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Abstract

The range of applications of mathematical modelling in biosciences has reeeptynded to en-
compass problems posed biomedicineandsport sciencesTopics of interest are for instance the
prediction of the response of an athlete to exercise, the pharmacokirfeiceemical compound, or
the detection of illicit drugs.

In this work, we consider some of these problems, related to metabolism, tivoudand mass
transport in tissues. First, we address the quantitative analysis of thHeehidzal reactions that are
responsible of energy production in muscle cells. These reactions iatly stependent on chemical
exchanges between blood and tissues, by several physiologicalegutiation mechanisms. For this
reason, we consider coupled problems in which the reaction phenoneinflaenced by transport in
blood. In particular, the problem of local blood perfusion and suppblubftrates to tissues is studied
in detail.

The processes underlying the interaction between metabolism and circiéatiare a multiscale
nature: for instance, although metabolism takes place in cells, it modifies itiedigaamics of pe-
ripheral (capillaries) and central (heart) circulation. Thereforewilleset up a hierarchy of models,
corresponding to these different scales.

At first, we adopt an integrative approach, based on a compartmental wiotthe whole-body
response to exercise, or more generally to variations in skeletal muscleati@tabrl his model is the
higher level of the hierarchy, describing the interactions between srgdren, we increase the level
of detail and focus on isolated tissues and vessels, considering marateaene-dimensional models
for blood flow and mass transport, as well as coupled 1D-3D models oétsdusion. In the latter
models, the microvascular matrix is represented as a three-dimensionaldmeoog medium, where
larger vessels are described as 1D networks: circulation, transmbiréaction of biochemical species
are modelled at both the scales.

The models considered in this work may provide a multi-scale analysis of metaibotiesses,
such as those induced by exercise, that often begin at cellular levgtegsively propagate up through
the hierarchy of scales, until adaptation of the whole body is reached.

Examples of simulations, dealing with exercise protocols or clinical studyscase provided to
support the range of applications.

Keywords mathematical models, metabolism, exercise, blood perfusion, multiscale models.






Résumé

La modélisation mathématique a récemment élargi son domaine d’applicationséaldginest aux
sciences du spartQuelques sujets d'intérét sont par exemple la prédiction de la réporpareite
d’'un athléte lors de I'exercice, la pharmacocinétique et le métabolisme d’uicanéeht, la détection
de substances illégales.

Dans cette thése, on considére quelques-uns de ces probléemesnanhte métabolisme, la
circulation sanguine, et le transport de masse dans les tissus. Premigremaborde I'analyse
quantitative des réactions hio-chimiques qui soutiennent la productioerdji& mécanique dans les
cellules musculaires. Ces réactions dépendent fortement des écloaimgapies entre le sang et
les tissus par le biais des plusieurs systémes physiologiques d’autoréguldbas étudions donc
l'influence entre le métabolisme, 'lhémodynamique et le transport de massieB®ment, nous
considérons en détail le probléme de la perfusion sanguine et de la distridas substrats dans les
tissus.

Le métabolisme et la circulation sanguine reposent sur des processostdjgu a différentes
échelles. D’'une part, le métabolisme interagit au niveau cellulaire. D’aatteipinfluence I'hémo-
dynamique de la circulation périphérique (capillaires) et centrale (caear)conséquent, nous intro-
duisons une hiérarchie des modéles correspondants a ces difféemdiss.

A un premier niveau, on considére une approche globale basée sysiéme d’équations dif-
férentielles qui modélise la réponse corporelle a I'exercice. Ce moddiésmye le sommet de la
hiérarchie, qui correspond aux interactions entres les organes dAuxi®me niveau, on améliore la
précision en considérant des modéles unidimensionnels de flux sanigsinjue des modéles cou-
plés 1D-3D de perfusion de tissus. Dans ces derniers, le réseaapibsires est décrit comme un
milieu poreux 3D, tandis que les vaisseaux majeurs sont représentésspijets 1D.

Les modeles considérés dans ce travail peuvent contribuer a I'amailyseschelle des processus
métaboliques qui naissent au niveau cellulaire, se propagent le lonbiéedechie d’échelles, jusqu’a
ce que I'ensemble du corps se soit adapté.

Finalement, on présente quelques exemples de simulations, concernagraticages en médecine
et physiologie du sport, afin de présenter un éventail des applicatissib|eEs.

Mots-clés: modéles mathématiques, métabolisme, exercice, perfusion des tissus, nmodiies
échelle.
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Introduction

The increasing interest in biomathematics has recently led to new applicatistigiatific computing
in domains that were previously exclusive of medicine: starting with metabolsho@ner phenom-
ena taking place at cellular level, up to the description of tissues and oagahtheir regulatory
mechanisms, mathematical modelling may help to understand the behavior ofvaddyi@rocesses.

As an example, the body’s response to heavy exercise begins in skaletales, but rapidly
induces adaptations of peripheral and central circulation. In orderteatly describe this response,
one has to take into account at the same time blood flow, transport of chenuggtge(, carbon
dioxide, lactate, ...) in blood, and biochemical reactions in tissues [Z], [59]. Similar problems
are encountered in the pharmacokinetics of specific drugs. All thebiepre have an intrinsic interest
in medicine: in particular, the quantitative prediction of the distribution of a chalnsimpound in
living tissues may provide important contributions to the development of natnments or products.

Mass transport in tissues is led by blguetfusion that is the blood volume flow exchange through
a given volume of tissue. Perfusion is a valuable indicator of the physi@gpndition of the tissue.
For example, it is known that changes in blood perfusion correlate widralgvathological processes,
such as those found with the development of tumors. Detecting changesiipéstusion may help
finding, identifying, and determining the extent of tumors or lesions. In @g&nthe evaluation of
the microcirculation in a variety of tissues (e.g. myocardial, renal, intestinabad, and spinal) is
a valuable information in a number of cases, from surgical intervention tddbign of biomedical
devices. Of course, modelling and simulating tissue perfusion may proviééer nderstanding
of the inherent mechanisms and improve diagnosis. The benefits of usimmitear models are even
more pronounced when dealing with the transport of oxygen and otlenichls. Just to cite a
few examples, in [82, 87] accurate methods are employed to study theetrafigfixygen and other
chemicals to the arterial walls; in [63, 19], models of circulation and masgioarere used to predict
the effects of pathologies or devise different shapes of prosthesdseftreatment of heart diseases;
computer simulation of biological transport phenomena has been appliedrinnspdicine as well
[106,/62], since the study of the physiological processes from oxygake to local biochemical
pathways [69, 26, 41] has a remarkable interest.

From this picture, it is clear that mathematical models of blood perfusion ansjtwet of chemi-
cals in tissues are important tools for diagnosis and research in medicinevelp the description of
blood flow from large vessels down to the network of hundreds of thmissaf capillaries per square
centimeter supplying a tissue, is a very complex matter. The more precise thistioelenore expen-
sive the corresponding computations: thus, a three-dimensional simulékitwod flow and transport
is unaffordable for the whole human cardiovascular system. Only losaltseare available in this
regard (see for example to [82]). If on one hand a need for gloledigiive models exists, on the other
hand the complex multiscale nature of circulation and metabolism makes their simalatifficult
task. To our knowledge the only mathematical models allowing both the simulationssfmaasport
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2 INTRODUCTION

at the macroscopic scale of the whole cardiovascular loop and the praditubstrate delivery to

a specific organ or location, are purdlympedmodels (obtained by compartmental analysis, see for
instance [15]), in which any geometrical information about flow or distritugbchemicals is lost:
works adopting this approach are for instance [12], [58]. Neverssekdternative approaches exist,
consisting in using reduced models preserving some geometrical informakonsnstance, three-
dimensional models of blood flow can be reduced to one-dimensional$38298104, 31]: thanks to
the computational saving, they allow simulating the behavior of complex vastetaorks.

The purpose of this thesis is to develop numerical methods for the simulati@aneptrt-reaction
phenomenain living tissues. We follow a multiscale approach, in which a bigraf models, having
different levels of detail, is employed. Models belonging to different scaleract to represent the
mutual influence of the corresponding “subsystems” of the body, withithe@fdescribing complex
processes such as exercise (see fig. 1). As instances of interazleg we will consider: organs
and circulatory system; fast flow in large vessels and slow flow in the cgpiizat; the transport of a
chemical in a vessel and the metabolism of the same chemical in the tissue sbyplied/essel.

circulation,
nervous stimuli

al processes

liver and
other organs

skeletal muscle

Figure 1. Macroscales and microscales interacting in the human body:plazadsses taking place
at cellular level affect the behavior of whole organs. For instancegcillmetabolism is altered in

skeletal muscle because of exercise, this results in local changes ind@stentration of oxygen,

carbon dioxide, lactate and several other substrates. The peripheudtion responds by increasing
the cross-sectional area of the vessels supplying the tissue. This fatligeral resistance is partially
responsible of adaptation of heart beat. On the other hand, liver aadatjans are involved in the
process as regulators of arterial concentrations of some substraglsose).

The outline of this dissertation is as follows (see also the thesis organizatigr2i fi



INTRODUCTION 3

In chapter 1 we investigate the use of mathematical models for describing the respociseuef
lation and metabolism to extreme conditions at high power outputdpngpartmentabpproach. A
special attention is paid to the modelling of biochemical pathways at cellular Weeinclude in our
analysis the baroreflex and chemoreflex feed-back systems, whichsapansible of the mutual in-
fluence of circulation and metabolism (see [101], [59]). The resultgwmilations of typical exercise
protocols are discussed, emphasizing the changes in blood concestrdtrefevant chemicals such
as oxygen, carbon dioxide, lactate, glucose.

There is a number of works dealing separately with cardiovascular or olietatodelling; how-
ever, the interaction between these processes due to physiologidaadiesi/stems is often poorly
described, even if integrative models have been proposed as welb(sestance [12]). In this chap-
ter we give a more detailed analysis of the interplay between circulation actdoiastry during
effort conditions, for instance considering the key role of the tissuemator tone adaptations, and
the modified baroreflex regulatory effect during exercise.

Moreover, we treat in detail the problem of parameter identification, whialtentral topic when
dealing with a large number of equations modelling biochemical reactions, ssoedly only partial
informations are available vivo. Several approaches (gradient algorithms, genetic algorithms, hybrid
algorithms) are compared and discussed.

In chapter 2 we introduce reduced models for the simulation of the mass transport ialsiess
We extend an already existing one-dimensional model of blood flow to toeah$tance oxygen
transport and, in general, the transport of any chemical. By an asymahatigsis, we derive the 1D
mass transport equations in the vessel and give an accurate analygispécial case dffat profiles
for both velocity and mass. In the latter case, we show the global existérregudar solutions
under suitable hypotheses, basing our arguments on [13]; in particalaeat the finite vessel case.
Moreover we perform an accurate characteristics analysis of théezbsystem (blood flow and mass
transport) in order to assign suitable boundary conditions. We proviaerical results including an
example of coupling between the 1D model and a dynamical system refingsperfused tissue.

In chapters 3and4, we propose a mathematical framework that will be the basis of our multiscale
approach to tissue perfusion. Namely, we study the coupling between tiusidif-reaction prob-
lems, one defined on a 3D domain, the other on a 1D manifold embedded in then3&aind The
motivation is to apply such models to capture the influence ofjfmmetryof a vessel network on
the perfusion of the surrounding tissue. The coupled 3D-1D probleresdaigh dimensional gap:
the 3D solutions are singular near the 1D manifold, so that a special arnialysisded. We introduce
ad-hocfunctional spaces and prove the well-posedness in cases of interest.

To our knowledge, this is the first attempt to employ such kind of multiscale maatddéafod flow
and transport phenomena in living tissues. A similar approach is ofterietlspgeomechanics, for
example when modelling groundwater flows in fractured porous media.rtieless, the dimensional
gap of the 1D-3D coupling between fractures and porous matrix is natatdnits analysis is the main
contribution of this chapter.

In chapter 5finite element approximation schemes for the problems introduced in chapads 3
4 are considered and discussed. We introduce several numericaigiee that allow for accurate
solutions despite the presence of the singularity. We consider the casée&cmtivd 1D mesh is built
as anedge pathin the 3D computational grid; a specific algorithm to extract such edge patin fr
medical data is presented in the next chapter.



4 INTRODUCTION

In chapter 6 we introduce specific models for tissue perfusion and mass transpoguegisWe
take advantage of the theory presented in chapters 3 and 4, anchuddsgale approachthe 3D
microvascular matrix is represented as an homogeneous medium, where/éaggls, described as
1D manifolds and possibly arranged in network structures, are supgiloeg to the lower vascular
hierarchies in the tissue. The major advantage of this approach is theededomputational cost of
simulations, at least with respect to a full 3D model of the vessel netwdrIdw cost is also due to
the fact that time scales split as well: typically blood flowdstin the network of major vessels and
slowin the microvascular matrix. Consequently, we can consider different tisoduteons (nultirate
schemes) for the two scales, assigning a larger time step to the 3D part oigied model.

We discuss computational techniques, we propose algorithms to automaticedist &xe mesh of
the 1D vessel network from the 3D tissue mesh and available data prowideddical imaging, and
show applications in some cases of clinical interest dealing with blood penfasi oxygen delivery
to tissues (for instance the brain).

Chapter 1 Chapter 2

— Interaction between
circulation and local
biochemical processes

1D reduced models
for blood flow and mass transpor

Chapter 5
Chapter 3 Chapter 4
FEM schemes for
Introducing 1D-3D Analysis of 1D-3D the approximation
coupled problems coupled problems of the solution of 1D-3D | |
coupled problems
Chapter 6

Multiscale modelling of blood flow
and mass transport in tissues

Figure 2: Thesis organization.



Chapter 1

Modelling the interaction between
cardiovascular system and skeletal
muscle metabolism

1.1 Introduction

The analysis of the physiological response of the human body to lodatieas in metabolism is
a very complex subject. Despite a certain number of biochemical data, orly anhthematical
models are available to provide quantitative descriptions of the coupling betineanodynamics and
metabolism. Beyond doubt, the following aspects have important roles in trstofifyical adapta-
tions:

a) the biochemical processes in skeletal muscle;
b) the substrate (oxygen, glucose, lactate, . ..) transfer betweenh drholtissues;

c) the cardiovascular feedback with respect to arterial pressureuostirate concentrations (i.e.
baroreflex and chemoreflex effect).

In this chapt&r we consider the mathematical modelling of the interplay between blood flow
and local biochemical reactions, especially under effort conditionsy d&en the existing studies
either focus on the cardiovascular part (as in [59]) or investigate tlehbinical processes (see [52],
[49], [53]); an integrative approach is developed in [12], howeber topic of the autoregulation
of the cardiovascular system is neglected. In the next sections, wanfimiuce the physiological
framework of the problem and discuss the standard variables of inteoesidering for instance an
individual running on a treadmill or riding a cycloergometer; then we priese model, and finally
we discuss the results of numerical simulations, comparing them with availahle da

1.1.1 Cardiovascular parameters and auto-regulation

In a standard treadmill test, sport physicians usually measure some typieahgters related was
exchangelike theoxygen uptak® o, and thecarbon dioxide productio¥ ¢o,. BothVp, andV o,
are mass transfer rates (they are expressed for instari¢enin —]); their values are obtained by a

Part of this chapter has been published in the proceedings of CEMRAGS[21].
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6 INTERACTION BETWEEN CIRCULATION AND TISSUE METABOLISM

digital system that samples the expired air, and measures chemical catioestby mass spectrom-
etry.

Among the other variables measured in such a test, théreaid rate HR, whose units are beats
per minutelbpm = [ min~!]. The heart rate is related to toardiac outputQ and thestroke volume
Vstroke DY the simple relation

Q = ]ﬂ?«vstrokea

whereQ (usually expressed il min—!]) is the total volume of blood pumped by the heart through the
circulatory system per unit time, and)Mkeis the volume of blood ejected at each heart contraction.
A normal value for cardiac output at rest is close to 5-6 |minThis increases to approximately
15-25 Iminm! in healthy adults at maximal exercise. Stroke volume ranges from approkmate
80 ml during upright rest up ta30 ml during exercise. In elite endurance athletes however, stroke
volumes can be as high as 180-200 ml. During dynamic exercise heartaegasas with respect to
the workload and oxygen consumption [10]. Typically, heart rate rafrgen 50-70 bmp at rest up to
180-200 bpm at maximal effort.
The measurement of substrate concentrations in blood is a more compleryrecit is generally
performed via catheter sampling. We denote the chemical concentratid@spyC'O-], and so on:
an important role in exercise physiology is played by the blood concentrétion im arteries|Os],,
and in veins[Os],. The arterial-venou®- difference

AG[O02] = [O2]q — [O2]y

is an index of the oxygen consumption by tissues (especially skeletal mu€tiejnical concentra-
tions in blood are generally expressed in terms of molar vdloesol/ 1] or fractional value$ ml/ 1].
The arterial-venous oxygen difference is relate¥ ¢g and(@ by the following relationship

VOQ = QAZ [02} 3

which expresses the balance between oxygen intake and consumption.

We point out that it is possible to measure chemical concentraitidissuesas well, after a local
biopsy; however, this is a rather complex procedure, saithatvo data for human metabolism under
effort conditions are difficult to obtain. Recently, MRI is becoming a pdwedool for non-invasive
measurement of local metabolic demand [90]. Often the units associated tortbentration in a
tissue aré mmol/kgdwj, wherelkgdw] means kg of dry weight of tissue.

In dynamic exercise the whole body arteriovenous oxygen differ&f¢e,| increases with ex-
ercise intensity and oxygen consumption. Typicallf[O-] ranges from50 ml(Oz)/ I(blood) at
rest to approximately50 ml/ | during maximal exercise. Arterial oxygen content of approximately
200 ml(O2)/ ml(blood) does not change substantially with increasing exercise intensity but senou
content falls considerably until approximately 85% of the oxygen is extlagtemaximal effort.
Moreover, at rest only a small percentage of the total capillaries in adissue are open, while
during dynamic exercise the reduced oxygen concentration causeasdtieles and capillaries to di-
late, and the opening of closed capillaries. This effect, callesmoreflexprovide more blood (and

2Generally one measures the fractional concentratfansf expired gases; this provides the pulmonary gas exchange
rates, sinces the fractional concentrations of inspired géisase known. For example,

1 - Feoy —Feco, o )
Fi,NQ e,U2 ’

Vo, = V. (Fo

whereV. is the ventilation.



1.1 — INTRODUCTION 7

then more oxygen) to the tissues. It is a biochemical effect that involvesattokovascular system,
because it results in a dramatic fallligdrodynamic resistanEeof the tissues fed by the circulatory
system.

This high variability in the peripheral resistance of the small vessels infasahe cardiac activity
via thebaroreflexeffect, which is a physiological regulation system that maintains the arteeisépre
in the large arteries close to a reference mean value (typig@Hy 100 mmHg). It consists of stretch
receptors in most of the large arteries of the thorax and neck (especkrlgottic arch and carotid
sinus), which respond to changes and rate of change in pressurecétand 180 mmHg for the
carotid and90 and 210 mmHg in the aorta. The receptors act on the heart rate and on the heart
contractility: for example, if the arterial pressure decreasedirihg rate (that is the nerve activity,
expressed in impulses/second) of the aortic arch and carotid sinussiesyead this causes a rise
in HR and in heart contractility (that is, as we will see, igs¥e. The baroreflex effector controls
also the peripheral resistance of the arterioles and capillaries, bugdwdmncise the main effect is on
the heart. The baroreflex is a very important feedback system bettauagerial pressure is a vital
parameter (if the blood pressure does fall, the oxygen partial predsease conversely, high pressures
are related to cardiovascular diseases).

Typically, the oxygen fall in exercising tissues causes (via chemorefleduction in their hydro-
dynamic resistance and then in the overall systemic resistance; in turnytneflex acts immediately
to compensate the arterial pressure decrease. Hence, the mean@amtsgate does not change sig-
nificantly (generally an increase up 185 — 130 mmHg is observed), while the cardiac output does
(see tah. 1.1). The functional structure of these interactions is repeesa fig. 1.1.

\ Parameter | Rest| Exercise] A% |
Cardiac output) [ I min—1] 6 21 +250%
Arterial Pressurd® [ mmHg 90 105 | +16.7%

Systemic resistanck [ mmHg min /1] | 15 5 —66.7%

Table 1.1: Differences i, P andR = P/ between rest and strenuous dynamic exercise.

To sustain physical activity for more than a few seconds requires drachatitatory adjustments
to ensure adequate perfusion of the exercising skeletal muscle as wdllvdal organs such as
the heart and brain [35]: in fact, the demand of blood flow in a large voluhexercising muscle
can approximate the maximal cardiac output [92]. Thus, the cardiovassydtem has to control
the delicate balance between pressure regulation and oxygen debedmg theredistribution of
the blood flow to each tissue affected by the local state of vessel dilatatsbmamnber of open
capillaries (as reported in tab. 1.2). The exact mechanisms involved in thgsated process are not
entirely known. It is established that hemodynamic adaptations to exereiggegliated by a decrease
in parasympathetic and an increase in sympathetic activity controlled botretlyfdevard stimuli
from increased central drive (due to the voluntary muscle contractiwhjpg feedback arising from
mechanically and metabolically sensitive afferent nerve endings in thedatey@es and contracting
skeletal muscles.

3We recall the Poiseuille’s law for a cylindric tube. If a pressure juivip is applied between the inlet and the outlet,

the flow rate is given by
AP 8nl
== RrR=2C
Q R b 7_(_7_4 b
wherel is the tube lengthy the section radius, angithe blood viscosity.R is called haemodynamic resistance, as if the
tube were an electrical resistance (in wh@glis a current and\ P a voltage).
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\ Organi | Qi (mImin~"), rest| Q;/Q % || Q: (mlmin~"), exercise| Q;/Q % |
Brain 650 13 750 4
Heart 215 4 750 4
Skeletal Muscle 1030 20 12500 73
Skin 430 9 1900 11
Kidney 950 20 600 3
Splanchnic Organs 1200 24 600 3
Others 545 10 400 2

\ Total \ 5000 \ 100 H 17500 \ 100 \

Table 1.2: Flow rates at rest and at strenuous dynamic exercise [34] .

Chemoreflex—— Baroreflex

Circulation

) - Flow rates
Systemic resistances . .
— ) — Arterial concentrations | <
——| Venous concentrations
Pressures

Metabolism

Figure 1.1: Functional representation of the interaction between circukatidmetabolism.

1.1.2 Gas exchange and ventilation

If V02 = V02 (t) is measured during an exercise consisting of an increasing workloatmtheourse
shows a maximal oxygen uptak&,,max that cannot be exceeded. For young subjects, this plateau is
usually 10-20 times the bas\éib2 uptake and it can be increased by appropriate training in high-fit up
to 20-22 times the bas¥lo, .

This maximal oxygen uptake is an useful (even if somehow imperfect) poeditthe ability to
perform prolonged dynamic external work or, more specifically, ofueaigce athletic performance,
because in this case the energy currency of muscles is the aerobio @niacliple, as there are several
physiological mechanisms controlling the ventilation, we should consider alrabdas exchange;
nevertheless, for healthy people the limiting factor to aerobic performamdetermined not by lungs
(as the concentration gradient between the alveolar oxygen and thesvem®is often high enough to
saturate the arterial blood, even at a very high cardiac output), bet fathhe cardiovascular system.

In fact, as described in tab. 1.3, we can observe that the arterial pae&dures £, and R, are
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| Exercise intensity V. (Imin~") [ Py, (mmHg) | Pco, (mmHg) | Blood pH |

Rest 5 103 36 7.40
Walking 20 103 36 7.40
Jogging 45 106 44 7.40

Running fast 75-44 110 44 7.32

Table 1.3: Acute respiratory response to graded dynamic exercise iyeaB®|d untrained woman.

almost the same at rest and under effort conditions. Hence, in this che@tdo not consider a
ventilation model and we suppose th@t], and[CO;], are constant.

In tab.[1.3 a decrease in blood pH (acidosis) with respect to exercissiigtenobserved. From
the midway point betweebfoﬂest andVogmax, lactic acid begins to accumulate in blood. This point,
which depends on the type of work involved and on the level of fithessedfubject, is callethctate
threshold Lactate concentration gradually rises with work intensity, as more and marelerfibers
must rely on anaerobic metabolism: this causes metabolic acidosis, which iflypeetiponsible for
muscle fatigue.

1.1.3 Metabolism

Several chemicals are involved in muscle contraction: a large numberaioreatake place in each
fiber in order to transform the chemical energy of certain molecular bowneiechanical work. In
particular, this is obtained froT P (adenosine triphosphate) breakdown as follows:

ATP ™8, ADP + Pi + mechanical energf~ 30KJ) + heat

where Pi is an inorganic phosphate group, add P is the molecule of adenosine diphosphate.
We denote by MR thenetabolic rate that is the rate at whicllT P is converted tcADP in the
skeletal muscle tissue (expresse@immol/ s|). As muscle contractions rely completely on the former
reaction, MR is related to the power output during exercise. Actually, theiatmad the mechanical
energy available for muscular work obtained frotfi’ P breakdown is not always equal 30KJ: it
depends on the exercise level [50], so that the relationship betweemiBoaver output is generally
nonlinear.

Several reactions act to sustain the energy production in cells by restifi® (see [37]): fol-
lowing [11], we will assume the metabolic pathways described below.

1. Phosphocreatine breakdown:this is the most important pathway for short-teA#' P produc-
tion. The reaction is
PC + ADP X% cR + ATP,

where creatine({ R) and AT P are produced from phosphocreatiid&{) andAD P. We denote

by PCb this reaction. As a source dfT’ P, the phosphagen system can only supply a cell for
8 to 10 seconds during the most strenuous exercise; theR¢heoncentration becomes too
small for sustaining the reaction.

2. Phosphocreatine synthesi¢PC's): this is the inverse pathway #fCb, and allows to restore
the PC stores usingA7T' P:

CR+ ATP L5 pc + ADP.
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. Anaerobic glycolysis(G Lb). The overall stoichiometry of glycolysis is the following one (we

denote it byGLb, or glucose breakdown):

GL +2ADP + 2NAD S 9Py £ 2ATP + 2N ADH.

Like most chemical reactions, glycolysis slows down as its products, jgyacid PY and the
reduced coenzym& AD H, build up.

. Pyruvate reduction (PYr). In order to speed up the glycolysis, pyruvate can be reduced and

converted to lactate:

PY + NADH 2X", LA+ NAD.

Lactic acid itself eventually builds up, slowing metabolism and contributing to méesidigie.

. Gluconeogenesi¢G Ls) In splanchnic organs (namely in the liver) pyruvate can be converted

back to glucose:

9PY + 2ATP + 2NADH S5 GL + 2ADP + 2N AD.

This pathway is not observed in skeletal muscle.

. Pyruvate oxidation (PY 0). This pathway allows to metabolize the pyruvic acid aerobically.

Pyruvic acid is converted to a molecule called acetyl group and put intréies cycle from
which high energy electrons are releasedvtd D:

PY +5NAD £X° sNADH + 3C0,.

. Oxidative phosphorylation. The high energy electrons obtained by the oxidatio®®f are

sent to a process within the mitochondria known asetketron transport chaiwhich produces
AT P, the waste products beirgO-, and H;O:

1
8ADP + NADH + 0, OP 3ATP + NAD + H,0.

This reaction will be denoted by OP (oxidative phosphorylation). In thiegssO is one of
the reactants: this reaction is responsible for the high oxygen demandueitidsring exercise.

. Glycogen synthesis and breakdowliGY's, GY b): skeletal muscle and liver contain a certain

store of glycogen@Y), a big molecule that is a sort of gathering of several glucose molecules.
Glycogen can provide glucose by the following reaction:

GY + ADP Y% mGL + ATP,

wherem is the number of7L molecules in on&'Y molecule. However7Y can be restored
from GG L via the following pathway

mGL + ATP E¥Y5 Gy + ADP.

. Lactate oxidation (L A0): this is the inverse reaction #fY'r. Pyruvate can be produced starting

from lactate:

LA+ NAD 2% py + NADH.
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10. Free Fatty Acid oxidation (F'Ao): cells can oxidize free fatty acid$'(d) to provideNADH
to the electron transport chain. The stoichiometry of this reaction is the foliparie:

FA+43NAD 4% 1600, + 43N ADH.

The main biochemical pathways we consider are depicted in fig. 1.2. Wekénadrthere are some

g A .
N
[ Acetyl CoA
“‘ NAD
\ l NAD NADH
\ AN \Triglycerides
| Krebs Zgm NaDH NAD \
!

Oxidative

7 _Phosphoryiation | / /

COq

ATP

Figure 1.2: Sketch of the main metabolic pathways.

chemicals that argansportedby the blood, and other chemicals that are not. We assumePthiat
CR, ADP, ATP, NAD, NADH andGY are not transported; they are produced and consumed
within the tissue.

1.2 Cardiovascular Model (CVM)

A cardiovascular model (CVM) is needed to compute the blood flow and thetrsiie flux delivered
to the different organs/tissues. In this chapter, we adegphapartmentatiescription of the processes
of interest: our CVM will be a simple system of ordinary differential equatio/e will take into
account the systemic circulation, but not the pulmonary one. The modahecis depicted in fig. 1.3:
the block RH/L/LH represents the right heart, the pulmonary circulation withuihigs, and the left
heart. The left ventricle pumps the blood in the main arteries with a flom@gtéorresponding to
the cardiac outpuf)). The main arteries are represented by a compli:mEeand a resistancg,,
that is the arterial pressure, obeys the equation

dP, P, — P
Caw - Qa - Ra 3

(1.1)

being P, the mean blood pressure between the main arteries and the capillary bedex {sgstemic
pressure). The tissues include a global systemic complidpemd a resistance. In the sequel we will
consider three compartments with different metabolic activities:

“We refer to|[46] for the description of vessel compliance: basicallyinearize the mechanical behaviour of the vessels
and introduce a constaat such that the volume variations of blood in the considered compartmeptaportional to the
pressure, that i = V,, + C P, whereV, is the unstressed volume (constant).
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B L /LH Q.

Figure 1.3: Scheme of a reduced circulatory system.

1. theskeletal muscleompartment, with resistande;,,, and blood flow rat&),,,;
2. thesplanchniccompartment, with resistande,, and blood flow rate),,,
3. a compartment representiather organswith resistance?, and blood flow rate),,.

Introducing the venous pressufg and the venous compliancg,, we are able to express the flow
rate in each compartment as

Q=210 e {smosp.o). (1.2)

Moreover, we have the following equation for the systemic pressure:

dP; P,—Ps P;—P,

Cs dt R, Ry

(1.3)

being R the total systemic resistance:

1 1 1\ !
Rs = - . 1.4
<R5m+Rsp+Ro> (14)

By the conservation of the total mass of blood, the venous preg3uilinearly dependent o,
andP;: if V andV, is the total and unstressed volume of blood, we have

CoPy =Vo = Vy — Co Py — CsPs. (1.5)

Equations|(1.1,. [.,1.5) can be recast in a set of two first-order linéaraoy differential equa-
tions, once the cardiac outp@, (¢) is given. As we know from the previous sectid@p, is related to
heart rate and stroke volume by

Qa = HRV stroke (1-6)

and bothHR and Vgyoke @re under the control of the sympathetic and parasympathetic activities. We
assume P
Vstroke = ‘/e,dia(Pv) - Vu,vent - Eaa (17)



1.2 — CARDIOVASCULAR MODEL (CVM) 13

whereV, 4, is the end-diastolic ventricular volume (which is a known function of the veipoesssure,
[107]), Viuwent is the unstressed ventricular volume, afids the ventriculaelastance Defining the
heart period’ = 1/HR, we follow [101] and assume

T % = To—-T- UT,s(fes) + UT,U(fev)v (18)

TE C(li—f = Ey—E— UE(fes)7 (19)

fes = fes,oo + (fes,O - fes,oo)e_kesfcsa (110)
fev,O + fev,oo exp((fcs - fcs,O)/kev)

Jeo T op((fer — SV her) A

fcs fmzn + fmax eXP((Pa - Pn)/ka), (112)

1+ eXp((pa - Pn)/ka)

whereor s, o7, andog are monotonically increasing functionB,, is thereference pressurealue
(for examplel00 mmHg), P, is a zero-pole filtering of the arterial pressure,

Tp% :Pa—Pa—i-Tz%, (2.13)
and f.s , fev, fes are respectively thefferent sympathetiactivity, efferent vagalactivity and the
carotid sinus firing rateIn this way the baroreflex control on the heart rate and elastance isitdke
account: if we consider a low-frequency regime, we h&ye~ P,, and f,, increases with respect
to the arterial pressure. Thus, equations|(1.8,1.9) represent afdesistem that acts on the arterial
pressureP, to get it close to the reference valig. For example, ifP, is small, thendT'/d¢ < 0 and
dFE/dt < 0, and the cardiac output increases; this in turn causes the ridgtofvard the equilibrium
point P,.

If the hydrodynamic resistances of tissues were known, equations.(1111.3) would form a
closed linear dynamical system with 5 state variatitesP;, T, E, P,. However, the vagal activity
and chemoreflex effect do influence the tissue resistances, so thaweediconsider more state
variables. We model the chemoreflex as in [101], that is we definedofsm, sp, o}:

dR; - .
TEW :Ri,O_Ri‘i‘O—Ri(fes)a (1.14)

and then we follow an approach similar to [102], considering

Rsm
Ry = T
Ry = Ry(l+ ), (1.15)
RO
° T 1y,

wherex;, i € {sm, sp,o}, are new variables, that are supposed to be affected by the chemorefle
activity fe,:

dxi
Codt
whereG,,; are positive constants. The chemoreflex effe¢tor = f..([O2]sm) iS @ non-increasing
function of the oxygen concentration in the skeletal muscle tissue; by (nth)1.15), the lower the

Ta =20 — i + Gy, fem, i € {sm, sp, o}, (1.16)
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Compliances and unstressed blood volumes:
Cy = 0.3 ml/ mmHg Cs =3 ml/ mmHg C, = 61.11 ml/ mmHg
Vo = 5300 ml Vi =4700 ml Viuwent = 16.77 ml

Vagal and sympathetic activity parameters in eq. (1.9{1.12): as in [101], where for 0 € {7}, E, Rem, RSP, RO}:

GG In es — Jes,min + 1 |f es > es,min .
oo(fes) = { 0 Ve o1 ) otﬁerwisJ; » and:
UT,'U(fev) = GT,’Ufe’U'
To=0.02 s TrT=2S Grs =052 s?

Gr., =026 s?

Ey = 1.69 mmHg/ ml TE=2S Gg =0.2 s- mmHg/ ml
Remo=06 mmHg-s/ml 7 =10s Gp.. =55 mmHg- s/ ml
Rspo =1 mmHg- s/ ml Té;p =10 s Gy, =35 mmHg- s*/ ml
Roo =0.6 mmHg- s/ ml Th =10 s Gg, = 1.5 mmHg- s*/ ml
Tom,0 = 1 Teem =1 S Ge,,, =6 S
ZTsp,o =1 Teep =1 S Gz, =0.04 s
To,0 =1 T, =1 S Gz, =158
Chemoreflex activity and P, shifting:
kem = 0.25 kgdw?/ mmol?/ s [02]%,, = 6 mmol/kgdw
Pr0 =92 mmHg 7p, =10 S Gp, =10 s- mmHg

Table 1.4: Cardiovascular model parameters.

oxygen concentration in exercising tissues, the lower their resistancthargher the splanchnic
resistance. In particular, we found a good agreement with standar¢i.@atinose of tab. 1.2) with a
quadratic dependence §f,, on the oxygen concentration (which is a compromise between the linear
[102] and the exponential [58] case):

_ Y if [O2]sm > [O2)%,
o = { kem ([02]%,, — [O2]em)?  otherwise : (1.17)

where[0,]% is a fixed threshold value for the oxygen concentration.

As pointed out in [71],[[72], the response of baroreflex effector itttreased metabolic rate
can be described byshifting of the reference valu®,, of the sigmoid curvef.; = fcs(Pa) defined
by (1.12). We included this effect in our model consideriigas a state variable affected by the
chemoreflex:

dp,

F :Pn,O_Pn+GPnfcm- (118)

TP,

Equations|(1.1,...,1.18) form our final global cardiovascular model.p®@¥et out that in these
equations|O |, is aninput variable in other words we need tssue metabolism modérMM)
in order to provide this variable to the cardiovascular model (CVM). Thé/1Gind TMM shall be
coupled via the oxygen concentrations (TMM CVM) and the flow rates (CVM— TMM). In
tab. 1.2 the parameters for “standard” healthy individuals (rest hat®® bpm, rest cardiac output
5 Imin~!, ...) are reported (being the undefined values as in/[101]); hawéwey have to be
slightly adjusted when simulations are carried out for different subjeasaill present an example
in the section devoted to the numerical results).
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1.3 Tissue Metabolism Model (TMM)

We will deal with two kinds of metabolism models. The former is very simple as theabremical
considered is oxygen. The second one is more detailed and describesl shemical pathways (see
section 1.1.3) that allows to account for the dynamic of a number of metabgiitels,asPC, GL,
LA and soon.

1.3.1 Arterial and venous concentrations

The concentration of any chemical in the venous blood is strongly related tmtitentration of that
chemical in the upstream tissue. As in [11], [12], we will assume a lineatiorlaetween venous
and tissue concentration, that is, for each metabglitee assume

[Cloi = of [C]s, (1.19)

being[C],,; the venous concentration downstream e tissue [C]; the concentration in the tissue,
andc¢ the partition coefficienof the chemicalC. The mean venous concentrati@ri,, in blood is
obtained imposing the mass conservation, that is:

Clo= ) %[C]v,i- (1.20)

1€{sm,sp,0}

As previously discussed, we assume that the only chemical specietedffgcthe pulmonary cir-
culation areO, and CO,; according to tab. 1.3, their arterial concentrations are constant. For the
remaining chemicals, we assume no mass exchange in the pulmonary circutatbart:

[Cla = [Clo, C ¢ {02,COs};

[Cla =[Clq otherwise (1.21)

1.3.2 One-chemical model

A simple metabolism model is the one in which only oxygen is taken into account.e Ifatie of
oxygen consumption in a certain tissue is known, we can assume the folloalisagcke equation for
the oxygen concentration:

d[O2];
dt

Vi = —OPi(t) + Qi(t)([02]a,; — 0*[Oa]y), (1.22)
whereV; is the “volumé&” or mass of the tissue (depending on the units used for concentrations),
[O9]; is the Oy concentration in compartment OP, is the oxygen consumption rate (the oxygen
consumed by the oxidative phosphorylation per unit tingg)is the blood flow rate[O3], ; is the
arterial concentration ab-, andal.o2 is the oxygen partition coefficient. The resting metabolic rate
OP! is usually known, as well as the resting arterial and tissue concentrétigl)s; and[O,]?, and

the mean resting flow ratg?. Thus,aio2 can be estimated by the following balance equation at rest:

502 — [02}2,1‘ - OF‘z)/Q?

