasn’t already done so before (lines 37 to 40). Figure A.1 illustrates the al-
gorithm in a system with three processes and in a run without failures nor
suspicions. The dashed rounded rectangles indicate the communication
rounds and the arrows indicate sent messages. Decisions are represented
as triangles. The coordinator, p0, decides after two communication steps
(after receiving the acks of p1 and p2). Processes p1 and p2 decide upon
rdelivering p0’s decision, after the third communication step. The fourth
communication (greyed out in Figure A.1) is needed by the reliable broad-
cast algorithm presented in Section A.1.

In runs without failures nor suspicions, the Chandra-Toueg consensus
algorithm decides in the first round and thus needs 3 communication steps
for all processes to decide (2 steps for the coordinator). To reach this de-
cision, the algorithm needs to send 2n point-to-point messages and one
reliable broadcast.

A.2.2 Mostéfaoui-Raynal consensus
In [MR99], Mostéfaoui and Raynal present a consensus algorithm based

on unreliable failure detectors and quorums. We consider their �S based
algorithm here. As for the Chandra-Toueg consensus algorithm, the Mosté-
faoui-Raynal algorithm proceeds in rounds and requires a majority of cor-
rect processes, but is a decentralized algorithm. The algorithm is presented

200

A.2. Consensus

Algorithm A.3: Mostéfaoui-Raynal �S consensus alg. (code of process p)
1: procedure propose(vp)
2: estimatep ← vp {p’s estimate of the decision value}
3: statep ← undecided
4: rp ← 0 {p’s current round number}

5: while statep = undecided do {rotate through coordinators until decision reached}
6: rp ← rp + 1
7: cp ←

(
rp mod n

)
+ 1 {cp is the current coordinator}

8: est_from_cp ←⊥ {coordinator’s estimate or invalid (⊥)}

9: Phase 1: {coordinator proposes new estimate; other processes wait for this new estimate}
10: if p = cp then
11: est_from_cp ← estimatep
12: else
13: wait until received (cp, rp, est_from_ccp) from cp or cp ∈ Dp {query F.D. Dp}
14: if received (cp, rp, est_from_ccp) from cp then {p received est_from_ccp from cp}
15: est_from_cp ← est_from_ccp

16: send (p, rp, est_from_cp) to all

17: Phase 2: {each process waits for
⌈

n+1
2

⌉
replies. If they indicate that

⌈
n+1

2

⌉
processes

adopted the proposal, the process rbroadcasts a decide message}
18: wait until for

⌈
n+1

2

⌉
processes q : received (q, rp, est_from_cq)

19: recp ← {est_from_cq | p received (q, rp, est_from_cq) from q}
20: if recp = {v} then
21: estimatep ← v
22: call takedecision
23: else if recp = {v,⊥} then
24: estimatep ← v

25: procedure takedecision
26: decide(estimatep)
27: statep ← decided
28: send (p, estimatep, decide) to all

29: when receive (q, estimateq, decide) {if p receives a decide message, p decides accordingly}
30: if statep = undecided then
31: estimatep ← estimateq
32: call takedecision

in Algorithm A.3.
Each round consists of two phases. At the beginning of Phase 1, the co-

ordinator of that round sends its estimate to all processes (line 11, then line
16). Each process then either receives the coordinator’s proposal (lines 14
and 15), or suspects the coordinator. In the latter case, the process considers
that an invalid value (⊥) was received from the coordinator (est_from_ccp is
initialized to ⊥ on line 8 and is not modified in the case of a suspicion). In
both cases, the process sends the estimate received from the coordinator (a
valid value or ⊥) to all processes (line 16), which concludes Phase 1 of the
algorithm.

201

Appendix A. Agreement Algorithms

p0

p1

p2

ordering

abroadcast

time

adeliver

reliable b’cast

2
(CT or MR)
Consensus

1

1

1 2

2

21

Figure A.3: Communication pattern of the Chandra-Toueg atomic broad-
cast algorithm (n = 3 processes).

In Phase 2, each process waits for a majority of estimates, including
the one possibly received from the coordinator (line 18). If all received
estimates are the same value v, the process decides v and informs all other
processes of its decision (lines 20 to 22). If this is not the case, but at least
one received estimate is valid (not ⊥), the process sets its own estimate to
the received valid estimate and proceeds to the next round (lines 23 and
24). The reliable diffusion of the decision is ensured by an ad-hoc protocol:
each process retransmits the decision to all processes upon receiving it for
the first time (lines 29 to 32).

The Uniform agreement property of consensus is ensured by the fact that
if a process p decides v, then p has received the estimate v from

⌈ n+1
2

⌉
pro-

cesses. This (and quasi-reliable channels) in turn ensures that all processes
have received at least one estimate equal to v and have thus set their own
estimate to v. Since the estimates of all processes are equal to v, any sub-
sequent decision can only be v. Figure A.2 illustrates the algorithm in a
system with three processes and in a run without failures nor suspicions.
In runs without failures nor suspicions, the Mostéfaoui-Raynal consensus
algorithm decides in the first round and thus needs 2 communication steps
for all processes to decide (1 step for non-coordinator processes in a system
with n = 3 processes). To reach this decision, the algorithm needs to send
2n2 point-to-point messages.

