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Abstract

This thesis is about the detection of duplicated images. More precisely, the developed system is

able to discriminate possibly modified copies of original images from other unrelated images. The

proposed method is referred to as content-based since it relies only on content analysis techniques

rather than using image tagging as done in watermarking.

The proposed content-based duplicate detection system classifies a test image by associating it

with a label that corresponds to one of the original known images. The classification is performed

in four steps. In the first step, the test image is described by using global statistics about its

content. In the second step, the most likely original images are efficiently selected using a spatial

indexing technique called R-Tree. The third step consists in using binary detectors to estimate the

probability that the test image is a duplicate of the original images selected in the second step.

Indeed, each original image known to the system is associated with an adapted binary detector,

based on a support vector classifier, that estimates the probability that a test image is one of its

duplicate. Finally, the fourth and last step consists in choosing the most probable original by

picking that with the highest estimated probability.

Comparative experiments have shown that the proposed content-based image duplicate detector

greatly outperforms detectors using the same image description but based on a simpler distance

functions rather than using a classification algorithm. Additional experiments are carried out so

as to compare the proposed system with existing state of the art methods. Accordingly, it also

outperforms the perceptual distance function method, which uses similar statistics to describe the

image. While the proposed method is slightly outperformed by the key points method, it is five to

ten times less complex in terms of computational requirements.

Finally, note that the nature of this thesis is essentially exploratory since it is one of the first

attempts to apply machine learning techniques to the relatively recent field of content-based image

duplicate detection.

Keywords: copyright infringement detection, illegal image detection, duplicate detection

system, image analysis, machine learning, multidimensional indexing
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Version Abrégée

Cette thèse concerne la détection de copies d’images. Plus précisément, la présente thèse propose

l’étude d’un système permettant de détecter les copies d’images connues du système, même si celles-

ci ont été légèrement modifiées. La technique proposée est basée sur le contenu car elle utilise des

techniques d’analyse d’image plutôt que le marquage comme cela se fait dans le watermarking.

Le système de détection de copie d’image proposé classifie une image teste en l’associant avec un

label qui correspond à une des images originales connues. La classification est effectuée en quatre

étapes. Dans la première étape, l’image test est décrite en utilisant des statistiques globales liées

à son contenu. La deuxième étape consiste à sélectionner, en utilisant une technique d’indexation

spatiale appelée R-Tree, les images originales qui ont les plus grandes probabilités d’être les

originaux de l’image de test. Dans la troisième étape, des détecteurs binaires sont utilisés pour

estimer les probabilités que l’image de test soit une copie des images originales sélectionnées à la

deuxième étape. En effet, chaque image originale connue du système est associée à un détecteur

binaire adapté, basé sur une machine à vecteurs de supports, qui permet d’estimer la probabilité

qu’une image de test soit une de ses copies. Finalement, la quatrième et dernière étape consiste

à choisir l’image originale la plus probable en sélectionnant celle ayant la plus haute probabilité

estimée. Des expériences comparatives ont montré que le système proposé obtient de meilleures

performances qu’un système utilisant des descriptions d’image similaire mais basé sur une fonction

de distance plus simple en lieu et place de l’algorithme de classification. De plus, des expériences

supplémentaires ont permis de comparer le système développé à des méthodes appartenant à

l’état de l’art de la détection de copies basée sur le contenu. Le système est bien meilleur que la

méthode appelée fonction de distance perceptuelle qui, de plus, utilise une description d’image plus

compliquée. Bien que le système proposé soit légèrement moins performant que la méthode appelée

points clefs, cette dernière et cinq à dix fois plus complexe du point de vue computationnelle.

Finalement, l’auteur aimerait souligner la nature essentiellement exploratoire de cette thèse vu

qu’elle est l’une des premières approches appliquant des techniques d’apprentissage automatique à

la détection de copies d’images basée sur le contenu.