' [02]7

SVery often, being the available physiological data fiGk); expressed in mmol kg' or mmol kgdw™ ' (where kgdw
means “kg of dry tissue”y; is not a volume; it is rather a weight (or a dry weight).
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Another way to estimate the partition coefficient is to set directly
o)
0, = [02}8,1'/[02]?7

Where[Og}gji is the resting venous oxygen concentration: the two approaches have t@bgut the
same results.

1.3.3 General multi-chemical model

In order to take into account the interaction between several chemicalubsttates in tissues, and
to obtain a more detailed description of the skeletal muscle bioenergetics vevéocheonsider more
complex multi-chemical metabolism models based on the main pathways descrileetion 4.1.3.

In metabolic control analysis (see [39],[89]), pathways are repteddry associating geaction rate

g to each reactiorR. A reaction rate is a function of the chemical concentrations (and of time)
which represents the molar consumption of a reference substrAtpén unit time ( mmogec—1). To
each reactio? presented in sec. 1.1.3, we associate a reference reactant (tabndl.g) define'r

as the molar consumption rate of that chemical by that reaction.

\ Reaction\ ReactantH Reaction\ ReactantH Reaction\ Reactant\

PChb pPC PCs CR GLb GL
PYr PY GLs PY PYo PY

OoP o) GYs GL GLs GY
LAo LA FAo FA

Table 1.5: Reactions and associated reactant.

For each compartment we define astate vector; consisting of the chemical concentrations of
metabolites we are interested in, andeaction rate vectorp, whose components are the reaction
rates of all the reactions.

The explicit expression of); may be given in a different way for each compartmgrend state
vectors referring to distinct compartments may include distinct metabolites.

The stoichiometry of the chemical reactions is taken into account by meanstoichiometric
matrix A; (an example is shown in tab. 1.7 for= sm) such that the elemetif;),, is the (signed)
number of produced molecules of th® metabolite when one molecule of the reactant associated to
the k™" reaction is consumed. For exampleyify is the rate at whiclPY is consumed by pyruvate
oxidation, we have that1 and5 are the corresponding stoichiometric coefficients for respectively
PY andNADH (because for each consumed molecule of the associate re&itanrt1 molecules
of PY and5 molecules ofN AD H areproduced.

In this manner, the conservation of the mass of each chemical reads adldtény system of
(nonlinear) differential equations:

dCZ' .

V,—
dt

Aiwi(cia t) + bi(cia Cqa, Qi’ t)v (123)
whereV; is the tissue mass of thegh compartmentg, is the vector of tharterial concentrationof
chemicals transported by blood flow, abdc;, c,, Q;, t) is thetransport term This term is given by
Qi(c, — ¢y), Wherec, is the vector ofvenous concentrationexpressed as a function ef andc;.
This is a quite general paradigm for a metabolism model, wherst#te variablesare the chemical
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concentrations in the tissue, and the arterial concentrations and the flopwlag the role ofnput
variables For instance, it is possible [11] to defing = &;.c;, where the dot means componentwise
vector product, and; = (c7°¢, ..., f02)T is the vector of the partition coefficients. Therefore, the
transport term reads

bi(ci, cq, Qi t) = Qi(ca — (1.24)

Depending on each compartménthe concentration of metabolites which are transported by blood
might not appear as a state variablecin In that case, the metabolite venous concentration down-
stream the tissue has to be defiregriori.

The most general form of system (1.23) is presented in tab. 1.6, whete anetabolites are
considered, antlpc, . . ., bco, denote the components bf. Being particularly interested in skeletal
muscle bioenergetics, for then compartment we will adopt the full set of equations of tabl 1.6,
while for other compartments a reduced set of chemicals (and, cordisgbn of equations) will be
considered.

O'Z'.CZ'),

1% d[PC} /dt PCs— PCb+ bpc,
VA[GL]/dt = GLs—GLb—GYs+mGYb+ber,
Vd[PY]/dt 2GLb—-2GLs— PYr— PYo+ LAo+ bpy,
vdGY]/dt — %Gst aYb + bey,
Vd[LA]/dt = PYr—LAo+bpa,
VA[FA]/dt = —FAo+bpa,
VdA[ADP]/dt = PCs— PCb—2GLb+ 2GLs— 60P+ %GYS— GYb+ MR+ bapp,
Vd[NADH} /dt = 2GLb—2GLs— PYr+5PY0+ LAo— 20P+ 43F A0+ by apa,
Vd[0s]/dt = —OP+bo,,
Vd[CO,]/dt 3PY 0+ 16F A0+ bco,,
and
[CRI(t) = [CR](0)+[PC](0) - [PC](t),
[ATP](t) = [ATP](0)+ [ADP](0) — [ADP](t),
[INAD|(t) = [NADI(0)+ [NADH](0) — [NADH](?).

Table 1.6: Metabolism kinetics (we omitted the subscripts). Concentrdtitits [A7 P] and[N AD]
do not belong to the vector state because each of the s+ [PC|, [ATP] + [ADP] and
[NAD] + [NADH] is constant.

Skeletal muscle compartment

As in [11] we assume that in skeletal muscle< sm) Michaelis-Menten laws hold for the reaction
rates. These reaction rates are controlled bypthesphorylation staté”S and theredox stateRS,

where
[ADP]sm, [NADH]spm,

[ATPl,,,’ [NAD]gm
It is known [11] that the higheP.S, the higher the reaction rate of th&l"' P producing pathways;
analogously, the higheR.S, the higher the reaction rate of tiéA D producing pathways. We con-

PS = RS =
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sider in the state equation the full set of metabolites: tab. 1.7 shows the refziedector, reaction
rate vector, stoichiometric matrix and transport vector. We remark that atfemicals are not trans-
ported (namelyPC, GY, ADP, NADH) and, accordingly, their arterial concentration and partition
coefficient are both zero. The complete set of reaction rates is prdsentisb. 1.8: moreover we
assume&7Ls,,, = 0 as discussed in section 1.1.3.

In the Michaelis-Menten laws there are parameters which are not prdwydecderiments. In fact,
in each reactio® we have anaximal ratecoefficientp r and one or more characteristic constais
these coefficients are not knovarpriori, except in a few cases. Therefoparameter identification
is mandatory in order to find the coefficients that reproduce the dynamieaoh#tabolic pathways
fitting the available physiological data, and this will be the subject of the lasbpthis chapter.

Com = [ [PClam, [GL)sm, [PY sm, [LA]sm, [GY sm, [FAlsms [ADP] o, [NADH]am, [O2]sm, [CO2]sm |7,
Yo = [ PCbsm, PCSsmy GLbgp, GLSsim, GY Semy GY By PY Ty LAOgr, PY Osiny OPsry F AOgm, MR, ]T,
-1 1.0 0 0 0 0 0 0 0 0] [ 0 1
0o 0 -1 1 -1 10 0 0 0 0 0 [GLla — 057 [GLlsm
0O 0 2 -2 0 0 -1 1 -1 0 0 [PY]a = o [PYsm
o0 0 0O O 0O 1 -1 0 0 0 [LAlo — oin [LA)sm
O 0 0 0 1/m -1 0 0 0 0 0 0
A = y bsm =Qsm FA
o 0 0 0 0 O O 0O 0 0 -1 [FAla — 0gm [FAlsm
-1 1 -2 2 1/m -1 0 0 0 —6 0 0
o 0 2 2 0 0 -1 1 5 =2 43 0
o0 0 0 0 0O 0O 0 0 -1 0 [O2]a — 002[02]sm
Lo o0 0o 0 0 0O 0O 3 0 16 [COs]a — 0572 [CO2sm

Table 1.7: State vectar,,, reaction rate vectap,,, stoichiometric matrixA ¢,,, and transport vector
b, in eq. (1.23) fori = sm. Notice the zero terms ih,,, corresponding to chemicals for which we
neglect the transport by blood.

Splanchnic compartment

Splanchnic organs, as liver, provide glucose and free fatty acida wigebody needs them. They
may also convert pyruvate in glucos€xs,, # 0). As splanchnic organs metabolism is not strongly
affected byPC, ADP and N ADH as the skeletal muscle metabolism is, we consider as state vari-
ables only the concentrations 6L, GY, PY, LA, F A, O, andCO-. Moreover, we don't have to
specify their venous concentrations, since we assumeé’thatd D P and N AD H are not transported
by blood.

Finally, we assumdinear reaction rates the corresponding expressions are listed in/tab. 1.9.
As for the skeletal muscle tissue, the coefficients of these expressivasdbe (at least partially)
estimated by means of parameter identification techniques.
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Reaction Stoichiometry Rate
1
PC CR+ ATP — PC + ADP s———|[CR
s + + e PS/kpcSJrl[ ]
PCb PC + ADP — CR+ ATP bros—L2[PC]
PEPS T kpeo
GLb  GL+2ADP +2NAD — 2PY + 2ATP + 2NADH ¢ ps L [GL)
L PS + kB3, RS/KES, +1
1
GYs GL+ ATP GY + ADP s—————[GL
mGL+ ATP — GY OV B3 havat 10T
GYb GY + ADP — mGL + ATP ¢ Pis[GY]
PSS+ kayb
PYT PY + NADH — LA+ NAD by —2_[py]
PYT RS Jkpye + 1
1
LA LA+ NAD — PY + NADH o—=————[LA
o + + dra RS/k‘LAo—i—l[ ]
1
PY PY NAD NADH o—————|PY
0] +5 —5 +3C0, opYy RS/kPYo+1[ ]
1 max RS 1
OP 3ADP + NADH + 502 — 3ATP + NAD + H>O Vi O3]

O n[
2 RS-Fkopl_,'_(ﬁ%Dﬁ)
1

FAo FA+43NAD 16C0O2 +43NADH P <7 —
+ — 2 + OFa RSkraot 1

[FA]

MR ATP — ADP + energy MR(t)

Phosphorylation state?S = [ADP|/[AT P]
Redox stateRS = [NADH]/[NAD)]

Table 1.8: Reaction rates for the skeletal muscles (the subsetiptn is omitted).

Other organs

In the third compartment= o, that represents the remaining tissues, we assume that metabolite con-
centrations are known. Consequently, the venous content downstieasompartment is assigned:

for the sake of simplicity, the venous concentration of each transporedicél is set to the corre-
sponding constant basal value.

1.4 Coupling between CVM and TMM: parameter estimation

The models introduced in the previous sections can be coupled to desaibeuthal interaction
between hemodynamics and bioenergetics (see fig. 1.4).

The coupling is due to the dependence (1.15,1.16,1.17) of hydraulic resifta i € {sm, sp, o},
on the oxygen concentratid®s]s,, in the sm tissue compartment, which is the simplest case of
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Reaction Stoichiometry Rate

GLb GL — 2PY  ¢grs|GL]
GLs 2PY — GL  ¢are[PY]
GYs mGL — GY  ¢ays[GL]
GYb GY — mGL  ¢cys|GY]
PYT PY — LA ¢py,[PY]
LAo LA — PY $rao[LA]
PYo PY —3C02  ¢pyo[PY]

FAo FA — 16C0, ()ZSFAO[FA]

Table 1.9: Reaction rates for the splanchnic organs (the subsetipp is omitted).

chemoreflex effect. More generally, we could assume a dependeratbemchemicals. The global
model is intended to give a prediction of the cardiovascular and metabokwioein under effort con-
ditions; the mairinput variableis theskeletal muscle metabolic rafd R(t), that is the rate oAT P
breakdown, which is related to exercise workload.oAgput variableswe obtain the cardiac output,
heart rates, local blood flow and concentration of several subsirattes blood.

However, as we pointed out previously, we have to estimate the unknowraMis-Menten pa-
rameters in the reaction rate expressions. Parameter identification is a magpmisaathematical
biology (for instance see [16]): we will introduce some tools to fit a senofkn data, and discuss the
applications to our specific case. Let us denotgblye vector of the unknown parameters: the idea is
to minimize a cost functional = J(p) which measures the “distance” between a set of knoljac-
tive variablesy,;, = y.»(t) (for instance, the tissue concentrations) and the corresponding quantitie
y predicted by the model. Formally, we can set

5P+ 8) — s (812
Z] ||ybg<>||2 ! (1.23)

where| - || is a suitable norm, as the 2-norfif|o = /[, f2(t) dt or the co-norm ||f| =
max; | f(t)], the weightsv; are positive quantities such that; w; = 1, andy; () is thei-th com-
ponent of the vectoy (p, ¢) of the predicted quantities corresponding to the paramgteré\s a
consequence, the numb&r = 100+/.J is a mean relative error in percentage. Each evaluation of
the cost function/ requires to solve the model, that is to find the solution of a system of diffefentia
equations. The goal is to obtain (a suitable approximation ofpgtienal vectorp* in the setP,; of
admissible parameters:

findp*: J(p*) = min J(p). (1.26)

PEFud
The setP,,; has to represent all the constraints on the parameters; for instancg cewgponent of
p € P,4 has to be greater than zero.
Problem((1.26) is amverse problemexpressed in the form of aptimal control problem
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Figure 1.4: Coupling between cardiovascular system and metabolism.

1.4.1 Identification methods

In order to solve the identification problem (1.26), one could use statidardearch methods, based
on the computation of the gradient of the cost function, or stochastic methopar{iculargenetic
algorithms[22], GA). There are two main differences between these algorithmd, &ésetic algo-
rithms areglobal optimization methodsvhile the line-search algorithms only fithacal minima (as a
consequence, the starting guess for the parameters is critical). Sasaally line-search algorithms
are computationally cheaper than stochastic algorithms.

Let us recall the abstract structure of a GA (the tandividual means a paramete:

1. Supply a populatio®, of N “individuals”, together with their cost function; lét= 1;
2. P = selection(P;_1);

3. P; = reproduction(P;);

4. 7 — 1+ 1;

5. If an exit condition onP; is satisfied, then end; otherwise— i + 1 and go to step 2.

At step 3, the genetic operataraitationandcrossovemct on the populatiof; (which is selected
on the basis of the cost function associated with each individual) in ordee#ébe the next generation
P, 1. If the mutation operator includes a few iterations of a line-search algorghoh(as a gradient
method), the method belongs to the clashydirid genetic algorithm&HGA); the introduction of the
fast local optimization procedure greatly speeds up the convergengeaced with standard GA.

We can apply gradient-based methods, GA and HGA to problems of typg (&.2@ntify the set
of unknown parameters of each compartment; for éaehsm, sp, this can be done by excluding the
cardiovascular part of the model, assigningagriori flow rate@; corresponding to the physiological
conditions to which the available data, refer to, and then carrying out the optimization for this
reduced state system, where the observed varighdee the concentrations.

Due to the non-linearities in the Michaelis-Menten equations,sthecompartment is the only
one for which the identification may be troublesome: when considering astiobjeariables the
measurements obtained from a certain class of exercise protocols, &megpars which best fit the
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data may not be as good for other protocols. For this reason, in thel segugtimization results are
discussed only for the skeletal muscle compartment, and the following veatakobwn parameters

(see tab. 1.8):

P = (@pcs: PPCh, PaLh: Pays: PGyhs PPYrs PLA0s PPYor VOy s OFAo)- (1.27)

As in [11], for each reactio®, thekr constants of the Michaelis-Menten laws are assigned in such a
way that the basal flux is small compared with the maximal ope

Fitting objective variables at rest

In principle, one may choose the vector of rest concentrations asvelsariables, which are known
(even though the measurement is not a straightforward procedureasmdtrongly depend on the
subject). This approach has been adopted in [11]. In order to contimaperformances of different
optimization algorithms, we fixed the rest flow r&ge,,(t) = QY. and rest skeletal muscle metabolic
rate M R(t) = M R°: then, we applied both gradient method (Matlab funcfien nsear ch) and
HGA (modifying thegaot Matlab library [42]) to minimize the cost functiosi defined by/[(1.25)
with equal weights, being the objective variables the known rest comtemsc’,,. In tab.[1.10
the identified parameters together with the minimum of the cost function obtainedstaitllard
gradient methods (mean relative er®r~ 10%) and with hybrid genetic algorithms( ~ 6%)
are shown. Standard values @f,, and M R° have been used in the state equation: in particular,

0. =1 1/sec, and on the basis of the assumption that 6 molecule$ToP are formed from one
oxygen moleculeM R° = 6QY,.([Os]a — [02]v.sm)- If [O2]a = 8.75 mmol/ | (see [55, 11]), and
[O2]v,sm = 6.75 mmol/ | (see [55] or apply the Fick’s principle assumikg, = 250 ml min~! at
rest), then we get/ R® ~ 12 mmol(AT P) min~.

| Parametef Value | | Parametei Value |
dpco | 41.09 drcb | 28.60
bpos | 84.24 épos | 57.55
days 0.29 days 30.15
dayb 0.001 ¢ayb 0.11
épyr 2.69 opyr 5.98
bGLb 0.23 baLb 0.24
®rLAo 0.15 ®LA0 0.49
®pPyo 0.26 épPyo 0.23
Vo 3.33 VOoyax 3.15
¢FAO 0.02 ¢FAO 0.06
J(p) | 0.014 J(p) | 0.0042
FE 11.8% FE 6.4%

a) b)

Table 1.10: Parameter identification by fitting the rest metabolic state by a) ttemgranethod, and
b) an HGA.

The fitting is satisfactory for both the algorithms, but the HGA allows a better mintioizaf the
error (fig. 1.5), due to the fact that it is a global optimization method.
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Figure 1.5: State variables corresponding to the parameters in tab. k@fajgous line) and objec-
tive values (dashed line) at rest. Concentrations are expressed in/ ok in s.

As the fitting of basal concentrations is easily achieved, we wonder if itdsiple to use param-
eters which have been identified by this procedure to simulate an effatiticon Unfortunately, this
approach fails for heavy workloads: actually, if an exercise is simulase@dyparameters obtained
by fitting the concentrations at res},,, the results are often not physiological. For example, let us
consider a rest/exercise transition at timérom the basal skeletal muscle metabolic rafé° and
blood flow rateR?,, to the respective increased valugsk! and@’, .. We assume submaximal work-
load, for example)!,, = 7Q%,. (the maximalQ},,/QY . is nearly 12, see tab. 1.2). Then, under the
hypothesis that for submaximal effort thk&l’ P breakdown is proportional to the oxygen extraction
rate, by the Fick’s equation we have

MR' Qi AY[Oam,

MR® QY ALOs)S,,
Actually, the former assumption does not consider an augmented anadrBBigroduction; how-
ever, we will accept it, even though tidé R /M R ratio obtained by the proposed formula could be
underestimated. At rest\%[05]%,, = [O2]a — [O2]v.sm = 0.22[02],, that is the skeletal muscle oxy-
gen extraction is 22%; assuming that during submaximal exercise the exiragitios up to 60% (the
maximal value is about 85%, up to 90% for elite athletes), welg&' = géz % ~ 20. Therefore,
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we consider as input variables for otsr, model the following functions:

MR if 0<t<t, Q° if0<t<t,
ME(t) = { 20MRY ifi<t<T, Qsm(t) = { 75?,” iffi<t<T. (1.28)
As we pointed out previously, we expect that 60% of arterial oxygen belextracted by them
compartment for > ¢: this means that the venous oxygen content should decrease;fréno
0.4[02]% = 3.5 mmol/ |, that is about 50% of the rest value; being the tiséiseconcentration
proportional to the venous one, we have that a reductid®4f,,, down to an half of its rest value is
expected.

Parameters identified by fitting the rest concentrations have been usenl tleergimulation of
the rest to exercise transition: the results are shown in fig. 1.6, whereleamdy sees that thé-
concentration in the tissue does not decrease during exercise (actshdjitiy increases), and'O,
does notincrease. Therefore, despite the good accuracy in fittinggheoncentrations, the identified
parameters do not provide acceptable simulations of exercise. This igsoteaiddressed in [11], so
in the next section we will detail how it is possible to improve the identificationidensg a rest-
exercise transition and using HGA.

Fitting objective variables for a rest-exercise transition

If the parameters of them compartment are identified by solely observing a steady basal state; they
will not include any information about the dynamics of the system. Conséguas we have shown,
it may happen that the model does not conform to physiological obsemgatio

The simplest attempt to overcome this problem is to considestexercise transitignand to
identify the unknown parameters by fitting some available data for this protdndhis way, the
observations are not merely static: they contain information about theatbastc time constants
and concentration jumps associated with the transition.

However, due to the great amount of information we are trying to put intolifeetive variables,
the optimization can converge toward a solution affected by a big errar,iegobal algorithms are
used. This means that a compromise has to be found, for instance comgiolely a few relevant
metabolite concentrations as observed variables. Let us show how thissiblpdoy means of an
example.

We consider protocol (1.28), with= 1500 s andT’ = 4000 s. We suppose that a description of
oxygen and carbon dioxide expected dynamic in skeletal muscle tissudlabbajaat least in terms
of concentration jumps and characteristic times. In particular, we assunxpamential transient:

[OQ}Sm ifo<t< f,
o0.0(1) = { O}, + e /703 ((0510,, — [Oalh,) HE<t<T,
[CO ] if0<t<t, (1.29)
Yob,00a (1) = { [COy)L, + e (t=D/Tcos ([CO,)0 — [CO,JL,) fE<t<T,

where[0,)%,, and[CO,]?,, are the basal concentrations valugs;].,, and [CO,]},, are the new
concentrations after the transition to the effort condition, angandrco, are the respective time
constants. An example of such functians o, andy., co, are the dashed lines in fig. 1.6.
With regard to the other observed chemical concentrations, we suppbsedmnly the basal
state data:
VO ¢ {02,002} 1 yopo(t) = [0, 0< <L (1.30)

sm?
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Figure 1.6: Rest/exercise transition: state variables (continuous linespomding to the parame-
ters of tab. 1.10a) obtained by fitting the basal concentrations (dashgd iaeO; and CO,, the
dashed line during exercise represents expected values: in this itasktions do not agree with
observations. Concentrations are expressed in mhintine in s.

Eq. (1.29) and (1.30) define our objectives. As the dgia, andy., co, are defined on a wider
temporal frame, the expression of the cost functional to be minimized is theviotjcone, where
norms are taken on different intervals depending on the data:

Tip) — 05 (P) = Yob,02 Il 0,77 lyco,(P) = Yob,co,llf0,7]
(p) =wo, + wco,
19,0, ()l 10,7 [Yob,con ll0,17 La1
Y lye(P) — vob,cllio (1.31)
C )
2,CO2}

As usual we denote byc(p) = yo(p)(t) = [Clsm(t) the time-dependent concentration of the
substancé&’ given by the solution of the state equation with the parameters

In tab. 1.11 and fig. 1.8-1.9 the results of two different parameter ideniificaare shown. The
first optimization was carried out assuming the cost functional definedjby1e31), that is taking
both [0s)s,, and[C O3], as observed variables for> ¢, while for the second optimization only the
[O2]sm variable was observed for> t.
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| Parametef Value | | Parametef  Value |

bPCh 38.27 bPCh 40.14

bPCs 61.25 bPCs 70.60

bavs 17.87 bays 43.82
boye | 15.24e-2 beyy | 30.18e-2
dpyr 23.57e-1 dpyr 26.33e-1
bcrp | 11.85e-1 dcrp | 19.67e-1
¢LAO 86.50e-3 ¢LAO 43.30e-3
bpyo | 87.78e-2 bpye | 12.76e-1

Vo3 16.20 Vo 16.69
brio | 37.60e-3 drio | 31.90e-3

J(p) 0.047 J(p) 0.057

FE 21.6% FE 24.0%

Weights: Weights:
WO, = WCOoy = 0.30; WO, = 0.55;
we = 0.05if C ¢ {09, COsY. we = 0.05if C # Os.
a) b)

Table 1.11: Parameter identification by fitting via weighted-HGA the rest metadialie and a) both
the O, andC' O, concentrations during exercise, b) only the concentration during exercise.
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Figure 1.7: Convergence history of HGA. The observed variablesadreothO, andCO-, and b)
only O,.

These results shows that the erfowith respect to available data can be non negligible (20-25%,
fig.[1.7, instead of 6% obtained with a basal state fitting) when fitting nonystiatd. Nevertheless,
the major expected features of the rest-to-exercise transition are obt#ieeakygen concentration
in the skeletal muscle drops off (the reduction being 25%, the expecte808¥ and the carbon
dioxide content increases (actual increment 8%, 33% expected).id¢reghncy between the actual
and the expected jumps of the andC' O, concentrations can be reduced if a highéR' is assumed
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Figure 1.8: State variables corresponding respectively to the pararmetabs 1.11a),b) (continuous
line), and basal values (dashed line) for a rest-exercise transitionO4and C'O,, the dashed line
during exercise represents the objective values. Concentrationgpaessed in mmgll, time in s.

in eq. (1.28), considering that we neglected any augmented anaerdlwcayan the estimation of
the metabolic rate. Finally, it is remarkable that the time courses of muscle metabblitérsed first

observing only the oxygen concentration, and than observing both fgeonxand carbon dioxide
concentrations, do not differ substantially (see!fig! 1.8), with the exaepfiglucose.

1.5 Simulations of coupled CVM and TMM

In this last section simulation results for the coupled models are discussedstiin the application
of this kind of mathematical models in sport medicine and physiology, we consigistic protocols,
data and problems, and analyze the behaviour of relevant quantitieslrelat@rdiovascular system
and biochemistry.

1.5.1 One-chemical model

We first present some results obtained with the simple one-chemical kinet®):(fhrefore, in this
preliminary investigatiorO, is the only chemical we account for. To test our results, we consider
the measurements obtained in [81]; in this study the authors address amaedsyampathetic nerve
activity as a possible mechanism contributing to the observed impaired leditedstion during dy-
namic exercise in healthy older women. In the sequel, we will verify this hygsidhoy our model.

The simulated protocol is the following one: starting from a rest conditionstigect is ped-
aling for 6 min at20 W, then the power output is linearly increased ltyW every3 min up to
60 W. According to [81], several measurements have been made for thi€prteean arterial pres-
sure, leg blood flow,...) for thirteen younger (20-27 yr) and old@{& yr) women: a reduced leg
vasodilatation and blood flow response has been observed in the latier gro

The cardiovascular model coupled with the one-chemical TMM for the emyig solved over a
time interval consisting of three subinterval§; Ty] (rest), [Ty, Tao] (pedaling at20 W), [Tz, To]
(linear increasing in power output up 8 W), whereTy = 12 min, 19 = 18 min, Tgg = 30 min.
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Figure 1.9: Trace of the best parameters obtained at each generatibemiabscissa). The observed
variables are: a) bot, andCO-, and b) onlyOs.

The oxygen consumption rate QR¢) in the skeletal muscle compartment, that represents the exer-
cising legs, is expressed as follows:

OF),, 0<t<Ty,
OP,,(t) = { OP), +OP%, To <t < T,
OF),,, + O, + a7=-40W Ty <t < T,

where OB, is the basal oxygen consumption rage4( mmol min—t), OP2 is the oxygen con-
sumption rate a0 W (calculated as in [12]5 mmol min~!) and « is a conversion factor: as-
suming that30 KJ of mechanical energy are produced by the breakdown 47'# molecule, and
that6 mol of ATP are formed for each mol of)s, thena = 5.6 - 1073 mmol Oz/ S/W. In
fig./1.10 exercise simulation for the younger women is presented. Somagtara among those
in tab.[1.2 were adjusted to match the cardiac output, mean arterial pressubdoad flow dis-
tribution at rest and a20 W, referring to data reported in [81]. We usétl, = 75 mmHg,
Gp, = 20 s- mmHg, ke, = 0.7 kgdw?/ mmoP/ s, [02]%,, = 5.8 mmol/kgdw; we also in-
creased the gain of the sympathetic control on the heart rateGyith= 0.9 s*, and we changed the
constantsf%i,o fori = sm, sp, o respectively to 2, 1 and.6 mmHg- s/ ml.

Simulations for the older women are shown in fig. 1.11: in this case, modificatiotie pa-
rameters were made to take into account the higher pressure and the évdiec @utput of older
women in regard of the younger subjects. Particularly, in this case wédeved P, o = 90 mmHg,
Gp, =35 s- mmHg,Gr, = 0.52 &, Gr, = 0.3 & the constantsk; o for i = sm, sp, o were
changed to 2, 1 and.6 mmHg- s/ ml; and finally, a global increase of the efferent sympathetic
activity was imposed by increasing the valuesfof ., and f; in (1.10). Results with the same
parameters but without the augmented sympathetic vasoconstriction ane witbvdashed lines: we
obtained a reduction in both arterial pressure and leg vascular resistanta more accurate fitting
was provided by the previous simulation. This shows that our investigatioonsistent with the
hypothesis of an increased sympathetic nerve activity during exercisganwomen.
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Figure 1.10: Younger women exercise: experimental measurementgt@hples and simulation
(continuous lingof cardiac outpuf),,, mean arterial pressure,, leg blood flonmQ,,,, and leg vascular
resistanceR,, .

1.5.2 Multi-chemical model

The simple one-chemical model of the metabolism does not take into accoulytthenic of several
important metabolites such as lactate, glucose, pyruvate. Here we pnesegrical results obtained
by coupling the extended metabolism model described in section 1.3.3 anddiw/aacular model
(section 1.2).

We considered a0 min incremental exercise, with a linear increasing workload: the metabolic
rate M R, (t) of the skeletal muscle compartment was increased starting from the blasal&?, |
att = 0 up to30MR?,, att = 10 min and then again set equal 3 R?, . Being the energy
expenditure of the whole body basal metabolism approximately eqaaMg and the skeletal muscle
rest blood flowR?,, ~ QY/5, we can estimate the rest skeletal muscle power tthb#. Therefore,
if the power output was proportional &/ R, the peak power of the exercise simulation would be
about450 W; however, as it has been discussdd, P breakdown becomes less and less efficient as
the workload increases, so that the power oytpLik ratio is not a constant, but rather a decreasing
function of M R. If we assume that under high effort conditions the metabolic efficiencydsaed
by 35% [50, 12], then we can estimat8@ W peak power output.

The evolution in time of the main hemodynamical variables is shown in fig. 1.12. tifitee
course of the vascular resistances, for instance, shows that duergse the skeletal muscle becomes
the most blood-demanding compartment; this perturbs the overall systemtamesiswhich in turn
causes the increase of heart rates (and stroke volume, not shasyrdberto the baroreflex effector.
Moreover, the shifting of the reference value for the pressure in tletidainus sigmoid curve causes
an increase of the mean arterial pressure.

In fig.[1.13 a few relevant venous chemical concentrations are shown{(O2, LA and PY).
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Figure 1.11: Older women exercise: experimental measurementsifi@bgies and model simula-
tions with enhanced:pntinuous lingsympathetic nerve activity. The dashed line shows the simulation
results when no enhancement in sympathetic activity is considered.

As expected, a reduction in the venals content is observed; moreover the high level of skeletal
muscle metabolic rate causes an increase in carbon digki@lg), and a significant accumulation of
lactate 000%) and pyruvate {000%). Increments in lactate level of the same order are found in the
ramp tests described in [33].

1.6 Conclusions

In this chapter we have seen how it is possible model the complex interactbmedn cardiovas-
cular system and local biochemical processes, such as those takiegrplaciscle cells. We have
considered models fa) metabolism of relevant substrates in the tissues involved in exercisé) and
circulatory systems. Baroreflex and chemoreflex regulation effects leen taken into account in
the coupling in order to describe the interplay between these subsystetigsappinoach allows to
simulate the response of the body to exercise; it may also provide a tool siigate several other
aspects of interest in physiology, such as pharmacokinetics of a particutaunder effort conditions
or hemodynamics and tissue perfusion during exercise.

We have adopted@mpartmentahpproach: no geometrical descriptions of circulation and chem-
ical distribution in the tissues have been considered, due to the complexitg afftble-body pro-
cesses we were focusing on. In the following chapters, we will intradiucere detailed models,
that are able to describe the spatial distribution of important physiologicaitigjies such as blood
pressure or oxygen concentration. To provide finer tools allowing a ohetagled analysis of local
phenomena will be the aim of the next chapters. We will begin with one-dimesisinodels for
blood flow and mass transport (chapter 2) and then we will introduce 1m8&kels of tissue perfu-
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Figure 1.12: Heart rates, mean arterial pressure, flow rates andlamasesistances in a 10 minutes
incremental exercise.

sion (from chapter 3). In case, the finer models can replace some diuthpéd” models we have
considered in this chapter, providing a more accurate analysis of thegsexat hand.
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Chapter 2

Reduced one-dimensional models for
transport of chemicals in blood vessels

2.1 Introduction

We have seen in the previous chapter that the simulation of the exchangesok chemical species
(Oy, COy, lactate, ...) between blood vessels and tissues necessitates arteadegiaiption of
both the haemodynamics (fluid properties of blood) and mass transportaWecbnsidered a com-
partmental analysis in order to keep the computational costs in reasonagdsrdowever, by this
approach any geometrical information about vessels and tissues is lost.

A compromise between the lumped models and the expensive three-dimermiomattion-
diffusion-reaction (CDR) models is provided bbgduced models As regards haemodynamics, the
most important example is given by one-dimensional reduced models (erthef reader to [84],
[64], [13], [14] and [97]). From the full 3D Navier-Stokes equatmrupled with the wall structure, a
simplified axi-symmetric coupled problem can be derived; under suitabletigpes one can further
simplify these equations to obtain a reduced2zhyperbolic system relating the local axial pressure
to the flow-rate (see [13, 14] for a rigorous derivation).

In this chapt@ we adapt the already existing analysis to treat the transport of a chemiaal in
one-dimensional vessel: we derive reduced CDR equations assunmiegsamplifying hypotheses.
In this sense, we provide an extension of what has been achieveddorddynamics [86, 29, 104,
31]. Namely, we study the solutions of the CDR equation in an axi-symmetric cigaid/essel,
and suppose that the length of the vessel is considerably much largeitshradius. Under these
hypotheses, we derive a 1D model that describes the evolution of thedtewpressure and cross
sectional averaged concentration transported by blood flow. We stedgldbal existence of the
solutions of such a system in the case of a finite vessel, basing our argommdg]. We also provide
numerical methods to solve these equations in the spirit of [23, 84] angnefes therein.

The subject of 1D CDR models will be extended in chapters 3/ and 4, whzi@Dlcoupled
models will be considered.

Part of the chapter has been published as an internal report [20].

33
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2.2 Areduced model for chemical transport

2.2.1 The transport diffusion equation

Let us consider aaxisymmetridomainQ C R? representing an arterial vessel. The equations which
govern the fluid motion and the mass transport in the vessel are:

aa—:+(v-V)v—yAv+%Vp = 0 in (2,
Vv = 0 in Q, (21)
Oc .
a_|_V.Vc—uAc = 0 inQ,

wherev is the blood velocityy andp are the blood viscosity and its density (which we assume
constant), ang is the pressure;is the concentration of the chemical under consideration (for example
oxygen), and. is its diffusivity in blood. Standard boundary and initial condition should toipled
for these equations. A set of one-dimensional equations for the seas®nal averaged pressure,

Figure 2.1: Vessel geometry.

flow rate and mass concentration can be found using standard asymptotiijtexs, as discussed in
[84] for the hydrodynamical part. In order to use similar arguments ondhpled system (2.1), we
shall assume the following hypotheses:

1. The domainf2 is described at each tinign cylindrical coordinates by
Q) ={(r,0,2) € R?[0<2<Lp0<r< R(t,2)},
whereR(t, z) is the radius of the vessel at timat the section (see figl 2.2.1).
2. Bothv andc are axisymmetric functions of the space variables. We set
v =uv.(t,r,2)e, +vy(t,r, 2)e,, c=c(t,rz),
wheree, ande, are the radial and the longitudinal vectors of the cylindrical coordinateesy.

Moreover, we prescriba priori the longitudinal velocity and concentratiprofile: that is, we
assume

vy(t,r, z) = U(t, 2) fu(r), c(t,r,z) = C(t, z) fe(r), (2.2)
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where f,, and f. are shape function, whil& andC are the mean longitudinal velocity and
concentration:

1 R(t,z)
Ut,z) = W/o 2v,(t,r, z)rdr,

1 R(t,z)
C(t,z) = W/O 2¢(t,r, z)rdr.

Thus,% fOR 2f,rdr = 1, and the same equality holds féy.

(2.3)

3. The “radial” scale is much smaller than the “longitudinal” one, that is

R B
0wy,

— 1
To B. < 1

whereRy, Ly, B, and B, are typical values of respectively the vessel length, the vessel radius
the mean radial velocity and the mean longitudinal velocity.

4. The streamline boundary condition holds:

OR(t, 2)

OR(t, )
0z '

ot

ur(t, R, 2) = v.(t, R, z) + (2.4)

5. The blood pressure at the vessel wall and the wall displacemerdlared by a standard alge-

braic law, as follows:
1/2
p(t,= R) = Go <(¥) - 1) | (2.5)
0

whereA = 7R? is the section area, and the constant reference section area at rest. The
reference pressure (far = A) is assumed to be zero, and the coeffici@ptis given by

o _ VAhE
0 — \/Aio’

whereFE is the Young modulus ankl, the vessel thickness.

6. The concentration at the vessel wall satisfies a Robin boundarijtioond

_Oc(t,z, R)
a or
whereD is a permeability coefficient.