A.3 Atomic broadcast

A.3.1 Chandra-Toueg atomic broadcast

In [CT96], Chandra and Toueg present a reduction of atomic broadcast
to consensus. In this thesis, this atomic broadcast algorithm is consid-
ered in combination with the Chandra-Toueg and Mostéfaoui-Raynal con-
sensus algorithms presented previously. Furthermore, the Chandra-Toueg
atomic broadcast algorithm is slightly modified in that consensus is run on
message identifiers instead of the messages themselves, as previously de-

202

A.3. Atomic broadcast

Algorithm A.4: Chandra-Toueg atomic broadcast alg. (code of process p)

1: Initialisation:
2: receivedp ← ∅ {set of messages received by process p}
3: unorderedp ← ∅ {set of messages received but not yet ordered by process p}
4: orderedp ← ε {sequence of identifiers of messages ordered but not yet adelivered by p}
5: k← 0 {serial number for consensus executions}

6: procedure abroadcast(m) {To abroadcast a message m with identifier id(m)}
7: rbroadcast(m) to all

8: when rdeliver(m)
9: receivedp ← receivedp ∪ {m}

10: if id(m) �∈ orderedp then
11: unorderedp ← unorderedp ∪ {id(m)}

12: when unorderedp �= ∅ {a consensus is run whenever there are unordered messages}
13: k← k + 1
14: propose(k, unorderedp, rcv) {k distinguishes independent consensus executions}
15: wait until decide(k, idSetk)
16: unorderedp ← unorderedp \ idSetk

17: idSeqk ← elements of idSetk in some deterministic order
18: orderedp ← orderedp � idSeqk

19: {delivers messages ordered and received}
20: when orderedp �= ∅ and ∃m ∈ receivedp such that head.orderedp = id(m)
21: adeliver(m)
22: orderedp ← tail.orderedp

scribed in [Urb03]. This reduction of atomic broadcast to consensus on mes-
sage identifiers is correct if we assume that the underlying quasi-reliable
channels offer first-in first-out delivery of messages. If channels are not
first-in first-out, the reduction is trickier, as discussed in Chapter 5. The
atomic broadcast algorithm is presented in Algorithm A.4.

Whenever a message m is abroadcast, it is reliably broadcast to all pro-
cesses (line 7, see also Figure A.3, reliable b’cast). When a process p rdelivers
m, m is added to its set of received messages (lines 8 and 9). Furthermore,
if the identifier of m is not in the sequence of ordered identifiers, p adds the
identifier of m to the set of unordered identifiers (lines 10 and 11).

When p’s set of unordered identifiers is not empty, p proposes this set
for the next consensus execution (lines 12 to 14, see also Figure A.3, order-
ing). p then waits until consensus terminates, removes the decision (a set
of message identifiers) from the set of unordered message identifiers and
adds the decision to the sequence of ordered message identifiers (lines 15
to 18).

Finally, the abroadcast messages are adelivered by p following the order of
their identifiers in the orderedp sequence (lines 20 to 22). Figure A.3 shows

203

Appendix A. Agreement Algorithms

the communication pattern of the atomic broadcast algorithm: an abroadcast
message is first reliably broadcast to all processes and consensus is then
used to decide the order of the messages.

The Chandra-Toueg atomic broadcast algorithm needs one reliable broad-
cast followed by a consensus to adeliver a message. The number of com-
munication steps and sent messages thus depend on the underlying algo-
rithms used by atomic broadcast.

If the reliable broadcast and Chandra-Toueg consensus algorithms above
are used and there are no failures nor suspicions, then 4 communication
steps and 2n(n + 1) messages are necessary for all processes to adeliver a
message. If Mostéfaoui-Raynal’s consensus algorithm is used instead, then
3 communication steps and 3n2 messages are needed to adeliver a message.

A.3.2 Moving sequencer uniform atomic broadcast
The moving sequencer algorithm is a group membership and token based
uniform atomic broadcast algorithm. The algorithm considered in this the-
sis is based on work in [CM84, CM95, CMA97, DSU04, WMK94] and is
slightly adapted to reduce the latency of abroadcasting and adelivering a mes-
sage. Furthermore, the algorithm requires that at least

⌈ n+1
2

⌉
processes re-

main correct in each view (with n the number of processes in the view).
In contrast with the other algorithms studied in this thesis which use

failure detectors, the moving sequencer algorithm does not tolerate failures
directly, but instead relies on an underlying group membership protocol to
handle view changes triggered by suspicions and crashes of processes. As
a consequence, the algorithm is expressed in two parts: Section A.3.2.A
presents the moving sequencer algorithm when no processes crash or are
suspected (and the view of the group does not change). Suspicions and
crashes are handled by the group membership protocol presented in Al-
gorithm A.6 (Section A.3.2.B) and inspired from the group membership al-
gorithm in [USS03]. Since the performance of the moving sequencer algo-
rithm is only studied in a system without process failures or suspicions (in
Section 7.3.2), Algorithm A.6 is only presented here for the sake of com-
pleteness.

A.3.2.A Atomic broadcast algorithm

Algorithm A.5 presents the moving sequencer atomic broadcast algo-
rithm for a process p. Whenever a message is abroadcast, it is sent to all
processes (lines 12 and 13, also illustrated in Figure A.4, send to sequencer)
so that it can be ordered by the moving sequencer. Upon receiving a mes-
sage m (line 14), process p adds m to the set of received messages receivedp
(line 15) and then adds m to its set of unordered messages if m is not already
ordered (lines 16 and 17).

204

A.3. Atomic broadcast

Algorithm A.5: Moving sequencer uniform atomic broadcast algorithm
(code of process p)

1: Initialisation:
2: receivedp ← ∅ {set of received messages (receive queue)}
3: orderedp ← ∅ {set of messages with a seq. number}
4: unorderedp ← ∅ {set of unordered messages}

5: nextdeliverp ← 0 {sequence number of the next message batch to adelivered }
6: nextstablep ← 0 {sequence number of the next stable (garbage collected) message batch}
7: acksp ← (∅, . . . , ∅) {array [p0, . . . , pn−1] of seq. num. sets (acknowledged batches)}

8: toknextp ← successor of p in token ring {identity of the next process along the logical
ring}

9: toksenderp ← process with smallest index in Π {sender process of the token}

10: if p = toksenderp then {virtual message to initiate the token rotation}
11: send (∅,−1, acksp) to all {format: message set, seq. number, acks}

12: procedure abroadcast(m) {To abroadcast a message m}
13: send m to all

14: when receive m
15: receivedp ← receivedp ∪ {m} {add m to received messages}
16: if m /∈ ⋃