Mots-clés: détection de copies illégales, détection de matériels illégaux, système de détection

de copies, analyse d’image, apprentissage automatique, indexation multidimensionnel
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Professeur Horst Bunke, Professeur Frank Leprévost, et Professeur Amin Shokrollahi. J’aimerai
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présidence du jury. Une partie des idées proposées dans cette thèse ont été développées durant mon
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Comme une thèse n’est pas faite que de dur labeur, j’aimerai remercier mes collègues et amis
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Notations

Mathematical symbols

The used mathematical symbols are defined in the following list. Additionally, a more complete

definition is also given the first time that the symbol appears within the text. Note that only the

symbols used more than once are defined here.

f vectors;

I matrices;

f(·) functions;

S sets;

R fields;

Pr{a > b} probability;

IA (x) indicator function: equals one if x ∈ A and zero otherwise;

s.t. such that;

R(f) expected risk associated to classification function f;

Remp(f) empirical risk associated to classification function f (and examples);

w separating hyperplane;

yi i-th label;

xi i-th example;

b margin;

ξi i-th slack variable;

C tradeoff parameter in C support vector machine;

ν tradeoff parameter in ν support vector machine;

xiii
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αi i-th Lagrange’s multiplier in the dual form solution of support vector machine minimisation;

f(z) decision function for test pattern z;

ker(xi,xj) kernel function between patterns xi,j ;

γ inverse kernel width for a radial basis function;

σ kernel width for a radial basis function (that is 1/γ);

D(I) set of the duplicates of image I (no composition);

En(I) set of the duplicates of image I (composition of n transformations);

gn(I,p) functional containing n sequential operations;

F(I, n) set of the duplicates of image I (using the functionals g(·));

V(I,v) set of the duplicates of image I (permitting permutation of the transformations’ order);

T test image;

u probability threshold;

N number of original images;

d1
O(T, u) duplicate detector function for the single original image O;

dN
O (T, u) duplicate detector function for the N original images contained in O;

O set of original images;

T set of test images;

F set of unrelated test images;

L set of labels (−1 for unrelated images, +1, . . . , N);

ct true class of the test image;

ce estimated class of the test image;

c(ct, ce) error indicator function;

fp(ct, ce) false positive indicator function;

fn(ct, ce) false negative indicator function;

pFP , p̂FP real and estimated probability of false positive;

pFN , p̂FN real and estimated probability of false negative;

C set of candidates selected by the pre-classifier (C ⊆ O);

R,G,B red, green and blue channels of an image;
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H,S, I hue, saturation and intensity channels of an image;

TP number of true positives;

FP number of false positives;

P number of positives;

F(TP, FP, P ) f-score computed using numbers of true positives, false positives and positives;

ρ ratio between positives and negatives;

Fρ(p̂FP , p̂FN) f-score computed using estimated probabilities of errors;

f feature vector representing an image;

W dimensionality reduction matrix;

x pattern feeded (transformed version of f) to the machine learning algorithm;

δ box size used when searching the R-Tree.

Acronyms

The following list gives the acronyms used throughout this document. The acronyms are also

defined the first time they appear within the text.

SVC support vector classifier

VC-dimension Vapnik Chervonenkis dimension

LOO leave-one-out

CV cross-validation

RBF radial basis function

HSI hue saturation intensity

ROC receiver operating characteristic

DET detection error tradeoff

KP key point

DPF perceptual distance function

DCT discrete cosine transform

MSE mean square error

PCA principal component analysis
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TP true positive
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Introduction 1
1.1 Motivations

The relatively recent simplicity with which digital contents can be produced, processed, and

distributed has opened a new era — the all-digital world. Unfortunately, this revolution has also

exacerbated old problems and created new ones. For instance, illegal distribution of copyrighted, or

illegal, materials is nowadays very easy to undertake. Another problem relates to the management

of the wealth of available documents.

A specific problem concerns the duplication — exact or approximate, legal or illegal — of

documents. Indeed, many documents are stored on multiple servers, and often different versions

cohabit. For different reasons, it becomes then necessary to detect copies of a given document.