= Dc(t, z, R), (2.6)

2.2.2 Axisymmetric transport diffusion equation (TDE) in cylindrical coordinates

Using standard expressions for the differential operators in cylindrmardinates, and noting that
from assumption 2 we have thdld/00 = 0), we find:

Ve = % + @ Ac = 12 + 8_26 + &
VoVeT Uy, Tl “Tror T a2 T 5.2
which finally gives the transport-diffusion equation (TDE) for the caonicion:
0 10 0%c %

oic+vp,—c+uv,—c + =

_ i -, 2.7
or 0z a 7’87“0 8r2+822 (2.7)
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2.2.3 The reduced non-dimensional equation

Consider the characteristic quantities defined in assumption 3, and coalsider reference concen-
trationCy; it is possible to introduce non-dimensional variables (we denote them by plijycsetting:

r=Ryr, z=1Lyz, t= é—gf, c=Coé, v, = B.¥,, v, = B,¥,, p=pB?p. (2.8)

Moreover, following the assumption 3 we suppose that the characterisintiies are chosen in such
a way that

Ry B,

Ly B
wheree is small. Equation (2.7) becomes

Lot a + 026 +&82

8£(f5> + fﬁr&:é + T'Uzazé B R2 L2

and neglecting terms of ordet inside the brackets, we get

Lop

[0 (70:¢)] (2.9)

Using the same techniques for the incompressibility condition we get
8}(;’57*) + 82(77772) = O,
which transforms expression (2.9) in a conservative formulation thdsrea

Lop

0;(T¢) + 05 (F0,€) + 0z (F0,¢) = B
B, 0

[0 (FO5¢)] . (2.10)

2.2.4 The averaged equations

Next we reformulate equation (2.10) averaging it across the section eetisel. Consider the non-
dimensional mean concentration and the velocity-concentration correlatdiiceent, defined as:

.1 (R 1 (R
C= ~—/ 2crdr, ©=—=—=—= 20, crdr.
R? Jo R2UC Jo
We can integrate eq/ (2.10) from= 0 to# = R and obtain a reduced equation for the averaged
quantities. At this point we need to specify the boundary condition at thewvate7 = R. By
assumption 4 and the rescaling (2.8), the streamline boundary conditiof@dé)also for the non-
dimensional quantities:

o= 2 ol
Uik = gz W=k T 5
so that from eq! (2.10) we get:

a/ erdi — R ~%§+R[@r5],::é

OR  uLg R[@E] ‘
=R

— LCTFdT — icp s = =
+ /vcrr [Réw )i R9z BT | oF

0z
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In terms of the averaged quantify; the latter equation reads:

P2 ~ D277 Lo - [96
9 (B, 9 (eFUC :”OZRa—(f .
ot \ 2 0z 2 B.R§ |07|;_p
Combining this result with those presented in [13] for the momentum equatioobta@ a com-

plete system of averaged Navier Stokes equations coupled with the t@ticenequation:

(

I R
~ P2 -~ 2 —
S+ () =0
9 o)+ Lareo?) 4 2% —y Vo
ot 0z ot " B.R2
O (20N O [-zossN  2uLg 5 [06
ot (R C) oz (‘”R UC) - BZRgR [af]

where the Coriolis coefficient is defined as [13]:

(9]3 I/LO 617,3
or

~ 7

=R

1 R
a= —/ 202Fdr.
R2U2 Jy

2.2.5 The reduced averaged equations in dimensional form

Consider the averaged cross-sectional veloGitythe concentratiod defined by eq.| (2.3), and the
coefficientso andw defined by

1 (B, 1 (B
« R2 /0 v,rar w R2 /0 v crar

FromU = B.U, C = C,C, we haven = &, w = @, and we can transform the reduced system into
the following form:

0 0

Il Y e 2 —

o B+ 5 (RU)

0, o 0 9 0 RZOp v,

—_ — —_—— =2

5 (BU) + o (aR°U7) + N . (2.11)
9, s O, o de

5 (R*C) + 3, (wWR?UC) = 2uR [W} .

2.2.6 Closure of system (2.11)

System[(2.11) involves 7 unknowns but has only 3 equations. We nesafdiee several closure
assumptions.

e The pressureln a standard way [84, 13, 84], we close system (2.11) by using hgpisth to
define the pressureas an algebraic function of the section arke: 7R?.

e The viscous term for the hydrodynamic pafte coefficientsy andw as well as the viscous
terms in((2.11) are affected by the choice of the velocity and concentratibal shape func-
tions (f, and f.). Assuming hypothesis 2, it remains only to choose the functiorA typical
approximation for the velocity profile is

folr) = ’YTH - (%) (2.12)



38 REDUCED ONEDIMENSIONAL MODELS FOR TRANSPORT OF CHEMICALS IN BLOOD VESSLS

This profile gives the following expression for the Coriolis parameter:

1

R
2
a= _R2/0 2f2(r)rdr = et

y+1

and an explicit formulation of the right hand side of the second equationid)(2

v, B « Q
2VR [ o ]T:R = —2v (a — 1) 1

For blood flow, a suitable value foris 9, that givesoe = 1.1.

e The viscous term of the TDEhanks to[(2.6), we have

Oc
2uR {E] . = —-2DRf.(R)C.

We point out that, in order to have a concentration profile satisfying (2.8)as to satisfy the
compatibility condition

—ufi(R) = Dfo(R). (2.13)
The normalized concentration profile can be for instance
K+2 r\#
I = =3 1-0(m) ] (2.14)

wherex andd are constants that we can choose such that (2.13) holds. An explioittfor
w is available in this case:

R
w:%/o 2fu(r) fe(r)rdr
_ (7+2)(H+2)[ S S
(k4201 -9)) Kt2 742 Rt~ +1

and the following expression of the viscous term:

Oc

2uR [—]TR = _QDRW

K+ 2(1—9) ¢

or

Thanks to the closure assumptions, we end up witlk @ 8ystem for the unknowns

A=7R?> @Q=AU, T =AC,

that reads
0tA+0.Q =0,
oQ 0 Q? 9, 04 Q
o T os (“7) rallgy =Ky (2.15)
T T
&«T + 8Z <w7Q> = —KCZa
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where
K, =2mv < ,
a—1
B (k+2)(1-9)
K¢ =2rDR k+2(1—-90) "’
2y = 2PA _ Co e

p 0z 9pAlS

Letu = Q/A be the mean blood velocity; in eq. (2.15), the linear concentrdtisriransported by an
"effective velocity"wu. We point out thatv could be different than one. For instance, wiieis the
(linear)hematocrit the well-knownFahraeus-Lindgvist effe¢see for instance [78]) can be described
byw > 1.

2.3 Characteristics

The reduced model (2.15) is hyperbolic, and admits the following consenarm:

ou 0
— + —F(U)=S(U 2.16
5+ 5. F(U) =8(U), (2.26)
where
A @ Go s 0
U=|Q|, FU= "2, mt L SW) = |-K.Q/A| .
r or’ ~K.I'/A
A
Introducing the flux matrix
OF 0 1 0
HU)=— = |Z(4) -a% 29 o0 |, (2.17)
8U QF A T Q
Wz Wi wa
we obtain a non-conservative formulation:
ou ou
— + H(U)— = S(U). 2.18
o T HUS - =8(U) (2.18)
All the properties of this system hold also when several chemical linearecdrationd’;, i =
1,..., N are considered instead of one: each concentratja@beys to an equation like (2.15)

We point out that even if the third equation fin (2.15) does not influencemteiio equations of
(2.15), an analysis of the whole system is necessary, in order to ses apriiect boundary conditions
(based on the characteristic variables).

In what follows, we will use the notation

Q
A’
whereuw is themean axial velocity Using Jensen’s inequality, one can easily show that 1, thus
¢, 1S well-defined.

ca(A,Q) = /A(A) +u?ala — 1),

u =
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Property 2.3.1. The matrixH admits three real eigenvalues:
Al = QU — Cq, Ao = au + Cq, A3 = wu, (2.19)
associated with the corresponding three left eigenvectors:

—wC 1+u? (1-w)(2—w)

—Cq — QU Caq — QU A+ (2w—w2—a)u?
=G| 1 |, k=G| 1 |. h=G|eulap s
0 0 1

u = /A being the mean velocity; = I'/ A the (volumetric) concentration, arid;, (2, (3) arbitrary
functions of the state variables.

For physiological values of the parameters,sband speed, (at which a perturbation propagates
in the vessel) is two orders of magnitude greater than the typical mean deicitye:; this means that
in practical computations, the eigenvalues are always distinct; moragveexpected to be negative
and ), positive.

A fundamental step, from both the theoretical and numerical points of igave study of char-
acteristic variables of the system. This analysis is based on the solution ofltiverig characteristic
differential equation:

oW Iy g
wW({U% = w

wherelV;, Wy andWs are the characteristic variables, ahds the matrix whose rows contain three
left eigenvectors off corresponding to each eigenvalue.

Suppose that a solution of the characteristic equations exists, at ledlst lwcthis case,L being
non singular, the mappin§v = W (U) between the state variabl&$ and the characteristic ones
W is one-to-one. Denote the inverse maplby= U(W); if we adopt the characteristic variables to
rewrite the system (2.16),we get

oW oW
— + A(W)— =
ot +A( )82

whereA is the diagonal matrix of eigenvaluas(U(W)), while L(W) = L(U(W)) andS(W) =
S(U(W)). System|(2.21) is diagonal with respect to the derivative®of

L(W)S(W), (2.21)

Remark 2.3.1. The sign of the eigenvalues determines the number of boundary conditions to im-
pose at each end. While for the haemodynamic part there is always sit@dresp. one negative)
eigenvalue, for the transport equation the sigmgfis not definedh priori. Thus, for the fluid equa-
tions, we will impose always one boundary condition at each end, while éocdhvection-reaction
equation the number of boundary conditions depends on the sigatafach boundary point.

In the next section, we will study in detail the caseflat profiles in which it is possible to
explicitly solve (2.20) and compute the characteristic variables globally asiéms of the physical
ones.
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2.4 Analysis of the system foflat profile

In theflat profile case (that isf] = f. = 0), the averaged quantitiesandw are identically equal to
1, the source terms vanish, and equations (2.20) can be solved analytically
The characteristic variablég’; and¥,, that will be denoted by ands in this case, are indepen-
dent of" (as the third component &f andl; is zero), so we follow the method outlined in [84] to
integrate the first two equations of (2.20). We adopt the integration fagtets—A—! and(, = A~ 1,
and find
r=—u+4c, s=u+4cy. (2.22)

The calculation of the third characteristic variable is easily done in the sameemémith 13 =
[-C,0,1]" and(3 = A1), and we get

C =Wy =T/A. (2.23)

Actually, definingz. as a characteristic curve associated to the third equation

)

dz.
{ % = u(z.(t),t), t>0
z(0) =&, £ €0, Lo]

we can see that' is constant along this trajectory. In fact:

00,0 ()04, 00 09, 0C
0 = 8t+8z< F>_8tC+A8t+8zC+Q82

oC oC oC oC

A

d
= A&C(zc(t),t),
where we used (2.15pand the definition of characteristic curve.
Let us write our system in terms of characteristic variables. Since we hawv&soous terms,
equations((2.21) read

or or
a5 + Ai(ry s)& = 0,
Os 0s
il i 2.24
5 + Ao(r, 8)82 0, ( )
oC oC
E + >\3(Ta 3)% - 07
where by eq./ (2.19), (2.22) and (2.23) we have
5 3 3 5 1 1
__2° 2 —_2 e == —s. 2.2
A1(r, s) 87’4— = Ao (1, 5) 87’+ = As(r, s) 27’+ 5° (2.25)

The existence of a global solution for the first two equations (in the semitafilomainz >
0,t > 0) was proved in [56, 13] under certain assumptions on the boundagitioos. Here we
follow a similar approach, in the case of a finite vessel with “resistive” |datthe right end: this
is often used in the multiscale modelling of the cardiovascular system to adoouhe remaining
circulation, and in particular the capillary bed. Oncands are found, the third transport equation



42 REDUCED ONEDIMENSIONAL MODELS FOR TRANSPORT OF CHEMICALS IN BLOOD VESSLS

is easily solved: moreover, this equation can be coupled with “externalrdigal systems (we will
present some numerical examples in the next section).

It has been shown in [13] that shocks can occur due to the non-liagarerof the fluid equations;
thus, only under additional assumptions on the initial and boundary datassicelaglobal solution
exists. The initial data for problem (2.24) read

r(z,0) = ro(z) for0 <z < Ly,
{ (2,0) so(z) for0 <z < Ly, (2.26)
C(z,0) = Cy(z) for0<z< Ly,
Moreover, we can assign a Dirichlet boundary data to @@mbmingcharacteristic, eventually depen-
dent on timef and on theoutgoingcharacteristic variable. It we suppose that< 0, A2 > 0, and
A3 > 0, we should consider the following boundary conditions:

z,t) = f(t,s(zt)) onz=Ly t>0, (2.27)

s(z,t) = g(t,r(z,t)) onz=0,t>0,
(
{ C(z,t) = Ci(t) onz=0,1t>0.

The boundary and initial conditions satisfy the followicgmpatibility conditions

9(0,79(0)) = s0(0),
f(0,s0(Lo)) = ro(Lo),
Cin(0) = Cp(0),
—A1(r0(0),50(0))7(0) = —0s5g(0,50(0)) A2(r0(0), 50(0)) 54(0)
’ +019(0, 50(0)): ’ (2.28)
—A2(ro(Lo), s0(Lo))so(Lo) = —0-f(0,70(Lo)) A1(ro(Lo),s0(Lo)) 7o (Lo)

—A3(r0(0), 50(0))Cp(0) = C7,(0),

that is we require the continuity of the variables and their derivatives alangncoming characteris-
ticsfort = 0atz = 0andz = Ly.
Now we are able to state the global existence result:

Theorem 2.4.1.Suppose that:
a) 7o, 50, Co € C1(0, Lo), f,g € C!, and equations (2.28) hold;
b) r, <0, sy > 0;

c) (i) the functiory satisfiesdg/0r > 0, dg/0t < 0;
(i) the functionf satisfies)f/0s > 0 anddf/ot < 0;

d) there exisy) € (2,1), s > 0 and s§"®* > 0 such that

nso(z) < ro(z) < so(z), s < s0(2) < 8B Vz € [0, Lo);

e) The functiong andg satisfy the following estimates with respect to their arguments:

ns < f(t,s) <s, Vs € (sgﬁn,sglax), sgﬁ“ < g(t,r) < s, Vr e (nsg‘m,sglax);
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f) There ise > 0 such that

A (r(t,0), 5(t,0)) < —€,  Na(r(t, Lo), s(t, Lo)) > ¢ and As(r(t,0), 5(£,0)) > ¢, ¥t > 0;

g) the eigenvalues satisf§\;/0r < 0 and d\y/Js > 0.

Then, there exists a (unique) global classical solutiars, C) € C*(R* x [0, Lo])? for the problem
(2.24, 2.25), satisfying (2.26) and (2.27).

Proof. If we prove that there is a classical solution of thes) problem [(2.24), such that
A3(r(t, 2),s(t,2)) > 0, V(t,z) € RT x [0, Lg], then theorem 2.4.1 follows from standard results
applied to the linear scalar hyperbolic equation (2;24)herefore, in the sequel we focus on the
problem(2.24) , for r ands.

System|(2.24), is strictly hyperbolic i.e.

o(r(t, 2),8(t,2)) > M(r(t, 2),s(t, 2)), Y(t,z) € RT x [0, L]

provided that\s — A\; > 0 at¢t = 0 and on the boundary, as shown lin [13] (and/in [56] for the
analogous case of isentropic 1D gas flow) . By hypothesis d)=ab we have\y(r(0, z), s(0, 2)) —
A1(r(0,2),5(0,2)) = so(z) — ro(z) > 0; by f) we havehs — A\; > 2¢ > 0 on the boundary.
So the eigenvalues satisfy > \; everywhere. We denote by = 20(¢) the forward characteristic
emanating fronft, z) = (0, 0), and byz = z°(¢) the backward one emanating frdm z) = (0, Lo).

In what follows,T" > 0 is the first time at which? crosses2?, that is22(T) = zLo(T'). Moreover,
we defineD = [0,7] x [0, Lo}, D1 = {(t,2) € D : 22(t) < z < 2Fo(t)}, Dy = {(t,2) € D : 0 <

2z <20}, andDs = {(t,2z) € D : zko(t) < 2 < Lo}.

Figure 2.2: The domai = | J?_, D;.

The smoothness of the initial data, together with hypothesis b) and the spiettulicity of the
system, guarantees [56] that there is a classical solgtion in D, such that

or/0z <0, 0s/dz>0. (2.29)

As in [13], due to the additional hypotheses b),¢)g), and to the compatibility conditions (2.28),
the solution is extended tB, where it still satisfies (2.29); moreover, the solutiolis(D; U D).
Using exactly the same technique with;g)instead of ¢y, the solution is extended b3, where
(2.29) holds, the extension beingdi (D) (see also the recent work [2]).

Now, to prove our assertion we have to consider the following steps.
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1. Sign of\3. Consider a generic forward characteristic cutyeAs 0r/9z < 0 andAs — A1 > 0
everywhere, we have

dAs 1d CLdr(t z(t)

E(T(t, zs(t)), s(t, 25(1))) = ia( s(t, zs(t)) — r(t, z5(t))) = S0
1 or(t, zs(t
§(>‘2 - )‘1)’ (t,zs(t)),s(t,zs(t)))% > 0,

that isAs increases along,. As A\3(7(0, z), s(0, 2)) = (s(0,2) —r(0,2))/2) > 0, Vz € [0, Lo]
by f) and \5(r(t,0),s(t,0)) > ¢ > 0,Vt > 0 by d), and as\s increases on every forward
characteristic, we obtaifg > € in the wholeD, so that there exists a unique solutiéhof

(2.24) with initial and boundary data given by (2:26)2.27).

2. Global estimatesWe need some global estimates in order to increase the time of existence of
our solution. Notice that along the backward characterigtieg dt)._. ) = (A\1—X2)ds/0z <
0. Sincens < r att = 0 by d) and onz = 0 by e), and using the fact that along the backward
characteristics is constant and is hon-increasing, we have that < r holds in the wholeD.
In the same way, a§'" < s < s at¢ = 0 and onz = 0, propagating this inequality along
the forward characteristics we obtain< si** in the wholeD. Finally,r —s =23 > 0in D,
and summarizing we have

ns <r<s, s8N <s< s in D, (2.30)

Then, since; > 3/5, we getv(t, z) € D

-5 3 -5 3 min
n+ s < n mln<0 Ay > — >s

M <—3 8 17 4

> 0.

These estimates are uniform in time, because they only depend on the tonsiad sJ'".
Thus, we have a lower bound for the timiehat it takes for the characteristics to cross:

Lo/2 4L

T> - - =
min{(5n — 3)sWin/8, sPin /41 (5p — 3)spn

= Tinin > 0.

3. Restart from¢ = 7. Now we can consider = 7' as a new initial time and(7’, z), s(T, z),
C(T, =) as new initial conditions. By (2.30), the new initial data satisfy the hypoth®sad e);
moreover, the compatibility conditions (2.28) hold atz) = (T,0) and(7, L) as the solution
is C1(D). It follows that we can extend the solution to a new dom@in= [0, 7"] x [0, Lo],
and so on recursively. At each prolongation we advance by a time gteatd ,,,;,; this proves
that a global solution ifR* x [0, L] exists.H

To show that theorem 2.4.1 can be applied to our blood flow problem with messptirt, we
impose the blood velocity;,, () (as in [13]) and the chemical concentratiop, (¢) at the inletz = 0,
and a generic (algebraic) constitutive law for the load at the outletLy. A constitutive law for a
“resistive” load is a pressure vs. flow rate equation in the fprm R(Q). However, we will suppose
that the linearized equatio = Au ~ Apu holds at the vessel's outlet, wherg is the reference
section area. Hence, we will assume the following law for the load:

p = H(u), (2.31)

whereH (u) = R(Aou).
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Property 2.4.1. Define

g(t,r) = 2up(t)+r,
f(t7 3) - ¢<3>7
whereg is the solution of'(¢, s) = 0, with
F(f,s):p—H(u):3%(f+s)2—Go—H<f;S). (2.32)

Suppose that:

. : ~ 4
H1) there exists>™ > 0 such thatu;," < wu;,(t) < 5 CLO: wherec; o = ¢1(Ao) = /Go/2p;

H2) the initial datarg, so satisfy hypotheses a), b), and d) of Thearem 2.4.1 with

. umin
sg™ =4e10 = /8Go/p, n=1- ﬁ?o;

H3) the load functiorH satisfiesH (0) = 0 and
H'(u) >m, VYuéeR,

261 0

max )

wherem = s; :
min

n

If u/,, () < 0, then there exists a (unique) global classical solutiers, C') € C1(R* x [0, Lo])? for
the problem((2.24), satisfying (2/26) and (2.27).

Proof. We have to show that hypotheseg c)c) ), €), f) and g) of Theorem 2.4.1 hold. Without
loss of generality we consider only the domairdefined in the previous proof: propagating the initial
data on the characteristics we have

nsgit < r(t,0) < P, s < s(t, L) < PVt € [0,T). (2.33)

Beingdg/0r = 1 anddg/ot = 2uj,, < 0, hypothesis g)) is satisfied. By H1 and H2; < (g, 1)and
hypothesis d) is satisfied as well.
Using (2.33) and hypotheses H1 and H2 we have that
spin — —;é" SN psPIn < 2uI (1) 4 < g(t, 1) < g(0,7) = 50(0) < ST,
1,0

)

thusg satisfies e).

Now, we claim that the solution = ¢(s) of F/(¢,s) = 0 is in the interval(ns, s) (note that if
such a solution exists, it is unique becadse> 0 together withs > 0 imply thatoF/9¢ > 0 for
¢ € (ns, s)). To show this, it suffices to prove thal(s, s) > 0 andF'(ns, s) < 0, or, equivalently,

gsz —Gop > 0onz= Ly, (2.34)

s) < Qonz=Ly. (2.35)
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The inequality((2.34) is true by (2.33) and hypothesis H2. On the other, (2138) is true if we show

that

3—”2( +1)282 — Gg — m”

s < 0,

which is satisfied if

(1=n)m+ /(1 —n)?m? + p(n +1)2Gy/2
p(n+1)%/2 '

The latter inequality is true becauge< s < s;*** and

0<s<

(L=mm+ /(A =m)’m> +p(n + 1?Go/2 _ (1=mm _u™m _ s
p(n+1)2/2 P p2c10 '

Thus, f satisfies the hypothesis e) of Theorem 2.4.1.
Now we have to check thaf(s) > 0. From (2.32) we get

/ J(—f+s\ —f(s)+1
%<f<s>+s><f<s>+1>—ﬂ( 3 > >
and then
o p(f(s) +s)/16
P& =1 = 2 75 + 9)/2))/2 + o (5) + 5)/16
B p(f(s)+s) o PO
SIS+ T T

Asm > %psg‘a" by H3 and H1, we have that(s) > 0. So the function/ satisfies the hypothesis
C)(is) of Theorem 2.4.1.
Finally, consider the eigenvalues at the boundary: we have

A3(t,0) = win(t) > win,

51 3 51 3 —5+3 .
A(8,0) = — 20 (6,0) + Sg(t,r(t,0)) < —2r(t,0) + Sr(t,0) < —2E 3/ guin
8 8 8 8 8
3 5 3 5 shin
Mo(t.Lo) = — 21 (bt Lo)) + Dalt. Lo) > —2s(t, L) + 2(t.Lo) > B

So f) holds withe = min {ugﬂjn, 5=5/n gmin_ %} > 0. This completes the proof, g) having been
fulfilled. &

2.5 Taylor-Galerkin numerical approximation of the solution

We present the Taylor-Galerkin scheme for the system (2.18): this che@ms to be suitable as
shock waves do not develop for the hydrodynamical variables in plogéial conditions [13]. The
last variable being the solution of a linear transport equation, we dopéait to be discontinuous
if the boundaryl/initial data are not. The scheme we will adopt is based on élgiteent spatial
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discretization and a second-order Taylor expansionUorWe write the first and the second time
derivatives of the unknown using (2.15), as follows:

= sw)- JE),
0*U oS(U ou 0 ou
S = S (sw-mi) - I aw (s - mo)fF )]

and the following semi-discrete time advancing scheme is considered:

Un+1 —_yn + At <Sn o aan>

z

A ,o0u" 0 o an ,o0u”
() sl ()]}
whereU"(z) is the approximate solution at timg = ¢, + nAt, and we seS8” = S(U"), F" =
F(U"), Jn = B0 g — g(U»).
Let N, € N, N, > 0, and{z; = ih, i = 0,..., Ny}, beingh = ]%,—i Consider the associated
finite element spack;, of piecewise linear polynomials and the subsplgg = {v € V}, | v(0) =
v(Lo) = 0}. We adopt the following Galerkin spatial discretizatigivenU?, find U}*! € V2 such

that for all ¢, € V,

At? ounr At? oun 9¢
n+1 _ (TN _ nrn o nrn h
At? At?
+ (AtS™ + TtJ"S", ¢y) + (AtF" + TtH"S", %),

and
W(UZ+1)|Z:0 — W?‘Fl’ W(UZ+1)|z:L0 — W?Q“L‘Fl’

where the componeni&ifi’]‘.Jrl of W?“, i = 1,2, are the incoming characteristic boundary data or
the outgoing characteristic extrapolation data at time (depending on the sign of the associated
eigenvalues, see [84]).

For instance, i = 0 we extrapolate the outgoing variabl€; and assign the corresponding
boundary condition foits andWW3. Therefore, we set

W= Wy (tn, — 1 (tn, 0)AL) + At(17(0))TS™(0),
V[/vln;'_1 = g(tn-‘rlv W1n1+1)7
Wﬁ;_l = Cin(tn-',-l)-

This numerical method requires an analytic expression for the charticteagables; therefore,
we consider here the flat profile case. It is possible to use the same methadgttb a different
treatment of boundary conditions also if non-flat velocity and/or conagalr profiles are adopted
[84]. Note that the extrapolation technique is based on a forward Eulerf@tehe integration of
characteristic equations (2.20). If flat profiles are assumed, we $iave0 and the characteristic
variables are conserved along the characteristic curves. The nuhseheme entails a CFL stability
condition with a CFL number equal ig/v/3 [83], more precisely:

Az

A .
h= V3 (max{|\;(z)], i € {1,...,3}, j € {1,...,Np}})
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Some numerical results with a pure resistive load and standard aorta persare reported in fig.
2.7, where the section aref the flow rate() and the oxygen linear concentratibrare shown. The
vessel reference section arealis = 3.14 cm. We consider a pulsatile input blood velocity, (¢) at
heart rates corresponding to rest conditidnisiim) and mean flow rat€, = 4.98 lit min—!, as in fig.
2.3. The oxygen concentration in blood is assumed [77] t6'be T/A = 0.2 ml O, ml~! blood =

120

100+

@
S
T

u_(cm sec‘l)
3
:

in

401

20

0

. . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (sec)

Figure 2.3: Imposed inlet blood velocity,, (one period).

8.75 umol ml~!, with a step-shaped initial condition in order to display the wavefront pssgrin

one heart beat the wavefront moves on and ca@xgn; this result is consistent with the mean blood
velocity (that isfo1 Q(t,0)/A(t,0)dt). In this simulation, the load is represented by a pure resistance
R = 0.3 mmHg sec cm™3, that is a standardp/AQ ratio, whereAp andA( are the mean variations

of pressure and flow rate during an heart period in a large artery.

We choose &0 cm vessel length in order to show the wave propagation. In our modeéthe r
erence pressure value is zero: we only deal wissure variationsThe “physiological” pressure,
is obtained by adding the pressure off$it fnmHg), corresponding to rest condition, to the results.
The resistive load causes the formation of several non negligible refleetees: we observed three
reflections, as it is shown by the pressure time course of fig. 2.4. Mergitve smaller the peripheral
resistance, the larger the reflected pressure waves: this is shown2rbfighere pressure profiles for
R = 0.08 mmHg sec cm? are reported at the vessel inlet and outlet.

More realistic results are obtained withcaupled systemin which a OD model described by
ordinary differential equationsepresents the vessel load [29]. We point out that in this way we can
take into account the substrate metabolism in tissues as well as the pergaeitaty resistance and
compliance. The 0D model, depicted in fig. 2.5, has the following state equations

Cdpgt(t) _ _pc}‘z(;) Lo,
M%t(t) — QW) <% _ JCT(t)> —o(Cr(t),1)

whereC and R, are respectively the hydraulic compliance and resistance of thejgad,the pres-
sure on the compliancé/r is the substrate concentration in the tisslig,is the tissue volume (or
mass, depending on ti{e, definition), o is the a partition coefficient, andis the metabolic rate of
consumption of the substrate. The pressueppearing as boundary value in the 1D model is given
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Figure 2.4: Inlet/outlet pressure time course 0am 1D model of a vessel with a pure resistive load
R = 0.3 mmHg sec cm?.

by
p(t) = po(t) + RiQ(1),

where R; is a further hydrodynamic resistance. As regards the blood-tissuamges, we proceed

as in chapter 1: we assume that the relation between the tissue concentatand the venous

concentratior(’,, in the blood leaving the tissuelisear, C,, = cC7, beingo the partition coefficient.
A possible choice for the metabolic raiés the Michaelis-Menten law that reads

Cr

T 2.36
Cos + Cr ( )

v = Vinaz(t)
whereV,,..(t) is the maximum consumption rate a6 is the characteristic concentration.
Here we detail the interface conditions used to couple both systems [29S8ppose that the
boundary valuesi™(Lg), Q™(Lo), I'™(Lo) of the 1D model are known at timg,, and consider a
forward Euler step on the OD model, that is

Cot =Cots+ it (<2 + Q1))
2

(L)

An(L())

MO =MCF + At (Q”(Lo) < — acgl> —v(C%, tn)) :
Pt =pitt + R1Q™
Then, the new value of the presspfe! can be used to update the characteristic variables:
Wastt =Woa(tn, —Aa(tn, Lo)At) + At(15(0))7S™(0),

Go\'? 12
Wyt = — w8 (5) AO/ VPt /Go + 1,

i.e. we extrapolate the outgoing characteristic variable and then we assigondh@ng one using the
boundary value provided by the 0D model.
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Figure 2.5: Inlet/outlet pressure time course 0am 1D model of a vessel with a pure resistive load
R = 0.08 mmHg sec cm?.

0D model

dd% = f(CTaA7Q7F)

Figure 2.6: Multiscale coupling.

In fig.[2.8 the input/output pressure profiles during four heart beatsegorted. We observe that
the pressures are in the clinical range, and that the peripheral congbai like a damper with
respects to the reflections, that were more important in fig. 2.4 and 2.5).

In fig.[2.9 we show the evolution in time 6 for the coupled 1D-0D system with oxygen trans-
port. For the sake of simplicity, the load is representative of all the tissdds/fthe systemic circula-
tion. In this simulationC' and R are respectively the total arterial compliance and resistance (we con-
sideredC' = 0.1 cm® mmHg ™! [99] andR; = 0.02 mmHg sec cm~3, Ry = 0.08 mmHg sec cm™2,
in such a way that the total static resistance eqidlsnmHg sec cm~3. The mean oxygen concen-
tration in arterial blood, as well as the constant boundary valyeis 8.75 ymol ml~!; at rest the
body consume$; = 0.18 mmol s~ of oxygen and the mean oxygen concentr@ihmtissues is
Cro = 6.5 mmol kgdw !, so that we use (2.36) With,,.. = 2Vp andCy 5 = 6.5 mmol kgdw .
Finally, we assume that the total tissue dry weightlis= 10 kgdw, and that the partition coefficient
o is such that the balana@,(Ci, — cCro) — Vo = 0 holds, that iss = (Ci, — Vo/Q0)/Cro =

2 Tissue concentrations are often measured in terms of millimoles per kitogfadry weight of tissue is
(mmol kgdw~1). The values are extracted from [11].
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Figure 2.7: Section area (& flow rate (cmsec™!) and linear concentration (mmol crh) waves in
a60 cm 1D model of a vessel with a lodél = 0.3 mmHg sec cm?.

1073 kgdw ml .
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Figure 2.8: Inlet and outlet pressure (dynarRi€' R load).
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Figure 2.9: Oxygen concentration in the tissue compartment, dyn&aii€ load.



Chapter 3

Introducing coupled 1D-3D
diffusion-reaction models

3.1 Introduction

In this chapter, we are going to study the coupling between two diffusiactioen phenomena, one
taking place in a three-dimensional medium, the other on a one-dimensioninsailm, and both
depending on each other by some exchange terms.

Our analysis is motivated by the increasing use of multi-scale approachesviathematics. As
an example, let us consider variables like the partial pressure of oXpgets concentration), or
the blood temperature: usually they are found to safa$ydiffusion-reaction-advection equations
(advection-dominated) in the net of “big to medium-scale” vessels (madedsudile they feature
a slow dynamics in the matrix of “small” vessels (microscale). Typically, homogenifzan8dels
can suitably represent the phenomena related to the microscale (for exaarple flow) without
resolving its fine structure. But this is not the case for the macroscaleewihe branching vessel
geometry has to be considered, and can still be too complex to afford theutatiopal costs of a 3D
model. A possible cure, supported by the extremely small ratio between thaltypgsel diameter
and the size of the tissue region, is to resort to 1D circulation models. Than&dye of such an
approach is clearly its efficiency: it does not need a very refined ctatipoal grid near the vessels,
allowing for a large economy of memory and CPU utilization. The drawback tstiieacoupling
conditions between tissue and vessels are non-standard.

This and the next chapter are devoted to the mathematical justification andiamdliguch cou-
pled problems, while the next one will focus on their applications. For the gsb&implicity, we first
consider model problems only; in chapter 6 we will focus on applications.

To sum up, the plan of chapters 3 - 5 is as follows.

¢ In this chapter, we introduce the vessel-tissue coupling for our modetiegsaand derive
an asymptotic 1D-3D problem. We will see that the asymptotic 3D problem hasmonth
(measurgdata, so that its solution is somehow singular.

e In chapter 4, we consider suitable functional spaces in which the wetidpess of our 3D
singular problem can be established. We use the results for the analyisesafupled 1D-3D
problem.

e In chapter 5, we study the numerical approximation of the solution of the[LBeBipled prob-
lem.

53
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3.2 The problem and model equations

3.2.1 Geometry

In the sequel we shall consider a tissue donfairc R?, containing a 1D manifold, like a line or
a tree, that represents a blood vessel. We will introduce the actual 3 spaupied by the vessel
as well, and the actual bidimensional interface between the vessel andstiee bisit only to recover
physically meaningful coupling conditions. As shown in fig./ 3.1, these tbjEmn be mathematically
defined as follows.

e The 1D manifold, representing the vessel, will be denoted bifor the sake of simplicity, let
us assume that is a single line:

A={xeQ: x=x(s), s €(s1,82)}, (3.1)

wheres is the curvilinear abscissa, ang : (s1,s2) — R? is the related smooth parametriza-
tion. This assumption can easily be extended to consider branching geanedridowever
this topic will be addressed only in the next chapter.

e \We assume that the actual vessel radius is a positive congtant. Then, we introduce the
actual volume occupied by the vessel as the set of point closerithan to A:

QF .= {x e R" : dist(x,A) < R}.

We will use this domain to study the coupling conditions between the tissue anchéle o
dimensional vessel. Of course, we assume khat small enough so th&? c Q.

We will equip Q£ with an atlas consisting of three local maps. To this end, define
Qf’;o = {x¢ R3: x = Xvo(s,1,0), (s,7,0) € (s1,52) x [0,R) x [0,2m)},

QF) = {xeR®: x=xv:1(r0,¢), (r.0,4)€[0,R)x[0,2r)x[0,7)}, (3.2
Q‘}EQ = {xeR®: x= Xy 2(r,0,¢), (r,0,¢)€[0,R)x[0,27) x [0,7)},

being
Xy,0(s,7,0) Xy (8) + n(s)rcosf + b(s)rsinb,
Xy1(r,0,6) = xy(s1)+n(s1)rcosfsing+ b(sy)rsindsing + t(s1)rcosd, (3.3)
Xy2(r,0,0) = xXy(s2)+n(s2)rcosfsing + b(s)rsinfsin g + t(s2)r cos @,

wheret(s), n(s) andb(s) are the tangent, normal and binormal versors\oRoughly speak-
ing, QF can be parametrized as an overlapping union of one cylindrical cotedifecal map
on %, and two spherical coordinates mappings(iffy , Q1.

o We will denote by o
Off = \QF

the actual “tissue” domain. A special role will be played by the interfa@ebetween vessel
and tissue:
't = o0k
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The “cylindrical” part of ¥ that belongs to the boundary &ff, will be denoted by
Tl ={xecR: x=x,0(5,R,0), (s,0)€ (s1,89) % [0,2m)}.

This is the “leading order” surface because its scaleB & R — 0, whereas the remaining
“spherical” boundaries scale #3.

Finally, we denote by

Ft = 89
the surface of the tissue domain that is not shared with the vessel;@éimgﬁ, we have that
ONFE =TRUTy.
n b
\N /
— — A
QR S t FR
Of
Q = Q\JIDL U Qﬁ QV 2

: O
O

Figure 3.1: Subdomains : the 1D vessel domain, the actual 3D vessel domai{?, and the 3D
tissue domaim2*. Shown is the covering df, by overlapping subsets, o, €2y, and(2, » where
local cylindrical/spherical coordinates o, Xy 1, Xy 2 are defined.

Our basic assumption on the vessel geometry is that the projectior{fota A is unique:

vx € QfF: 3lxg € A dist(x, A) = ||x — xo]. (3.4)

Notice that the projectior, exists becaus# is compact. One can show that eg. (3.4) is satisfied if
A is smooth enough anl is small. A consequence of (3.4) is that

dist(xy0(s,7,0),A) =r ¥Y(r,s,0) € [s1,s2] X [0,R) x [0, ). (3.5)

Let {¢y,;} be a partition of the unity such that, fori = 0,12, : QFf — R is a non-negative
smooth function with supfp ;) C On and) . ¢y, = 1on QF. For every measurable function

v,i!
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g:QF — R, we have

S92 R 27
/ gdx = / / / go(s,r,0)rdsdrdd +
Q& s1 JO 0

where

> /OR /027r /Oﬂgz‘(rﬁ,(b)?“2 sin pdrdfde,

i=1,2
(3.6)
1

g9i = (gpvi) ox;, i=0,1,2.