(msgs,−)∈orderedp
msgs then

17: unorderedp ← unorderedp ∪ {m} {m is not ordered yet}

18: when receive (msgs, seqnum, acks) from toksenderp {token reception}
19: toksenderp ← successor of toksenderp in the token ring
20: acksp ← acksp ∪ acks
21: if msgs �= ∅ then {token contains batch of ordered messages}
22: orderedp ← orderedp ∪ {(msgs, seqnum)}
23: unorderedp ← unorderedp \msgs
24: for all (msgs′, seq′) ∈ orderedp s.t. msgs′ ⊆ receivedp do {Ack received messages}
25: acksp[p]← acksp[p] ∪ {seq′}
26: if p = toksenderp then
27: wait until unorderedp �= ∅ ∨ orderedp �= ∅
28: if unorderedp �= ∅ then {If unordered messages exist, send them in the token}
29: send (unorderedp, seqnum + 1, acksp) to all
30: else {Else, send token with same seqnum as before}
31: send (∅, seqnum, acksp) to all

{adelivers messages ordered and received}
32: when ∃(msgs, nextdeliverp) ∈ orderedp s.t. msgs ⊆ receivedp and

∃Πsafe ⊆ Π : (|Πsafe| > n
2 and ∀q ∈ Πsafe : nextdeliverp ∈ acksp[q])

33: adeliver messages in msgs in some deterministic order
34: nextdeliverp ← nextdeliverp + 1

{Garbage collects ordered messages received by all processes}
35: when nextstablep < nextdeliverp and

∃(msgs, nextstablep) ∈ orderedp s.t. ∀q ∈ Π : nextstablep ∈ acksp[q]
36: orderedp ← orderedp \ {(msgs, nextstablep)}
37: receivedp ← receivedp \msgs
38: nextstablep ← nextstablep + 1

205

Appendix A. Agreement Algorithms

send to
sequencer

assign seq. number
and gather acks

token
circulation

p0

p1

p2

p3

p4

1

1

1

1

token

token

time

token

adeliver message 1abroadcast message 1

1

1

1

1

1

1

Figure A.4: Communication pattern of the Moving Sequencer atomic
broadcast algorithm (n = 5 processes).

Token circulation The token circulation is handled in lines 18 to 31 (and
the initial token is sent on line 11). The token contains a set of messages to
be ordered (or an empty set if no such messages exist), a tentative sequence
number assigned to this set and finally a set of acknowledgments. Further-
more, p receives the token from the process toksenderp (which is updated
each time a token is received, at line 19).

Upon receiving the token, p incorporates the acknowledgments trans-
ported in the token in its own data structure acksp (line 20). Then, if the
token contains a non-empty set of ordered messages (lines 21 to 23), the
pair (messages, sequence number) is added to orderedp (the set of ordered
message batches). The set of unordered messages is then updated (line
23). In lines 24 and 25, p updates its set of acknowledgments: all message
batches that are ordered and that have been received are acknowledged.

Finally, if p is the next token sender (line 26), it waits until either unorderedp
(the set of unordered messages) or orderedp (the set of ordered message
batches) is non-empty (line 27). In case these two sets are both empty, the
token circulation is suspended, as all processes have already adelivered all
the abroadcast messages. After that, if the set of unordered messages is not
empty, a token is sent with the unordered messages and a new sequence
number (lines 28 and 29, see also Figure A.4, assign seq. num. and gather
acks). Otherwise, a token with an empty message set and the last sequence
number is sent (line 31).

adelivering and garbage collecting messages The adelivery of mes-
sages is handled in lines 32 to 34. Whenever the messages ordered at po-
sition nextdeliverp have been received and acknowledged by at least

⌈ n+1
2

⌉
processes (line 32), these messages are adelivered in a deterministic order

206

A.3. Atomic broadcast

(line 33) and nextdeliverp is incremented (line 34).
Lines 35 to 38 garbage collect ordered messages. The condition on line

35 ensures that only adelivered messages are garbage collected (nexstablep <
nextdeliverp) and that these messages have been acknowledged by all pro-
cesses (∀q ∈ Π : nextstablep ∈ acksp[q]). The garbage collected messages are
removed from orderedp (line 36) and receivedp (line 37). Finally, nextstablep is
incremented.

The garbage collection is not necessary for the correctness of the algo-
rithm but is presented here since in the Chandra-Toueg atomic broadcast
algorithm, adelivered messages do not need to be stored in memory.

Complexity of the algorithm The moving sequencer atomic broadcast
algorithm needs 1 +

⌈ n+1
2

⌉
communication steps for all processes to adeliver

an abroadcast message m (the first processes adeliver m after 1 + f = 1 +⌊ n−1
2

⌋
steps). Furthermore, a single abroadcast message m results in n · (1 +⌈ n+1

2

⌉
) point-to-point messages before all processes adeliver m.

A.3.2.B Group membership algorithm

Algorithm A.6 presents the group membership protocol for the moving se-
quencer atomic broadcast algorithm. It is inspired from the work in [USS03].

Whenever process p suspects another processes or that p receives a mes-
sage indicating that a suspicion has occured on another process (line 3), the
view change protocol is initiated. Process p starts by iterating over all its
ordered message batches (line 4): all messages that have been ordered but
not received are removed (line 5). Process p then sends its state to every-
one (line 6); the state includes the set of received messages receivedp, all the
ordered messages it knows of and that it has received (orderedp) as well as
the current view number.

Then, process p waits until the state of at least
⌈ n+1

2

⌉
processes in view

viewnumberp have been received (line 7). It merges the sets received from
other processes with its own (lines 8 and 9) and then proposes a value
for consensus (line 10). The proposed value is a tuple containing the new
proposed view (Π \ {suspected processes}: the current view, minus the sus-
pected processes), the ordered messages p knows of, as well as the set of
received messages.

After a decision is taken on a tuple containing the new view Πnew, the
sets of ordered messages orderedAll and received messages receivedAll (line
11), p adds the sets to its local variables (lines 13 and 14). Furthermore, on
line 12, the highest sequence number in orderedAll is stored in maxdeliver
(its use is explained below).