The main reason is simply to reduce documents’ management hassle. But there exist many

secondary yet important reasons as exemplified in the following applications: monitoring —

tracking of document circulating on the Internet for, among other purposes, royalty collection,

statistic gathering, copyright infringement detection, and illegal material detection; clustering

— regrouping documents that are duplicates when querying a database or the Internet; version

search — searching the right version of a document among a database or the Internet. As it can

be seen, duplicate detection has many useful applications, and the need for efficient duplicate

detection grows as the number of generated digital document soars. To give an idea, IDC∗

estimated that humankind generated 161 billion gigabytes of digital information in 2006 while

the University of California estimated that only five billion gigabytes were generated in 2003,

additionally tallying how much space would be consumed if non-electronic information, such as

analogue radio broadcasts or printed office memos, were digitised. The amount of duplicated

documents among such a sum of data is certainly staggering, for example IDC assumed that, on

∗http://www.idc.com/
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2 Chapter 1. Introduction

average, each digital file gets replicated three times.

While it is relatively easy to detect exact duplicate, detecting slightly modified duplicate, or

near-duplicate, is by far a more difficult task. For text, for example, the basic idea is to represent

each document by a vector whose binary entries signal the presence, or the absence, of a given

keyword within the document. Then, documents can be easily compared by matching their binary

vectors. This kind of technique is, for example, used in search engine such as Google. On the

other hand, near-duplicate detection becomes even more arduous in the case of images. Indeed,

perceptually equivalent images can have very different representations. Furthermore, images can

be modified in many ways while keeping their main perceptual features intact. And moreover, no

grammar for image yet exists and, thus, the decomposition of an image, such as performed for text,

still pertains to the domain of the fiction. In short, image duplicate detection is an interesting and

exciting problem that is far from being solved and deservers further research.

1.2 Investigated Approach

This dissertation presents a system to detect duplicates of images based on their content. The

underlying idea is to create an adapted duplicate detector for each image whose duplicates have to

be detected. Most other works on content-based duplicate detection are centred on finding image’s

description robust to certain transformations. Rather than study this already much explored

territory, we propose to research how to distinguish between duplicates of an image and unrelated

images given possibly non-robust image descriptions. More precisely, instead of finding an image

representation that fits our needs, we indeed develop a detector that suits the characteristic of a

given original image and its duplicates.

The proposed duplicate detection system is developed in two stages. In the first stage, a set

of binary detectors is created, each adapted to a particular original image. More precisely, each

detector is able to distinguish between the duplicates of its original and unrelated images. They are

composed of the three steps outlined thereafter. In the first step, the test image is preprocessed so

as to add some degree of invariance against common image processing operations is added. In the

second step, global statistics are used to describe the image. Finally, in the last step, a non-linear

decision function, based on a support vector classifier, is used to determine the probability that

the test image is a duplicate of the original image.

In the second stage, the binary detectors are efficiently put together to form a multiple original

images duplicate detector. In other words, the system is able to determine whether a test image

is a duplicate of one of the originals or unrelated to any of them. The full system is composed

of the three steps outlined thereafter. In the first step, the most likely originals are efficiently

selected by means of an adapted indexing technique. They form the set of candidates. In the

second step, the binary detectors developed in the first stage are applied to each element of the

set of candidates. Finally, the original corresponding to the highest probability, among the set of

candidates, is selected. The system estimates that the test image is a duplicate of this original if

the corresponding probability is higher than a certain threshold.

The basic idea of the proposed architecture is adaptability. For example, it adapts the detection
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metric to each original image known to the system. Additionally, new original can be added to

the system without needing to retrain the already known original. Moreover, the system can be

readily adapted to novel duplicates if it is noticed that they escape detection.

1.3 Main Contributions

The significant contributions of the work presented in this dissertation are summarised below.