Moreover, we have the formula

S92 2T
/ gdo = / / go(s, R,0)Rdsdb, +
'R s1 JO

From this equation, we have thatgfis continuous orﬂf, then

2 T
> /0 /0 gi(R, 0, $)R? sin ¢dhdo. (3.7)

i=1,2

1 S92 27 S2
lim — gdo = lirr(l)/ / go(s,eR,0)Rdsdf = / 2wg(s)Rds = 27rR/ gds, (3.8)
<R —0Js, Jo A

e—0 € 51

whereg(s) = g(xv(s.0,0)).
We will denote by a bar the following averaging operator on circles of eflilaying on the
cylindrical surfacdf* and normal to the lind:

1
o

27
i(s) /0 g(xvo(s, R,0))do. (3.9)

The area of surfacE{f scales af, so that, using local coordinates o, and defining (s, r, 0) =
g(s,r/e€,0), we have

1 .
lim — gedo = 27TR/ g(s)ds. (3.10)
S1

e—0 € R
5

3.2.2 Diffusion-advection-reaction equations

Now we can focus on the interplay between the actual 3D tissue dddfaamd the 1D vessel domain
A, and study the behavior of the solutions when a suitable rescaling is apptiel an 0 so that
Qf expands to the whol@. We point out that in this investigation, the starting equation for the
vessel variable is already one-dimensional, while it would have beeearpla¢ to “obtain” this one-
dimensional equation starting from the actual 3D vessel dofditby “shrinking” it to its 1D axis.
We did not follow this (interesting) approach because we are mostly intdriesthe singularity of
the asymptotic 3D solution. Moreover, the same asymptotic analysis for thel vegion has been
considered in the previous chapter on one-dimensional models for masgdrain blood vesséls

INevertheless, a coupled vessel-tissue asymptotic analysis, justifyin@+B® odel starting from the 3D-3D one, is
still lacking and would represent an interesting complement to this work.
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Let us denote by, the unknown variable in the tissue anddbythe one in the vessel; the model
problem we will consider reads

=V - (kyVug) + myug + 14 =0 in QF
uy =0 onl',
—ktOnus = —q onT%,
d /. duy duy _ (3.11)
5 (kvg> +bvg+f:0 in A,
Uy (51) = Uy 1,
—ky d(fsv (s2) =0,

wherek:, m¢ andr; are respectively a diffusion, reaction and source term in the tissue dontala
k, andb, are the diffusion and convective term in the vessel domain.

The ¢ term, defined on the actual interfab& between vessel and tissue, represents the mass
transfer term (per unit surface) from the vessel to the tissue: for threanbit is assumed to be a
known function, such that supp) C T'¥. By conservation of the global fluk across'%, a related
term f appears in the vessel equation, such that

/:2 f(s)ds = /1“1? qdo = .

The boundary conditions for the tissue are of mixed Dirichlet/Neumann ypdenotes the outer
normal derivative (with respect ©[?). For the vessel we have a Dirichlet conditionsat s; and a
homogeneous Neumann conditiorsat s» (other combinations could be considered as well).

Onceg andf are given, under standard hypotheses system (3.11) consists a¢tevapded elliptic
equations. However, we wonder if some “asymptotic” problemifarn {2 can be recovered by letting
R — 0 and by rescaling properly in order to keep the total flux acro§%* unchanged. Therefore,
for e € (0, 1], we consider the problem corresponding to the scaled vessel kdétius

=V - (kVu§) + myug + 1 =0 in Q¢F,
uf =0 onT¢f, (3.12)
—kOnui = —qe on I’ER,

for which we would like to find a limit solution when— 0. Using local variables, the flux onT§?
for the scaled problem must be equal to

1
QE(Sa €R7 9) = Zq(sa Ra 0)7

if we want the total flux® = [..r kiOnufdI to be independent af In fact, by changing the integra-
tion variables we have

52
<I>:/ qeda:/ qda:/ f(s)ds Ve e (0,1] (3.13)
gk rf 51

Let C5°(Q2) be the space of smooth functions with compact suppof.inlf we multiply the
equation in[(3.12) by an arbitrary test function(i§°(2) and integrate ove®{?, we get

/ ki Vug - VodQd +/ mugpdS +/ ri¢pdQ = gepdo Vo € C5° (). (3.14)
QcF QcF QR

eR
1—‘O
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Since

L 27
/ gepdo = / / q(xv0(s,R,0))p(s,eR,0)Rdsdl
gk 0 Jo

we have, similarly to eqd. (3.10),

1 2m
lim gepdo = 27rR/ gods, where g(s) = —/ q(s, R,0)de.
A 0

e—0 FER 27T
In particular, thanks to (3.13), we see thfatan be given the following expression:
f(s) =27 Rq(s).

Suppose now that{ — wu; with respect to a suitable norm so that the limitlof (3.14)der 0 is

/k‘tVut . V¢dQ+/ mtuthdQ—i—/rtgbdQ = / f(s)ds Vo € C5° (). (3.15)
Q Q Q A

Then, eq.[(3.15) is the candidate for our asymptotic problem, whose soongeads:

{—v - (ke Vug) + myug + e = f(5)0a in €, (3.16)

uy =0 onofl,

beingd, the Dirac measure concentrated/onin this work, we will adopt the following convention:
for f € L2(A), we denote byfd, the linear operator o6'(Q2), the space of continuous functions on
Q, defined by

(Fon, ) = /A fods. (3.17)

In particular, fé, is ameasurgffor f = 1, it is exactly the Dirac measure aY). Notice thatf(s)
appears in turn as a sink term in the one-dimensional transport subprish(8.11):

d du du

- kv—v bv—V = [ A,
ds < ds > + ds ) =0 n
UV(O) = Uy,D,

—kyul, (L) =0,

In practice the mass exchange terfrappears as a function in the 1D equation, and as a measure
in the 3D one. The first remark we can make is thatt H~1(£2), so that if a solution; exists, it
will be not in H1(€). It is known that a 3D solution to a Poisson problem with a line source has a
logarithmic singularity near the line, whose gradient does not beloig Q).

In applications,g (and sof) is not knowna priori. Usually a constitutive law fog has to be
chosen: this makes the derivation of the asymptotic problem more complicatedlifEnore complex
non-linear models (like the Kedem-Katchalsky equations) could be addpteds consider as an
example the following linear filtration law in local coordinates:

q(s,0) = D(uy(s) — us(xv0(s, R,0))), (3.18)

In this case system (3.11) is no longer decoupled. Moreover, it is not imategdclear how to choose
the scaling of the flux-%;0nus, asq depends on the solution itself, so that a simple formula preserving
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the total flux® is not available. For certain scalings, the reduced problem still has time for

-V (ktVut) + myug + 1 = f(uv, Uy, 8)51\ in Q,
uy =0 onofl,
d duy duy _ .
_& <kVE> —I—bvg—l—f(uv,ut,s) =0 In A, (319)
UV(O) = Uv,D,
—kyul, (L) =0,

where f is a suitable functional, representindimear flux (i.e. rate of transfer per uniength. In
general, it is not a simple function, but rather an integral operator. ¥ample, if we adopt the
e~ l-scaling of the fluxg, we find

1 27
fuy,us,8) = 2wRD (UV(S)%/O ut(xvp(s,R,G))dH) (3.20)

= 27RD (uy(s) — ug(s)) .

We might wonder if this—! scaling associated with form (3.20) of the exchange term does pre-
serve the total flux. Actually we will show by some examples that this is the &&eewill provide
test cases with an available analytical solution, that allow the investigation ofpfeal behavior of
the asymptotic solution.

Examples

Ford € (0, 1) we define the following simple domain in cylindrical coordinates (see fig. 3.2):

QR ={(z,r,0) eR>: §<r<1,0<z<1}.

Figure 3.2: Axisymmetric model problem.
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We haved) = T U T p UTY,, where
= {(z,rnd)eR®: r=00<z<1},
I'p={(z,r0) eR3: r=1,0< 2z <1},
Iy ={(z,r0) cR3: §<r<1, 2c{0,1}}.
Moreover, we define the segment
A= {(zr0) €R?: (z,7,0) = (5,0,0),s € [0,1]}.

Lete € (0,1) be the scaling coefficient, and denote(by: R < 1 a reference radius, thought to be
< 1 (this could be the case of the actual vessel radius). We will focus orcimg of two model
Laplace problems, respectively considering Neumann and Robin corgition

The Neumann case. Consider a constant Neumann datymon I'. The associatedscaled model
problem reads:

—Auc=0 in Q¢

—Oput =0 onTS&,

—Opuf = —g. onI<f

u¢ =0 onl'p,

(3.21)

whereg, is the scaled flux. The scaling has to be such that the total flux acrossrtheedis”®

1 2
O(e) = / qeRAl' = / / qe€Rdzdf = 2weRg,
[eR o Jo

is constant with respect to This obviously implies
1

qe = —4-
€

As the problem i®),z-symmetric, we can look for radial solutions, in the foun= «*(r). With this

. ar . . . . € _ 1d d €
choice, Neumann conditions d, are automatically satisfied; moreoveyyc = 1L (r £uc), so

that the problem is reduced to

—% (r%ue(r)) =0, eR<r<l,
Luc(eR) = —q/e, (3.22)
u(1l) =0,
whose solution is
u(r) = —Rqln(r), r € [eR,1], Ve € (0,1].

Since this function is independent afit is already the asymptotic solution fer— 0 that we are
looking for. This is given by
u(r) = —RqIn(r),

and defined on the whol@ = (0,1) x (0,1) x (0,27). One can easily verify thai is the weak
solution of the following Poisson problem with a measure as a right hand side:
—Au = 2w Rqgdy inQ,
—0Opu =10 only, (3.23)
u=20 onl'p.
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Notice that the Dirac densityr Rq on the one-dimensional vessels just the integral of the surface
flux ¢ on each cross-section of the actual vessel.

The Robin case. Consider a linear Robin condition:
—Opt = —q1(u) = —D(u — uy) on FR,

beingD andu, constants. Wheearscaling the problem, the total flux across the surféd&ébecomes
now dependent on the solution. Fox 0, denote byD. the rescaled conductive coefficient, such that
Dy = D. In our axisymmetric problem, we have:

1 2
() = | De(u —uy)RAL = D, / / (uf(eR) — uy)eRdzdf = 27 DeeR(uf (eR) — uy).
TeR 0 0

In order to preserve the flux, one should impdge) = ®(1) Ve € (0, 1], which gives

In this equation, we have the sarte' term we met in the Neumann case, plus another term which
involves the actual and the rescaled solutions. The latter, in particular,at lswwna priori. The
correspondent rescaled problem

L (rduc(r)) = eR<r<1,
gu(R) D
D

e

(( 1((3)) :Z:; (3.24)

o =

uf(1) =0,
admits the following solution: fo¢ = 1 we find

DRu,

1 e
W) =1 DRmER

In(r),  re[R1],
that is the actual solution in the non-rescaled domain. Solving|(3.24)da(0, 1] usingu' as datum,

we obtain once again
DRu,

1-DRInR

which is, as in the Neumann case, depending only via the domain, so that the asymptotic solution
for e — 0 is the singular function

ut(r) = — In(r), r € [eR, 1],

DRu,

ur) = T DRWE

In(r)
defined on the whol€ = (0, 1) x [0,1) x (0,27). As in the Neumann case, one can verify thas
the weak solution of problem (3.23), if we take

Duy,

P e S
1= “" T " DRIR
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We point out that this expression fgrhas been obtained by means of the actual solutigrand
it may change when different geometries and Dirichlet data are condidei@vever, we draw the
reader’s attention on the fact that this example is a particular case of pr¢Bl&9), namely:

—Au =271Rqép inQ,

—0Ohu =0 onT'y, (3.25)
u=20 onT'p,
where
q(s) = D(uv(;z —u(s)),
a(s) = zi u(x(s, R, 0))do, (3.26)
m™Jo

beingx(r, s, #) the parametrization dR{* appearing in'(3.3). This means that foe [0, L], @(s) is

the mean value of the unknownon the circle of radius? centered at the pointon the lineA, and

laying on the plane normal td. Notice that (3.25, 3.26) form aintegro-differentialproblem, and
one has to show that this problem makes sense in a suitable functional $paee axisymmetric
example, we have = — 284l 5o that we obtain once again the expressieffe— for ¢. We

point out that, in this case, the asymptotic problsmpreserving the total flux.

The former examples show how the asymptotic singular solution can approximadetual one
at least forr > R (in the simple axisymmetric problem we considered, the actual and asymptotic
solution are the same function 61f*). To summarize, by means of the asymptotic solution we can
avoid to resolve the 3D geometry of small vessels, but the elliptic problem wethaonsider has
a right hand side which is measurethat has the fornyf(s)d,. Of course, forr < R the singular
solution ceases to have a physical meaning, since it is not bounded eesndhlarity.. However,
sinceR is a known parameter, this is not a drawback of the asymptotic solution aghprioar > R,
u is expected to be a good approximation of the actual solution

A numerical experiment. Having presented through a couple of examples the typical behavior of
the asymptotic solution, let us investigate its numerical approximation by the finiteetenethod.

We will consider the simple problem (3.23) 6h with Rq = 1: the exact solution is(r) =
—Inr. Basis functions of standard FEM are continuous, so that the Galerghoxdmationu;, of u
is well defined: that is, we are allowed to considgre 1}, such that

1
a(up,v) = / 27v(2,0,0)dz Vv € Vp, (3.27)
0

whereV, is a suitable finite element space (in this example, weRiselements with maximum
element sizé), anda is the following bilinear form:

a(u,v) = (Vu, Vo) r2q) = /QVU - Vo dx.

As we already pointed out, we cannot expect convergepce u in H' norm forh — 0. In fact, we

have: .

1
1
|ull3s = 27r/0 rIn?rdr < oo, [Vul2, = 27T/0 rr_zdr — o0,

so thatu € L?(Q2) butu ¢ H'(Q2). As we will see, even if we cannot rely on the standaft
convergence, we still hav&” convergence. Moreover, it is possible to introduce other spaces ifwhic
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we can study the convergence of the FEM. To this end, we introduce ilgatee spacd.? (1), (see
definition A.1.1) as the space of square integrable functions with respibet toeasurg,, defined by

dpe(x) = dist(x, A)?* dx.

The space of functions ih2 (2) whose first derivatives are ih? () is defined as the weighted
Sobolev spacél (Q2). Itis a Hilbert space (see [51]), with

() iygoy = [ )00 daa) + [ V) - Vol d ).

In our axis-symmetric case, we hadgt(x, A) = r, and the function—! belongs toL2 (2) for
anya > 0. In particular, we have

1
1 T
Vul?, =2 20— qr = =
IVull7, 77/0 Y=y

andu € HL(Q) for a > 0. We will show thatH!(Q) is a “good” space to study the both well-
posedness and FEM convergence for our singular problem.

Relative error
=
o
T

10 10 10

Figure 3.3: Relative approximation error in different norms, namelg?2), b: H'(€2), c: L2()
(o =0.5), d: H}(Q) (o = 0.5), as a function of the mesh size

In fig. (3.3) the convergence history of FEM with respect of differearims is shown. For the sake
of simplicity, we considered an axisymmetric case in which the independenbles are(r, z) €
[0, 1]2, the symmetry condition defining our 3D solution on the whole cylifdlewe can see that the

approximate solution does not convergeHn(2), but it does inL?((2), L§/2(Q) andH11/2(Q). The
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slope of the bilogarythmic plot gives the order of convergence with aé$pé, which is in particular
more than linear for thezf/Q(Q) norm, andO(h"), with  ~ 1/3, for the L? andHll/Q(Q) norms.
The slow convergence rate is mainly due to the singularity Ae@re. forr = 0): as it is seen in
fig. 3.4, “large” errors are localized only on those elements having at ¢@esnode om\; on the
other elements, the approximate solution is very accurate, even if a relatbaalye meshi(= 1/10)
is used. This fact shows that a good accuracy in the solution far awaytfie 1D vesseh can be
achieved by a coarse grid, without resolving the actual 3D structureofetssel.

Figure 3.4: Surfaces representing the numerical solutipfr, z) (mesh) and the exact solution
u(r, z) = — Inr (shaded with color), foh = 1/10.

In our simulation, we considered an assigned source teom A; but in applications this term
is not knowna priori, and it depends on the solution itself via a constitutive law, as in (3.26). The
constitutive law usually depends on the solution values near the 1D soypaglly at distances of
the order ofR. Hence, the following questions naturally arise:

e Does the FEM converge to the singular solution for Robin coupling condiions

e In order to obtain an approximate solution with a reasonable tolerance omrdhdsit manda-
tory to refine the mesh and takeof the order of the vessel radius, at least in a neighborhood
of the corresponding 1D axi&? If the answer is yes, the major advantage of the asymptotic
solution approach will be lost.

e Can we eliminate the singularity? A typical procedure is to fing: v — £, where the function
£ is chosen in such a way that satisfies a “standard” problem. Is this approach preferable to
the FEM one?

These issues will be adressed in the next chapter.



Chapter 4

Analysis of 1D-3D coupled problems

In the previous chapter we found that the modelling of small vessels by 1fottmnembedded in
a 3D tissue gives rise to elliptic problems with measure data, namely Dirac measueentrated
on lines. Further difficulties arise when considering the coupling betwBean8 1D problems: for
instance, a meaning has to be assigned to the “1D-projecii¢sée (3.26)) of the 3D solutiom and
the solvability of the coupled problem has to be investigated.

Results already known on standard problems do not apply directly to oatiegs: for instance,
due to the singularity of solutions we cannot rely on usual Sobolev sparcgsidying well-posedness
or FEM convergence. Existence and uniqueness result for a Dirjpfubtem with measure data was
proven by Stampacchia [98], whereas the semilinear case has beed by&eezis (for instance in
[9]): in these papers the authors have proven the existence of a sdtutigh?(2), with 0 < ¢ <
N/(N — 1), N being the dimension d® (in the linear case uniqueness is obtained as well).

In view of the numerical approximation of the solution, we prefer to work witlbétt spaces.
Moreover, the measures involved by the problems we will consider, liké&)3at more generally
(3.19), are not arbitrary: we will always deal with Dirac measures orslovdy. For these reasons
we introduce an dd hoc¢ functional setting, specifically designed for our case, based on vezigh
Sobolev spaced ! ().

We point out that Babuska [5] and Scott [94] have already studiedutreerical approximation
of Dirichlet problems with Dira®-functions as data. Nevertheless, their approach in the case of
Laplace operator is essentially based on spa£g$?) with s € [0, %), and it fails to extend to Robin
problems (where at least dif-valued trace operator has to be defined). Moreover, the assumption of
the smoothness of the domain is crucial in the work of Scott, who is the only ahaddresses the
3D problem. Our functional setting will encompass this case.

We consider the notations introduced in section 3.2, Wittt R andA c € denoting our 3D
and 1D domains respectively; in particular, the assumptions of subseidnh®ld.
Fora € (—1,1), we define the following weighted Sobolev space

HY Q) ={feLi(Q): VfeL2(Q)?"},
whereL2 (Q) has been introduced in Definition A.1.1. The scalar produd }i€2) is defined by
(£, a1 = (f, 920 + (VI V)2 ()3,
being
Rz = [ FO00G)dhalx) = (@S )iz,

65
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wherey,, is the measure defined in Definition A.1.1, thatljg, (x) = d(x)?>*dx. Hered is distance
from A, d(x) = dist(x, A). More generally, one could consider any “equivalent” function sueh th
Chdist(x, )~ < d(x) < Capdist(x, A), whereC; andCs are positive constants.

For the basic properties @f . (£2) that we shall need, the reader can refer to Appendix A.

We shall consider the following steps:

1. To provide a suitable functional setting and a finite element convergaradgsis in the case of
Dirichlet problem for the Laplace operator with a Dirac datum on a line;

2. To extend the analysis of the previous point to the coupled 3D-1D proble

4.1 Dirichlet problem with source term on a line
The model problem we will focus on in this section is:

{—v (k) = f6, inQ,

4.1
u=20 onoq, 41

wheref € L?(A), andfd, is the measure defined by (3.17). This problem has to be considered in a
weak sense: to this end, we introduce the following bilinear form

a(u,v) := / kVu - Vodx 4.2)
Q
and the linear functional
F(v) = /Af(s)v(s)ds. (4.3)
Let
Vo = {u € HY(Q) : yjpq = 0} (4.4)

be the subspace df! of functions vanishing o@<2 (in the sense of traces). We say that V,,
solves problem (4!1) if it satisfies the variational problem

a(u,v) = F(v) Vv e C3°(92). (4.5)

This is the basic paradigm of more complex problems, for instance featugifigspon and reaction
terms as in/(3.16), or nonlinearities. The extension of the theory to handie thedifications is
trivial: in this section we are interested above all in the handling the meastare da

First of all, we point out that certain singular problems in the form/(4.1)beasolved by “remov-
ing” the singular part. This is the case for instandeis a positive constant: we have a “representation
formula” for the solution in terms of a line potential and of a nonsingular elliptiblam, as it is stated
by the following result.

Lemma 4.1.1.Let f € L?(A), and assume thdt > 0 is constant ir2. Then, for everyx € (0,1)
there exists a unique solutianc V,, N L?(£2) of problem|(4.5), and two positive constantsand C’
such that

lullzy < Cllfllz2ay lullz2 < C[[ fllL2(a)- (4.6)
Moreover, the following representation formula holds:

u=1u+E, 4.7
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whereu € Vj is defined by
=0 in €,

-A
u=—£ onofl,

and¢ € HL(2) N L?(Q) is the following line potential:

L fly)
CArmk Jy x—y]

=41

(4.8)

§(x) :

Proof. It is not difficult to verify that a constart > 0 exists such that

1
< —_—. .
Therefore, thanks to lemma A.1.1, we have fRa¢| € H.(£). An estimate similar to (4.9) is easily
found for|¢(x)| too. Hence¢ € HL () and

1€l 1) < Cullfllz2(a), €l L2y < Cillfllz2(a)-

Being fd, a measure with compact supportt the potentiak satisfies—kA{ = fd, in the sense
of distributions [108, th. 4.1]. Due to the density of smooth functions (theoke2.1) the Green’s
formula holds inH(2), so thatF(v) = (&, —kAv) 2 = (kVE, V)2 Vo € C5°(Q). Thereforeg
satisfies

ds(y).

a(&,v) = F(v) Vv e C3°(£2).

Moreover, by theorem A.3.2, we have tifaj, € H'Y2(Q). Beinga Vj-elliptic, problem [(4.8) has
a unique solution € H'(Q) such thatigq = —£j9q, and||@l| ;1 < Col€]| 1, Ca being a positive
constant. Hence = u + ¢ € V,,, and

a(u,v) = a(t,v) + a(é,v) = F(v) Yo € C§°(2).

On the other hand, any solutianto problem|(4.5) can be written in the form (4.7) since £ solves
(4.8).

To complete the proof, we observe that

lullve < llallmy + 1€l < ClflLzw),

whereC' = diam(Q)*C1Cs + C;. In the same way we can choaSé = diam(2)*C,Cs + C7. The
uniqueness of; follows. O

Lemma 4.1.1 provides a first method to numerically approximate the solution aeprdd.1).
Since it is possible to compute the singular @gawtith an an “arbitrary” accuracy by numerical inte-
gration, one is left with the approximation @f which is a “standard” problem.

However, we will not adopt this method, although it allows for very adeunaimerical solutions.
A few drawbacks arei) we can only use it for problem (4.1) whekés constant, and more generally
only for those operators such that a fundamental solution is known: thi i@ case in hemody-
namics, where the tissue diffusivity can vary and nonlinear perfusiomstbave to be considereid)
every evaluation of the approximate solution requires a line integratiok. dWhenA represents a
complex vessel geometry, this can be quite expensive in terms of computing.

In our opinion, a direct FEM discretization of the variational problem (4M)ich is possible
since basis functions are continuous, provides a more flexible approathe sequel we introduce
the special functional setting that is needed to use this approximation metheddééunderlying
our approach is to consider in (4.5) test functiortselonging to the wider spadé_, > C§°(12).
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4.1.1 Analysis in weighted Sobolev spaces

First, let us state some preliminary lemmas; they are interegtnge for our weighted Sobolev
spaces approach entirely relies on them. We consider the variational ftonula5), and we seek

a solution inV,, considering test functions ii_,. In order to have existence and unigueness for
this problem, we will make use of the generalized Lax-Milgram thedrem A.4ié,td N&as. In
particular, we have to show that:

i) bilinear forma defined in|(4.2) is continuous dn, x V_,, and satisfies the inf-sup inequalities

(A.10), (A.11);
ii) functional F' defined in|(4.3) is continuous dn_,,.

Let us start with pointi): we can show that il < a < 1, functions ofV_, admit a continuous
trace operator on the 1D manifold This implies thatr” € V/ . We will make use of the following
weighted Hardy's inequality (see [70]):

Property 4.1.1 (Weighted Hardy’s inequality). Let0 < p < ¢ < 00,0 < R < oo and letu andv
be weight functions defined @0, ~). Assume that, for every> 0,

/ v(t)ﬁ dt < oo.
0

Then, the inequality

</0R (/Orf(t)dt>qu(r)dr>% dr<C </0R f(T')pv(r)dr>% (4.10)

holds for all positive functiong on (0, o) if and only if

R 1
D = sup </ u(t)dt)
re(0,R) r

Moreover, the best constant (4.10)satisfies the estimate

=]
N
o\i
S
=
=
I
o,
~
N———
3
A
8

D < C <k(p,q)D

where

wi- (329 (555

Theorem 4.1.1 (\-trace operator). If 0 < a < 1, then there exists a unique linear continuous map
s HY () — L*(A)
such thatyau = u, for each smooth function € C*°(Q2). In particular, we have

10l z2(a) < Cala)l[dll (-
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Proof. Let ¢ € C°°(§2). By using local cylindrical coordinates, o and integrating irﬂfjo along the
radial direction, we have for evetye [0, 27):

_ 09
?(s,0,0) = ¢(s,r,0) — ; E(s,tﬁ)dt,

so that, using the inequality. + b)* < 24 + 2b?, and integrating of2’, we get

r 2
7TR2/¢<8>2(18 <2 ¢(s,r,0)2rdsdrd0+2/ (/ %(s,t,ﬁ)dt> rdsdrdf. (4.11)
A aF, or, \Jo Or

Now we can use theorem 4.1.1 and inequality (4.10) with ¢ = 2, the weight functions being
u(t) =t w(t) =172,
andf(t) = |0¢/0r(s,t,0)|. We have

1 2

T T
/v(t)ﬁdt:/ el =" <o wr>o,
0 0 20

R % r %
sup < / tdt> ( / t2a‘1dt>
re(0,R) r 0

1 2 al
< T R2 _ 2\, 2« — Ra-{—l <
o) =) 2o+ HITIE = 275"

and

>
I

—14+a)/2 Rlta

so that, since = dist(x, A) on Qﬁo,

2

R r a(z) 2 R a¢
/ (/ —(s,t,ﬁ)'dt) rdrSC(a)Q/ dist(x, A)~2* | == (s,7,0)| rdr, (4.12)
0 0 or 0 or
where
a(—1+a)/2
R — < (C(a) < R/ V. (4.13)

2(a + 1)(1+a)/2 —
Using estimates (4.12) ard< d(x, A)2*R** v¥x € Qf in (4.11), we obtain

TR’ / ¢(s)*ds < 2R* o(s,7,0)%d(x, A)"**rdsdrdf +
A

Qf,
9 ?
20(04)2/ <—(s,r,9)> d(x,A)"**rdsdrdf
Q\I/%,O 87“
< 2max{R", C(a)’Héll}: o) (4.14)

Hence the following continuity estimate holds:
[¢llz2a) < Ca( @)@l (o)

whereC, = /max{R?, C(«)2}/(7R2), andg is a smooth function. The extensiondgcs H! ()
follows by a density argument (see theorem A.2.1). Notice that the cord$tadepends on: actually
from (4.13) we have thafy, = O(a~'/?), andC, — oo for & — 0: this confirms that the result is
not true anymore ifv = 0 (non-weighted case). O
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We are left withi). The continuity ofz is straightforward; the non-trivial point is rather the inf-sup
inequality (A.11). To show it, we need the following technical lemma, that wetadato our case
from [105]. Recall that we are allowed to use local coordingtes, 6) for the “cylinder” Qﬁo, and
local coordinatesr, 6, ¢) for the “hemi-spherest2!?| \Q; andQf,\Qf ), see equations (3.3).

F N\,

Figure 4.1: Local coordinates on subdomain§¢f

Lemma4.1.2.Lets € (0,1) andu € H}(Q) forsome) < o < §. Consider thé-Fourier expansions
in local coordinates given by

u(s,r,0) = ZA]C,O(T,S)GUCG inQ\IiO, (4.15)
kEZ

u(r,0,¢) = Y Apa(r,¢)e™ inQf\of, (4.16)
keZ

u(r,0,¢) = Y Apa(r,¢)e™ in I\, (4.17)
keZ

Consider the real function
Apo(r,s) in Qf;o
Ag(x) = ¢ Apa(r,¢) in 951\95;0
Apa(r,¢) in Q%\Qﬁo

defined on the whol@ﬁ. Furthermore, define

R
_ 2a—1 ; R
W(x) = ‘P(T,y)—/r 7 Aoty y)dt N Q, (4.18)
0 elsewhere
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wherey can be either the or the ¢ local variable, depending on the subdomairtdf in whichx is
(in particular, ¥ is independent of).

There are positive constants, Cs, Cs independent of € (0, ) and R, such that the following
estimates hold:

lu—Aollzz_ ary < CillVulrze, (4.19)
||‘I/||L3a(g) < Coflullpz (@) (4.20)
‘}dQQ—lqu+V\P“L%a(Q§) < C3Hvu||L(%(Q§)v (4.22)

whered(x) = dist(x, A).

Proof. Some preliminary remarks: the coefficients of Fourier expansions aee diy standard for-
mulas, for example imﬁo we have

1 27 )
Apo(r,s) = 2—/ u(s,r, G)e_lkede.
0

™

Since A_jo(r,s) = Aro(r,s), Aop is a real function. ActuallyAy(x) is the average of, on the
circle described by € |0, 27|, keeping the other local variables constant and equal to those of point
x (notice that this circle varies continuously with respeck}olncidentally, this gives a geometrical
interpretation for too, as the integral of-dist(x, A)?>*~'u(x) on the shaded areas associated with
x in fig.|4.1. Even if we have two kinds of local variables (spherical aricidsical), we will consider
only the cyllndrlcal subdomaif’? 0, since calculations for the remaining hemispherical subdomains
are carried on in the same way.

From now, if we omit the integration intervals, it is understood that theyraee (0, R), 6 €
(0,27), s € (s1,5s2), ande € (0,7/2). Thanks to Parseval’s equality

27
/ (u(s,r,0) — Ago(r,s))* df =2 Y |Apo(r,s)|? (4.22)
0 keZ\{0}

we can write
Ju= Aol )= [ 72 luls7.0) = Aoolr. o) Prdrdsds

=21 ). / 20=1 Ay o(r, 5)|? drds. (4.23)

keZ\{0}

On the other hand, bein§u|? > 2 (g—“) we have

1
||Vu|\%3(9) > 20‘—2< > rdsdrd@-ZwZ/ 2012 Ay o(ry 5) 2 drds
keZ
=27 Z / 2071 E2| Ay o(r, 5) 2 drds,
keZ\ {0}

where Parseval’s formula for ttfederivative has been used. Since in the last 8 1, comparing
with (4.23) we have
lv = Aollr2_ r,) < IVullzz @
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Analogous estimates dnff,\Qf, andQf,\Q¥ follow in an similar way and (4.19) is proven.
TheL? , norm of ¥ on Qﬁo is given by

2

R
H\IIH%EQ(Q%) = 27r/r2a (/ t2°‘1A070(t,3)dt> rdsdr.

r

Now we use the following weighted Hardy’s inequality (see [105])

R R 2 9 2 (R
7‘_6 p-1 r —_— rﬂ r)2dr .
/0 (/ : f(”dt) ‘ §<1—ﬂ> /0 fordn o pst (62

with f(t) = tAo(t,s), § = 2a — 1 (which is< 1 sincea € (0,0), § < 1). We get

1 2
2 2. 2a+1
||\I/||L2_a(95,;0) <27 <—1 ) /A0,0(T, s)%r?tldrds

1 2 1 \2
= <—1 _a> ||V27TA0,0||%3(Q§’0) < (1—_5> ||U||ii(9§’0), (4.25)

where last inequality is due to Parseval's formula. Analogous estimatesiard anﬁl\Qﬁo and
QF,\Qf, where we make use of (4.24) wiff(t) = Ao;(t,¢)t*> and = 2o — 2 due to the extra
r term coming from the integration formula in spherical coordinates; thexgfimcel = 0 outside
Qf, (4.20) is proven.

Now let us show! (4.21). We recall the following formulasﬂffO

%(s, r,6) = Z %(r, s)etrd (4.26)

and
8140’0

s
wheree, ande, are the versors associated to thends local coordinates. We have

R
VU = —e, 72 1 Ay o(r,8) + es/ t2o—l (t,s)dt, d**7'Vd =r?**"le,,
T

R a1 04 ’
1457 WV a+ VL (or,) < lu=ollz_ o, +2m / o < / th_l%(t’s)dt) rdsdr

The first term can be estimated by means of (4.19), so that we are left wiietoed one. We can
proceed as for eq. (4.25), using (4.24) and Parseval’s equalityddfdbrier expansion (4.26); we get

R A ? 1 \? Aoo?
27r/r_2°‘ / tQO‘_lM(t, s)dt | rdsdr < \/2778 00
. 0s 11—« 0s 2 (QR
L3(70)
1\ 0u|? 1 \° )
< | —— — <|——= . @427
< (1 _5> 0s 13y = (1 _5) IVullzz (o). (4.27)

Analogous estimates come from integration over the remaining subdomaing.ofThe proof is
complete. O

At this point we are able to state our well-posedness result.
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Theorem 4.1.2.Let f € L%(A), k € L>(Q), and assume that there exists a constant- 0 such
thatk > ko in Q. Then, there i$ € (0,1), § = d(ko, R) such that for eacla € (0, ) there exists a
uniqueu € V,, such that

a(u,v) = F(v) Vv e Vg,

wherea and F' are defined by (4.2), (4.3). Moreover, there exists a constaat C'(kg, R) > 0 such
that:

lullve < Cllfllz2ca)- (4.28)

Proof. The idea is to apply the Nas’ theorem A.4.1, withil; = V,, H, = V_,. We already
observed that since > 0, and thanks to property 4.1.E,is a bounded linear functional dn_,,, and

[E Ny, < [Ivallllf 22 ca), (4.29)

wherel|ya |l = [[vallzv_.:z2(a))- Furthermore, the bilinear formis continuous:

la(u, v)| =

/deo‘Vu - d7Vodx| < [E[lool|d*Vull L2y [|d™* Vol 2(9) < [[Flloollullvallvllv_

(4.30)
Now, letv € V_,, v # 0; sincea > 0, we havel’_, C V,. Choosingu = v yields

sup a(u,v) > a(v,v) > ko|[Vo[Z2(q) > 0.
ueVy

Infact, if [ Vv|| 12(q) = 0 thenv is a constant, which is necessarily zero, due to the Dirichlet boundary
conditions: this is in contrast with our assumptiog: 0. Hence is non-degenerate and hypothesis
(A.10) is satisfied.

To prove that/(A.11) holds, it is sufficient to show that there are positivestantsn, M, such
that for everyu € V,, there isv € V_,, satisfying

lollv_o < mlullv,, (4.31)
a(u,v) > Mllulf,. (4.32)

Then, ((A.11) holds wittCy; = M /m. Set
v(x) = d(x)*u(x) + 209 (x), (4.33)

whered is the following Lipschitz continuous function

dist(x,A) in QF,

(4.34)
R elsewhere

d(x) = max{dist(x,A), R} = {

and is the auxiliary function introduced in lemrha 4.1.2. Notice ifi# equivalent to the distance

functiond in the sense that

R ~
_ <d< . .
diam(m>d_d_d onQ (4.35)

Thanks to/(4.35) and (4.20) we have

lollg2 < llullzz + 2%l < mallulv,
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wherem; is independent of. Moreover, since
Vo = d?**Vu + 2a(d** uVd + Vo)

observing thatl = d onQ%, Vd = V¥ = 0 onQ\Q%, and using estimate (4.21) of lemma 4.1.2, we
have
IVollre < |[Vullgz +2[|d** 'uVd + V|12 (qr) < mallullv,,

wherem, is independent of.. Hence((4.31) is satisfied with? = m? + m3. Now, since

a(u,v) > ko/ d**|Vu)? dx + 2a Vu - (d** 'uVd + Vo) dx,
Q QF

we can use estimate (4/35), and once again (4.21) to obtain

a(u.v) > kol|VulZ, ) — 20/l g [ uVd + V8] 72 > [Vl g (ko — 20C5),

where(} is the constant in estimate (4.21), and, forc 2, we define

2 o R 2
300 = [ @IrPax

OfcourserHL2 @Qr) = ||f||L2(QR and|| - HL2 @)’ || - ||L2 are equivalent norms, since thanks to
(4.35) we have
RO&

m“f\hg(g) < fllz2@) < Ifllzz@)-
Let0 < 0 < ko/(2C3): for 0 < o < 6 we haved < (ko — 26C3) < (ko — 2aC}3), so that
R2a(k0 26C3)

a(u,0) 2 (ko = 26C8)|Vullfy o) > =g e [ Vulliz o (4.36)
Therefore(4.32) holds with/ = % whereCp is the Poincaré’s constant fof, (see

property A.2.1).
Therefore we can apply theorem A.4.1, and the proof is complete. Théaoonsin (4.28) is
estimated by

€< (14 57) Il

4.2 Neumann-Robin problem with exchange term on a line

The analytical tools we introduced in previous sections may be used to givelltwing Neumann-
Robin problem a proper mathematical setting:

=V - (kVu) + B(a — ug)op =0 in €,
(4.37)
_Ou -0 onof?,
on

where > 0 is a constant permeability coefficient (actually we have- 2r RD, whereD is the
vessel surface permeability) ang € L?(A) is a given function. Before applying those tools to
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(4.37), let us make a few remarks. First, we recall thé the average ofi on circles lying in the
normal plane ta\, centered at poin¢, and with radiusk, as in[(3.9). With notations from lemma
4.1.2, we can writei(s) = Ago(R, s). Problem|(4.37) has been named “Neumann-Robin” due to the
Neumann boundary condition @2 and to the “Robin-like” exchange term on the liheWe will see
that under suitable assumptions the Robin term can make the bilinear forncit@enough” (in the
sense of theorem A.4.1) even without Dirichlet boundary conditions.i$h&her important, because
problem [(4.37) is our model problem for a wide range of typical applicat{see the next section),
in which diffusion from a 1D vessel into the tissue is driven by a conceatrgap. Furthermore,
extensions to fully coupled 1D-3D problems suchlas (3.19) are easilyedeirom the analysis of
problem [(4.37). The assumptions to have a well-posed problem coneeradiusR: it has to be
small enough.

First we have to give a meaning and introduce a special inequality, in the sense of the following
lemmas.