At this point in the protocol, receivedp (the set of received messages)
can contain messages that have already been adelivered by p. Lines 15 to

207

Appendix A. Agreement Algorithms

Algorithm A.6: Group membership protocol for the moving sequencer al-
gorithm (code of process p)

1: Initialisation:
2: viewnumberp ← 0 {number of the current view}

3: upon suspicion or receive (r, o, viewnumberp) do
4: for all (msgs, seq) ∈ orderedp s.t. msgs �⊆ receivedp do
5: orderedp ← orderedp \ {(msgs, seq)} {Remove non-received ordered messages}

6: send (receivedp, orderedp, viewnumberp) to all

7: wait until received (r, o, viewnumberp) from
⌈

n+1
2

⌉
{Update the local data structures with those received from other processes}

8: receivedp ← receivedp ∪ (
⋃

received (r,−,viewnumberp) r)
9: orderedp ← orderedp ∪ (

⋃
received (−,o,viewnumberp) o)

{Decide on the new group and the set of adelivered messages}
10: propose(Π\{suspected processes}, orderedp, receivedp)
11: wait until decide(Πnew, orderedAll, receivedAll)
12: maxdeliver← maxseqnum(−, seqnum) ∈ orderedAll
13: orderedp ← orderedp ∪ orderedAll
14: receivedp ← receivedp ∪ receivedAll

{Remove messages that have already been adelivered }
15: while ∃(msgs, seq′) ∈ orderedp s.t. seq′ < nextdeliverp do
16: receivedp ← receivedp \msgs

{adeliver new messages if possible}
17: while ∃(msgs, nextdeliverp) ∈ orderedp and nextdeliverp ≤ maxdeliver do
18: adeliver messages in msgs in some deterministic order
19: receivedp ← receivedp \msgs
20: nextdeliverp ← nextdeliverp + 1

{reset the data structures and install the new view}
21: orderedp ← ∅
22: nextstablep ← nextdeliverp
23: acksp ← (∅, . . . , ∅)
24: viewnumberp ← viewnumberp + 1
25: Π← Πnew
26: toksenderp ← process with smallest index in Π
27: if p = toksenderp then {virtual message to initiate the token rotation}
28: send (∅, nextdeliverp − 1, acksp) to all

208

A.3. Atomic broadcast

16 remove all such messages from receivedp (to avoid reordering them and
adelivering them twice). After line 16, receivedp thus only contains messages
that have not yet been adelivered. The protocol continues (lines 17 to 20) by
adelivering all messages in orderedp with a sequence number that is greater
than nextdeliverp and smaller than the value of maxdeliver (which is the same
for all processes that participated in the consensus on lines 10 and 11).

The maxdeliver limit is necessary to avoid the following scenario: con-
sider that a single process p receives the token (with a message m and a
sequence number s) from a process q that crashes shortly thereafter. The
group membership protocol starts running, but p’s orderedp set (which con-
tains the (m, s) pair) isn’t received by any other process (all processes only
wait for the state message of

⌈ n+1
2

⌉
processes). Furthermore, the consensus

decision is not p’s proposal. At this point, no process, except p, has m in its
set of ordered messages. To ensure the uniform agreement of atomic broad-
cast, p should thus not adeliver m. This is done by preventing the adelivery
of messages with a sequence number greater than maxdeliver (which is the
same for all processes and strictly smaller than s in this example).

Finally, lines 21 to 28 reinitialize the state of p. Notice that orderedp is
reset to the empty set. Thus, some messages that were ordered in view
i might be reordered in view i + 1. Such messages however, although or-
dered in view i, are never adelivered in view i and the specification of atomic
broadcast thus holds.

209

Appendix A. Agreement Algorithms

210

Appendix B

Modeling and validating the
performance of atomic

broadcast algorithms in high
latency networks

B.1 Analytical performance in a wide area
network with three locations
The following section presents the analytical performance of CT, MR and
TokenFD in the wide area network model with three locations. The first part
presents the derivation of the results of CT and MR using a fixed initial
coordinator. The slightly more complex case of TokenFD or CT and MR
using a shifting initial coordinator is then discussed.

B.1.1 Chandra-Toueg atomic broadcast
B.1.1.A Fixed initial coordinator

Table B.1 presents the average latency of Chandra-Toueg’s atomic broad-
cast algorithm using the CT and MR consensus algorithms in a wide area
network with three locations and a fixed initial coordinator. In the follow-
ing paragraphs, we show how to derive the results for an initial coordinator
that is always located on location p0. The results for an initial coordinator
on location p1 or p2 are derived similarly.

Phase (1): Message diffusion Let p0 be the initial coordinator of the
CT or MR consensus algorithm. Any process that abroadcasts a message,
needs to send it to p0 in phase (1). The cost of this diffusion is negligible

211

Appendix B. Atomic Broadcast in Wide Area Networks

Table B.1: Average latency to adeliver a message in the three-location wide
area network model, using Chandra-Toueg’s algorithm (with CT and MR’s

consensus algorithm and a fixed initial coordinator).

coord. proc.:
(1) diffusion:
(2) waiting:
(3) ordering:
Latency:

(a) CT consensus

0 1 2
d0+d2

3
d0+d1

3
d2+d1

3
d2 d1 d2

7d2+d0
3

7d1+d0
3

7d2+d1
3

2d0+11d2
3

2d0+11d1
3

2d1+11d2
3

coord. proc.:
(1) diffusion:
(2) waiting:
(3) ordering:
Latency:

(b) MR consensus

0 1 2
d0+d2

3
d0+d1

3
d2+d1

3
d2 d1 d2

3d2+d0
3

3d1+d0
3

3d2+d1
3

2d0+7d2
3

2d0+7d1
3

2d1+7d2
3

if p0 abroadcasts a message and equal to d0 and d2, if p1, respectively p2 are
the abroadcasters of the message. On average (and since all three processes
abroadcast at the same rate), we have a diffusion cost of d0+d2

3 .