• State of the art on content-based duplicate detection. To the best of the author knowledge,

the state of the art in this thesis is the first comprehensive report on existing content-based

duplicate detection techniques.

• Definition of the subspace spanned by the duplicate of an image. The subspace is defined in

several stages. In the first stage, parameterisable transformations of the image are considered

and no composition is allowed. In this case, each transformation generates a curve in the

image space, and the subspace spanned by the duplicates corresponds to the union of these

curves. In the second stage, the effect of composed transformations is studied. In this

case, the subspace spanned by the duplicates represents a manifold if operations’ order does

not matter. The manifold dimensionality is upper bounded by the number of considered

transformations.

• Definition of a generic duplicate detection system. The duplicate detection system presented

in this dissertation is organised around the idea of adaptive detection. In other words, the

system knows the original images for which it has to detect duplicates and can adapt itself to

each original’s characteristics. More precisely, the proposed system is able to decide whether

an input image is a duplicate of one of the originals contained in its collection or unrelated

to any of them. Compare this approach with the classical image retrieval paradigm where

images similar to the query are retrieved from a database. The original might be the query

or contained in the databases. While the image retrieval approach is more flexible it is hardly

adaptable to the intrinsic characteristics of each original and its duplicates.

• Definition and performance quantification of adaptive binary duplicate detectors. A binary

detector is a duplicate detector adapted to a specific original image. It gives an estimation

of the probability that the test image is a duplicate of the original image. It is based on a

low-level visual description of the image and built around a support vector classifier.

• Definition and performance quantification of a duplicate pre-classifier. A duplicate detection

system based on binary detectors checks a test image with every binary detector, each

corresponding to a known original image. This becomes cumbersome as the number of

originals grows. To avoid this, the duplicate pre-classifier efficiently selects a subset of the

original images such that the test image is likely to be a duplicate of one of them. It is based

on low-level visual description of the image and built around a spatial access method.

• Performance quantification of the duplicate detection system. The performance obtained by

the entire system is assessed on different image collections. It is found that the proposed
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approach performs very well when compared to state of the art content-based duplicate

detection systems.

1.4 Organisation of the document

The taxonomy of the thesis’s content is given in figure 1.1. The document is split into five chapters

regrouped within two parts, namely background and dissertation. The last part, dissertation,

forms the main body of the document and introduces our work: duplicate detection based on

image analysis.

Background knowledge related to our work is reviewed in part I. More precisely, chapter 2 gives

short introductions to general material such as image description, indexing, or machine learning.

It is presented for the sake of completeness. Chapter 3, on the other hand, deals directly with the

thesis topic by analysing the existing content-based duplicate detection techniques. Additionally,

the content-based approach of duplicate detection is compared to watermarking.

Part II contains the dissertation on our framework for adaptive duplicate detection. More

precisely, chapter 4 discusses adaptive duplicate detection in general. It is composed of two parts.

In the first part, we define a generic framework for duplicate detection systems — including the

duplicate subspace definition and the generic system. In the second part, we give an overview of

the proposed duplicate detection system. Chapter 5 deals with our approach to image duplicate

detection of a single original image or, more precisely, about binary detectors. It includes a

performance analysis of the binary detectors. Chapter 6 extends the method presented in the

previous chapter to multiple original images. It presents the pre-classifier algorithm and the

performances’ analysis of the pre-classifier and that of the whole system.
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Background
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As for me, all I know is that I know nothing.

Attributed to the Greek philosopher Socrates

(cerca 470 B.C. — 399 B.C.)
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General Material 2
This chapter presents some key concepts and algorithms necessary to better understand the

remaining chapters. The text is organised in three unconnected parts, namely visual information

description, multimedia databases indexing, and machine learning. Visual information description

is presented in section 2.1. It gives an overview of the different possibilities to describe an image

using low-level features. Multimedia databases indexing is introduced in section 2.2. It proposes

a general overview of the methods used to efficiently organise and retrieve objects from databases

that index multidimensional features. Finally, machine learning is presented in section 2.3. It

introduces the reader to the field of machine learning, and more specifically, to that of supervised

classification.