Lemma 4.2.1. Leta € (0,1): the mapping: — @ is continuous fronfZ} () to L%(A), and
[l 2(a) < C(R, a)||ull g1 (0
where(' is a positive constant.

Proof. We have

1 2m 1 2m 1
u(s)?ds = — < [ = 2 < ul|?
/Au(s) ds //\(27T/0 u(s,R,G)dG) dS_/A27T/O u(s, R,0)*dfds < 27TRHuHL2(FR)’

whereT'? is the “actual” vessel surface (see sec. 3.2.1). SitisgI'?,A) = R > 0, the trace
operator fromi L (Q) to L?(T'F?) is continuous (see property A.3.2) and the lemma follows. [

2

Lemma 4.2.2. Let a, b, c be positive constants. There are positive numlgers- &;(a,b,c), Ao =
Ao(b, ¢) such that if
0<E<&

then, for all(x1, 72) € R?, we have the inequality
axt + béxa — 2ckxy 9 > ENg (23 + 23).

In particular, the inequality is satisfied with = 25 and o = W

Proof. SetA = {_‘ff _bgf} andx = [Zj We want to show that under the assumptions at hand,

x " Ax > £)o||x/|?> where), is positive and only depends énc. To this end, it is sufficient to prove
that the smallest eigenvalue dfis greater thag \o. The smallest eigenvalue df is given by
abé — c2¢?
a+ b€
where inequality/fo + < /o + ﬁ has been used, withy = (a + b¢)?, t = 4(c2¢% — abé).
If & = 25 and0 < ¢ < & we have

Amin(4) = 3 [(a+b6) — /(o + 067 + A(2E — abE)] >

ab/2 b
Amin(A4) > = )
Wz e~

2c2

so that the inequality holds true withy (b, ¢) = W
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We state our well-posedness result as follows.

Theorem 4.2.1.Letk € L>=(Q), up € L*(A), and assume that > ko in €, ko being a strictly
positive constant. Let > 0, and

alu,v) = /k:Vu Vvdx+ﬂ/ v(s)ds,
Fv) = 8 / e

Then, there is a constante (0, 1) such that ifo € (0,9) and0 < R < Ri(«, 3, ko), problem

(4.38)

a(u,v) = F(v) Yo e H' (Q),

admits a unique solution € H}(Q).
Moreover, there is a constait(«, 3, R) > 0 such that:

[ull ) < Clluoll2(a) (4.39)

Proof. We adopt the same technique we used for theorem|4.1.2: in particular, thterfinsofa in
(4.38) is continuous off} () x H! (). The second term is also continuous, since we have

8 / $)ds < Bl 2 vl z2(a)

and we know that operators— @ andv — v are respectively continuous frofil (), H' (Q)
to L2(A) (lemmd 4.2.1 and theorem 4.1.1).
Similarly, F is a continuous linear functional di! (€2), and

IEN < llvallluollz2(a)- (4.40)

Letv € H! (), v # 0; to show that bilinear forma is non-degenerate, we take= v as in the
proof of theorem 4.1.2. We have

S92 27
a(v,v):/ﬂk’Wv\de—i-%/ </0 v(s,R,H)dH) v(s)ds.

v(s, R, 0) =v(s) —I—/O (;v(s r,0)dr,

Since

r

integrating on(0, 27) and substituting in the previous equation gives

a(v,v)z/gk\w2dx+ﬁ[an%g( ——/ </2ﬁ/ 99 (5.1, 0) drd9> v(s)ds ] (4.41)

By Schwarz inequality

R gy 2 R a_l 1_,0v 2
<0 E(s,r,ﬁ)dr) —</0 ré¢ 22 E(s,r,@)dr)
<

R R 2 20 (R 2
/ r2a—1 d’l“/ P20 <@> rdr = R_/ r2a (@) rdr (4.42)
0 0 or 2a Jo or
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so that

/ (/%/ erdrdO) ds<27r/81 /%/ (‘%sre >d9ds

< 27T—HVUHL2 (QR)" (4'43)

Using (4.43) in((4.41) together with Schwarz inequality gives

R2a
a(0,0) 2 kollVul2a(g) + Bllelaa) — B—l1wllz2n) IVl 2oy

Sincel|v|| L2 VUl z2(0) < %aniz(A) + %HVUH%Q(Q)’ we have

R2a RQa 5
a(v,v) = ko—ﬂ— HVU”L2(Q +p T I ||UHL2(A)- (4.44)

The expression on the right hand side of the last equation is a squaradndi! (1) if
R?* < 4amin{ko/f,1}. (4.45)

In this case, the bilinear formis non-degenerate.
Now, letu € HL(€2), and set )
v = d**u + 220,

as in the proof of theorem 4.1.2. It has already been shown||thgs: < m|lu| 51, and that a
constanty > 0, independent ofr and R, exists such that

/ Vu - Vodx > ko(1 — ()z/&)HVuH%2 @
Q [e%

Hence we have

a(u,v) > ko(1 — oz/é)HVuH%i(Q) + ﬁ/{\u(s)v(s)ds. (4.46)

Let us estimate the line integral. First of all, due to a density argument, we may@sss smooth.
Then,d?*w vanishes on\, so that

()_20[\11 20[/27l'/ 2a-1,, S rﬁ)drdﬁ (447)

Furthermore, we have

21 21
d d9—— —d do
/ or { ' /

27 R au
— 4.4
o /0 ; 5 drdé. (4.48)

Thanks to Schwarz inequality

R R 2a 2
/ %dr §/ rza_ldr/ plt2e @ dr = R— plt2e @ dr, (4.49)
0 87“ 0 0 67” 2cy 0 87"
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and using((4.48) and the last estimate, we can write

5 [[atoyets)as = Rl — 2 [ ato) [ [ P arasa
A'LLSUS S = u L2(A) o AUS ) ) r or r S

i RQ& ~
> BR? ||u||i2(A) - 5@||U||L2(A)||VUH£3(Q§)~

Therefore, we have

- RQoz -
a(u,v) = ko(1 = a/8)|Vul2, o + SR 3oy — 7 lall 2 IVl o

Now we can use lemma 4.2.2, with = ||Vu| ;. @) T2 = [vllz2(a), @ = ko(1 — /d), b = B,
c = /(8na), and¢ = R?®: for

- 32m2ako(1 — a/d)

R%* , (4.50)
B
we have
a(u,v) > R2a}‘0 [Hvu”%a(g) + HEH%?(A)} ) (4.51)
where)y = W%. Since thelL? andii norms are equivalent (see the proof of theorem 4.1.2),

4]l z2(ay is @ seminorm andial[z2(n) # 0 if u is a 0t"-order polynomial,u # 0, we have that
(||VuH2L% + HQH%Q(A))W is a norm equivalent tu|| ;1 (see [61] pag. 27; however, the proof is the
same of Poincaré inequality A.3.2). Therefore, definitig = R2%(«, 3, ko) as the smallest of the
right hand sides of eq. (4.50) and (4.45), fox R; NeCas’ theorem applies and the theorem follows;
in particular, (4.40) implies estimate (4.39). O

4.3 1D-3D coupled problems with exchange term on a line

Our theory applies without substantial modifications to the coupled 3D-1Digmothat has been
introduced in section 3.2.2. This is actually the more interesting case in whichrobems having
a dimensional mismatch of order 2 are coupled via a “Robin-like” exchamgeds a line: all mul-
tiscale models of physiological phenomena concerning blood flow and naaspart considered in
the next chapter (except the hyperbolic models), basically refer to trasligan.

The strong form of our model problem is the following one:

—V - (kg Vu) + (it — ty)dp = 0 in Q,
4 d ) - (4.52)
_E(kvguv) + ﬁ(uv - ut) =0 InA,

where we have a tissue variahleand a diffusivityk, as well as a vessel variablg and diffusivity
k.. The two variables interact by an exchange term. This problem is a simplifistref (3.19) in
which 6 = 27w RD, but this is not restrictive since the needed modifications for handling Hutioa
and advection terms are trivial. On the boundary, we shall considerasthmixed conditions:

—% =0 onoQ,
on
uy(s1) = uyp, (4.53)

d
—EUV(SQ) = 0.
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The non-homogeneous Dirichlet boundary condition can be convertadhmmogeneous one by
means of an extension of the Dirichlet data (in the 1D case, we have simplgdmeai, = u, —uy o
as the new unknown). For this reason we are going to consider a weakl&tion of (4.52) in term
of the (uy, u) variables.

Theorem 4.3.1.Let ki, ky € L°°(Q2), and assume that;, k, > ko, in €2, with &y > 0, constant.
DefineV,, = H} (), andV the subspace of functiorfsc H'(A) such thatf(s;) = 0. Let > 0.

Then, there is a positive constante (0,1) such that ifa € (0,) and0 < R < Ry(«, 3, ko),
there exists a unique solutiane V,, x V of

a(u,v) = F(v) YweV oxV,

whereu = (uy, Uy ), v = (vg, vy),

a(u,v) = /thVut - Vopdx —I—/ kyul vl ds + ﬁ/A(ﬂt — uy)(vy — vy ) ds,

A (4.54)
F(v) = Puyp / [e(s) — vy (s)]ds.
A
Moreover, there is a constant = C'(«, 3, R, uy0) > 0 such that:
ully, . < Cluvol. (4.55)

Proof. But for minor modifications, it is identical to the proof of theorem 4.2.1. Namedychoose
u = v to show that is non-degenerate, and= (d*“u; +2a'¥, u,) to prove the inf-sup condition of
Necas’ theorem, using lemma 4.2.2 to get the necessary inequalities to hdidsfoall enough. [
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Chapter 5

Finite element approximation of 1D-3D
coupled problems

The advantage of using Hilbert functional spaces is that we can statergence results for the finite
element approximation. Together with theorem A.4.2, the main ingredientsaarianigy results for
the solution and finite element approximation properties in Sobolev spacesekghted functional
spaces, these subjects are not standard. A similar matter has been studirdymmetric Stokes
flow in [7]; however, the issue of whether their results could be adaptedtoto our case, has not
been adressed in this work. For this reason, we do not treat the finite releom/ergence rates.
Nevertheless, concerning the Neumann-Robin problem|(4.37) (the samsigerations clearly hold
for the simpler Dirichlet problem with Dirac source), we will verify that finiteraent approximation
is convergent in theZ} norm. Results from numerical experiments will be discussed in order to
suggest guidelines for further developments concerning the comargates.

The full 1D-3D coupled model requires the discretization of the inas well: this introduces
some more difficulties, so that we will discuss only the algorithmic aspects.

In what follows, we assume that domdihis a polyhedron; for the sake of simplicity, we only
considerP! finite elements, an introduce a regular family of “triangulatiof§7} of Q with the
following standard properties:

(i) The domairt2 is the union of the (tetrahedral) elementsipf

(i) If T}, # T; and their intersection is non empty, thép N 7} is either a face, a side or a node.
We denote by;,i =1, ..., N, the mesh nodes.

(iii) There exists a constant independent of,, such that for alll’ € 7, diamT) < h andT
contains a sphere of radiag..

Then, we define the familyV}, } of P! finite element spaces

Vi={feC): fir, ePHT) VT € T} . (5.1)
As usual, we will equig/, with its Lagrangian finite element ba§e; },i = 1,..., IV}, satisfying
Yi(x5) = bij.

Property 5.0.1. Let the assumption of theorem 4.2.1 be fulfilled. Then, for éash), there exists a
uniqueuy, € V4, such that
a(uh, Uh) = F(Uh) Yoy, € Vh, (52)

81
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beinga and F defined by eq| (4.38). Moreovenifc H}(Q) is such that
a(u,v) = F(v) Yve H' (Q),
then, there is a positive constafitsuch that

|u—up|gy < C inf [Ju—al g (5.3)
« ueVh «

Proof. The idea is to use th. A.4.2, withl; = My =V}, C H! (Q) C HL(Q). Let us prove that the
hypotheses of the theorem are satisfied. For &@lV},, v # 0, we have:

sup a(u,v) > a(v,v) > chH?{l >0, (5.4)
ueVy e

since we proved in the proof of theorem 4/3.1, eq. (4.44), that last aiggis indeed truevv €
H! (Q),v # 0, with ¢ = ¢(a, 3, ko, R).

In the sequel we denote Ky, ')Hla the H! () scalar product; obviously, it is a scalar product
on the discrete spads, as well, and in the sequel we will always eqdip with the|| - ||Hla norm.

All norms are equivalent on a finite dimensional space: heiice) is continuous orV, x V;, since
it is continuous on(Va, || - [[1) X (Va, || - |z ). Therefore, thanks to the Riesz theorem, we can
introduce the linear operatet : V,, — V}, defined by

(wh,Avh)Hia = a(wh,vh) Ywy, vy, € Vh. (55)
Thanks to inequality (5.4), we have
cllonlln < alvn,vn) = (vn, Ave)gr | < llonllgn | Aol - (5.6)

This yields
[Avnllgr | = cllonllan (5.7)

so thatA is an isomorphism fron¥}, to Vhﬁ.
Consider a givem;, € V;, and the related functiod constucted as in lemma 4.1.2. As done in
theorem 4.2.1, we introduce the function

b = d*uy, + 2a'0,

whered is the modified distance function (4.34). We recall that the following estimates iald (see
the proof of eq.[(4.31) in th. 4.1.2):

[0l 2 < mllunllmy (5.8)
Obviously, in generab ¢ V;,. However, there is a unique, € V}, such that

(whvvh)Hla = a(wp,0) Ywp € Vj,. (5.9)

! Since all scalar products on a finite-dimensional space are equivilesame result holds whén, v) is given by the
Euclidean scalar product of the coordinates.of with respect to a finite element basis. As a consequence, we have that
thefinite element matrixwhich is the linear operatot corresponding to this scalar product) is non-singular. We recall that
this is true only under the assumptions of thedrem 4.3.1, namely the fadias to be small enough.
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Moreover, takingu, = v, we have
cillvnllm lonll e | < lonllz = (on,vn) g, = a(vn, ) < eallvnll g 8l (5.10)

beingc; the norm of the continuous embeddifg , — H_}, ¢, the continuity constant af. Hence,
the following estimation holds:
lonll s < esllll (5.11)

with ¢3 = ¢ /c1. SinceA is an isomorphism, using (5.5), (5.9), (5.7) and (5.11), we can write

1 . (un, v) o
sup  a(up,v) > ——a(up, A" vp) =
vV, 7 A= ol A op |

HUHHEQ<I
_ a_(luhv U) > CgCa(h,u}“’U)
[ A= ol 10l

In the proof of th. 4.3.[1, see eq. (4.51), we have proven that a canrsgtanc,(«, 3, ko, R) > 0 exists
such that

a(up,0) 2 callunllp;
thanks to estimate (5.8) we have finally
cey
sup  a(up,v) = — [lup| g1,
Cc3m

vEVY,
vl <1
—Q

so that the hypotheses of th. A.4.2 are satisfied.
As a consequence, there exist a unique finite element solufiof (5.2), and

lu —up|lgr < C inf |ju—al/ g, (5.12)
@ uEV;L a
being cocsm
c=1 .
+ CCy
O

We point out that as a corollary of property 5.0.1, we havectiraergencef the finite element
scheme in thegf! norm. In fact, it is known that under our assumptions (i)-(iii) B for all u €
C*>(£2) we have

lim inf ||u—@ = 0;
Jim inf lu— @l 1) = 0;

since the embedding ! (Q2) — H'(Q) is continuous, we have

lim inf ||u—w = 0.
o alélvh lu =il 1 (o)
Due to the density of smooth functions, the result is extended to@lif} (2).
On the other hand, results about finite element convergence rated barthat easily extended to
encompass our problem. Although Bramble-Hilbert and Deny-Lions lemreag$5]) hold true in
weighted spaces, one needs regularity results to obtain an a priorestiroate with respect to. For
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example, if the results from [7] could be extended to our case, and atedigiément interpolation
operatorl;, : L2(2) — V}, could be constructed such that

lu = Tyl 12 ) < Chful g1 (o
for integerd = 0, 1,2 (we are using®' elements), and, fdr= 1,2,
[ = Tyl g1 0y < OBl gt ()

where| - | denotes the standard Sobolev seminorm, these estimations would apply inrseuorca
I = 0,1only: infact,u ¢ H2(Q) (the second radial derivative near the lineQ¢r—2), so that

u € HE,,(Q) ¢ H2(Q)). Therefore, we could justify the first ordé# ., convergence in figure 3.3
for the simple example with Dirac source, but we could not use the formeltsds estimate the
convergence rate for th! norm (which is actually 1, as we found in the numerical experiment).

5.1 FEM discretization of the coupled 1D-3D problem

Although for the Neumann/Robin problem there is no need of discreti¥jrgis becomes necessary
when considering the coupled 1D-3D problem. Unless we consider siiledr similar techniques,
we loose our smoothness assumption/gnand we are not allowed to use the theory previously
exposed: this is the reason why we are not considering the finite elemamrgence for the fully
coupled problem. The case in whic¢his only piecewise differentiable is remarkable also from a
practical standpoint; we are mostly interested to the special situation in whiaghdbke of the 1D
problem isextractedfrom the 3D mesh, being actually built on kslges Indeed, in this case the
finite element implementation is much simpler. This suggests also a 1D segmentatitguechve
will show that in applications to tissue perfusion, it is possible to automatically thidd.D mesh
directly from a medical image and an already available “superposed” 3D,roe$ng to proper path
extraction algorithms. In the sequel we will discuss some algorithmic aspeE&shfdiscretization
for the coupled problem, and we will present the convergence resulis tiest case in which an
analytical solution is available.

Assumption. We assume that a collectidi, of edgesl,,, of tetrahedra irf, is given, such thaA is

the union
A= U I,
I €1y,

This assumptions (see fig. 5.1) allows to inherit the 1D finite element spaneti®w3D one (this
is true for polynomial degrees higher than 1 as well). Namely, we definetioavfng space (notice
that we include the homogeneous Dirichlet condition in this definition):

Vi ={f€C(): f(s1) =0, fiz,, € P'(Im) VI € T} . (5.13)

Then, we observe that we can choose a Lagrangian bakjs denoted by{¢;},i = 1,..., N, such
that elements); are the restriction on of the 3D basis functiong; whose node is lying on (with
the exception of the node where the Dirichlet condition is imposed). As fazesy,, in the sequel
objects related to the 1D discretization will be denoted with a hat. So, we dengtedb=1,..., Nj
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X

Figure 5.1: The domain is composed by edgds, of elements}, of the 3D mesh

the nodes of the 1D mesh. Being those nodes a subset of the 3D meshthedess a function, that
we callr, (+), that maps each 1D node index to the corresponding 3D one:

A

1, N = L. Na], i rad),

and is such that

Vi € [1, e ,Nh] D N x;, and @;Z = wr/\(i) onA.

We also introduce thextension matrixz,, defined as

1 ifi= ] S
(RA)zz . TA(»])7 i=1,..., Np, j:17"'7Nh' (514)
J 0 otherwise

Matrix Rx ha§ the following property: ifi are the components (with respect to the b@ils}) of a
functionu € Vj,, thenu = Ry are the components (with respect to the bdsis;) of a function
u € V3, such thatw = @ on A, andu = 0 on elements that are not sharing an edge or a nodeAwith

The finite element approximation of problem (4.52) reditsl (uy,, @) € Vi, x V, such that

~ ~

a((un, ), (1, 9)) = F(,b)  V(h,9) € Viy x Vi, (5.15)

where bilinear forma and linear functionalF’ are defined in|(4.54). Let us focus on the matrix

form of problem(5.15). Lett = (u},...,u)") anda = (@},..., 4, ") be the components of the

approximate solutions with respect to the basis functiopnand;; eq. (5.15) is equivalent to the
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following conditions:

Np, N,
J v Db ) — S il 2o ‘
;Uh </Q ktV% sz‘i‘ﬁ//\i/’ﬂﬁz) ;Uh/@//\ijz ,BUV7[)/1;'¢Z, (516)
i=1,..,

Nh7
N - N, ' d. d .- o R
S [ i ([ hegiggiir 8 [ 0] = <su [0 ean)
= A = A A A
/L:]" '7Nh7

where we recall thap; is the averaging of functiog; according to eq! (3.9). Equations (5.16) and
(5.17) form a linear system, that in matrix form reads

(2 i) (D B <E) (5.18)

The components of the right hand side vectors (b!,. .. 5V ) andb = (b1, ..., ") read

bi = ﬂu\,,o/widx iZl,...,Nh,
A (5.19)

bi = —ﬁuv’o/lﬁidx i:1,...,Nh.
A

Using the extension matrik, defined in((5.14), we have = Rub.
To study the blocks pf the global matrix of the previous system, let us inteothe3D and 1D
stiffness matriced and K, whose elements are respectively

Kij = / ktv¢i . V@bjdx i,j = 1, ,Nh,
Q

q d (5.20)
Kij = | ky—t;—ds i,j=1,..., Ny,
J /A dsw] dsw 5 0 h
and matrices\/, M, whose elements are
Mz‘j = ﬂ/lﬁﬂﬁjds i,jzl,...,Nh,
A (5.21)

A

Mi; = ﬁ/ﬁiﬂ_}jds i=1,...,Np; j=1,..., Np.
A

Observing that

5//\%%@: {Mk:j ifi:rA(@» 5/{\1%‘%‘(18: {Mkj ifi:TA(k),

0 otherwise 0 otherwise
and
Nh Nh
B/Albﬂbids = Z(RA)ikMkj, B/Aﬂ)ﬂbids = Z(RA)z‘k:Mkj,

k=1 k=1
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we obtain the following expressions for the blocks of our system:

A B\ (K+R\M —Ry\M
B A) -M  K+M
This means that the only matrices we need to build are stiffness and mass matrites3D and

1D mesh, plus the matriX/, which contains the averaging operator. The elements of this matrix are
given by

_ ~ R 1 21
My =8 /A bibids =8 Y /I Bi(s) <% 0 ¢j<s,R,e>de> B, (5.22)

Im€Lm m

where the term inside the parentheses is a functiontbht we have to know in order to compute
M;;. Although this can be done by numerical integration, it will requmterpolationsover the 3D
mesh: that is, we will need to compute the value of a basis function at a cesfairxpe 2, namely a
point lying on the circle described in local coordinates(byR, #) for 6 € [0, 27|. This is due to the
non-local nature of our problem. In general, interpolation is a computdliyageensive procedure:
we will show how its use can be minimized or even avoided, but for the momeund [@bstpone this
issue.

To approximate the integral afy, in eq. (5.22), it will suffice to use a quadrature formula on the
reference intervdD, 1], with nodest;, and weightsog, k = 1,..., N. If s is the curvilinear abscissa
corresponding to the image 6f by the geometrical transformation that mdgsl| on the element
I,,, (see figl 5.2), we can write

1 2

N N
/Im 1&1(8) (% ¢j(3, R, 9) d9> ds ~ kz::l &z(sk) lz:; @bj(sk, R, Qﬂfl)wl kak (523)

0

where Jj, is the (absolute value of the determinant of the) Jacobian of the transfomaatjgp (for
linear elements/, = |I,,,| = const.). We remark that in eq. (5.23), the same quadrature formula has
been used for both the integrals ovigr and over the circles with radiug, normal tol,,, and centered

at pointssy, (different formulae may be used as well). To apply any integration formwgik23), we
will have to known the values of function; at pointsxy; = xyo(sk, R, 27&) € Q, k,l=1,...,N,
wherex, ¢ are the local cylindrical coordinates arouhgl, see eq!(3.3). This is the interpolation step:
it requires finding the 3D element in which poity ; is, tracking it back to the reference element, and
then computing the corresponding values of the local basis functionooude;, sincer is expected

to be small, only a very few elements will contain at least one interpolation paingsithere arév?
interpolations to perform for each 1D elemdpy, this procedure can be very time consuming when
N is large.

There are two techniques that have been tested and employed in this wadeirtmovercome
the problem. The first method simply consists in choos\gmall enough to keep the CPU time
spent for interpolation in a reasonable range. The second, completebyes the interpolation step
and leads to what we will call the

lumped approximation: if R is much smaller than the mesh sizethen we have);(s) ~ 1;(s) in
eq. (5.23). If we take; (s) as an approximation af; (s), we have the following expression for matrix
M

N ~ NIR] (5.24)
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Figure 5.2: The 3D mesh and the 1D domaincomposed by edges of the 3D mesh. Shown are the
circles around\ used to compute the/;; terms by integration.

and the matrix of system (5.18) becomes

A B\ (K+R\MR], —RzM (5.25)
B A)\ -MR, K+M '

In particular, this matrix is always symmetric and positive definite.
The symmetry of the global matrix coming from the lumped approximation is trivialeéotisat
it is positive definite as well, it suffices to observe that

T ST ~
u RAMR —RAM u ~ T NT 2%/ A T
() (g ") ()~ o mw et

and write

T . .
u\ (K+Ry\MR; —RyM\ (u e o
<ﬁ) < —]\fRI : KﬁM) (u> =u'Ku+a Ka+ (- Ryu)" M(a— Rju).

Now, M is positive definite) is also positive definite due to the homogeneous Dirichlet condition
in the definition of the spac®,; matrix K is positive semidefinite, with only one null eigenvalue,
corresponding to the eigenspace generated by véttar. .., 1) . Therefore, the last expression is
equal to zero only ifi = 0, all components ofi are equal, an(ﬂiIu = 1 = 0; but this impliesu = 0
sinceRy(1,1,...,1)T £ 0.

We point out that we cannot expect the finite element scheme with lumpedxapption to be
convergent: we are replacing thig term in eq./(4.52) by, and this does not make sense from the
analytical point of view, since; does not admit a trace an The goal of the lumped approximation
is to simplify the assembling of th&/ block if the characteristic mesh sizethat we are using is
sufficiently greater than the vessel radilds Since this is actually the case in which 1D models are
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introduced, we expect that at least for the typical applications we har@nd, the approximation
(5.24) does not introduce a significant error. It is interesting to oleshat a 1D-3D approach similar
to the one we are proposing in this work, has been used (without any maitemastification) for
instance in [1], in the context of geothermal heating systems modelling. Indpisrpa heat transfer
problem is solved in a 3D soil domain, where the mesh size is in the range of @nsidering heat
exchange with a 1D pipe (16 cm radius); the authors implicitly use lumped d@ppton (besides,
the pipe radius is 125 times smaller than the mesh/gize

5.2 Convergence tests

We report hereafter some numerical results for a coupled 1D-3D prollth an available analytical
solution. We consider again the simple geometry of the examples of sectionsg@ ft)(3.2); namely,
using cylindrical coordinates, we set

Q={(z,r,0) € (0,1) x[0,1) x [0,27)}

and
A={(z,r,0)eQ: r=0}

Notice that the curvilinear abscissafis s = 2. Then, we consider problem (4.52), that we report
here for the reader’s convenience

=V - (ktVug) + B(ug — uy)op =0 in Q,
L) 4 Bluy — ) = 0 in A (620
dZ v dzuv Uy Ut ) = )
with ) )
_ _ _ 1.2 _ i
ki=1, kv—kv(z)—1+z+2z, 8 r T 10g R’
and boundary conditions
w = 0 onI'p, B
9ue — _Llogr onoQn{z=1}, w(0) = 1,
’an o U‘V(l) = 2>
Gu = Llogr onoQn{z=0},

wherel'p = {(z,7,0) € {1} x [0,1] x [0,27)} C 0Q is the lateral surface of the cylindex: In this
case, it is easy to verifythat the exact solution is given by

ug(z,7,6) = — logr, uy(z) =1+ 2.

T
Let us consider the weak formulation of our problem: to deal with homogenBwichlet conditions
only, we setu, = 1 + z + 4y, and we reformulate the problem using the “translated” unknéwn
Introducing the spaces

Vo={feHYQ): fir, =0}, V={feH'(A):f(0)=f(1)=0}

2 |n fact, boundary conditions are satisfied; moreover, we liave 71;—: log R, so that3(@s — uv) = —(1+ 2) =
f(2), wheref is such that-Aw; + fda = 0 (in the sense of distributions) anﬁr (—kv%u,\) — f = 0. Hence(us, uv)
solves our problem.
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and using notations from theorem 4/3.1, the weak form of this problensréad u = (ut, @v) €
V., x V such that

a(u,v) = F(v) Vv = (vg,vv) € Voo() X V,

where
a(u,v) = /ktVut-Vvtdx—l—/kV(z)%%dz ﬁ/ Ut — Uy)(vy — vy)dz,
“ A (5.27)
F(v) = ﬁ/(1+z)(vt—vv)dz—/k‘v(z)vvdz.
A A

We want to study the finite element convergence of our numerical schenfes égact solution,
and the error introduced by the lumped approximation. To this end, werpetfeo numerical ex-
periments. First, a 2D-axisymmetric finite element discretisatidn &f considered: in this case the
interpolation is affordable even for a very smialland convergence results are easier to obtain. Then,
results for a 3D unstructured mesh are presented. We will see that, ifdbel vadiug? is sufficiently
smaller tham, the lumped approximation gives almost the same results than a proper finiteneleme
discretisation with numerical quadrature of the non-local term.

5.2.1 2D-axisymmetric discretization.

If we take advantage of the cylindrical symmetry of our problem, assumirtgathaur variables
depend only on the cylindrical coordinates z), we can rewrite equations (5/27) in the following

form:
. 8ut 8’Ut 8ut 8Ut
a(u,v) = 27r/[01} K, <8r 5 + — % s >7‘d7‘dz
day dvy
PG s [ - 629)

F(v) = ﬁ/ 1+ 2) (v —vy)dz —/0 kv(z)%dz,

where, thanks to thé-symmetry, we have
ut(z) = ug(R, 2).

Therefore, we can introduce a 2D finite element sggceelated to the triangulatio, of the square
[0,1]2, and the corresponding 1D spadeinduced onA, which is ther = 0 edge of the square, and
use the expressions in (5.28) to compute the finite element solien (u 4, uy,p) € Vi, x Vj, of

a(uh, Vh) = F(Vh) Vv € Vi, X Vh.

We used a composite trapezium rule with 10 subintervals to compute the integf@Bahn

In fig.’5.3 we report the computed approximation ertsrg, (V) = ||u;; — ug||y and B, ;, (V) =
llwy,n — uy ||y for several spaceg, V (for weighted norms we consider= 1/2), for R = 0.05 (that
is 20 times smaller than the radius @j, corresponding t@ ~ 1.911, and for different mesh sizes
h (from 0.0625 to 0.00097). The convergence of the numerical schemspsctively of order 0.51
and 1.86 in theHll/2 andL%/2 norms for the 3D solution; 5, and of order 2.1 in both thA'* and L2
norms for the 1D solutiom,, j,.



5.2 — CONVERGENCE TESTS 91

10—

107 I §

a3 < 3

S
glo - - E
x*
' .
e
. P
5 P Pl
10°F P i
[ - ad ]
E - //// 4
x= 7 gL
e
’ /Kf:j///
i s
10°% o 4
g T ]
& .
5
7 L o | L L L L L M L
10 -3 -2 -1
10 h 10 10

Figure 5.3: Computed errors for the 2D-axisymmetric FE approximation inrdiffenorms: the blue
dotted line corresponds to a convergence rate equal to 1. Solid lipg$l”) errors forV = Lf/Q(Q),
(2), andV’ = H{ ,(2), (b). Dashed linest, (V) errors forl = L*(A), (), andV = H'(A), (d).
The mean rates (from regression lines) are: 1.86 (a), 0.51 (b), 22.1d)d).

5.2.2 Full 3D-1D discretization : the error introduced by the lumped approximation.

In order to study the effectiveness of the 1D-3D approach in a molistieaituation, we have com-
puted finite element approximations using a full 3D unstructured mesh foraimaid €2, and an
extractedlD mesh built with the edges that are the closest to the actua) line (for the description
of the extraction algorithm, we refer to the next chapter). Moreover,gahmsexperiments were done
first using interpolation and eq. (5.23) to compute g elements (IN), then using the lumped ap-
proximation (LA), and for two values of the vessel radifts= 0.1 andR = 0.01. Relative errors are
reported in table 5!1: the solution for the (IN) case with the finest mesh isrshofig.[5.4. From
these results, the following observations can be made:

1. As expected, convergence for— 0 is achieved by the (IN) approach only.

2. The relative error affecting the 3D numerical (LA)-solution is almostakdo the one of the
(IN)-solution whenh is at least a few times bigger thdty in this case the (LA) best error is
aboutl0% inthe ] ,, and L3 , norms.

3. The relative error affecting the 1D numerical solution with (LA), is alde8%, for both values
of R.
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h E[,(L2) E[,(Hy) ELL(L%) Ej,(HY)
0200 02462 02659 00121  0.0342
R=00LIN | 75700 01143 01171 _ 00060  0.0169
0.050 0.0360 _ 0.0379 _ 00018  0.0053
0025 0.0100 00124 00005  0.0014

h E[,(L3) E[,(Hy) EL(L%) Ej,(HY)
0200 021873 023964 001078 0.03036

R=00LLA | 75700 0.07795 0.08225 0.00409 0.01146
0.050 0.00128 0.02505 0.02310 _ 0.0036(
0.025 009674 0.09470 0.00527  0.01475%
h E[,(L2) E[,(HY) ELL(L%) Ej,(HY)
0200 003191 0.06352 0.00077 0.00219
R=01,IN

0.100 0.00893 0.02107 0.00035  0.0010(
0.050 0.00127 0.01172 0.000009 0.00007
0.025 0.00331 0.00817 0.000009 0.00001
ho EL(L3)  Efu(HS)  EY,(L%) EQ,(HY)

0200 0.14484 0.14694 000773  0.02194
R=0.1LA | 75700 021300 020915 001156 0.03244
D

O T

0.050 0.26739 0.26196 0.01462  0.04092
0.025 0.30912 0.30281 0.01693  0.04737%

Table 5.1: Relative errors (normalized to the norm of the exact solutiomdmhted normsy = 1/2)
for R = 0.01 (top) andR = 0.1 (bottom). For each value @t, errors are reported for the interpolation
(IN) and the lumped approximation (LA) case.

4. Despite the larger values of the global errors affecting the 3D solytsnse already observed
in fig.[3.4, the local error is always much smaller far away frépand is mostly concentrated
on elements sharing an edge or a node with

From these observations, we can conclude thaiyr 1D-3D finite element discretization allows for
the numerical approximation of problem (5.26), aiidl the lumped approximation may be adopted
at least when the mesh sizeis several times greater than the typical vessel radliusThis result

is comforting: the critical applications, in which the (IN) approach would bmpgutationally too
expensive, are perfusion simulations with a consistent number of 1[@Igassa given 3D tissue,
and usually, if the vessels are many and small, the 3D spatial resolutiondnegaiactice is always
sufficiently bigger tharR.
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Figure 5.4: Computed approximate solutions for the full 3D-1D FE approximafiop: shown are

the surface mesh of the 3D domad the solutionu, 4, in a half of(2, and the solution, ;, on A. In

the picture, the 1D domain has been rendered as a “tube” only for visualization purposes. Bottom:
isosurfaces of the solutian, 5, in a half of(2, and the solution, ;, on A.
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Chapter 6

Modelling blood flow and mass transport
In vascularized tissues

6.1 Introduction

The simulation of biological transfer mechanisms between blood and tissUgxisary interest for
several reasons. Circulation is responsible for a number of exch@ngesses between blood and
cells, most remarkably:

e oxygen delivery to the tissues (blood as a carrier of chemicals)
o thermal regulation (blood as a heat exchanger)

These two examples are sufficient to explain how circulation and relatesbtvenphenomena are
strongly affecting the body vital functions. In general, the study of theact®n between vessels and
tissues is a valuable tool in biomedical engineering and medicine: we cite fanagsapplications

in pharmacokinetics, design of biomedical devices suctrag eluting stentgor arterial diseases,
implanted insulin pumps or patchsossibly sensible to glucose concentration) for diabetes therapy,
andhyperthermia treatmerih some cancer therapies. In these cases, mathematical modelling might
provide new insights to the biomedical engineer. Moreover, pathologieaiteeme conditions may

be studied by means of simulations before startingiamyo investigation.

Most of the relevant transfer processes between blood and tissuesi@to small vessels (ar-
terioles and capillaries) rather than large vessels. Among these practse is oxygen delivery,
carbon dioxide removal, transfer of other chemicals (e.g. glucose, lattags, see chapter 1), and
heat exchange. It is known that small vessels strongly respond to nadidifis of the metabolic and
hemodynamic state, by changing their resistance to blood flow. This makegthes pather com-
plex, since both microcirculation hemodynamics and autoregulation have tddre itdo account.
Now, any autoregulation model needs basically two input variables: Idcatflow rate and local
chemical concentratiofsfor this reason, this chapter will focus on modelling of perfusion and mass
transport in tissues.

Vasculature shows very different space scales. It is organizedierarthical way: a given vessel
may branch into several children vessels, and this splitting is repeated entdvilest level of the
hierarchy (the capillary bed) is reached. The very particular hieiGkthtructure is indispensable,
because of the small oxygen diffusion distance initierstitium as shown by the next example.

!see for instance the works by Pries, Secomb and Gaehtgens: [dp], [8

95
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Example. The effective diffusion constant Do, of oxygen by myoglobin in skeletal muscle is about
10~* cm? s~ [77], and the (volume) concentration of oxygen when myoglobin is 100% saturated is
[02] = 11.2-107® mI(O2) mI™". Let A be the area through which oxygen is transferred from blood
to tissue, d the distance between the source of oxygen (blood) and the target (mitochondria), and
q the rate of oxygen consumption in tissues (¢ ~ 1.3 - 1073 ml(O2) mI™* s=* in exercising muscle,
[77]). Thanks to Fick’s law the mass balance reads

A
DOz [OQ]E =4V,
where V is the volume of the tissue; if V ~ Ad, then we get

d o~ M:&lﬁ%m.
q

Actually, physiological measurements show that d is even smaller: for example in the hamster
cheek pouch retractor muscle the number of capillaries per unit area is N = 1.4 - 10° cm™?2 [25],
from which d = \/1/N = 2- 107 cm (see fig.[6.1).

— Arcade Arterioles
"""" Arcade Venules

Figure 6.1: (From [96, 93]) Examples of vascular networks. On the left; tracing of arcade arterioles (AA)
and arcade venules (AV) in the rat spinotrapezius muscle arbade network spans the entire muscle, and
there are multiple connections of this network to the ceémiteries. The side branches to the capillary network
(bottom) are provided by the terminal (transverse) artesigTA), which form asymmetric trees and directly
connect to the capillary meshwork. Capillaries are predamily aligned with the muscle fibers and give rise
to the collecting venules (CV), which return the blood to éineade venules. On the right: retinal imaging. An
optical camera is used to see through the pupil of the eyestoethr inner surface of the eyeball. Shown are the
retinal layer and its vessels, with their complex branchiagierns.