Phase (2): Waiting phase In phase (2), a message sent to the coordina-
tor has to wait until a new consensus execution can start (assuming that a
consensus execution is already underway). The coordinator p0 can decide
after two communication steps (with any of the two other processes) and
thus starts a new consensus execution after that. The duration of these two
communication steps is either 2d0 or 2d2 and since d0 ≥ d2, the coordinator
can decide after 2d2. Thus, a new consensus execution is started on av-
erage each 2d2 time units. Consequently, the average waiting time for an
abroadcast message is d2 time units.

Phase (3): Ordering (Consensus) Finally, the cost of phase (3) is the
following. In the CT consensus algorithm, as seen previously, the coordi-
nator decides after 2d2 time units and sends its decision to the two other
processes. The process on location 1 thus decides d0 time units after the
coordinator whereas the process on location 2 decides d2 time units af-
ter the coordinator. On average, this gives us a cost of phase (3) equal to
(2d2)+(2d2+d0)+(2d2+d2)

3 = 7d2+d0
3 for the CT consensus algorithm.

In the MR consensus algorithm, the coordinator also decides after 2d2
time units. However, if n = 3, the two other processes p1 and p2 can decide

212

B.1. Analytical performance (three location network)

as soon as they get the coordinator’s initial proposal, after d0 and d2 time
units respectively. On average, this gives us a cost of phase (3) equal to
(2d2)+(d0)+(d2)

3 = 3d2+d0
3 for the MR consensus algorithm.

The sum of the three phases, which is the average latency for abroadcast-
ing a message using Chandra-Toueg’s atomic broadcast algorithm is thus
equal to 11d2+2d0

3 time units if CT’s consensus algorithm is used and 7d2+2d0
3

if MR’s consensus algorithm is used.

B.1.1.B Shifting coordinator

The case of an initial coordinator that changes between consensus execu-
tion k and k + 1 is slightly more difficult to analyze. Tables B.2 and B.3
present the CostSendi,j, CostWaiti,j, CostOrderj and OrderedByi,j matrices in
our modeled system where the CT, respectively the MR, consensus algo-
rithms are used and the initial coordinator changes at each consensus exe-
cution. The average latency of atomic broadcast is then easily derived using
the results presented in Section 8.4.1 (but its expression is too complex to
be explicitly presented here).

B.1.2 TokenFD atomic broadcast
Table B.4 presents the CostSendi,j, CostWaiti,j, CostOrderj and OrderedByi,j
matrices in our modeled system with the TokenFD atomic broadcast algo-
rithm. The average latency of atomic broadcast is then easily derived fol-
lowing the results presented in Section 8.4.1 (again, its expression is too
complex to be explicitly presented here).

213

Appendix B. Atomic Broadcast in Wide Area Networks

Table B.2: CostSendi,j, CostWaiti,j, CostOrderj and OrderedByi,j in the three-
location wide area network model, using Chandra-Toueg’s algorithm (with

CT’s consensus algorithm and a shifting initial coordinator).
(a) CostSendi,j(0 d0 d2
d0 0 d1
d2 d1 0

) (b) CostWaiti,j(2d2 max(3d2+d1−d0
2 , 0) d2

d2 2d2 + d0
2 + min(d0

2 , 3d2+d1
2) 3d2+d0−d1

2
d0+3d1−d2

2 d1 2d1

)

(c) CostOrderj(d0+7d2
3

d0+7d1
3

d1+7d2
3

)

(d) OrderedByi,j

1
3·(d0+3d1+5d2)

·
(4d2 max(3d2 + d1 − d0, 0) 2d2

2d2 2d2 + d0 + min(d0, 3d2 + d1) 3d2 + d0 − d1
d0 + 3d1 − d2 2d1 4d1

)

Table B.3: CostSendi,j, CostWaiti,j, CostOrderj and OrderedByi,j in the three-
location wide area network model, using Chandra-Toueg’s algorithm (with

MR’s consensus algorithm and a shifting initial coordinator).
(a) CostSendi,j(0 d0 d2
d0 0 d1
d2 d1 0

) (b) CostWaiti,j(d2 max(d1+d2−d0
2 , 0) 0

0 min(d0, d0+d1+d2
2) d0+d2−d1

2
d0+d1−d2

2 0 d1

)

(c) CostOrderj(d0+3d2
3

d0+3d1
3

d1+3d2
3

)

(d) OrderedByi,j

1
3·(d0+d1+d2)

·
(2d2 max(d2 + d1 − d0, 0) 0

0 d0 + min(d0, d1 + d2) d0 + d2 − d1
d0 + d1 − d2 0 2d1

)

214

B.1. Analytical performance (three location network)

Table B.4: CostSendi,j, CostWaiti,j, CostOrderj and OrderedByi,j in the three-
location wide area network model, using the TokenFD atomic broadcast al-

gorithm.
(a) CostSendi,j(0 d0 d2
d0 0 d1
d2 d1 0

) (b) CostWaiti,j(d2 max(d1+d2−d0
2 , 0) 0

0 min(d0, d0+d1+d2
2) d2+d0−d1

2
d0+d1−d2

2 0 d1

)

(c) CostOrderj(4d0+d1
3

4d1+d2
3

4d2+d0
3

)

(d) OrderedByi,j

1
3·(d0+d1+d2)

·
(2d2 max(d1 + d2 − d0, 0) 0

0 min(2d0, d0 + d1 + d2) d0 + d2 − d1
d0 + d1 − d2 0 2d1

)

215

Appendix B. Atomic Broadcast in Wide Area Networks

B.2 Analytical performance in a wide area
network with two locations

The following paragraphs present the analytical performance of the To-
kenFD atomic broadcast algorithm and the Chandra-Toueg atomic broad-
cast algorithm using either the CT or the MR consensus algorithm in the
two-location wide area network model. The results presented here can ei-
ther be derived directly, or from the results in Appendix B.1 by replacing
d0 and d1 by D and d2 by 0 (p0 and p2 are in the local location and p1 is in
the distant location). In the following paragraphs, we show how to derive
these results directly.