2.1 Visual information description

Visual descriptors give statistics about an image. A good descriptor permits to discriminate

between similar and dissimilar images. Note that the notion of similarity highly depends on the

application. For instance, similarity means “visually consistent images” in the framework of image

retrieval while it signifies “visually nearly identical” in duplicate detection. There exist many

published surveys on image description, the reader can refer to [Rui et al., 1999; Smeulders et al.,

2000] for surveys centred around image description for content-based image retrieval applications.

In the following, four types of low-level image descriptors are presented. The first type of

descriptors, introduced in section 2.1.1, relates to the colour content of the image. The second

type of descriptors, brought in in section 2.1.2, concerns texture, which refers to a structured

visual motif. Due to their simplicity, and their relatively low computational cost, colour and

texture are two of the most widely used low-level descriptors in image retrieval. The third

type of descriptors, presented in section 2.1.3, concerns region-based description, which not only

9
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includes the description of regions using colour or texture, but also that of the region shape. Local

descriptions of an image are richer and more discriminative than its global description. However,

the main drawback of region descriptors is the necessity of segmenting to obtain meaningful regions.

Finally, the fourth type of descriptors, introduced in section 2.1.4, relates to salient points, which

permit to obtain local descriptions of images while avoiding segmentation.

2.1.1 Colour

Colour descriptors are maybe the most widely used features in image retrieval [Rui et al., 1999;

Stricker and Orengo, 1995]. The main reason is that colour descriptors are relatively robust to

background complication and independent of the image size.

The colour histogram is the most common colour descriptor. It gives a quantised estimation

of the probability distribution of the colour channels’ intensities. While easy to compute and

containing much information, histograms have three important drawbacks. Firstly, they are often

sparse and consequently quite sensitive to noise. Secondly, since histograms are quantised versions

of the underlying probability distributions, it is not straightforward to compare two histograms.

Many distance functions can be used for this purpose, for example refer to [Niblack et al., 1993;

Swain and Ballard, 1990]. Thirdly, histograms are difficult to index due to their high-dimensional

nature, refer to section 2.2 for more information on multidimensional access methods.

Colour moments are often used to avoid the quantisation effects brought by using histograms

to estimate the probability distributions [Stricker and Orengo, 1995]. They are also more robust

to noise. The main idea behind using moments instead of a histogram is that probability moments

fully describe the underlying probability distribution. However, due to the numerical difficulties

arising during the estimation of higher order moments, most practical colour descriptor are limited

to the first (mean), second (variance) and third (skewness) central moments. The distance function

used to compare moment descriptors is mainly based on the weighted Euclidian distance.

To take into account the perceptual impact of colours, colour sets are used in [Smith and Chang,

1995]. In this approach, the RGB colour space is first transformed in a perceptually more uniform

colour space, for example HSV . Subsequently, the perceptually uniform colour space is quantised

into bins such that each bin corresponds to a colour that can be unequivocally labelled by a human

viewer. This approach is based on the idea that there exists a small number of colours that are

almost never confused [Boynton, 1989].

Developed more recently, dominant colours provides a compact, and easy to index, colour

descriptor [Deng et al., 2001]. Moreover, it is a standard descriptor in MPEG-7 [Manjunath et al.,

2001]. More precisely, colours in an image are clustered, by means of vector quantisation, into

a small number of representative, or dominant, colours. The feature descriptor consists of the

representative colours, their percentages, their spatial coherency, and their colour variance. One

of the advantages of dominant colour is that it can be indexed in the 3D colour space and so

avoids the high-dimensional indexing problems associated with the traditional colour histogram.

Nonetheless, a drawback related to dominant colour is the vector quantisation step that can be

relatively costly in terms of computational resources.