Due to this multiscale structure of a tissue, the most suitable mathematical moddisdigng
perfusion and mass transport should have multiscale nature too. Multiscd&sd the cardiovas-
cular system have already been introduced by several authorsxéiompte [31], [84], [76], only to
cite a few of them); the relatively large number of works on this topic haseroed most of the
times the use of highly accurate models (for example, Navier-Stokes equétioblood flow with
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a structure model for the vessel wall) flarge vesselscoupled with reduced models (1D models or
lumped parameter models) representing the remaining part of the circulatierinffinsic power of
such an approach is the capability to simulate in a very accurate manner gvidoetof a given blood
vessel or small arterial tree (the carotid bifurcation, for example) withegtecting the influence of
the whole circulatory system.

The idea of using a similar approach for tissue perfusion naturally comedang precisely, we
can distinguish between blood flow mtcroscalethat is in large and medium-size vessels, that one
wants to describe with their geometry, and blood flowratroscale(small vessels, capillary bed),
where reduced models involving average quantities are preferablekeyheoint from which this
work has been motivated is that, when dealing with tissue perfusion and ristajkhe two scales
have very specific properties:

e The macroscale is usually given bgmplex arterial tree¢see fig! 6.1), rather than a few large
blood vessels. Here we hafastblood flow and mass transport.

e In general, transfer processes take place at the microscale; at teidadoad flow is quiteslow.

These properties have to be taken into account when developing spegifiematical models for
tissue perfusion:

e The geometrical complexity of the macroscale asks for models apt to reselvesbel geome-
try and capture the behavior of the main physiological variables (blo@$pre, concentrations,
temperature, ...) without being too computationally expensive. In thisdefj® models seem
to be the natural choice.

e Concerning the microscale, one would better resoavieragedquantities to describe the pro-
cesses of interest: in fact, the geometrical data as well as other finerfigepd microcircu-
lation are usually not known in detail, and, on the other hand, computationsawithy fine
resolution are often beyond the needs. Actually, special 3D models foomogenization the-
ory (or mixture theor@) have been developed in order to describe the evolution of the (volume)
average of the physiological variables in a tissue.

e The 1D domain (the arterial tree)assubsetf the 3D domain (the tissue), and the geometry of
the former influences the flow in the latter. Borrowing the terminology fromrgaahanics, the
1D domain can be seen aracturein the 3D one.

Thus, in this chapter we will consider 1D-3D models of blood flow and masespiat in tissues.
In this regard, we will take advantage of the results of the chapters 2i/8 an the 1D-3D coupling.
As schematically depicted in fig. 6.2, the final goal is to employ a two-stages|mbddirst stage
being blood flow computation, the second mass transport simulation; at tayg) $wo coupled
problems, respectively for the tissue (3D) and the vessel tree (1Djadntéhe interactions being
denoted byl; and I in the figure); we will see that this situation falls in the class of problems we
considered in the aforementioned chapters. [Fid. 6.2 is only meant to sketbhagit ideas: several
models of increasing complexity can be used in this scenario. We will study sbthe possible
choices, discussing the role of the interactidpandl>. When needed, numerical techniques will be
discussed as well.

2Mixture theory [24] provides an axiomatic framework for the dynamifasultiphase flow; it has been used for example
by [44] to model blood flow in tissues
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Transport Phenomena

in Tissues
Fast Transport Slow Transport
(macroscale) (microscale)
1D models 3D models
Momentum 1D | __ 7 __ Momentum 3D
Compute thélow rategq, in thevessels P Compute thévlood velocityvy, in thetissue
qv Vi
Mass 1D Mass 3D
- . —- 1, -- - . .
Compute thesoncentrationu,, in thevessels Compute thesoncentrationu, in thetissue

Figure 6.2: Multiscale approach in modelling transport phenomena in tissues

6.2 Macroscale: 1D and%D models for blood flow and transport

One-dimensional models have been widely applied in hemodynamics to nefsgstems composed
by a large number of blood vessels. From the mathematical and numericabpwuiaw, they have
been extensively studied for instance in [31], [84], [30], [75]; wker to these articles for a thorough
introduction to the subject, or to chapter 2.

One-dimensional models were introduced to study large vessels, with amfigs greater than a
few millimeters. When considering small portion of tissue, the vessels at theoscate are often
smaller than that, and some simplifications of the existing models are possibles testall the 1D
model of blood flow in a single 1D vessel described by the spatial variablé®, L]. For the sake of
simplicity we shall consider the case of parabolic velocity profile, in which axesh

0A 0Q

o tos o1
0Q 0 ( Q%) AP sm . ey
at Tas\“A) T pas AT

wheret is the time,A = A(t, s) is the cross-sectional are@,= Q(t, s) the blood flow rateq is the
Coriolis coefficienty is the blood density and is the blood kinematic viscosity [84].

The equations are closed by a pressure-strain relation for the wallcbspdant. If we assume that
Hooke’s law holds, we have [84]:

4FEh ( R— Ry
P=PFP+-— 6.2
vt (). ©2)
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beingh the wall thicknessF the Young’s modulusR the vessel radiugi, the reference radius cor-
responding taP? = P, (here the Poisson ratio has been sét.f). Starting from these equations, it is
possible to introduce two simplified models, the linearized 1D model and its qu&saaroxima-
tion, that will be referred to as th?:) model. Both of them allow the computation of blood flow rate,
that in turn can be used in a one-dimensional mass transport model, astierchap

6.2.1 The linearized 1D model for blood flow

Using the small displacements hypothedisz A, = 7R3, (6.2) gives

0A 3ymTRY\ OP 0P _ 37R}
- —\/Z< ) o = Car where c¢= T

0

ot ~ “or

Moreover, under the same assumption, and for small vessels, the ttemteoms can be neglected
(see the derivation of the 0D model from the 1D model in [84]), and weseaA ~ A in the second
equation of{(6.1). In this case the following linearized model is obtainedalseg64]):

QP 00
@ + la_P + Q — .
ot 19s O
where the constants .
. v _ ﬁ
r= A l A (6.4)

have the physical meaning of an hydraulssistanceand inductance(whereasc is a compliance,
and are depending only on the vessel stiffness and geometry and blobdmieal properties. With
suitable initial and boundary conditions, this is a linear hyperbolic systeracnfnsl order equations,
that has been studied for multiscale coupling with OD models for example in [29].

The model can immediately be extended to treat

- aflow rate loss termp, along the vessel (measured in square length on time);
- a concentrated load (hydraulic conductatfeat the end of the vessed & L).

To summarize, to introduce the symbols that we will use later on to distinguish éretvessel (sub-
script “v”) and tissue (subscript “t") variables, and to take into actabe fluid loss, we restate the
1D linearized problem as follows:

Problem 6.2.1. Find the vessel pressuge (¢, s) and flow rateg, (¢, s) such that:

9 v 9 Dv B
a |:QV:| * H@s |:qV:| + r(pquv) - 0’ t> O’ s € (07 L)7 (65)
where 1 1
o 0 c e ¢V
H = |:l—1 0 :| ) I'(pv»q\/) - |: rqy :| ) (66)

given suitable boundary and initial conditions (BC and IC).
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The BC that we can consider for problem 6.2.1 are in number of one &r lBaundary point, cor-
responding to the fact that the eigenvalues of makfishave opposite signs. For example we can
prescribe the input pressupg,(t) ats = 0, and the concentrated load at= L, assuming a linear
relation between flow rate and pressure via the conduci@n€oncerning the IC, we have simply to
assign the functiong, (0, s) andg, (0, s), s € (0, L). The BC/IC corresponding to this case are the
following:

{pv(tv 0) = pin(t)v (:IV(t7 L) - Gpv(ta L) =0, t>0, (67)
0

pv(()? S) = Dv, (5)7 qV(O,S) = qV,O(S)’ s € (O) L)'

6.2.2 Quasistatic approximation: thelD model

The constant in (6.4) has the units of a frequenfg!]. Let us assume to know the pressitand
consider the second equation/in (6.3) as an evolution equati@p ¥ath dataf (¢, s) = —%ap/as:

0Q

If » is much greater than the frequency spectrunfi,dhe followingquasistatic approximationan be
adopted:
1 A3 op

@= ;f -  8mpv Os (6.8)

In other words, in this cas@ follows the input signalf with a negligible time lag.

Now, beingr ~ 0.033 cm? s~ 1, for “large” vessels, say witkly > 0.1 cn? (Rp > 1.8 mm), the
characteristic time,, = 1/r = Ay /(87nv) is about0.12 s or greater. If one is interested in capturing
the pressure pulse propagation in such vessels, that moves with velocity

1 2Eh

= = ~150cms!
Cpulse \/a 37TpR0 )

quasistatic approximation should be avoided, sinds greater than the pulse travelling timgijsc =
L/cpuise (that is in the range of 0.03 for vessels of a few centimeters in length). Bignwmaller
vessels are considereg,drops likeR; on the other hand, the ratig/ Ry and the Young modulus do
not change considerably, so that,.. remains in the same order of magnitude apgs. is propor-
tional to the vessel length, which usually scales less than linearly with itetgpRg. This means that
for “small to medium” size vessels, < 7,415 SO that the quasistatic approximation can be applied.
For instance, considering arterioles withhy = 2 - 1075 cm?, we havel/r = 2.4 - 107° s: in this
case the gquasistatic approximation is more than justified. As a matter of fact, thigieonpodel is
always the starting point for applications in microcirculation, see for exafbglepart I, chapter 7.

We point out that one can look at the quasistatic approximation as the limit of theermom
conservation equation to tHeoiseuille’s law in fact, sincepr = p wherey is thedynamicblood
viscosity, eq. (6.8) reads

_ T o (6.9)

which is nothing else than the well known Hagen-Poiseuille formula for lamiiadiosary flow of
incompressible uniform viscous liquid through a cylindrical tube with radiys
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Under this assumption, the model for pressure propagation in the vessehbsarabolic using
(6.9) in the first equation (mass conservation) of (6.3), we have

oP 19°P

that we will call %D model since the flow rate variable is now related to the pressure by the
Poiseuille’s law (as if we had lost half of the independent variables).
As done for the linearized 1D model, we restate our problem, taking into atadluid lossg, :

Problem 6.2.2. Find the vessel pressugg (¢, s) and flow rateg, (¢, s) such that:
0 0 . Opy

Co=—py — —K,— v = 0, t >0, 0,L 6.11
ol g5y 1O >0,5€(0,L) (6.11)
where . A 5
3TR 1 TR,
C’v: 0 Kv:_:—oa v:_Kv_ v
2Eh’ Ir  8u a s’

with suitable boundary and initial conditions (BC and IC).

If we consider problem 6.11 with prescribed input pressure and aotrated load with conductance
G, we have the following BC/IC, obtained by (6.7):
v(t,0) = pin(t), qv(t, L) — Gpy(t,L) =0, t >0,
p(t,0) = pinlt),  av(t.L) — Gpu(t. L) 6.12)
pv(0,5) = pyo(s), s € (0,L).

6.2.3 The 1D transport model

The one-dimensional model for mass transport we have derived inestigstarting from the actual
3D advection-diffusion problem in the vessel lumen, falls in the categogenéral 1D advection-
reaction-diffusion problems. The variable transported in the vessahieaaheaning of dinear con-
centration(for instance mol per unit length) of a chemical.

Here we consider a similar model for tirelumeconcentration of a chemical inside the vessel,
that we denote by,. Of course, the linear concentration is givendy,, A being the cross-sectional
area. The governing equations igr we propose here are obtained from those of chapter 2, under the
following assumptions:

i) we neglect the variation of the cross-sectional area, and setd,, whereA, is time indepen-
dent;

i) we consider also a diffusive term, that may be important in small vesseésdiffiasion coeffi-
cient will be denoted by).;

iii) we consider a concentration loss tefipy (measured in mol per unit time and unit length; we
will define it more specifically later on when the 1D-3D coupling will be consdg

From these assumptions, the following 1D model for mass transport in thelvg®btained:



102 MODELLING BLOOD FLOW AND MASS TRANSPORT IN VASCULARIZED TISSES

Problem 6.2.3. Find the (volume) concentration, (¢, s) that satisfies:

0 0 0
AO@% + s <q‘,uV — AODV%UV> +6, =0, t>0,s€(0,L), (6.13)

with suitable BC/IC.

Concerning the BC/IC, we can prescribe for example the value of theeotnation at the inlet, and
a homogeneous Neumann condition (that means to neglect the diffusive wéthmeespect to the
advective terms) at the other boundary point:

uy(0,8) = uyo(s), se(0,L). (6.14)

{uv(t,O) = uin(t), Ouy(0,s)/0s =0 t>0,
We also point out that, if théD model is used for blood flow, then we can express the blood flow rate
in (6.13) using the Poiseuille’s formula and have:

Ao—uv

0, 0 (TRidp,
ot 0s

0
v ADV_V v — V. A
S g+ Ao 88u>—|—9 0 (6.15)

6.3 Microscale: 3D models for blood flow and transport

In this section, we consider homogenized mathematical models governingflilacghd mass trans-
port at the microscale. The fundamental idea is that only averaged quaatitieonsidered: the size
of vessels belonging to the microscale is so small that we consider them asrédseqgb aporous
medium the microvascular matrix. Specific constitutive laws can be adopted for tldaime basi-
cally, they are extensions of Darcy’s law for multiporous media. Multiporasibglels are currently
used to simulate groundwater flows and other geological phenomena: fipéaaéion to biological
flows is quite recent. In what follows, we introduce such models and diselsted numerical issues
that have not been discussed in the previous chapters.

6.3.1 Hierarchical perfusion model for blood flow in the tissie

The system of blood vessels in a tissue hdsesarchical structure: vessels can belong to several
branching orders, each order having its specific properties, deywgefvdt of all on the radius. There-
fore, rather then associate single values to the hydraulic tissue permegtaitibgity, mean blood
velocity and other classical porous medium averaged quantities, we msitiepadistribution of
values depending on the vessel level in the hierarchy.

To this end, ierarchical parameter} € [0, 1] is introduced: it is an auxiliary variable repre-
senting the level a given vessel belongs to, that has been considstdyy fiHuyghe and Vancampen
[45].

In this work, ¥ spans the range from the smallest vessels (capillaries) ter0, to largest ones
for ¥ = 1. We will not include the venous system in the hierarchy (even if one caddnegative”
values ofi#); rather, this system will be described by some reduced model.

In several papers by Huyghe and coworkers (see for instan@3, [[d®]), constitutive laws for
hierarchical blood flow have been theoretically developed starting fromddmental conservation
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principleg. Each unknown related to blood flow is expressed as a function of batfakpariables
and hierarchical coordinaté, as well as flow takes place both in the “spatial” direction (through
vessels of comparable porosity) and the “hierarchical” direction (uspalging from a hierarchical
level to a lower one).

In porous medium theory, the averaged variables are defined by mkariseference elemen-
tary volume” (REV) whose sizérgy is negligible with respect to the characteristic length of the
macroscale, but still big enough to allow a meaningful averaging on the roamsee [6]). In our
case, the REV has 4 dimensions (three in space, one for hierarchy).

Let Q C R? be the tissue domain, afg, the subdomain occupied by blood vessels (that are the
poresof our medium); forx € 2 and¥ € [0, 1], we define a REV corresponding (&, /) by

Z/{O(Xv 19) = {(leﬁ/) € Qp x [07 1] : H(Xlaﬁl) - (Xﬂ?)H < hREV}‘
Several microscopic physiological variables are define@gn
o the pore pressumg;

o the porespatialvelocity v, defined byv, = %, whereD /Dt denotes a material derivative;

o the porehierarchicalblood velocityw;, = %f; this quantity represents the rate at which blood
moves up in the hierarchy, through a given lefgat a given poink. Notice that if the highest
hierarchal level corresponds to the largest arterial blood vesseistrimal conditions blood will
move down in the hierarchy, thus producing a negative valug, of

Taking the average of the microscopic physiological quantities we canedtfa corresponding
macroscopic variables dn:

o p=np(tx,19)= @ fuo(x 9 pp(t, x',¥)dx’'d¥': the mean blood pressure.

ov=v(t,x,¥) = ‘u—lo‘ fuo(x 9 vy(t,x',9")dx’ d¥: the mearspatialblood velocity.

o w=uw(tx,19) = |u_10| fuo(x 9 wp(t,x’, 1) dx’ dv¥: the mearhierarchicalblood velocity.
Starting from fundamental conservation laws and using mixture theoryQ8j flhe admissible models
for hierarchical flow have been completely described, including postielaffect. Neglecting the
solid matrix displacements, and introducing a compliance effect, we have th&bltbwing four-
dimensional Darcy equation in mixed form (héveoperates orx only) is one of the admissible
models:

Cgp—i—v-(nbv)—i-g(nbw)—&—mzo, t>0,xe, 9¥e(0,1),

ot 09
nyv = —K{Vp, t>0,xe, ¥e(0,1), (6.16)
nbw:—a%p, t>0,xe, Je(0,1).

In this model the following quantities are defined:

i) the porosityn;, = ny(x,1), defined as the ratio between the blood voluidg and the total
volume (blood and tissue) in the REV (in other wordgjs thefluid fraction);

i) the compliance” = C'(x,9);

SActually a complete poroelastic theory is developed by the cited authors.
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iii) the four-dimensional hierarchical permeability tensor

Kt(X, ’(9) 0

K(x, d) = 0 a(x, )|’

This tensor can be computed experimentally, but also theoretically, from thestéde geom-
etry [44, 43];
iv) the generic tissue fluid loss tergq.

Of course some boundary and initial conditions have to be assigned t.(Rd€ating problem
(6.16) in non-mixed form, introducing the subscript “t” to emphasize that th@aown lives in the
tissue region, and assigning suitable BC/IC, we have:

Problem 6.3.1. Find the tissue blood pressurg(t, x, ) such that

0 0 Opt
Zp -V K -~ a—= = L A7
Ct(‘)tpt \% tht 819&819 + ¢t 0, t> 0,8 € (0, ), (6 )
satisfying
nbw(taxa O) = GO (pt(tvx) O) _pv(tax)) ) t> OaX € Q)
mw(t,x,1) = G1 (pe(t,%x,1) — pa(t,x)), t>0,x€Q,
nyv(t,x,9) -n =0, t>0,x€00,9€|0,1]; (6.18)
p5(0,x,9) = peo(x,9), x € Q¥ € [0,1],
where . L 8
_ I
v = antht, w nbaaﬂ’

are respectively the spatial and hierarchical blood velocities.

The BC we have considered in (6.18) correspond to the following situatiprand p, are the
venousand arterial pressurein the tissue regio?, Gy and G, are the hydraulic conductivities re-
spectively between the lowest hierarchy and draining veins, and betiveehighest hierarchy and
feeding arteries. Dirichlet boundary conditionsdat= 0, 1, such ag(t,x,1) = p.(t,x) are also
admissible; they correspond to high values of conductages: .

Remark. In physiology,tissue perfusion is defined as the volume of blood movidgwnin the
hierarchy per unit volume of tissue and per unit time. For a given hiecaidevel, this is exactly

Wy = —Npw, (6.19)

and is usually a positive value.

6.3.2 Multi-pressure models (hierarchical discretization

Despite the fact that in mixture theory the hierarchy le¥é acontinuousvariable, in practice one
considers only a few discrete levels (see table 6.1). So, even if prablés) (s four-dimensional, the
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Figure 6.3: Spatial and hierarchical flows in biological tissues

numberNy of degrees of freedom for thévariable is usually very small (for instance considering
arteries / arterioles / pre-capillaries / capillaries, we h&ye= 4).

Huyghe, Vankan and coworkers did not address this issue (for dgahgr FEM calculations in
[103] are 2D in space, so that a standard 3D solver can be used feinthiation of the hierarchical
model), but we think it is possible to take advantage of the smallneSs t simplify the model. We
will thus introduce a special semi-discretized model, in which the four-dimeabkpoblem (6.16) is
split into Vy three-dimensional ones.

For the sake of simplicity, let us consider problem (6.17) in the steady ttemewe have

o 0 .
V. K,Vp— %a£ Yh=0 inQx[o1]. (6.20)

Letn = Ny — 1, hy = n~!, and fori = 0, ...,n defined; = ihy. We will considerNy pressures
corresponding to each hierarchical levgl that is we set

pi(x) = p(x,9;), i=0,...,n. (6.21)

The hierarchical discretization of (6.20) leads to a (tridiagonal) systecowbled equations for the
pressureg;, which reads as follows:

[Loo Lot Po [ fo]
Lio L1 Li2 P1 fi

Loy 5.22 5.23 | 1?.2 f.2 6.22)

Lnnfl Enn_ Pn fn_

whereL;; is a linear differential operator given by

Lij = =V Kij(x)V + ai5(x), (6.23)
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beingK;;, o;; and f; suitable functions of spatial coordinates that we will derive in the seqystef
(6.22) is givenn homogeneous Neumann boundary conditions:

n- K;(x)Vpi(x) =0 onodQ, i=0,...,n. (6.24)

K[| ol Ol

Arterial 100 0.0025 0.001
Arteriolar 0.05 0.000325 0.001
Venous 100 0.0025 0.1

Table 6.1: Hierarchical vessel parameters used by Huyghe andlenwdorrat calf muscle(perme-
abilities K anda, and compliancé€’.)

To derive model (6.22), let us introduce tRkfinite element basis functiors; }i—o
corresponding to the nodgs, }:

©w; € C([O, 1]) ;€ Pl([ﬁj — 1,19]])VJ =1,...,n, ng(’l%) = 5U\V/7J,] =0,...,n.

We assume that the elements of the permeability teAsand the pressureare piecewis@! inter-
polations of their known hierarchical values:

n

0) =Y Ku(x,9p)er(@),  alx,0) =) alx,9)pk() ZP x, Ug) ok (V

k=0 k=0 (6.25)
Let g, ¢ be smooth functions respectively defined(@and|0, 1]; if we multiply the first equation in
(6.16) times;(x) (1) after substituting’ andw in terms ofp, and we integrate by parts ov@rx [0, 1]
taking into account the boundary conditions (6.17), we obtain a weak fotiouthat reads

1 1 8]9 880
/0 @(ﬁ)/sz(Kt(x 9)Vp, Vq)dxd19+/ (X)/0 a(x, 0)(319 50 d¥dx+
/GngO x)dx + (1 /Glpxl)()d =

/ / 1%, 9)g(x)p(9) dxd + (0 / Gopy(x)a(x) dx + (1) /Q G1pa(x)a(x)dx. (6.26)

Now, we use expressions (6.25) in (6.26), where we chgosey;, i = 0, ..., n: after elementary
computations, we get

jZO/Q(Kij(X)ijaV@dx#—gzg/gaij(x)qudx:/ﬂfi(x)q(x)dx, (6.27)
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being

n 1

Kij(x) = Y K(x,V) / o1 (9) i (V)0 (9) d0, (6.28)
k=0 0
n 1

aij(x) = Za(xaﬁk)/o ok (0) 2 (9) 0 (9) AV + 6003 Go + 0indij G (6.29)
k=0 )

fix) = 60Go + 6mGi — /O b1, 0)pi() D, (6.30)

whered;; is the Kronecker delta. Now, (6.27) is exactly the weak formulation of sy$6e®®) with
boundary conditions (6.24). Moreover, equations (6.28:6.30) défmeoefficients of operators;;
in (6.23). Finally, if|: — j| > 1 thenK;; = 0, a;; = 0 due to the finite support of basis functions in
equations (6.28-6.29), so that system (6.22) is tridiagonal.

One easily finds that in the non-steady case the hierarchical discretifditgto the following
problem:

op; - .
CiatZ‘F;ﬁijpj:fi, ’LZO,...,TL,

where )
Cix) = /0 C(x, 9)i(9) o, (6.31)

while the operatorg;; are always those of eq. (6.23).

6.3.3 The transport model in the tissue

In what follows, we model the dynamics of a chemical in a biological tissugyukgporous medium
description of the microscale, introduced in section 6.3. Although we mainkidenoxygen transfer
in a skeletal muscle, the same methodology applies for all chemicals transpptiteel blood (about
this subject, we refer the reader to chapter 1), and to temperature drtcainséer as well.

Blood acts as a carrier for chemicals, whereas the main reaction pretakselace at a cellular
level and in the extravasal solid matrix, tmerstitium Moreover, usually the blood-to-interstitium
transfer only concerns low vessel hierarchies, such as capillaneshése reasons, a general frame-
work to study the mass transport and reaction in a biological tissue acgdodinmacroscopic view-
point is a so-calledlouble porositynodel, where both the blood and the interstitial concentration
satisfy an advection-diffusion-reaction equation, in which the exchtargedepends on the concen-
tration gap. In some special cases, a model reduction to a single equatiba filood concentration
can be considered as well.

Double porosity model

LetQ C R?3 be the tissue domain; for € Q2 we denote by ,(x) the blood volume concentration of
oxygen (in the considered hierarchical range, for example in capiljaiese (2, and byu; ;(x) the
concentration in thénterstitium

Making use of the mass conservation principle, we propose the followinlglelgporosity model:
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Problem 6.3.2. Find the concentrations ;(¢, x) andu ;(t, x) such that

([ Ou 1
a;’b + V- (=D Vug p + vugp) + we(uep — ta) + ;(ut,b —ui) =0, t>0,x€Q,
Ouy 1
;;71 + V- (—DW'VUW') + ;(Uw’ — Ut,b) + 9*571' =0, t>0,x €,
ut,p(0,%) = up,o(x), ut,i(0,%x) = uio(x), x € Q,
Dy p0uy p(t,x)/0n = 0, t>0,x € 09,
Dy ;0ut;(t,x)/0n = 0, t>0,x € 00N.

(6.32)

Here, D, ; is the (effective) oxygen diffusivity in bloody the blood velocityw; the tissue perfu-
sion (although it can be extremely variable, a “reference” valug.is- 1073 s~! at rest), Dy ; =
1.7-1075 cm? s~! the (effective) oxygen diffusivity imnterstitium 7 is the time constant for oxygen
diffusion from blood vessels timterstitium(for capillaries,d ~ 2 - 10~3 cm is the diffusion distance
andt ~ d?/D = 0.2s),0;,; = 0,:(t, us ;) is a reaction term (for example, the basal consumption
rate5-10~® mol cnm3 s~! at rest, or more generally a function accounting for the dynamickla®,
CO- and other chemicals), ang, = 8.75 - 10~% mol cm~3 the arterial oxygen concentration.

We point out that the effective diffusion coefficients depend on the mizie geometry of the
tissue via thaortuosity A of the microvessel matrix (we refer the reader to the well known work of
Nicholson and Phillips for mass transport in the brain [68]; for heat teatise same theory is applied,
see for instance [47]). In particula®, , = Dy/\? whereD, is the diffusivity in blood.

One porosity model

If reaction is dominating the diffusion processes in the interstitium, like for el@mgkeletal muscle
during exercise, then we can assume gt = 0, obtaining an integro-differential problem.

Problem 6.3.3. Find the tissue concentrations (¢, x, 9) anduy ;(t,x, ) such that

o 1
g;’b + V- (=DipVup + vuey) + wi(uy = ta) + —(ugp —wi) =0, ¢>0,x€Q,
du i 1
d;’ + ;(Ut,i —ugp) + b =0, t>0,xeQ,
ug 5(0, %) = up (%), ut,i(0,%) = ui0(x), x €,
Dy pO0uy p(t,x)/On = 0, t>0,x € 00.
(6.33)

Finally, if the characteristic time of the reaction in the interstitium is small enouglcaneassume
that dus;/dt = 0, then after expressing; ; = u;(u¢ ) as a function ok, in the second equation
in (6.33), we obtain a single equation fefissue = uy 5 in the following form:

0
% + V- (=D¢Vug + vug) + wi(ug — uq) + 0y = 0, (6.34)
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whereDy = Dy p, andfy(t, ut) = 0¢(t, ug i(ut)).

Eq. (6.34) is a very simplified model for mass transport in tissues; nel@sthet encompasses
the Pennes bioheat equation [74] as a particular case, sotbhald represent also a temperature field
in the tissue.

Typically, mass transport models such as those presented so far, reggahal capillary perfusion
measure to provide values ferandw, allowing to solve for the concentration. Despite the fact that
several techniques are available to provide clinical data {0iR perfusion imaging or Laser Doppler
perfusion imaging, for instance), a perfusion model such as|(6.1.22) can provide an useful
alternative. There is a number of reasons supporting the argumentdbédtgerfusion computations
are worth the effort. For example, by numerical simulations it is possible ttigete extreme
conditions such as hypoxia, circulation diseases, or make prognosesstae evolution of a tissue;
moreover, numerical techniques are already widely used for desigroges in artificial organs and
biodevices development.

6.4 Some examples of blood perfusion simulations

We have already presented some examples of application of the 1D mag®ttansdel in chapter

2. Here we want to show some significant tissue perfusion simulations, disiniputed microscale

models. For the first time we introduce 1D vesselsla® for our problems: we will consider 1D
arteries/veins, with given blood pressure, embedded in a 2D tissue dandistudy how they behave
as bloodsources/sinksAt this stage, this approach is easy to handle, since

i) the vessel pressure is given;
i) a 1D source in a 2D domain does not induce a singular solution.

When the full coupled 3D-1D problem will be considered, both i) and ii) woll hold anymore; nev-
ertheless, we can take advantage of the special analysis carried bapitec4 and of the numerical
techniques introduced in chapter 5.

6.4.1 A three-hierarchies perfusion model for the tissue

We consider a three-level hierarchical model € 2), in which the capillary ¢y = 0), the pre-
capillary (91 = 1/2), and the arteriolar, = 1) scales are taken into account. We suppose that the
hierarchical permeability tensor is space-independent and isotrofiltatsee have

K = K)]I,

beingK (#) a scalar function anflthe identity tensor. We will consider an simple case in which values
for K(0) are obtained by standard data. Thanks to the Poiseuille’s law, we canttedatelocityv
and the pressure dr@p in a vessel by
B r2 §p
v = @E,
wherey is the dynamic blood viscosity, is the vessel radius ant the vessel length; so one can
assume that
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is an approximation fof{. As we neglected the solid displacements, the poresiig a constant for
each phase. Since the global blood volume fracyfémb(ﬁ) d?} is about 0.1 (5 liters blood for 50
liters tissue), let us consider thag = 0.1 = const.

Typical radiijmm| and apparent blood viscositigd?a $ corresponding to capillary, pre-capillary,
and the arteriolar scales are

r(9o) =4.3-1073,  pu(d) =15-1076,

r(91) =12.9-1073, pu(d) =4.9-1075,

r(¥2) =51-1073,  pu(ds) =2.8-1075,
so that we get the following estimations far(v;) = K in [% :

Ko =0.016, K; =043, K,=12.05.

Coefficientw is the (hydrodynamic) conductance per unit volume between contiguaasdiiecal
levels. Assuming to know typical mean valygsandw; for pressures and hierarchical velocities, we
can extrapolate standard conductance values in the following way:

npw; = —Q @ N—a-Aﬁi — a-N—n@Aﬂi
bwi — % 90 ﬂzgi ZA’L% i — b ZA@

Using standard mean values of pressuggs+ 3.7,p1 ~ 4.2,po ~ 8.6 kPa) and tissue perfusion
(—pw; = wy ~ 2.5 - 1073 s~ mm? of blood per mm of tissue), we obtain the following estimates
for a (units are[s™'kPa!]):

h 2h h
ap = w—2— =25-1073, a1 = wy—2— = 0.51-1073, ag = wy——2— = 0.28 - 1073
P1— Do P2 — Po P2 —p1
In our case, using equations (6.28-6.30), system (6.22) reads:
—KooA + agg —Kpi1 A + ap; 0 Po fo
—Ki0A+aig —KiiA+ain —KpA+ap| |pi| = |, (6.35)
0 —KaA+az —KnA+an] |p fo
where
- r3Ko+Ky Ko+K1 0
Koo Ko1 Koz 24 24
Ko K1 Ko — KO;Z;Kl K0+62fi1+K2 K1;4K2 ’
Ky Kz Ko 0 K1 +K>p K1 +3K>
L 24 24
a0 o1 Q2] [ag + a1 + G —Qp — 0
Q0 11 2| = —ap— a1 oo+ 201 + @z —op—a2 |,
Q20 Q21 (22 ] L 0 —] — (g a1+ ag + G1
and

Jo = Gopw, fi=0, f2 = G1pa,
with homogeneous Neumann boundary conditions for pressures:

Op;
on

=0 ond, i=0,1,2.
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We point out that a finite element discretization of the system (6.35) of pditiatential equations,
leads to a linear system with a block-structured matrix (blockwise tridiagoftadasily found that
in this case the block Gauss-Seidel iterative method [88] can be emplogeessiully to solve the
global system by iterating the solution of three “standard” problems (aneefch unknowm;).

In fig.[6.5 results of a FEM 2D simulation for this model are reported, whe feéding artery
A, and a 1D collecting vein\, are embedded in a 15 mm 15 mm square tissue; moreover, a
distributed microvenous bed is communicating with the capillary compartment. €semue of 1D
vessels in this case is modelled by concentrating gandA,, the venous and arterial conductances,
that is by taking

G(0 = Oy, bed + avéAv; Gl = Oéa(SAa,

in eq. (6.35), where we denoig the Dirac distribution concentrated on the getConstantsy, and
«aq have been computed using

[/ ]
|Av‘(p0_pv)7 |Aa|(ﬁa_p2)7

with reference mean values for arterial and venous pressgyes {3, p, ~ 2.9 kPa), that gives

Qy — Wy

Ay, =93-107°, a,=75-10"3s kPa ! mm.

We see that computed hierarchical pressures are of the g = p; + dp;(x), wherep; are

1
0ok DPa
0.8~
(&%)
0.7~
p2(x)
0.6 -
0.5~
p1(x)
0.4
0.3
ook , ] po(x)
Qy
o Oy, bed
00 0‘.1 0.2 0‘.3 0.‘4 0‘.5 0.‘6 0.7 0.‘8 0.9 1
Pu,bed Do

Figure 6.4: The mesh and three-level hierarchy of the tissue with exterdedulic conductances.

mean values andlp; are pressure oscillations, that are responsible for the spatial bloodUsing
these values for pressures, one can compute tissue perfusion bythssitigrd equation in (6.16)
(actually we consider ah? projection on the same pressure FEM space): mean values for pesfusion
are respectively 0.0043, 0.0025, 0.0029 for the capillary, pre-capillary and arteriolar levels.

The blood flow entering the tissue by the incoming art&ryis computed as

Qo = / aq(pg — p2(s))ds = 0.68 mm?® s !,
Aq
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while the outfluxes flowing from the capillary compartment respectively to theavascular venous
bed and to the vein\, are found to be

Qvbed = / . bed (P0(X) =Dy ped)dx = 0.23mmP s1, ¢, = / vy (po(s)—py)ds = 0.45 mm? s71.
Q

v
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Figure 6.5: Perfusion simulation. Arteriolar, pre-capillary and capillagspures (respecips, p1
and pg) are expressed in kPa; the corresponding tissue perfusion (tespes, nywi and nywg)
in s! (that is cc of blood per second per cc of tissue). On pressure plotsp#il velocity field
v; and some streamlines are reported to emphasize the spatial blood flow withihiegarchical
compartment.
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6.4.2 From retinal imaging to retinal perfusion simulation

Let us apply the tools we used in example (6.35) in a “real case” of tisstiesm. Since here we
deal with a 2D microscale, we will consider a “quasi-planar” tissue:réiiea. It is an interesting
case due to the well knowretinal imagingtechnique, that consists in taking a picture of the rear
inner eye surface by an optical camera in order to visualize its bloodIsesBee impaired retina
circulation is responsible of a number of sight diseases, this is why retinglingnds so widely
practiced. Being a relatively easy-to-apply technique, several tools ke m#omatic the prognosis
by retinal imaging have been proposed (see for instance [40]): thegméhe automatic detection of
the vessels geometry by suitable algorithms.

We used such kind of algorithms to extract the 1D geometry of the largestlre¢issels from an
image, and then to simulate the perfusion using the microscale model, as we dahiplex6.35).
In fig. 6.6 are shown the major steps that lead to the 1D geometry extractiosufearize them as
follows.

1. Segmentation A saturation threshold is used to convert the input image from the 256 gray
levels format to théit image format, so that each pixel is either “on” (black) or “off” (white).
The goal is to have a first sketch of the vessels location, but of cowrseshlting segmented
image is very irregular.

2. Skeletonization A linear transformation is iteratively applied to the pixel matrix to extract its
skeleton We say that a bitimage is a skeleton if each “on” pixel has at most 2 neigigdon”
pixels: intuitively, if a bit image is a skeleton, it describes 1D filaments.

3. Tree topology identification. Once the image is reduced to a skeleton, one is left with the last
and most expensive step: the tree topology identification. This task commsggscribing the
skeleton as #&ree identifying each branch with a label and building the “child-of” table, that is
to assign to each branch its father branch. To do that, first the skgletctionsare identified,
then the disconnected components have to be ordered according to #reatggy”. In spite
of the intuitiveness of this problem, its solution algorithm is computationally exyensee for
instance [18]. The tree topology identification is not necessary wherldbd pressure on the
tree is known, as in this example; but, if this is not the case, then 1D modelyyusiliaequire
suitable interface conditions at the tree nodes: to impose this conditions thepmegy has
to be computed.

After the arterial tree is identified, its branches are geometrically definadeisof points (the image
pixels), so that to build the 1D vessel mesh, one has two possible appsoach

1. Interpolate this set of points, for example by least-square polynonpabeipation;
2. Build the 1D mesh as atge pathn the 3D (or 2D) tissue mesh.

In this example, we used the first approach: we wrote a simple Matlab scvipich first each branch
is interpolated by a polynomial line, and then a FreeFem++ meshing code is digtdiyareated that
generates the arterial tree 1D grid. The same code solves the blood @biemprat the microscale
level. Some results are shown in fig. 6.7,/6.8.

6.4.3 Brain Angiography

As show in fig! 6.9, the same computation can be carried out in a completelsediff@tuation, start-
ing from a medical image obtained with a different technique. Here we camaimain angiography
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Figure 6.6: Some tools used in extracting vessel geometries for our nuhmntdations. Top-
left: retinal imaging bitmap. Top-right: segmentation of the image. Bottom-left; &kelef the
segmented image. Bottom-right: reconstruction of vessel tree topology wétictirpruning and
labelling (different colors correspond to different connected corapts).