Table B.5 summarizes the latency of abroadcast using the TokenFD al-
gorithm or the Chandra-Toueg atomic broadcast algorithm. In the case
of the Chandra-Toueg algorithm, the table presents results for the CT (Ta-
ble B.5(a)) and MR consensus (Table B.5(b)) algorithms in the case of an ini-
tial coordinator that is fixed (on the local or distant location) or that changes
at each new consensus execution.

Table B.5: Average latency to adeliver a message in the two-location wide
area network model, using Chandra-Toueg’s algorithm (with CT or MR’s
consensus algorithm) or the TokenFD algorithm. Results are given for an
initial coordinator (MR, CT) on a local location, on the distant location or

that shifts at each new consensus execution.

coord. loc.:
(1) diffusion:
(2) waiting:
(3) ordering:
Latency:

(a) CT consensus

local distant shift.
D
3

2D
3

D
6

0 D 5D
3

D
3

8D
3

13D
18

2D
3

13D
3

23D
9

(b) MR consensus

local distant shift.
D
3

2D
3 0

0 D D
D
3

4D
3

2D
3

2D
3 3D 5D

3

coord. loc.:
(1) diffusion:
(2) waiting:
(3) ordering:
Latency:

(c) TokenFD

N/A
0
D
2D
3

5D
3

216

B.2. Analytical performance (two location network)

B.2.1 Chandra-Toueg atomic broadcast
As previously discussed in Section 8.4.1, the cost of the three phases de-
pends on the choice of the privileged process in the ordering phase (3), i.e.
the coordinator process in the CT and MR consensus algorithms. Three
cases are considered : the initial coordinator (1) is always on a local lo-
cation, (2) is always on the distant location or (3) shifts from location to
location at each new consensus execution. Table B.5 summarizes the la-
tency of abroadcast in all three cases, when the CT (Table B.5(a)) and MR
(Table B.5(b)) consensus algorithms are used. The analytical latencies of
the cases where the initial coordinator is on a fixed location or shifts at each
consensus execution are derived in the following paragraphs.

B.2.1.A Fixed coordinator

Phase (1): Message diffusion The cost of the message diffusion phase is
the following: (1) if the initial coordinator is on a local location, it receives
abroadcast messages from itself and its local peer (with a negligible cost) and
from the distant location (with a cost of D). The average cost for diffusing
the message to the local coordinator is therefore D

3 . (2) If the coordinator is
on the distant location, it receives messages from the local locations (both
with a cost of D) and from itself (with a negligible cost). The average cost
for diffusing the message to the distant initial coordinator is thus 2D

3 .

Phase (2): Waiting phase The duration of the waiting phase is the fol-
lowing. In the CT consensus algorithm, the coordinator decides after 2
communication steps and atomic broadcast immediately starts a new con-
sensus (if unordered messages are waiting), as illustrated in Figures B.1(a)
and B.1(b) (the consensus execution II starts before all processes have fin-
ished consensus execution I). The cost of these two communication steps is
negligible if the coordinator is on the local location (thus, the waiting time
for messages to be proposed in a consensus is negligible). If the coordi-
nator is distant, the two communication steps take 2D time units and the
messages wait on average D time units to be proposed in a consensus (since
messages are abroadcast following a Poisson process). The reasoning (and
the average waiting times) for the MR consensus algorithm is similar, since
the coordinator again needs two communication steps to reach a decision.

Phase (3): Ordering (Consensus) Finally, the cost of the CT consen-
sus phase is illustrated in Figures B.1(a) and B.1(b) and is the following.
The coordinator can decide after two communication steps and all other
processes after three steps. (1) If the coordinator is on the local location,
a decision is taken after two local communication steps (with a negligible
cost) and is received by the other local location one local communication

217

Appendix B. Atomic Broadcast in Wide Area Networks

step later (again, with a negligible cost). The distant location receives the
coordinator’s decision after one distant communication step (with a cost of
D). The average latency is thus D

3 . (2) If the coordinator is on the distant
location, it needs 2 distant communication steps to decide (with a cost of
2D), whereas both local locations decide one distant communication step
later (with a total cost of 3D for both local locations). The average decision
latency with a distant coordinator is therefore 8D

3 .
The cost of the consensus phase using the MR algorithm is similar. The

case of a local coordinator gives the same result as CT with an average la-
tency of D

3 . In the case of a distant coordinator, both local locations decide
as soon as they receive the coordinator’s proposal and their own acknowl-
edgment (resulting in a latency of D). The coordinator decides as soon as it
gets an acknowledgment from a local location, after a total time of 2D. The
average latency over all processes is therefore 4D

3 .

B.2.1.B Shifting coordinator

When the initial coordinator changes at each new consensus execution, the
analysis is slightly more complex than in the case of an initial coordina-
tor that remains on a single location (presented in Appendix B.2.1.A). In-
deed, the consensus executions no longer have the same duration, which
in turn means that the messages that are abroadcast aren’t uniformly dis-
tributed among the different consensus executions. For example, if short
and long consensus executions alternate, then more messages are ordered
in the short consensus (since more unordered messages are accumulated
during the execution of the long consensus). A more precise end-to-end
analysis of the latencies of the abroadcast messages is necessary and is pre-
sented in the following paragraphs for the case of the CT consensus algo-
rithm. The results with the MR consensus algorithm have been derived
similarly.

Phase (1): Message diffusion Figure B.1(c) presents the sequence of
CT consensus executions when the initial coordinator changes each time.
Two consensus executions with an initial coordinator on the local location
closely follow each other, followed by an execution with a coordinator on
the distant location. We start by analyzing which messages are ordered in
which consensus executions.