Except for the dominant colour descriptor, colour descriptors do not generally take into account
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the spatial distribution of the colours. It has been noticed that image retrieval systems based only

on colour statistics tend to return too many false positive answers [Faloutsos et al., 1994]. For this

reason, several methods exist on how to add spatial information to the colour descriptors. One

simple, yet effective, way to do so is to divide the image into sub-block and to describe the colour

content of each sub-blocks [Faloutsos et al., 1994]. While effective, this approach lack of efficiency

since it requires quite a large storage space. Some indications about the spatial distribution of

colour can be added to colour descriptors that classify the colours into categories [Smith and Chang,

1995]. This is achieved by computing two shapes characteristics for each colour category, namely

spreadness and elongation [Hu, 1962; Leu, 1991]. The first characteristic measures the compactness

of the spatial distribution of a colour category. The second gives the ratio between the shape length

and width. Note that even if pixels assigned to a colour form totally disconnected components,

this feature still captures useful information (namely the spatial distribution of these components).

2.1.2 Texture

Texture refers to a structured visual motif. It is an important component of any visual object

like forests, clouds or mountains. Texture features quantify random yet structured intensity (or

colour) variations. More precisely, features measure the variation of the intensity of a surface and

quantify properties such as smoothness and regularity. Texture, like colour, is a powerful low-level

descriptor for image description. Textures describe important information about the structural

arrangement of surfaces as well as their relationship to their surroundings [Rui et al., 1999].

Statistical techniques characterise textures by the statistical properties of the grey levels of

the pixels. Typically, these properties are computed from the grey level co-occurrence matrix

of the surface [Haralick et al., 1973]. Many researchers explored this type of approach, and it

was experimentally found out that contrast, inverse deference moment and entropy are the three

properties that give the best discriminatory power [Gotlieb and Kreyszig, 1994].

Additionally, some researchers explored textures’ description from an angle linked to the human

visual system [Tamura et al., 1978]. More precisely, Tamura et al. developed several computational

approximations of properties that psychological studies found out to be of importance. These

properties are coarseness, contrast, directionality, line-likeness, regularity and roughness. All the

aforementioned properties have a visual interpretation whereas it is not always so for the properties

extracted from the co-occurrence matrix (for example, entropy is not visually meaningful).

Finally, a more recent advance in texture characterisation concerns multi-scales approaches.

For example, some techniques consist in describing the textures as simple statistics of the wavelet

transform (namely mean, variance or skewness) of the wavelet coefficients distribution for each sub-

band [Smith and Chang, 1994]. There exist a profusion of possible wavelet transforms. However, it

was determined that the Gabor wavelet gives the best discriminatory power [Manjunath and Ma,

1996].

2.1.3 Region

A region is a visually, or even semantically, meaningful part of an image. Not only can a region be

represented by its colour or texture (using descriptors presented in section 2.1.1 or section 2.1.2),
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but also it can by described by its shape. The shape description can be divided into two categories,

namely boundary or region based. The first category uses only the region’s contour while the

second category makes use of the entire region [Rui et al., 1996]. In any cases, one needs the region

boundary to be defined in order to describe a region. This requires either a manual or an automatic

segmentation of the image. While having quite evolved during the recent years, fully automatic

image segmentation remains quite the Sangraal’s quest of image analysis [Smeulders et al., 2000].

Many boundary-based shape descriptor are based on Fourier descriptor [Zahn and Roskies,

1972]. In other words, the Fourier transform of the boundary is used as the shape feature. Later,

some researchers perfected the Fourier descriptors by adding robustness to noise as well as geometric

transformation invariance [Rui et al., 1996].

Many region-based shape descriptors use moment invariants. Seven transformation-invariant

moments were first proposed in [Hu, 1962]. Most of the subsequent works use variations of these

seven moment invariants. While most useful invariants are found by trial-and-error [Rui et al.,

1999], methods exist to automatically generate a given geometry’s invariant [Kapur et al., 1995].