Figure 6.7: On the left: blood velocity at the capillary level. On the right: meghefetina, with
least-square polynomial lines approximating the vessels (with branch labels)
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in which brain vessels are detected using a contrast agent. In the dagpe69, the circle of Willis
is visualized. In this case, the vessel sizes are quite large, neverttteesiseletonization filtering
still allows to get the 1D representation of the arterial tree. Of course,eafr@as to decide which
1D model is the most appropriate, the quasistatic approximation should beddidcdue to the large
vessel radius. Nevertheless, models like (6.5) may accurately repbésed flow and blood pressure
propagation in the circle of Willis, as we will see further on in this chapter.
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Figure 6.9: On the left: brain angiography. On the right: computational giitti, least-square poly-
nomial approximation of the brain blood vessels. The vessel tree haskieaated from the medical
image by means of an automatic algorithm.

Saalan 2 sy Frz il In g peese s ek 2 o

Figure 6.10: From left to right: hierarchical pressuggspi, po at the capillary, pre-capillary and
arteriolar levels.
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6.5 1D-3D coupling between blood vessels and surrounding tissue

The most interesting problem, among those we have outlined at the beginniig dfiapter, has still
to be investigated: the coupling between the “fast” flow and transport i @f i vessels, and the
same “slow” phenomena in the surrounding 3D tissue where suitable “hofmedémodels, such as
those presented so far, are assumed. In this section we study the cowgalel$. To avoid irrelevant
complications, we make the following assumptions.

1. Asimple one-level hierarchy is considered for the microscale: we vall\@ih only one tissue
permeability, the one referred to the microscale. This does not repradimitation of our
approach, since additional hierarchical levels can be accounteddidy,eand will allow us to
make the exposition more clear.

2. Blood flow is described by theD or the linearized D model. When the:D model is consid-
ered, the two coupled problems are parabolic, so that the analytical americal techniques
to treat them are similar; moreover, for the steady (elliptic) case, they hesme $tudied in
chapters 4, 5, respectively. If the linearized 1D model is used instezmyth have a coupling
between a 3D parabolic and a 1D hyperbolic problem: we will discuss thesiates of our
methods needed to treat this more complex case.

3. We consider the simple model (6.34) for mass transport in the tissue.l ¥Eotig) is assumed
to describe mass transport in the vessels.

4. The blood flow from the vessels to the tissue is positive, and linearlyndep&on the pressure
gap. More precisely:

a) The volume of blood per unit time and surface exiting from the vessel avadl entering
into the vessel matrix of the tissue, is positive and proportional to the differbetween
blood pressure in the vessel and in the tissue, across the vessel waragortionality
constant is the (effective) hydrauloonductivityL,,. We sayeffectivesince it could not
have the same value of the actual wall conductivity. In fact, we are takiogatount also
small branches, that provide blood to the surrounding regions, andraiot resolved
by our 1D geometry: thikierarchicalflow can be accounted for precisely by coefficient
Ly.

b) Since blood exits from the vessels, the tissue concentration on the @&es$sal surface is
equal to the vessel concentration: in other words, the actual interéaebn vessel and
tissue is thenlet of the tissue domain.

In particular, by assumption 4 the coupling conditions for tissue and vesssdure on the surface of
the actual 3D vessel are of Robin type. We have already seen that,gstestima diffusion problem
in a domain2 € R3, with Robin boundary conditions assigned on the surface of a thin tublketdr
into €2, a limit problem is obtained by a suitable “flux-preserving” rescaling in witehtube diam-
eters tends to zero. The limit problem has a measure datum and an integrabieecific formulas
have been given for both these terms in section 3.2.2. The couple}cmmedel of tissue perfusion
is directly obtained using the latter results, in the limit case in which the 3D vessastcollapsed to
its 1D skeletom\ € Q:
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Problem 6.5.1. (Blood Flow, 3D1D)
Find the tissue and vessel blood pressuigsp, ) satisfying

0
Ctapt + V- (KiVpt) + apy — ¢(pe,pv)on = fp, >0, x € Q,

0 0 Opy B
Cvapv_%Kvg'F(ﬁ(ptvpv) _07 t>07S€A7
with suitable BC/IC. The termd, has to be understood as Dirac measure concentrated amd
having line density, where

(6.36)

: 1 [
&(ps, pv) = 2nRLy(py — pt), being pi(s) = %/0 (s, R(s),0)dd, (6.37)

This model can be seen as the coupling between a one-hierarchy dettwatiaf problem 6.3.1 (see
section 6.3.2) withpy, = —o(p, py)da, and problem 6.212, witkd, = ¢(p¢, py). Notice that the
actual vessel radiuR = R(s) appears as a datum in the expression (6.37) of the coupling term. The
coupling termg represents the blood flow leakage from the vessel to the tissue (perngitt)e

The term

wy = apy — fp (6.38)

is the tissue perfusion (see sec.|6.3), more precisely it is the blood flowesatieg the tissue (and
collected by the venous bed) per unit tissue volume. We assume it is pasitige,in this work the
“source” termf, describes lower hierarchical compartments only, such as the venous/asicutar

bed; in this case, if,eq iS the related (known) blood venous pressure, we have

Jp = OPbed-
The blood velocity in the tissue is given by
1
vV = ——Ktht. (639)
np

Admissible BC arel (6,7) for the 1D problem, and homogeneous Neumanitioasdno blood
flow across the tissue boundaries) for the 3D one. For example, wenaiter the following bound-
aryl/initial conditions for problem (6.36):

n-Ktapt(t,x)/an:O, t>0,x€3§2,
pv(tv 0) = pin(t)a QV(ta L) - Gpv(ta L) =0, t>0,
(6.40)
pt(O>X) = pt,0(8)7 X € Q?
pv(ov 5) = pV,O(s)a CRS A,
whereq, = —K,0p,/0s. As usual,G is the hydraulic conductance seen from the end point of the

1D vessel.
When assuming a fullD model for blood flow in the vessels, we have:
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Problem 6.5.2. (Blood Flow, 3D-1D)
Find the tissue pressuyg and vessel blood pressure and flow rgte, ¢, ) satisfying

0
Ctapt + V- (KVpt) + apy — ¢(pe,pv)on = f, >0, x € Q,

0 0
— | H— |7 vydv) = YU, ) Aa
5 [qv}—l— s [qv]—i—r(p,q) 0 t>0,s€

(6.41)

with suitable BC/IC, and whergé(p;, py), H andr(pt, p,) are defined by6.37) (6.6).

For this problem, (6.40) are still admissible BC/IC.

Similarly, we consider a coupled mass transfer problem obtained startimgttr® 3D problem
6.3.3 in its version (6.34), and the 1D problem 6.2.3. The interface condititained from assump-
tion 4.b isuy = u, on A: this can be enforced by penalization, as we will see. The model we ggopo
is the following one:

Problem 6.5.3. (Mass Transport)
Find the tissue and vessel concentratidng . ) satisfying

0
—uy + V- (—DtVut + Vut) + wiug — Q(Ut,uv)éA = fu, t>0,x€,

S, o (6.42)
AOEuV + 95 (_AODva—sV + qvuv> + d(pe,pyv)uy =0, t>0,s €A,
with suitable BC/IC, wherey, andv are given by((6.38), (6.39), and
O(ug, uy) = 27 RLy (Uy — Ty). (6.43)

Let us make some comments about the proposed model. As regards thquasoe in [(6.42), the
reaction termf,, may describe metabolic or biochemical processes (see chapter 1). Thiegdoerm
0 represents a fictitious diffusion (corresponding to fheconstant, which is @ermeability. This is
actually apenalizationterm to weakly enforce the conditian = w: that is, the mean cross-sectional
concentration at the actual vessel surface equals the vessel tratioan Obviously this is the case
when the net blood flows leaving the vessel and entering into the tissue is positive, which is our
hypothesis. In the general case, a test has to be made in order td tisatn inlet for the tissue do-
main only if ¢ > 0: we do not consider this possibility, since in physiological conditiptis always
positive.

The second equation ih (6.43) expresses the conservation of the ntessspiorted chemical in
the vessel. We neglected the variations in cross-sectional area; neglbetirate of variation, that
corresponds to a rigid walls assumption, by the conservation of blood dli@we have that is such

that 5
v N
as + (Zs - 07

so that in this cas an alternative formulation of the vessel transport equstio

a a 8uv auV _
A()auv + a <_AODVE> + qvg =0. (644)
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As regards BC/IC, we can assume for instance a prescribed inpugrmoaiion at the vessel inlet
and impose a zero diffusive flux elsewhere:

Juy(t,x)/On = 0, t>0,x €09,
uy(t,0) = uin(t), Ouy(t,L)/0s =0, t>0,
(6.45)
u(0,%x) = ug0(s), x €,
uy(0,8) = uyo(s), s €A

6.6 Algorithmic and numerical aspects

6.6.1 1D diffusion-advection equations on trees

In chapters 3, 4,15, we have always considered a one-dimensiasss/\ddmain without branching.
However, 1D modelling is suited to represent complex branching geomegrigslk in this section
we are going to explain how this can be accomplished in an efficient way. A litetature exists
about the use of nonlinear hyperbolic 1D models for arterial treespseastance [84], [30] (and [8]
for similar fluid-dynamic models of traffic flows on road networks). In theapers, techniques are
described that allow to impose physiological meaningful interface condiéibtie nodes of a given
1D network, namely the conservation of blood flow, and the continuity ofigbsgibly total) pressure.
Basically, in a given internal branching point withbranches, these conditions are given in the form
of n equations for the set @n characteristic variables, so that the ingoing variables are expressed as
functions of the outgoing ones (see also chap. 2). Although we couldthlentage of these already
established techniques, we will adopt different strategies that are laeaitaour simpler case, in
which the equation at hand is either parabolic or linear hyperbolic.

The case of the;D model

Let us consider the simple configuration of fig. 6.11 featuring three 1Bel®s;, i = 1,2, 3, con-
nected by the branching poift. We consider a stationary flow, without any fluid loss. We denote by

Figure 6.11: 1D domain with a bifurcation.

pi(s), pi : [0, L;] — R, the pressure on the brandh, L; being the length of\; ands the curvilinear
abscissa. To fix the ideas, let us assume thatsthesitive directions on each branch are oriented
as indicated in the figure. We denote fys) the flow rates in the positive direction ax,. Our
assumptions concerning the conditions at the end points of the branehée dollowing:
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(1) in By, the flow rate isyn;

(i) in B;, i = 2,3, alumped hydraulic conductancg is relating pressure and flow rate according
to ¢; = Gi(pi — pe,i), Wherep, ; is an external reference pressure;

(iii) at the branching node&3 the pressureg; have the same value, and the flow rate is conserved
(the sum of the flow rates entering in the node is zero).

According to eq. [(6.10), the flow rate is given Qy(s) = —K;p}(s) where K; is the hydraulic
conductivity per unit length of theth branch. Since we are in the steady case, the strong formulation
of our problem is

(—Kipi(s)) =0  0<s<L;i=1,2,3, (6.46)

with “external” boundary conditions (i-ii) itB;:

—K1p1(0) = gin, —Koph(L2) = Go(p2(L2) —pe2), —Kszps(Ls) = G3(ps(L3) —pe,3) (6.47)

and “internal” boundary conditions (iii) if3:
pi(L1) = p2(0) = p3(0), —Kipi(L1) + Kap5(0) + K3p5(0) = 0. (6.48)

Notice that we have 6 boundary conditions, namely 2 for each 1D subdalai€onsider three
smooth test functions; : [0, L;] — R; multiplying thei-th equation in (6.46) times;, summing and
integrating by parts we get

3 L;
> [/0 Kipi(s)¥i(s)ds + (K;p;(0)4(0) — Kip;(Li)¥i(Ls))| = 0. (6.49)
i=1

We can define functions on the whaleby using the local parametrizatiof®, L;] — A, of each
subdomainA; in term of the respective curvilinear abscissaln this way, we can also define the
derivatives with respect toalmost everywhere oA, since once again they are defined separately on
each subdomain. In the sequel we will denote the argument of such faseliimer bys or with the
corresponding point on: this abuse of notation is only meant to simplify the exposition. In order
to obtain a weak formulation of our problem on the whole manitble- | J; A;, let us introduce the
space

V = {p A — Ru p‘AZ € H1<A2)7 p|AI (B) :p|Aj (B)v Za] = 17273}7 (650)

where the interface conditions i make sense thanks to the trace operator. We observé’tist
endowed with a natural product norm, given by

o113 = lpa i an- (6.51)

Due to the first condition in (6.48), we can lookatas the restrictiongy,, of a functionp < V.

Now, if we make the samansatzor the test functions, letting; = 1y, wherey € V, thanks to the
continuity condition inB

Y1(L1) = 12(0) = 13(0)
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and to((6.48), the sum of the boundary terms involving the pBiig zero. Therefore, expressing the
sum of integrals in (6.49) as an integral on the whole tree, and expretbeibgundary terms at points
B; using eq.[(6.4]7), we can restate our problem in the following weak féindp € V such that

/AKPIWdS+G2p(BQ)1/J(BQ)+G3P(B3)1/J(B3) = qin(B1)+G2pe 29 (B2)+G3pe, 31 (B3) Vi €V,

(6.52)
whereK is the function such thak,, := K;.
The advantage of such a formulation is that the constraints at the intearadhing pointB
are “automatically” imposed: the continuity of the pressure, by construcfigheospaceV’, and
the conservation of the flow rate by natural conditions. This is yields a siemple finite element
approximation of the problem. Assume thatis a connected piecewise affine 1D domain, as in

Figure 6.12: Representation of finite element basis functions on a 1D donthia wifurcation.

fig.'6.12, that a family{Z,,}, h > 0, of sets of segments is given such that < h VI, € 7, and
A = U, ez, Ik- We define the discrefe! finite element space as usual, namely

Vi={peC(\): py, €P' (L) VI €T} (6.53)

Since functions i}, are continuous o, we havel, Cc V. We denote by; the nodes of\, as in
chaptef 5, and by; the corresponding Lagrange basis function, defined by V;,, Pi(X5) = 05

We observe that even whefy corresponds to a branching node, its support is given by the union
of all elements sharing that node: they may be more than two, as shown ia/fidiz. The finite
element approximation of problem (6/52) is thus simply reduced to solve the mariem in the
finite dimensional spac®,: the corresponding bilinear form and linear functional will contain only
the boundary terms (6.47), while the “internal” boundary conditions (Ga#@&naturally imposed by
the variational formulation. This is very convenient when dealing with comiplarching patterns.

Rema[k. If we include in eq./(6.46) a reaction term (representing fluid losses)ttstillse of the
spacel’ enforces automatically the conditions (6.48): in fact, the reaction term is temrated by
parts.

Until now, we have considered the steady problem; to approximate the sabdiioe non-steady
problem, we can first perform a semi-discretization in space by the agpdsscribed above, then
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employ any time advancing scheme, implicit or explicit (we refer for more detajB5§). This is a
rather standard technique; therefore, as a non-steady example, wengillier directly the hyperbolic
case, and describe how it is again possible to impose “naturally” the inteonaldary conditions at
branching nodes by a proper choice of the finite element spaces farebsupe and the flow rate.

The linearized 1D model

We consider again the branching geometry oflfig. 6.11. Now we assuméhéhatoblem is time
dependent, and that the presspyg, s) and flow ratey; (¢, s) in thei-th branch satisfy the linear 1D
model (6.3), that is

Op;  0¢;

c 3 s =0,
aq»t 1 a; (t,s) €RT x (0, Ly), i =1,2,3. (6.54)
ot T1os TTETY

The boundary/interface conditions (i)-(iii) become

q1(t,0) = ¢in(t), qo2(t, L2) = Ga(pa(t, L2) — pe2), q3(t, L3) = Ga(ps(t, L3) — pe3), (6.55)

and
pi(t, L1) = pa(t,0) = p3(t,0), qi(t,L1) + ¢2(t,0) + g3(t,0) = 0. (6.56)

We assign initial conditions as well:
pi(0,8) = pio(s), ¢(0,s) = gio(s), s€[0, L], i=1,2,3, (6.57)

that of course have to satisfy the compatibility conditions

¢1,000) = ¢in,1(0),  gio(Li) = Gi(pi,o(Li) — pesi), i = 2,3.

Remark. We point out that the boundary conditions can be reformulated in termsaphcteristic
variables. In our linear case, it it easy to see that the “forward” aadkward” characteristic variables
in thei-th branch are given by

1 c 1 c
W = 5 ( hi+ Qi) , wai = 5 (—\/;pi + Qi> , (6.58)

associated to the eigenvalues= 1/v/cl, Ao = —1/+/cl of matrix H of problem 6.2.1. For example,
the boundary condition, (¢,0) = ¢, (t) reads

w11(t,0) = gin(t) — w21(t,0), (6.59)

that is the incoming characteristic variahlg ; at B; is expressed as a function of the outgoing
onews. A similar form is obtained for the remaining conditions (this is a quite generab
admissible boundary conditions for hyperbolic problems, see chapteetiltie non-linear case has
been addressed). It is easily found that characteristic variablesdbliepn (6.54) satisfy

d
a’w}m‘(t, So + )\kt) + g[wl,i(t, S0 + )\kt) + w27i(t, So + )\kt)] =0, k=12 (660)
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these relations will be used later on to extrapolate boundary values forubnerical scheme. We
point out that if a fluid loss term; is considered in the left hand side of the first equation in (6.54),
then these relations have to be modified

Let us consider the finite element discretization of system (6.54). The idegmis to multiply
each equation by a test function, and then integrate in space: this apgrelangs to the class of
Galerkin methods for hyperbolic equations, for which we refer the reladi85, sec. 14.3.1]. We
consider again the spatédefined in[(6.50) for the pressure, whereas for the flow rate we inteodu
the space

W={q:A—=R, qu €H(N), i,j=1,2,3}, (6.61)

without any continuity condition inB, since of course the flow rate will be discontinuous at the
branching point.

If we multiply the first equation in (6.54) by < V, the second by, ¢ € W, and then integrate
by parts the)q; /0s term in the first equation, we have:

d
Z dt/ cpipds — / wder [qi(t, Li)ia, (Li) — qi(t,0)1y4, (0)] =0, o5

Zd/ lqmds—k Opi 90d5+/ rlgipds = 0.
i—1 dt A; 65 A;

The boundary terms can be treated as in the previous case: in partictilag, p&(t, -) = pja, (¢, ),
ai(t,) = q, (t.-) wherep(t, ) € V, q(t,-) € W, thanks to[(6.56) we obtain the following problem:
fort > 0, findp(t,-) € V andq(t,-) € W satisfying[(6.55), (6.57), and such that

5 [evvas— [ a5 as —la(t Bow(B) — a(e. BB — alt. Ba)u(Ba) =0 Ve eV,

—/lqcpds—l—/ 8—<,0ds—|—/rlqgods =0 Yo € w.

de A A (98 A

(6.63)

Formulation [(6.63), similarly to (6.52), automatically enforces the internal axtertonditions in
B: the only terms that have to be considered explicitly are those related to theoams B; of A,
appearing in the first equations between the brackets.

This advantage can be transferred to the finite element semi-discretizatoam pfoblem: we
define the discrete space for the presdyras in (6.53), and the discrete space for the flow rate as

Wh={q:A—R, q €PI);) VI, € I,}. (6.64)

Notice that since no space derivative phippears in the weak formulation (6.63), we can B%e
elements for the flow rate: the finite element semidiscrete approximation is immedibtaiyes by
replacingV’, W by their discrete counterpartg andW}, in (6.63).

* They become

1
\/—a¢i(t7 so + Ait) =

1
—i(t, s0 + A2t) = 0.
\/a¢( 0+ Azt)

Z[wl,i(t7 S0 + Ait) + wa,i(t, so + Ait)] +

d
—w1,i(t, S0 + Ait) + 5

dt

N =

N)lH

d
T i(t, s0 + Aat) + 2[w1 i(ty, 80 + Aat) + wa,i(t, so + Aat)] —
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Moreover, if we provide Dirichlet data for bothandg at the end pointd3;, we can take the test
functionsy andy respectively in the spaces

Vor=1{p€Vi:p(B)=0,i=1,2,3},  Won=1{qg€Wy:q(B;)=0,i=1,2,3};

in particular, all boundary terms in the first equation of (6.63) vanish.

We are allowed to provide 2 boundary valupsaidq) instead of a single one as the continuous
problem would require, when applying a time advancing scheme to the seratdisqproximation.
As we have seen in chapter 2 in the framework of a Taylor-Galerkin sch@me also [84], [73]),
the “missing” boundary condition is obtained bytrapolationof the outgoing characteristic variable.
Let At > 0 the time step, and € N: denotepgn)(s) = pi(nAt,s), qi(n)(s) = qi(nAt,s),1=1,2,3.
Consider for instance the nod#, in which ¢ = ¢, (¢) is prescribed. The outgoing characteristic
in B is the backward variable, we can extrapolate its value by using (6.60) with= 2. Since
5(w1,; +w2 ;) = rg;, using the backward Euler advancing scheme for eq. (6.60)swith —At Ay =
At/+/cl, we have:

At
'w271(t + At, O) ~ wo | (t, ﬁ) — T'Atqin(t + At).

Therefore, thanks to (6.58), we have

pi(t + At,0) ~ py (t, %) + \/g [(1 + 2r A gin(t + At) — ¢ <t, %)] .

This yields the following boundary value extrapolation rule:

P (0) = pesca (01, ¢™)

= p{") (%) + \/g [(1 + 20 A gin (t + At) — g (t, %)} . (6.65)

We see that the boundary value of pressure at timeAt is expressed as a function of the flow rate
boundary value, and other terms that are evaluated at the previous timéstghore, when using a
time advancing scheme, (6.65) can be used to prescribe the boundaryoralue pressure i;.

At the end points3,, B3, the boundary value for the flow rate is given by

0" (L) = G (L) = pe), =23, (6.66)

while the boundary value for the pressure is obtained by extrapolatingutiyeing characteristic is
w1 ; by the same technique we used for (6.65), and substitqﬂﬁgl)(Li) using eq./(6.666), we get

P (L) = pes(pl™, a")
1 (n) < At) l [ (n) < At>
= p; \Li——=|+\/-|g;, | Li——= )+ 1+2rAt)Gipe,)| | »
1+ \/Eaiu + 2rAt) [ Vel ¢ Vel

(6.67)
fori =2,3.

Remark (Non-reflecting boundary conditions). We point out that, since we are using a hyperbolic
model, a concentrated load at the end of a vessel indeflested waveslf the load represents a
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physical discontinuity in the vessel, this is an expected behavior; otherivisemore convenient
to considemon-reflecting boundary conditiondn this case, the outgoing characteristic variable is
extrapolated, and the ingoing variable is set to its reference value. Thiglaoy conditions allows
waves to exit from the 1D domain without being reflected. In our casenifefbecting boundary con-
ditions are assumed at end poiits, Bs, andws ; = —ﬁp@o + ¢i0,© = 2, 3, are the corresponding
reference values of the incoming variables, the extrapolation formulasrsec

p§n+1)(Li) = Pex,i(Pl(n)7qz(n)) = 2(1+17«At) |:p§n) ( i %) +{+ 2TAt)pi’0] +
Vile [ o) (7. At A
2(+rAl) {qi ( v ﬁ) -+ 27*At)qz,0} ’ (6.68)
q; i Qex,i\P; *»4; : 2(1+ran) |4 i T Jd 4,0
)

(5" (L~ 85) ~pio) ]
fori =2,3.

In the literature (see for example [30], [95] and references thereimdary conditions have been
imposed explicitly for all end points of the vessel net, as well as brancloimgsgp However, in our
linear case we have that the boundary conditions at branching pointanally imposed by the
variational formulation. This means that we do not have to enforce that shéutections vanish at
those points, they are considered just as any other internal node bbauesh.

To sum up, the fully discrete implicit Euler scheme corresponding to ouoapprreads:
forn € N, findp(™*t1) e v, andq™+) e W}, such that

/Cp(n—&-l)wds_At/ q("‘f‘l)%ds = / cp(”)wds NAUNS ‘70/17
A A dS A ’
ap(n-i-l) R
/lq("+1)sods+At 7 cpds+/rlq(”“)sods Z/lq(”)sods Vi € Wop,
A A Us A A
(6.69)
satisfying

PV(B) = pex 1 (@™, ¢™), " TV(B1) = gin((n + 1)AY),
wherepe 1 is given by((6.65), and
P (B) = pexi@™,4™),  ¢"TV(By) = Gi(p" T (By) — pey), i =2,3,

wherep. ; are given by eq. (6.67). When non-reflecting boundary conditionsragoyed, the latter
equations become

p(n+1) (BZ) = pex,i(p(n)a q(n)>’ q(n+1) (BZ) = Qex,i(p(n)a q(N))> i = 2a 3a
where nowpex,1 andgey,1 are the extrapolation formulas in eq. (6.68).

Remark (Stability). We have proposed an implicit time advancing scheme; according to this choice,
the characteristic extrapolation was obtained using the implicit Euler schenrestryge the stability

of our method. In fact, we observed that when explicit Euler charatitegistrapolation is performed,
schemel (6.69) shows a very strict stability conditionomfor high values of the conductancés.

In figures 6.13 and 6.14, results obtained by this scheme applied to a simpidimggeometry
are shown. We consider three vessklgsee the snapshots in the figurds: is the parent vessel on
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the bottom, whileAs is the right child vessel, andl; is the left child vessel), having the parameters
reported in table 6.2. The vessels are piecewise linear curves: actuallipate been constructed
by creating an edge path in a 3D mesh (we will address this topic in section.6Th2) positive
direction of orientations of the parent vessel and right child vessetasr‘father to child” (that is
“bottom to top” in the figures); on the contrary, the orientation of the left chddsel is opposite to
that of the right child vessel, to verify that the natural enforcement ofniatdooundary conditions of
our scheme is independent of the chosen parametrization (actually thisssabteefeature, since we
aim to apply the same scheme to complex networks in which the branches aratcadly extracted
from data, thus having orientations that cannot be predicted beforéentivéation). We applied the

Radius [cm] Length[cm] c[cm?kPa'] I[cm*kPag] r[s!]

vessel 1 0.4248 3.3 0.24083 176 1.551
vessel 2 0.2832 10.4 0.07136 3.99°° 3.491
vessel 3 0.3540 10.4 0.13937 24845 2.234

Table 6.2: Numerical values used for our testing simulation of 1D blood flonethnching geom-
etry.

scheme (6.69) fogi, (¢) given by a half-sine wave with amplitude.7 cm?® s~! (mean flow rate 3.17).
The initial pressure and flow rate were respecti&kPa and) cm?® s~1. Both conductive loads and
non-reflecting conditions have been considered at the end points og¢he tr

Figures 6.13, 6.14 show the computed pressure and flow rate, propgigetie branching geom-
etry, when non-reflecting boundary conditions are employed. We painthat the flow rate in the
third vessel is negative, as expected due to its “inverse”orientationgurefi6.15 the corresponding
time courses at the middle points of each vessel are reported, comparitwgptkinds of boundary
conditions: notice the presence of reflected waves when conducti® éma considered.

The mass transport equations

The mass transport equatidn (6.13) is a reaction-diffusion problem ofahe type than théD
model of blood flow, plus an advection term. We consider a similar model eguatiour branching
geometry, that reads as follows:

Ao%ui + % (qiui - AgD%UO = 0, (t, S) S ]RJF X (0, Lz‘), 1= 1, 2,3,
where we denote by; the volume concentration in thigh branch, and,, D respectively the vessel
(reference) cross-sectional area and the diffusion coefficietiieofransported substance in blood.
As in the previous subsections, we need suitable conditions at the extreme pf the branches;
moreover, conditions at the branching palhhave to respect the mass conservation principles. Here
we assume that:

(i) atnodeBj, the concentration ig;y,;
(i) atnodeB;, i = 2,3, the diffusive mass flux is neglected;

(iii) at the branching nodé3 the volume concentrations have the same value, and the total mass
flux entering in the node is zero.
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It follows that the “external” boundary conditions (i-ii) iB; are:

u1(t,0) = uin, Oua(t,La)/0s =0, Ous(t,Ls)/ds =0, (6.70)
and “internal” boundary conditions (iii) i arg:
ui(t, L) = ua(t,0) = us(t,0), (6.71)
and Dy .
—qruy(t, Ly) —|—A0D— t,Ly) + zzquzuz (t,0) — ApD— s ( 0)=0. (6.72)

Observe that, sinc@ = g2 + ¢3 (conservation of the flow rate), and thanks to (6.71), the conservation
of the advective fluxes holds; as a consequence, equation (6.72)ivaleqt to the conservation of
the diffusive fluxes only:

—AOD Lt, L)) + Z AOD =0,
1=2,3
that we already know how to enforce by a proper variational formulatiqﬁpalrticular, thanks to
(6.71), we can look at; (¢, -) as the restrictions, (¢, -) of a functionu(t, -) € V, and we can proceed
as we did for the théD model. We denote (™) an approximation ofi(t,,, -), wheret,, = nAt, being
At > 0 the time step; we consider the finite element spacdefined by eq/ (6.53), together with the
homogeneous subspace

ngh: {ue Vh:u(Bl) :O},

The finite element / implicit Euler time advancing scheme reéaisn € N, find w1 € V}, such
that

/Aou(”ﬂ)wds—At /i {qu("ﬂ)} 1/1ds+/AoDiu(n+1)£1/1ds
A A ds A ds ds
= / Agu™ypds Vi € Vo, (6.73)
A

satisfying
" (By) = win(tn).

Actually, this is often amdvection-dominateproblem, since coefficiemty D /|A| is small compared
to q. Therefore, proper stabilization techniques are in order to preveiitati®ons to appear in the
numerical solution: for instance, tkereamline upwind Petrov-Galerkgiabilization method (SUPG),
for which we refer the reader to [85].

An example of numerical simulation, with the same geometry of the previous 10 lloa
simulation, SUPG stabilization, in which at each timethe previously computed flow rate= ¢(™
has been used, is shown in fig. 6.16 and 6.17. The input concentratiehtiss, (t) = 1, while
the initial concentration is zera:(?) = 0; we considered a diffusion coefficient such thtD =
1.96-10~° cm* s~ for all the vessels (this corresponds to the typical valub af 2.5-107° cn? s~*
of the diffusion constant for oxygen in blood). We see in[fig. 6.16 howctiemical concentration is
transported in the vessels, even with a bifurcating geometry. The time samiisat the middle points
of each vessel are reported in fig. 6.17 (four heart beats aresaegdsr the complete propagation of
the input concentration).

5 We are imposing the conservation of both the volume concentration (asguhat the transported quantity splits
proportionally to the blood volume) and the total mass flux at the bifurcation.
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Figure 6.13: From left to right and from top to bottom: snapshots of the ljoessure [kPa] on the
arterial tree at times, = 0.05n sec, forn =0, 1,2, ..., 11, showing the propagation of the pressure
wave.



132 MODELLING BLOOD FLOW AND MASS TRANSPORT IN VASCULARIZED TISSES

" How_reis
0./ . -3.50 2.13

- .54 5
: I

4.0 0.1

How_rai= # How_sait= How_seti=
-3.50 -1, 54 2,13 4.10 10,1 A 3.50 1,54 2,13 4.19 10,1 e 5.50 1.54 2.13

. .4 ) 5

Sy Lid 2 SURERLY| o] Sy lid 203 409 ind Bsy  led 203 409101

Figure 6.14: From left to right and from top to bottom: snapshots of the fate fcm s'] on
the arterial tree at times, = 0.05n sec, forn = 0,1,2,...,11. Notice that due to the “inverse”
orientation of the left branch, its flow rate has the opposite sign of the flmnmahe other branches.
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Figure 6.15: Time courses of pressure [kPa] and flow rate [chis the middle points of each
branch. For each variable, simulations results are reported for botluctive loads (top; notice the
presence of reflected waves) and non-reflecting boundary corgl{ti@ttom) at end point8;, Bs.
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Figure 6.16: From left to right and from top to bottom: snapshots of theesdration at times
t =0.05s,0.10s,0.15s,...,0.55s,and at = 4 s.
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Figure 6.17: Time course of the concentration in the middle points of eaclstordime “steps” are
corresponding to the heart beats.
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6.6.2 3D-1D simulations of blood flow and mass transport

In this section we discuss the simulation of multiscale 3D-1D problems introducatiion 6.5: we
are thus considering a situation similar to that depicted in fig. 6.2. In partieowawill consider the
simple case of the 1D vessel bifurcation of the previous sections, asegialdree embedded in a 3D
cylindrical tissue region. We will describe how it is possible to build the 1D nasséinedge pathin
the 3D one, using available data on the vessel geometry; further, we widkpesimulations for the
coupled problem and discuss the results.

Path extraction algorithms

The 3D tissue mesh is our starting point for medical applications of modelsreskin this chapter:
the tissue geometry is usually simple, whereas the mesh of a complex 1D vasetwark, even
though one-dimensional, needs an automatic acquisition method. The geohuetidcaoncerning
this network are usually acquired byaging since it is relatively easy (see sec. 6.4.2, 6.4.3 for some
examples) to analyze an image and gks$teof pointsrepresenting the skeleton of the vascular struc-
tures, with an arbitrary resolution (we have shown in the cited examples thdahiiple vessels may

be described bgplines. The question is whether this list of points can be employeautomatically
build the 1D mesh approximating the skeleton of the vascular structurespath of edges of the
given 3D meshif this is possible, then we can take advantage of the methods for the finitergleme
approximation of coupled 3D-1D problems that we have described in atapte

We have found that such a task can be done automatically. We are na afvany standard
algorithm to do that, so we have developed an “in house” method. To degbelalgorithm, let us
consider the case in which a single curve has to be fitted by a sequerdgesf ¢he multi-vessel case
is easily treated by iterating the same procedure.

Let? = {po, p1,- .-} be a set of pointp; € R? lying on the 1D curve we are considering, and
represented by the blue line in fig. 6.18. As we said, we consider a seirt pather than an analytic
parametrization because it is the simplest format of data that we can gesdégmentation of images.

No assumption about the ordering Bfis made: we only require thai, is one of the two end
points, and that the direction fropy to the other end point is assumed to be the positive orientation
on the given curve. The goal is to find a sequeAte- {xg,x1,...xy} of neighboring nodes of
a given 3D mesh, such that the piecewise linear curve given by the edlgagsociated t&’ is “as
close as possible” to the set of poirfes We denote by\V the set of the nodes of the 3D mesh, &y
the set of edges (edges are denotedshy|, wherex,y € N), and byo a fixed number in0, 1).

Our algorithm reads as follows.

1. The first nodexy € N is chosen such that
0 = poll = min Jx — poll
Setn =0, Py = P, Uy = 0.
2. Find the following subse¥,, 1 of the nodes that share an edge with
Unt1=1{y € N : [y, xn] € £},
and define

max yg}/fi}il ||y XTL||7 min yénl/llygl ||y Xn”?

Dn+1 = {p eP,: O'hmin < Hp — Xn” < hmax}~
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3. If D41 = 0, end. Otherwise, find the next noslg, ; by solving

dist(Xp4+1,Dpy1) = min  dist(x, Dpy1).
xEUn+1\Un

4. Define
Ppny1 = {p € Pn : hmax < ||P _XnH}a
then seth — (n + 1) and go back to step 2.

Figure 6.18: The path extraction algorithm at work.

We will call this algorithm the “rubber’s algorithm”: when a new noxglg is extracted, the points
inside ahmax-neighborhood of that node are eliminated from the list (step n. 4). Ictipea the set

of points P, is shortening whilen increases, as if a rubber (represented inl fig. 6.18 by the dashed
circle) was erasing points starting from a neighborhoog®fmoving toward the other end point of
the line every timen is incremented (the = 1 iteration is represented; the erased points are depicted
as the blue dashed partB). When all the points are erased, the algorithm ends. In this manner, the
sequence of nodes moves starting from the closest nogg, taccording to the positive orientation

of the line, keeping close to it (closer than the mesh size). We also point auintistep n. 3, we
minimize the distance fox € U, 1, discarding the nodes i,,: with this choice, the edge path is
such that two consecutive edges belong to different elements of the 3D mieich makes the path
smoother.

We found that, ifP is a subset of the volume enclosed by the 3D mesh, then the proposed atgorith
is able to correctly build a sequendgsuch that the associated edge path is a “good” approximation
of P, the distance between the path &ntieing less than the 3D mesh sizeThe value of parameter
o we used in our codes was alway$. In fig.[6.19 the path extracted for a 3-vessels configuration
is shown: the 1D mesh is extracted from a 3D cylindrical mesh enclosing thgdants. This mesh
is actually the one we used for the test cases of the previous sectiottiserHarthis chapter we will
consider other examples in which more complex arterial networks aressfialtg extracted by the
same algorithm.
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Figure 6.19: An example of extracted path for a branching vessel. Onfththkedata point$® are
given on the smooth semi-transparent curves (end points of each vagsdeen marked in red); the
edge paths are reported as well. On the right, the surface wireframe oflihérical 3D mesh used
for the extraction is shown.

Numerical approximation

The numerical approximations of the 3§D blood flow (BF) problem 6.5.1, 3D-1D BF problem
6.5.2, and 3D-1D mass transport (MT) problem 6.5.3, are achieved Byirgpp@ finite difference
discretization in time (for example implicit/explicit Euler schemes) and a finite elemeametization
in space. To this end, we can take advantage of the previous studiesfimitéhelement discretization
of coupled 3D-1D problems (chapter 5); moreover, we will considendirlng 1D geometries instead
of a single vessel, thanks to the treatment of the 1D equations on trees wealisaussed in this
section.

In particular, we will assume all hypotheses of chapter 5, and considdinite element space
V;, defined by|(5.1) for the tissue domaih and the inherited spadé, defined by/[(5.13) for the
vessel domail\. We assumé\ = J;, .7, Ix, WhereZ, is a collection of edges of tetrahedra of the
“triangulation”7;,. They are botfP! spaces.