A message m abroadcast by p2 or p0 (the two processes on the local loca-
tion) is (almost) always proposed in consensus executions where p2 is the
coordinator. Indeed, when m reaches p1, either p1 has already started the
consensus in which it is coordinator (and cannot add m to that consensus)
or m is being decided upon in a consensus where p2 is the coordinator. A
message m abroadcast by p1 between t1 and t3 (see Figure B.1(c)) is ordered
in a consensus execution with p1 as a coordinator. Messages abroadcast by

218

B.2. Analytical performance (two location network)

consensus executions

p2

p0

I II III

time

(coord.)local
sites

p1

0 D

distant
site

(a) Local coordinator

consensus executions
I

(coord.)
p1

p2

time

IIIII
distant
site

local
sites

p0

2D D
(b) Distant coordinator

consensus executions (coordinator:)

p2

p0

time

(coord.)

I II III

local
sites

p1
distant
site

t1 t2 t3D 2D t4D

(c) Shifting coordinator

Figure B.1: Execution pattern of the Chandra-Toueg consensus algorithm
in the two-location wide area network model and in the case of a coordi-
nator on a local location, a distant location or shifting between locations at

each execution.

219

Appendix B. Atomic Broadcast in Wide Area Networks

sender
message

consensus
coordinator
p2
p0

p2
p0

consensus containing
the message

time

p1

p1

t1 t3 t4
D D2D

I
II

I
I
IIII III

III

Figure B.2: Messages abroadcast by p0 or p2 are all ordered in consensus
executions with p2 as coordinator (noted I). Messages abroadcast by p1 are
ordered in executions with p1 or p2 as coordinator (noted III and I respec-

tively).

p1 between t3 and t3 + 2D are received by p2 and p0 before t4 and are thus
ordered in a consensus execution with p2 as coordinator. Finally, messages
abroadcast between t3 + 2D and t4 do not reach p2 before t4 and are later
ordered in a consensus execution with p1 as coordinator.

In total, 5
6 of all messages are ordered in consensus executions with p2

as coordinator and the remaining 1
6 when p1 is coordinator (consensus exe-

cutions with p0 as coordinator order only a negligible amount of messages),
as summarized in Figure B.2. The sending time of 5

6 of the messages is thus
0, whereas it is equal to D in 1

6 of the cases. The average sending time over
all messages is thus D

6 .

Phase (2): Waiting phase On average, the messages abroadcast by p0
and p2 (2

3 of the messages) wait 2D time units before being proposed in a
consensus (with p2 as a leader). Among the messages abroadcast by p1 (1

3 of
all messages), the waiting time is on average D. The average waiting time
over all messages is thus 5

3 D.

Phase (3): Ordering (Consensus) As presented in Section B.2.1.A, the
consensus executions where p2 (on the local location) is the coordinator,
the average latency is D

3 . These executions order 5
6 of all messages. The

remaining 1
6 of all messages are ordered in executions with p1 (on the dis-

tant location) as coordinator, and thus with an average latency of 8D
3 . The

220

B.2. Analytical performance (two location network)

sender
message

processes

the message
token containing

p2
p0

time

p2

p0

token circulation

local
sites

distant
site p1

p1

t4
D

t1 = t2 t3
D

I

III
II

III
I
I

Figure B.3: Token circulation (top) in the two-location wide area network
model and a presentation of which token contains the messages abroadcast

by the three processes (bottom).

average consensus execution time over all messages is thus 13D
18 .

Summary Globally, this gives an average latency of 23D
9 for abroadcasting

a message using the Chandra-Toueg atomic broadcast and consensus algo-
rithms if the coordinator changes at each consensus execution.

A similar analysis gives an average latency of 5D
3 for abroadcasting a mes-

sage using the Mostéfaoui-Raynal consensus algorithm within the Chandra-
Toueg atomic broadcast and if the consensus coordinator changes at each
consensus execution.

B.2.2 TokenFD atomic broadcast
The following paragraphs present the analytical latency of the TokenFD
atomic broadcast algorithm in the two location model. As previously shown
in Figure 8.1(b) on page 139, a token circulates among the three processes
and the set of messages in the token proposal is adelivered by each token
holder (which then proposes a new set of undelivered messages). The time
needed to pass the token between processes is not uniform : indeed, it is
negligible when the token is passed between two processes on the local
location whereas it is equal to D when passed between a local and a dis-
tant location or vice-versa. Due to this non-uniformity, the set of messages
transported by the token is not the same for all tokens, which in turn influ-
ences in the latency of atomic broadcast.

Figure B.3 shows the token circulation (top part) and an analysis of

221

Appendix B. Atomic Broadcast in Wide Area Networks

which token contains the messages abroadcast by the three processes (bot-
tom part). (Almost) all messages sent by p2 and p0 are later contained in
token I sent by p2 : indeed, if a message is abroadcast between t2 and t4, it
does not reach p1 before t3 and is therefore not added to the token III sent
by p1 (but later added to the token I sent by p2). Similarly, all messages
sent by p1 are ordered in the token III sent by p1. Finally, token II, sent by
p0 contains only the messages received by the local hosts in the interval be-
tween t1 and t2 which is negligible in our model. To summarize, two-thirds
of the messages are ordered in token I sent by p2, whereas the remaining
third is ordered in token III sent by p1.

Phase (1): Message diffusion The latency of the message diffusion in
the TokenFD atomic broadcast algorithm is negligible. Indeed, messages
sent by p2 and p1 are later contained in tokens sent by p2 and p1 respec-
tively, and therefore have no diffusion cost. Messages sent by p0 are or-
dered in tokens sent by p2, resulting in a negligible diffusion cost, since p0
and p2 are both on the local location.

Phase (2): Waiting phase The cost of the waiting phase in the TokenFD
atomic broadcast algorithm is the following. Messages sent by p0 and p2
need to wait until the token is held by p2 to be ordered. On average, this
translates into a waiting time of D. The cost of the waiting phase for the
messages sent by p1 is derived in the same way and also yields an average
waiting time of D.