Finally, most existing approaches do not consider if the invariant remains truly invariant after

digitisation, however some works exist on this particular topic [Gross and Latecki, 1995].

2.1.4 Salient point

Description of salient points is a possible method to propose local descriptions while avoiding

segmenting the image. In short, salient points methods concentrate the local description into a

few feature vectors, each corresponding to a fixed region around the salient point. Salient points

are nothing else than specific image’s pixels whose descriptions are the most salient (with respect

to some criteria), among all image’s pixels.

Since the image’s description is condensed into a limited number of feature vectors, the salient

points should be selected so has to have great saliency and proven robustness [Smeulders et al.,

2000]. One early and very popular work on salient point detections is that of [Harris and Stephens,

1988] where corner of objects are detected. In this case, the notion of corners and edges is

used to select the salient points rather than a measure of robustness. This leads to points that

might not be very robust to image transformations. For this reason, saliency is often defined as

the points that survive longest to some transformations, for example to gradually blurring the

image [Lindeberg and Eklundh, 1992].

The currently most successful salient point descriptor is that presented in [Lowe, 2004]. In

this approach, the salient points are the local extrema in a scale-space representation of the image

(obtained through a series of Gaussian blurring of the image). Each point then describes, in

an invariant manner, the edges’ orientations contained within a region surrounding the salient

point. In general, Lowe’s method describes a typical image using a few hundreds salient points

but for complex scenes, several thousand points can be required. This method has given rise to

many variants; a notable one is [Ke and Sukthankar, 2004] where principal component analysis

is used to reduce the dimensionality of the descriptors while still improving their discriminatory

power. Nonetheless, while Lowe’s descriptor achieves good performance, it is computationally

expensive. For this reason, some researchers developed methods to reduce its computational cost.
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For example, [Lejsek et al., 2006a] diminishes the number of points necessary to describe an image

while achieving better matching results. Finally, the modification of Grabner et al. achieves a

speedup in the order of eight to ten with respect to Lowe’s original by approximating the Gaussian

blurring [Grabner et al., 2006].

2.2 Multimedia database indexing

Depending on the application, multimedia databases need different properties and need to support

different types of queries. A retrieval query, or access method, on a multimedia database often

requires the fast execution of a geometric search operation such as a point or region query. Both

operations require fast access to those data objects in the database that occupy a given location

in space. Additionally, multimedia objects often live in space containing many dimensions.

Many surveys exist on multidimensional indexing techniques used for multimedia databases.

For more information, the reader is referred to [Boehm et al., 2001; Gaede and Guenther, 1998].

Multimedia databases are of importance in many application areas such as geography, CAD,

medicine, or image retrieval.

2.2.1 Multidimensional access

As seen previously, special multidimensional access methods are needed to support the search

operations required by multimedia databases. The main problem in the design of such methods,

however, is that there exists no total ordering among spatial objects so that spatial proximity is

preserved. In other words, there is no mapping from two- or higher-dimensional space into one-

dimensional space such that any two spatially close objects in the higher-dimensional space are

also close to each other in the one-dimensional sorted sequence [Gaede and Guenther, 1998].

For this reason, the design of efficient access methods in multidimensional spaces is much

more difficult than in traditional databases, where many efficient access methods are available.

Examples of such one-dimensional access methods (also called single key structures) include the B-

tree [Bayer and McCreight, 1972] and extendible hashing [Fagin et al., 1979]. A popular approach

to handling multidimensional search queries consists in using a single key structure per dimension.

Unfortunately, this approach can be very inefficient since each index is traversed independently of

the others. Consequently, the selectivity in one dimension can not be used to narrow down the

search in the remaining dimensions [Kriegel, 1984]. In general, there is no easy and obvious way

to extend single key structures in order to handle multidimensional data [Gaede and Guenther,

1998].