In order to fix the ideas, we shall consider simple boundary conditionQurse there are many
other possible choices, for instance non-reflecting conditions for theddel; nevertheless this will
help to make more clear our exposition. In this regard, as in section 6.6.1jlMassume that\ is
a tree withM + 1 end points, denoted biy, By, ..., By,. Branches ofA will be denoted byA;,
and their length by;. Functionsf : A — R are parametrized on theth branch by the curvilinear
absciss& < [0, L;]. For the sake of simplicity, we also assume tigior i = 0, ..., M, the branch
A; is the one that containB;, andb) the positive direction on brancky is the ondrom By, while the
positive direction on branch;, i = 1,..., M, istoward B;. As we have seen, there are “internal”
boundary conditions at the branching points as well, but we know howttraily enforce them by
the variational formulation; hence, the only conditions we have to impose gkpéice those at the
end pointsB;. We will consider the conditions reported in tab./6.3.

In particular, for the 3D problems we impose that the flux across the boynfithe tissue domain is
zero; for the 1D problems, we impose the value of flow rate/concentratiBp while using standard
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L BF | MT |
3D homogeneous Neumann homogeneous Neumann
¢v = Gin(t) at Bo; uy = uin(t) at Bo;

1D || conductive loadss; at B;, i > 0: | homogeneous Neumannit, i > 0
QV(Bi) = Gi(pV(Bi) — pe,i)

Table 6.3: Boundary conditions considered for the configuration of art€Jial tree embedded in a
3D tissue.

Robin or Neumann conditions for the “oytletB;—, 1 > 0. Depending on how many Dirichlet condi-
tions we will have, besides spacgs and iV}, defined respectively in (6.53) and (6.64), we will need
to consider space

Vio ={f € Vi: f(Bo) =0},

as well as the “fully homogeneous spaces”
Vioo={f €Vh: f(B;)) =0,i=1,...,M}, Whoo ={f € Wi f(Bi)=0,i=1,...,M}.

Let At > 0 be the time step; for € N, sett,, = nAt, and denote byoE"), pﬁ”), q\(, ") respectively
the approximation of the tissue blood pressure, vessel blood presglvessel flow rate at tims, .
Similarly, letuw, ") w{™ be respectively the approximation of the tissue and the vessel concentstio
timet,. Symbols(-, -)o and(-, -)» will denote respectively th&? scalar product on the tissue domain
2 and on the vessel domain

We will state the numerical approximation schemes distinguishing between dses c

3D-%D BF problem. Consider problem 6.5.1, with boundary conditions as in/tab. 6.3. The fully
discrete, backward Euler numerical approximation scheme reads:

Problem 6.6.1. Find pt”) c v, andp™ € V3, n € N, such that

SR o+ (R, Vo + (ap™, o + (5 w)n — (el v
= " o+ (fp¥)a VO EV,
R d d n . R
OB, D) (K0, Sy (8, ) — (B, D)+ b oD, )

1 ~ A o ~ ~
- At< vpv 7¢)A + Qin(tn)w(BO) + Z Gipe,iw(Bi) V¢ € Vha
i=1

whereg, = 2w RL,, b, is a bilinear form depending on boundary conditions at poi{s
p p

Z Gip" (Bi)i(By),

and wherepéo), pf, ), are given as initial conditions.
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The backward Euler scheme is unconditionally stable, so there are niotress in the form of
upper bounds on the choice of the time stepping. Notice that at each timerstielenp 6.6.1 requires
to solve a linear system that has the same block structure considered ifbchap

A forward Euler scheme is also a possible choice, that has the advarf@geoopling the tissue
and the vessel subproblems. However, we point out that since theedegf freedom of the 1D
problem are usually much less than those of the 3D one, there is usuallymificaigt difference in
term of computational costs between solving the coupled problem or sohshthgitissue one.

The drawback of the forward scheme is obviously the stability condition otirtteestep. In this
regard, the fact that blood flow in the vessel matrix of the tissue is slovga haserical counterpart:
the stability condition turns out to be not too restrictive. In practice, the tifedorward scheme is
a valid alternative to the backward one.

3D-1D BF problem. Consider problem 6.5.2. In this case, the 1D problem is hyperbolic amel cha
acteristic extrapolation is used to provide the “missing” boundary conditidfteen considering the
situation of tah. 6.3, we can use the pressure extrapolation formula (6.83) a

=i vt> \ﬁ{ < \/t)}
- , - ) /2 [+ 2rAD g+ A —qo | £, —= ] | .
Pex,0(0™",0") = pg ( = . ( )Gin ( ) — Qo ~

where the subscript means the restriction to thieth branch (for examplep(") = p|A)) so that

the use of the curvilinear abscissa as argument is possible. Similarly, datrapdormula |(6.67) is
employed at end pointB;,i = 1,..., M:

1+ \/TG'(I + 21"At)} B [p§") <Li - %) + é (qi’“ <L - %) +(1 —|—2TAt)Gipe,i)>:| .

We propose, for the 1D hyperbolic part, the scheme (6.69) introducestiiod 6.6.1. Although this
scheme is fully implicit and unconditionally stable, we are interested in capturingakre propaga-
tion in the 1D domain: this will require a small time step. On the other hand, we cuaid ® use
such a fine time discretization for the tissue problem, that features slowamilgs Therefore, we
propose amultirate numerical approximation scheme. Multirate schemes have been introduced fo
dynamical systems in which a partitioning in “slow” and “fast” variables is fiidsssee for example

[4], [32]. They have been applied first for the simulation of MOS circuiid ather complex electronic
systems; and similamultiple time-steppingnethods have been used in molecular dynamics. In our
case, for each (slow) step of the 3D problem, we considéfast) substeps of the 1D problem, with

a steplengtt\t’ = A¢/m.

Pex, Z(pq(ﬂ)v ql(n))

Problem 6.6.2.Letm € N,m > 0, andAt’ = L At. Denote by|t], ¢ € R, the greatest integex ¢.
Find p{™) € Vi, ") € W), andp{™ € Vi, n',n € N, such that

1 ! 7 (n d n P 1 N _([n'/m]) b -
A (@ )a = (@D, d)a+ (Bpl D d)a = 1 (el D)a+ (G d)a Vi € Vigo,

1 n o d n o n ~ 1 n') = ~ T
At/(l ( +1) QO)A_’—(dS ( +1) QO)A—F('I”lq( +1) 90) At/(l ( ) SD) VSO € Wh,007

At(ot P g + (K V™ Ve)a + (ap™™ v)a + (80" 1)a

= (™, D)o + Gk 91+ (f ) VY € Vi,
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satisfying

\(, +1) (BO) = pex,O(psn/)’q\(;nl))7 q‘(/n’Jrl) (BO) = Qin(t(n/+1)/]w)7
P (Bi) = pea ™), ™)), @B = G T (Bi) —peq) (=1, M),

and wherepgo), pso) and qso) are given as initial conditions.

This algorithm is decoupled into two implicit sub-schemes: first we advanee byicro-steps
of the 1D problem, using the last computed 3D solution, then we advanceebmaaro-step of the
3D problem using the last computed 1D solution: in particular, a time splitting ofdbpling term
is considered. Of course we could have considered the explicit versfdmoth the sub-schemes. In
this caseAt and At’ would have to fulfill stability conditions, the most restrictive one being\dh
in the form of a CFL conditiol\t’ < Ch, whereh is the mesh size, afil< C < Vel (constantC
is typically small, or, in other words, the pulse velocity in the 1D vessel is lafgeyertheless, this
is not a critical point: since the 1D subproblem requires by far less cotiqneaaresources than the
3D one, we can take advantage of a large ratibetween the two steplength to keep the CPU time
within reasonable ranges.

3D-1D MT problem. Consider problem 6.5.3, with the vessel transport equation in the formh)(6.4
We are going to introduce a fully discrete, SUPG stabilized, backward Buieerical approximation
scheme. To this end, we define some parameters, obtained by solving thel®&nm first of all the
tissue blood velocity, the tissue perfusion and the vessel blood flow rateeat,, :

1 ~ K, 45" with the 1D BF mode|
(n):__Kv (n) (n)_ (n) — Vids pV 2
v , W o , nm )
np LY P ! pt ~ e q\(, ) with the 1D BF model
(6.74)
then the exchange coefficient

By = 27 R L, (6.75)

and finally the SUPG bilinear forms (see [85, sec. 14.3.2]), that, wheg BSifinite elements for the
concentrations and test functions, dftelements for velocity and flow rate, read as follow:

1 hr
Astab t (U, V3 V) = 0 Z <A—tu—|—v Vu + wu, —v - V¢> ;
i [v] T
1
Stabt( w7 ) = 5t Z (Atu+fu7| ’V v’(/}) )
TET,
. o d s
Gataby (U, 059) = O Y —u+q oY) (6.76)
IeZ, gl tds

A d -~
bstab,t(ﬂaWQ) = 5 Z < u+fua_| d8¢>

1€y,

whered; andd, are positive stabilization parameters, andandhy are the diameter of the tetrahe-
dronT and the segmertt, respectively. The stabilization parameters can be constant, or dynamically
computed in an adaptive fashion [100].

The scheme we propose reads:
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Problem 6.6.3. Find ué”) eV, andul™ € V;,, n € N, such thatu(vn)(Bo) = Uiy (t,), and

1 n n n n n n
Kt(ug +1)7¢)Q + (DtVuE +1),Vw)g + (V( +1) -Vué “),w)g + (w( H)UE H)ﬂb)Q
+ (ﬁuﬂgn+1)v¢)l\ - (ﬂuusn—H) ¢)A + Gstab t(ut 77;Z)» n+1))
At( 71/1)9 + (fu, ) + bstab,t( ) 4y (D) ) Vi € Vg,
1 N d d - d
= (Any (D) Dy—plnt) = (n+1) 4 (n+1) (n+1) (n+1)
At( Uy 7¢)A + ( dSpV y ds 7#)A + (q dsut w>A + Gstab v( w q )
1 - n A
At (AOU w)A + bstab,v( Uy, 7¢a (n+1) ) Vw € Vh,Oa

whereuEO), uSO), are given as initial conditions.

This is a fully implicit scheme: again, at each time step we have to solve a lindansysth a
block structure similar to (5.18).

6.6.3 An example of numerical simulation of BF and MT problems or a vessel tree -
tissue configuration

In this section, a numerical simulation of blood flow (BF) and mass transpadr} (iMa simple case
of vessel-tissue system is presented. In particular, we addressmrél@e? for BF and problem 6.6.3
for MT.

We consider the geometry of fig. 6/19: here the tissue domain is a cylinder veittius of10 cm
and a height o10 cm, while the vessel domain is an arterial tree with one bifurcation (the panamete
of the three branches are those of tab. 6.2). The volume of the tissue disriiaia 3141 ml.

We assume that the mean blood flow rate entering in the ves8€l,ibeingQ = 3.47 mls!
the flow rate provided to the tissue, while the other half of the blood leaveyshens by the vessel
outlets: the mean tissue perfusion is tHu® - 10~2 ml of blood per ml of tissue. Concerning the
tissue domain, we consider a porosity = 1/50 and a tissue permeabilitif; = 1 cm? kPa* s,
corresponding to flow in a matrix of vessels with diameters of abduinm (see the calculations in
section 6.4.1). The compliance of the tissu&’is= 0.01 kPa ! (which in the range of values of
tab/6.1). Assuming that the typical values for the vessel and the tissue firlessure are respectively
po,v = 1 kPa andp; o = 0.5 kPa, being the venous pressure set to the reference palae) kPa, we
can state as a first estimation of the hydraulic conductaneeQ/(V - po) ~ 2.2- 1073 kPa ! s71.
Moreover, we sef,, = app = 0 s~!; as a consequence, the tissue perfusion is: ap;.

As regards the vessel-tissue interaction, the conductiyjtyan be estimated in the same manner:
for example ifL = 23 cm is the total length of the arterial tree aRd= 0.5 cm is a reference radius,
assuming

2nRLy(poy — pog) - L ~ Q

then we have., ~ 96 - 1073 cm kPa! s,

We consider oxygen transport by the blood in the vessel and in the tisBue.blood is en-
tering in the vessel with a oxygen concentrationugfy = 8.75 pmol mi~!. The diffusion coeffi-
cient for oxygen is assumed to &, = 5 - 10~° cn? s~! in blood, andD; = 1.7 - 107° cn? s7!
in the tissue [77] (tortuosity factok? = 2.94). The consumption rate of oxygen in the tissue is
0.06 pmol cm—3 s~1; accordingly, we considered a Michealis-Menten law for the metabolic rate
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fulug) = —0.06 pmol cm3 57—t with u; /o = 15ut0, beinguey = 7.2 pmol mi~! a ref-

u1/2 +uy !

erence value for the blood concentration of oxygen at the microscalégq$ie region). Correspond-
ingly, we setf, = f,(u{""") in problem 6.6.3.

As we observed in section 6.5, the diffusive tefmis actually a penalization term to enforce the
condition(s) = uy(s). In our simulation we considerefd, = 20 cm s™!, that made this condition
sufficiently satisfied.

As initial values for the unknowns, we takg ., po+ for the pressuresy ., uo+ for the concen-
trations; and a zero initial value for blood flow rate in the vessel. Concgtmimindary conditions,
we will consider those of tab. 6.3, the time averageoft) being equal t@Q (we take the waveform
depicted as the dashed line with marks infig. 6.21). We assume that the teadomdsGs, G3 are
equal to10 cn?® s™! kPa!, and that the reference pressuresjare= p.3 = po.v-

The simulation we present here spans a time intervdlDaf: the time step i\t = 0.05 s for
the 3D BF and 1D-3D MT problems, while for the hyperbolic 1D BF problem ii5 = 0.001A¢,
corresponding to an oversampling factar= 1000 in the multirate scheme 6.6.2. With this choice,
both the fast flow in the 1D domain and the slow one in the 3D domain are adguregelved:
moreover, the CPU time of one 3D step andlLD steps are in the same range. SUPG stabilization
terms in eq./(6.76) weré; = 0.001, 6, = 0.4 In fig.|6.20, the computed pressures from the BF

Figure 6.20: On the left: the pressure distribution in the vessel and on sicesed the tissue. On the
right: streamlines of blood velocity in the tissue. The fact that streamlines at&jirom the vessel is
due to thehierarchicalflow from the 1D to the 3D domain.

problem are shownt(= 5.3 s), as well as the streamlines of the blood velocity in the “capillary”
matrix. We see how the geometry of the main vessels determines the flow pattegrsurtbunding
matrix of small vessels: the blood leakage from the vessel to the tissuesdausen a pressure fall

in the 1D domain. This leakage is emphasized in fig. 6.21, where the time catfitbesflow rate

at the middle points of each branch are reported, together with mean vadliges6.22 shows the
pressures at the same middle points, and the averagge thfat as we know has the meaning of the
pressure of blood in the vessel matrix of the tissue “near” the vessel. dhéefween the vessel
and the tissue pressure, which is ab@dtkPa on average, sustains the hierarchical flow from the 1D
domain to the 3D one. Regarding the MT problem, the advection of the bloagtaxgoncentration is



144 MODELLING BLOOD FLOW AND MASS TRANSPORT IN VASCULARIZED TISSES

o Branch 1
Q Branch 2 H

e

=
()]
T
-G

Branch 3
****** Aver. Br. 1
Aver. Br. 2+3

= N N
) N N
T T T

— - - oo

Flow rate [ ml s'1]

©
T

Figure 6.21: Comparison of the (absolute values of) flow gatat the middle points of each branch;

the input flow ratey, (t) is represented by the dashed line with marks. We observe that the average
flow rate in the first branch is less than the average of the sum of the ratesiiemaining branches
(mean values are indicated by the dashed line). This gap is due to theti@rdteod from the vessel

to the tissue.

shown in figl 6.28, where an isosurfaceugfis tracked along its temporal evolution. In the figure the
vessel concentratiom, is reported as well. Due to the mass transfer to the tissue, the initial and input
values ofu,, that are both equal t8.75 pmol mi~!, drop to8.14 ymol mi~!: this is only partially
compensated by the contribution of incoming blood, saturated by oxygetihas@ concentration
gradient along the vessel is established after 10 seconds. On the atitgrds concerns the blood
oxygen concentration in the tissue, the interplay between the metabolic cansumnape f,, and the
supply by the blood coming from the vessel, results in a stationary valuetlglgjieater than the
initial 7.2 umol mi~! concentration, which is abo@t43 ymol mlI~1, as shown in fig. 6.24.
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Figure 6.22: Blood pressures at the middle points of each branch, and average valye oh the
vessel (solid line with marks; computed %%IA pi(s)ds). The time step used for the 1D problem
is one thousandth of the one used for the 3D problem, so that pulse wavessalved in the vessel
(notice the high-frequency reflected waves).
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Figure 6.23: From left to right and from top to bottom: snapshots of the lbagden concentration
in the 1D vessel, and of tHe3 pmol mi~! isosurface of the blood oxygen concentration in the tissue,
attimest =1s,2s,,...,9s. The concentration isansportedin the tissue along the streamlines in

fig.'6.20.
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Figure 6.24: From left to right and from top to bottom: snapshots of the daggden concentration
in the 1D vessel, and on a slice of the tissue, attimesl s,2s,,...,9s.
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6.6.4 An application to the study of brain perfusion: the Circle of Willis.

One of the most attractive features of a 3D-1D approach to model blomdafid mass transport in
tissues, is the easiness of treatimgyworksof vessels. The algorithm for “path extraction” described
in sec! 6.6.2 allows the automatic generation of the 1D mesh as an edge path i inesB, also
for networks of vessels. The needed geometrical data that have tobdeau consist in a list of
points describing with a certain resolution the axis of each vessel: this kindtafare easily and
quickly acquired by medical images (since there is no need to estnafetces nor to compute spline
parametrizationk

In this section, we describe an application to a “real” and physiologicallyastiery case of tissue
perfusion: we consider the brain perfusion and the role played by GifaMllis.

Circle of Willis (CoW) is a relevant example of a vessel network supplyingsaudsit is a net
of blood vessels at the base of the brain, through which blood is distrilboitéa cerebral tissues.
Blood enters the CoW by four medium arteries, namely the two internal cat@#) @nd the two
vertebral arteries (VA); they are connected by smaller communicatinglgdssa ring structure, and
six arteries originating from this circle provide the blood to the brain (see.f%)6

Brain is one of the most oxygen consuming organs (at rest), and a faillnleod supply can
rapidly lead to ischemia and eventual infarction. Thanks to its ring structueeCtwW provides
alternative flow paths for the blood, should a vessel be occluded: itdg afs‘safety device” of the
cerebral circulatory system.

Figure 6.25: The Circle of Willis.

We already encountered the CoW in sec. 6.4.3 (see fig. 6.10), where@weeshown that (at
least in two dimensions) it is possible to extract the geometry of the major vessbs Circle from
medical images to perform simulations. Now we address the 3D case, amthtpaesimulation of
brain perfusion, resolving both the fast blood flow in the CoW and the stawvifi the cerebral tissue,
using the techniques we introduced in this chapter. Oxygen transport mdahrewill be considered
as well.
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The computational domains that we consider here are respectively therketfwessels and the
“hemi-ellipsoid” in fig. 6.26. Although such an ellipsoid is only a rough approxiomaof the actual
geometry of the cerebral tissues, it will suffice for our purposes. Iihenesh has been extracted as
an edge path in the 3D grid, using the algorithm presented in secl 6.6.2,¢sfestinavailable data
on the geometry of the CoW. We will make use of the standard acronyms tdedivoarteries of
the CoW (see fig. 6.26): we will consider directly the basilar artery (BApmikg the two vertebral
artery.

Figure 6.26: On the left: the set of points used for extracting the 1D meshetige path in a 3D mesh
is denoted by the blue line, while the extracted path is represented in whitegdke of the network

are indicated in red. Notice that the extracted path approximates the data wathoarfdistance)

smaller than the 3D mesh size. The acronyms stand for: basilar arteryi(®&al carotid artery

(ICA), anterior cerebral artery (ACA), middle cerebral artery (MCposterior cerebral artery (PCA).
On the right: the 1D extracted mesh and the surface wireframe of the 3D rh#shtssue domain,

in which the path has been created.

The blood enters the CoW by the BA and the two ICA (left and right); it ledaliesCoW by
the ACA, the MCA, and the PCA. Then it is distributed to the cerebral tissyesraller arteries,
arterioles and capillaries originating from the former vessels.

A number of works has been devoted to the mathematical study of the hennoidgnef the
CoWe. Several techniques for the simulation of blood flow in the CoW have beshinshe literature.
For instance, in [65] 1D and 3D models of the CoW are compared, and &m@iautoregulati&nis
taken into account; in [17], the authors suggest that “fractal” 1D attegies (automatically generated
by the computer) could provide more accurate boundary conditions f@Qheodels.

At our knowledge, none of the existing works has addressed thenmeesé a continuous hierar-
chical flow from the CoW to the surrounding tissues. As we see in fig] Bhed/essels forming the
CoW possess a large number of minor branches: these smaller artepdstbepissues around the
circle, so that a flow rate loss is expected from the entrance to the exit Gbe In fact, the average
flow rates [ml s 1] from data collected by references [27], [60] and [28], at®.for each ICA,1.3
for each of the two vertebral arteries supplying the BA; aridfor the ACA, 2.0 for the MCA, 0.8

5The motivation for such studies is that the CoW is one of the districts of thelaiory system of the brain with high

incidence of aneurysms.
"The issue of the metabolic autoregulation in the CoW, driven by the oxygreamdics, is discussed for examplelin [66].
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Figure 6.27: Cast of carotid arteries and CoW of a goat (from [3]):ldhge number of small ar-
teries leaving the Circle indicates that a hierarchical flow takes place frerm#jor vessels to the
surrounding tissues.

for the PCA. Thereforel1.8 ml s~! is the total flow rate entering the circle, while only,; = 7.8
ml s~! of blood is leaving the CoW by major vessels: this means that 34% of the blowitipd to
the CoW goes into small branches that are usually not resolved by “stHr81a geometries used in
FEM simulations (this would be too complex due to their fractal structure). Thasdf hierarchical
flow can be modelled by our 3D-1D approach.

The volume of our tissue domain 1§ = 1.56 - 103 ml, the total length of our 1D mesh & =
54.3 cm. As we said, the mean blood flow rate entering in the CoW and then distributieel boain
is @ = 11.8mls~!: the mean tissue perfusion is tha$6 - 10~3 ml of blood per ml of tissue.
We consider a porosity, = 1/50, a tissue permeability; = 0.1 cn? kPa ! s™! and a tissue
complianceC; = 0.01 kPa . Assuming that the typical value of the tissue blood pressurgyis= 8
kPa, we estimate the hydraulic conductance: Q/(V - pio) ~ 9.4 - 10~* kPa ! s71; we are still
assuming that the perfusion tetp = ap; corresponds to the blood flow rate per unit volume that
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leaves the tissue and is collected by the venous bed.

As regards the vessel-tissue interaction, the conductivitgan be estimated as in the previous
example. The typical vessel pressurgds = 10 kPa; assumindg? = 0.1 cm as an average value for
the radius, by

27rRLp(p0,v - pO,t) L~ (Q - QOut)

we haveL, ~ 0.114 cm kPa! s~! (one could consider similar estimations for each vessel sepa-
rately).

Notice that the blood exiting the CoW is distributed to the cerebral tissuesﬁ)ﬂebe the total
flow rate exiting the PCAs, MCAs and ACAs at timg in our scheme 6.6.2 we set

fp = qgﬁi/v

to take into account this contribution to brain perfusion.

Concerning oxygen transport, we consider the same data used foretheys simulation, with
the exception of coefficient,. In fact, we have an additional mass flux teféﬁ), given by the oxygen
transported by the blood exiting the CoW and perfusing the tissue; assuraireg the outlets3; of
the CoW (the end points of PCAs, MCAs, ACAs) the flow ratds always positive (in other words
blood is really exiting the CoW), this term reads

n 1 n n
fomd = 57 2 a8 (Biyul (By).

Therefore, assuming a Michaelis-Menten metabolic ratefthterm we consider in problem 6.6.3 is

(n)

Uy

fu - fégt) - fOz,max

uyjg +ul"’
where we takgfo, max = 0.08 umol cm3 s™1. We chooser; /» = f5u 0, beingug g = 7.2 pmol mi~*
the reference value for the blood oxygen concentration in the tissue.

Again, we consider the parametgy as a penalization term and ggt = 20 cm kPa! s=1. The
initial values arepy v, po.+ for the pressuresy v, uo ¢, for the concentrations; the initial flow rate in
the vessel is zero. We prescribe the flow rate at the BA and ICAs, usisgtjje waveforms having
average values corresponding to the measurements we cited previaaslyeaassume conductive
loads at the end points of all other vessels, equaldo? s—! kPa !, with De,2 = Pe,3 = P0.v-

In fig.[6.28, the blood pressures in the vessels of the CoW and in theusding tissues at =
2.1 s are reported: again, the hierarchical flow from the vessels is reifyp@fior the spatial pattern
of the the blood pressure in the tissue.

The distribution of flow rates at the outlets of the vessels of the CoW is repiorfig. 6.29 (when
avessel is paired with a symmetric one, as for ICA, PCA etc., the valuesfaread to the left vessel).
In the picture we also show the time course of the total flow gateexiting the CoW: its mean value
is less than the average input flow raté.§ cm® s~1), due to the presence of the hierarchical flow.

The blood pressures time courses at the same outlets are shown in figér8@ve also empha-
size the difference between the time step for the 3D (slow) and 1D (fadidgons: in our multirate
scheme, the oversampling ratio between the two valuesiwas 103, allowing for a accurate res-
olution of wave propagation in the 1D domain. This propagation is visualizetthdognapshots in
fig./6.31 as well: the pressure distribution on the vessels network resatdifie interplay of the ge-
ometry/topology of the network and the interaction with the tissue in which the netesembedded.
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Figure 6.28: On the left: snapshot of the 1D blood pressure distributiorei@iticle of Willis, and a
slice of the 3D blood pressure. On the right some isolines of the 3D peeaseireported on parallel
planes to show its spatial patterns.

Finally, we see in fig. 6.32 how a isosurface of the oxygen concentrafiof gmol mi~1) is
advected by the blood flow in the vessel matrix of the tissue: this result lemsdi@ained using the
mass transport scheme 6.6.3, using the values of tissue blood velocity dusigrecomputed from
the blood flow problem.
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Figure 6.29: Comparison of the flow ratgscomputed at several districts of the CoW; the total flow
rate gt leaving the CoW by the outlets is indicated by the dashed line with marks, thefrisst o
input flow rate is transferred to the tissue due to hierarchical flow, depgon the parametdr,,.
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Figure 6.30: Blood pressurgs computed at several districts of the CoW, and average valgeai

the vessel (computed "T\ka [, t(s)ds). The marks emphasize the difference in time steps due to our
multirate advancing scheme (triangles correspond to a 3D time step,siceomputed from the

3D pressure; each circle corresponds to 50 one-dimensional steps).
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Figure 6.32: From left to right and from top to bottom: snapshots of a ifaxsifor the 3D oxygen
concentration at times= 0.0 s,0.5 s,1.0, ..., 5.5 S, showing the oxygen transport in the tissue.



Appendix A

Weighted Sobolev Spaces

In the sequel we denote I§ya domain inR3, and byA C € a 1D smooth manifold, described by eq.
(3.1). We definé2? as the set of points that are closer thamo A, R > 0; under assumption (3.4),
this subset is parametrized according to (3.2) by local coordinates (3.3).

We will denote by— any continuous embedding between normed spaces; sometimes we will
write d(x) for the functiondist(x, A).

A.1 Spacesl?(Q)

Definition A.1.1. Leta € R; we denote byl.2(Q2), the space of square integrable functions with
respect to the measure, defined by

dpta (x) = dist(x, A)**dx.

This means thaf € L2(Q) if and only if dist(x, A)® f(x) is L?(2). We have that2(f2) is a
Hilbert space equipped with the scalar product

()30 = | wG00Gx)dpa )
Lemma A.1.1. We have:
a) L2(Q) and L?(2) are isometric via the map

feLi(Q) — d°f € L*(Q).

b) L2(Q) — L3() provided thatr < 3.
c) If 3> —1—q,thend’® € L2(9).
Proof. Pointa) follows directly from Definition A.1.1; poinb) is a straightforward consequence of

the boundedness 6F; pointc) follows from point a) and from the fact thdist(-, A)2°+2® ¢ L%(Q)
iff 23 + 2a > —2. O

157
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A.2 SpacedV'?(Q, u): fundamental properties

Most of the properties of standard Sobolev spaces are retained whsiering weighted spaces,
provided that the weight function satisfies certain basic properties: feetoe[38] for an overview
of this topic and for the proofs of the results that we are going to introdurcéhe general case of
LP-based spaces, the weight function muspk:a}jmissibl. A special class op-admissible weight
functions is theMuckenhoupt clasd,,:

Definition A.2.1. Letp > 1: the Muckenhoupt clasd, is defined as the set of locally integrable
functionsw onR™ such that

1 / )(1 / (1) )p_l
sup — | wx)dx | [ = | w(x P=Hdx < 40
BB<X,T><|B| AV A

xER™ >0
whereB(x, r) is the ball centered ix with radiusr, and|B| is its measure.
In the sequelwe always assurﬂehatw € A,. Inthis case, the space defined by
WP (Qspu) = {f € LP(Qp) : Ve LP(Q; )%}, (A.1)
wheredu(x) = w(x)dx, has the following density property:

Lemma A.2.1 (Density of smooth functions).W!?(; i) is a reflexive Banach space; moreover it
is the completion o> (2) with respect to the normh - ||yy1,»:

WEP(Q; ) = C=(Q).

Definition A.2.2 (SpaceWOLP). We define the spadé’ol”’(Q; p) C WHP(Q; 1) as the completion of
C5°(§2) with respect to the nor - ||y1.0.

In this space the following inequality holds:

Theorem A.2.1 (Poincaré inequality inW()l”’(Q; w)). There exists a constadt = C(Q, ) > 0
such that:

/Q\uv’dﬂ < C/Q VulPdp  Yu e Wy (Q; ).

The next result gives a sufficient condition for continuous embedding®ltb between spaces
having different weights:

Lemma A.2.2. If s < Cug, C > 0, thenW P (Q; 1) — WHP(Q; po). In particular, if there are
positive constant€’y, Cs such that

Cipi ' < pp < Com
thenWP(Q; 1) and WP (€Q; uy) are isomorphic:

WEP(Q; 1) = WHP(Q; p2).

See for instance [38, ch. 1], where the spalléd (Q; 1) are introduced; here we always consigler 2. We point out
that weight functions of the typéist(x, M) are considered in [51], but only fav/ C 99 with some special regularity
assumptions oi//.

2 The main advantage of this assumption is that i€ A, the space defined by (A.1) is the completion(&F (Q2). If
w ¢ A,, one usually define® **(Q; 1) = C>(Q), but this space does not coincide with (A.1) anymore.
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Finally, one can show that for > 1, W?(Q; 11) is sequentially weakly compact. And fpr= 2
a weighted Rellich-Kondrachov theorem holds (see [48], th. 8 withqg = 2):

Theorem A.2.2. Suppose thafu;} is a bounded sequence W %2(Q; ). Then there is a subse-
quence{u;, } and a functionu € W2(Q; u) such thats;, — w strongly inL?(Q; u) andVu;, — Vu
weakly inL2(9; 11)3. Moreover, if{u;} € W, (2 1) thenu € Wy (Q; ).

A.3 SpacesH ()

In this work, space®V 1P (Q; 1) with p = 2 and measurg = u,, defined byd, = dist(x, A)?**dx
need a special attention. Below, we list some properties that are usetwlfpurposes. It is known
that the functionx|” : R® — R is an A4, weight if -3 < v < 3. The distance from a line is “less
integrable” than the distance from a point, but one can easily showlithék, A)%* is a 4, weight at
least for|a| < 1:

Property A.3.1. If —1 < a < 1, then the weight functiodist(x, A)2* is As.
The corresponding weighted Sobolev space is a Hilbert space:

Definition A.3.1. Let|a| < 1; we define
Ho(Q) := W95 pa).

H}(Q) is an Hilbert space endowed by the scalar product

(o) iygon = [ )00 daa(x) + [ V) - Vol ).

Consider a subset C  and suppose that,;, < dist(x,A) < dpnax VX € G, beingdmax,
dmin POSitive constants. Let € H,(Q); sinceu|g € WH2(G; pa) With [lullyr2(cy.) < lulla@),
the restriction operatdg; is continuous. Moreover, by property A.2.2 we have that?(G; pa) ~
H(G): therefore|s is a continuous operator frofd! (2) to H'(G). Let7 be the standard trace op-
erator (see for instance [57]) frofi' (G) to H'/2(9G): the map defined byu = Ju| is continuous
from HL(Q) to H/?(9G), being the composition of the following continuous linear mappings:

HAQ) 2% W2 (G o) = HY(G) L HY?(9G).

Moreover,y satisfiesyu = u|sg for eachu € C*°(Q2), and it is unique due to the density ©6f°(£2)
in H(9).

If e = dist(02,A) > 0, these considerations hold with = {x € € : dist(x,09) < €¢/2} (as
0G is Lipschitz). Sinceéd) C 9G, we have a well-defined trace operator:

Property A.3.2 (Trace operator). Let |a| < 1, anddist(9€2, A) > 0. Then there exists a unique
linear continuous map
v HE(Q) — HY2(09)

such thatyu = usq for each smooth function € C*°(2).

An interesting property of spaces} (Q2) is that for every—1 < o < 0, a function inH.(Q)
admits a “trace om\”, as stated by lemma 4.1.1. As a consequence, thanks to theorem A.2.%;ave ha
the following Poincaré inequality i/} (), —1 < a < 0:
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Property A.3.3. Let—1 < «a < 0; then there exists a positive constansuch that

/ lul?dpe < C (/ lu[*dA —|—/ |Vu]2dua) Vu € HL(Q).
Q A Q

Proof. If not, we could find a sequende:,,} C H.(Q), u, # 0, such that

1
—/ \un\Qdua>/\un\2dA+/ \Vau,*dpe  VneN.
n.Jjo A Q

Let iy, == un/||un| 12 (0); then
1
— >/\an\2dA+/ Vi, [*dpe  VneN. (A.2)
n A Q

The sequencéi,, } is bounded inL?(£2), hence inH}(€2) thanks to[(A.2). Therefore, by theorem
/A.2.2, there is a subsequenée,, } and a functionu € H.(Q) such thatu,, — wu strongly in
L2(Q) andVu,, — Vu weakly in L2 (Q)3. In particular,u,, — uweakly in H}(Q); sincey, is a
continuous linear operator, we have

YAUn, — VAU weakly in LQ(A). (A.3)

Thank$ to (A.2), Vu = 0 so thatu is a constant. Then, using (A2, A.3) in the same way, we get
Jy u?dA = 0 so thatu = 0. This is a contradiction, sind@u| ;2 ) = lim [lun, || 12 (o) = 1 (due to
the L? convergence). O

Finally, it is possible to prove the following imbedding theorem:

Lemma A.3.1. Let0 < a < 1; there exists a positive constafit depending only on, such that
lullzz_ @) < Cllullgyy — Vu € Hy(9Q).

Moreover,C' = O(a~!) for a — 0.

Proof. We recall the following Hardy’s inequality (see [36]), holding for evengasurable positive
function f, andp > 1:

o) 1 0 p 5 L P oo 5 . )
/0 <7“/r f(t)dt>rdr§<ﬂ+1_p>/0 FrPrfdr i8> p—1. (Ad)

We consider the three subdomains (3.2) separatelypLetC>(Q2), with supgy) C ijoz using
local cylindrical coordinates iR/, we have

R asp R 8(,0
a—1 _a—1 - Y — po—1
r (s, 0) =1 ((p(s, R,0) /T o (s,t,0) dt> T /r o (s,t,0)dt

% The norm in a Hilbert space is weakly lower semicontinuous, so that

- |
\|Vu||ii<ﬂ> < hmkmf IVun, HQL%(Q) < hmklnf = 0.
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sincep(s, R,0) = 0. Squaring and integrating dfzﬁo (wheredist(x, A) = r) we have

L,

Choosing in/(A.4)f (t) = |0¢(s,t,0)/0r| fort € (0, R], f(t) =0fort > R,p=2andf = 2a + 1,
we get

L,

From (A.5) and/(A.6) we have

R 2
( / 8—“0(3, t,6) dt) r22=tdsdrde. (A.5)

dist(x, A2 Vp(x)2rdsdr < / 3
,

R
QV,O

Ry ? 1 ) 2
(/ a—“%,t,é))dt) r**dsdrdf < — (a—¢(s,t,9)> r?*dsdrdf.  (A.6)
r T (6 Q\I/%,O T

1
H‘PHL@H(Qﬁo) < aHVSOHLg(Q)- (A7)
A similar proof gives, for smooth functions supported if2?,.,i=1,2.

v,i!

Considerp € C*°(2), with supgy)) C Qfm = Q\in. Since

dist(x, A) > g >0 vxeq?
we have
R a—1
el < (5) lellizeon (a8)
Now considerp € C*°(Q). Let{vy,..., 13} be a partition of the unity associated to the covering

Qv;,i=0,1,2, ande/Q. Using (A.7) and((A.8) for);, we can prove the estimate
H@HLgH(Q) < Ol ()-

Since smooth functions are denseip(Q2), this estimate extends toc H} (). Finally, from/ A.7 it
follows thatC' = (o) for o — 07, O

A.4 NeCas theorem

We recall the following theorems (see [67], [5], [85]):

Theorem A.4.1 (N&€as). Let H, and H, be two Hilbert spacest’ € H) be a bounded linear func-
tional on H, anda(-, -) be a bilinear form onf{; x Hs such that

la(u,v)| < Cyllu|| gy ||v]| 2, V(u,v) € Hy X Ho, (A.9)

sup a(u,v) >0 Yv € Hy,v # 0, (A.10)
ueH,

sup a(u,v) > Collul| g, Yu € Hjy, (A.11)
lvll m, <1

whereC, andCs are positive constants. Then there exists exactlywoaeH; such that
a(u,v) = F(v) Vv € Ho,

which depends linearly and continuously Bn

1
lullery < 1 F N my
Co
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Theorem A.4.2. Let the assumptions of theorem A.4.1 be fulfilled. Furthermorflet H,, Ms C
H,, both closed subspaces. Assume that

sup a(u,v) >0 Yv € Mo,
u€ My
sup  a(u,v) > Collul o, Yu € My,
vE Mo
[0l mry <1

Whereé’g = C'Q(Ml, M>) is a positive constant. Considerc Hy, u € M; such that
a(u,v) = F(v) Vv € Ho

and
a(t,v) = F(v) Yv € M.
Then

||lu—al < (1 + g) inf |ju— all. (A.12)
CZ €My
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