Phase (3): Ordering phase There are only two tokens that contain (al-
most) all unordered messages. Token I, sent by p2, reaches p0 after a neg-
ligible amount of time. Process p0 then sends updates to p2 (negligible
latency) and p1 (latency of D) about the ordered messages. The average
latency of the ordering phase over all processes of token I is thus D

3 .
Token III, sent by p1 reaches p2 after D time units. Process p0 receives

an update from p2 shortly after, whereas p1 receives the update after D
additional time units. The average latency of the ordering phase over all
processes of token III is thus 4D

3 .
Since 2

3 of the messages are ordered in token I and 1
3 in token III, the

average ordering latency over all messages is 2D
3 .

Summary By summing the latencies of the three phases, this gives an
average latency of 5D

3 for abroadcasting a message using the TokenFD algo-
rithm. These results are summarized in Table B.5(c) on page 216.

222

List of publications

Published parts of this thesis

Chapter 2
[ES05] R. Ekwall and A. Schiper. Replication: Understanding

the Advantage of Atomic Broadcast over Quorum Sys-
tems. Journal of Universal Computer Science, 11(5):703–711,
2005.

Chapter 4
[ESU04a] R. Ekwall, A. Schiper, and P. Urbán. Token-based atomic

broadcast using unreliable failure detectors. In Proceed-
ings of the 23rd IEEE Symposium on Reliable Distributed Sys-
tems (SRDS), Florianópolis, Brazil, October 2004.

[ESU04b] R. Ekwall, A. Schiper, and P. Urbán. Token-based Atomic
Broadcast using Unreliable Failure Detectors. Techni-
cal Report IC/2004/40, École Polytechnique Fédérale de
Lausanne, Switzerland, May 2004.

[ES03] R. Ekwall and A. Schiper. Revisiting token-based atomic
broadcast algorithms. Technical Report IC/2003/39, École
Polytechnique Fédérale de Lausanne, Switzerland, Febru-
ary 2003.

Chapter 5
[ES06b] R. Ekwall and A. Schiper. Solving Atomic Broadcast

with Indirect Consensus. In IEEE International Conference
on Dependable Systems and Networks (DSN 2006), Philadel-
phia, PA, USA, June 2006.

[ES06c] R. Ekwall and A. Schiper. Solving Atomic Broadcast with
Indirect Consensus. Technical Report LSR-Report-2006-
001, École Polytechnique Fédérale de Lausanne, Switzer-
land, 2006.

223

List of publications

Chapter 6
[EUS03] R. Ekwall, P. Urbán, and A. Schiper. Robust TCP Connec-

tions for Fault Tolerant Computing. Journal of Information
Science and Engineering, 19(3):503–516, 2003.

[EUS02] R. Ekwall, P. Urbán, and A. Schiper. Robust TCP Con-
nections for Fault Tolerant Computing. In Proc. 9th Inter-
national Conference on Parallel and Distributed Systems (IC-
PADS), Chung-li, Taiwan, 2002.

Chapter 8
[ES07] R. Ekwall and A. Schiper. Modeling and Validating the

Performance of Atomic Broadcast Algorithms in High La-
tency Networks. In Proceedings of Euro-Par (Euro-Par 2007),
Rennes, France, August 2007.

[ES06a] R. Ekwall and A. Schiper. Comparing Atomic Broadcast
Algorithms in High Latency Networks. Technical Re-
port LSR-Report-2006-003, École Polytechnique Fédérale
de Lausanne, Switzerland, July 2006.

Publications related to group
communication
[RMES07] O. Rütti, S. Mena, R. Ekwall, and A. Schiper. On the

Cost of Modularity in Atomic Broadcast. In IEEE Interna-
tional Conference on Dependable Systems and Networks (DSN
2007), Edinburgh, UK, June 2007.

[KE05a] A. Kupšys and R. Ekwall. Architectural Issues of JMS
Compliant Group Communication. In 4th IEEE Interna-
tional Symposium on Network Computing and Applications
(IEEE NCA 2005), Cambridge, MA, USA, 2005.

[EMPS04a] R. Ekwall, S. Mena, S. Pleisch, and A. Schiper. Towards
Flexible Finite-State-Machine-Based Protocol Composition.
In 3rd IEEE International Symposium on Network Computing
and Applications (IEEE NCA 2004), Cambridge, MA, USA,
2004.

[EPS04] R. Ekwall, S. Pleisch, and A. Schiper. Implementing Group
Communication Protocols using SDL. In Proceedings of the

224

List of publications

International IMS Forum 2004, pages 333–340, Cernobbio,
Italy, 2004.

[KE05b] A. Kupšys and R. Ekwall. Architectural Issues of JMS
Compliant Group Communication. Technical Report
IC/2005/16, École Polytechnique Fédérale de Lausanne,
Switzerland, 2005.

[EMPS04b] R. Ekwall, S. Mena, S. Pleisch, and A. Schiper. Towards
Flexible Finite-State Machine Based Protocol Composi-
tion. Technical Report IC/2004/63, École Polytechnique
Fédérale de Lausanne, Switzerland, 2004.

225

List of publications

226

Curriculum Vitæ

I was born in Jönköping (Sweden) in 1980 and am a Swiss and Swedish
national. I attended primary and secondary school in Paris (France), Hanoi
(Vietnam) and in Founex, in the vicinity of Geneva (Switzerland). In 1997,
I graduated from the International School of Geneva, La Châtaigneraie and ob-
tained the Maturité Fédérale (Swiss baccalaureat). I started studying Com-
puter Science at École Polytechnique Fédérale de Lausanne (EPFL, Switzer-
land) in October 1997. Between August 1999 and May 2000, I spent two
semesters at Carnegie Mellon University in Pittsburgh (United States) as an
exchange student and was awarded the School of Computer Science Dean’s
List twice. I then graduated from EPFL in 2002 with a M.Sc. degree in Com-
puter Science, with three distinctions.

Since May 2002, I have been working at the Distributed Systems Labo-
ratory (LSR, EPFL) as a research and teaching assistant, and as a PhD stu-
dent, under the guidance of Professor André Schiper. In the context of the
work at LSR, I participated in the European IST REMUNE project.

227