In other words, multimedia databases require real multidimensional indexing methods. Before

continuing further, note that several mathematical effects can be observed as the dimensionality of

the data space increases. Often, these effects cannot be intuitively reasoned out by simply extending

two, or three-dimensional experiences, to high dimension spaces [Boehm et al., 2001]. Some of

the effects are only of mathematical interest while others have important implications on the

performance of multidimensional index structures. Therefore, in the database world, these effects

are summarised under the umbrella of the “curse of dimensionality [Donoho, 1998].” Qualitatively
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speaking, important parameters such as volume and area depend exponentially on the number

of dimensions of the data space. Consequently, many traditional indexing structures operate

efficiently only if the number of dimensions is fairly small [Gaede and Guenther, 1998]. This

means that most of them are unsuited to index multimedia databases.

Multidimensional data access methods can be classified into two categories, namely point and

spatial access methods [Gaede and Guenther, 1998]. Point access methods are primarily designed

to perform spatial searches on point databases in which only multidimensional points (without

spatial extension) are stored. On the other hand, spatial access methods manage objects that have

spatial characteristics in addition to their positions in the space. For instance, such objects are

lines, polygons, or higher-dimensional polyhedra.

2.2.2 Point access methods

Generally, point access methods organise the point data in buckets, each corresponding to some

sub-space of the universe. Some point access methods use one-dimensional hashing to index d-

dimensional points. Although there is no total ordering of d-dimensional objects in one dimension,

these methods use heuristic techniques to ensure that two objects close to each other in the

multidimensional space are indexed the same [Nievergelt et al., 1984]. Other point access methods

use hierarchical data structures to manage point data [Bentley, 1975]. Finally, access methods such

as the Buddy tree [Seeger and Kriegel, 1990] are hybrid since they incorporate both hierarchical

and hashing techniques.

2.2.3 Spatial access methods

Point access methods cannot directly manage objects with a spatial extent but they are often

extended to cover this need. Gaede and Guenther classify point access methods according to the

techniques used to extend from point to spatial access methods. The most important extension

approaches are outlined thereafter.

Object mapping methods map geometric objects into points in a higher-dimensional space.

For instance, a rectangle in R
2 corresponds to a point in R

4. Subsequently, existing point access

methods are used to manage the points.

Object bounding methods are the most popular spatial access methods. In these approaches, the

space is decomposed in a hierarchical manner. Objects are stored at the leaves of the hierarchical

structures and intermediate nodes are used to perform efficient queries. Since the spatial extension

of the nodes at the same level may overlap each other, the number of paths that have to be followed

during a query varies. The most promising object bounding methods are the R-tree [Guttman,

1984] and R*-tree [Beckmann et al., 1990].

Like the object bounding methods, clipping methods use hierarchical data structures. However,

clipping is used to prevent overlapping of intermediate nodes at the same level. More precisely,

objects are clipped, or subdivided, and stored in several nodes to guarantee non-overlapping

intermediate nodes. By this mean, only one path of the hierarchical structure is traversed during

a query [Sellis et al., 1987].
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2.3 Classification

Classification consists in associating an object to one of several classes according to a meaningful

classification rule. A possible formalisation of this problem is as follows. Each class is represented

by a label yi ∈ L ⊂ Z, an object is modelled by a vector x ∈ R
d denominated a pattern, and

the classification rule is given by the function f : R
d → L mapping any d-dimensional vector

x to a label y. Machine learning provides many automatic methods for efficiently designing

classification functions based on examples. Learning algorithms can be differentiated by the amount

of information that is provided to them, namely supervised methods are supplied with examples

in the form of couples (xi, yi) while non-supervised algorithms have only access to the vectors xi.

In the following, we are mainly interested with supervised algorithms. The presentation consists

in two parts. The first part introduces algorithm-independent machine learning notions while the

second part gives an overview of a particular yet powerful classification technique, namely support

vector classifier. Except for section 2.3.3, only the two-class case is treated; in other words, |L| = 2.

Most of the notions presented thereafter are standards among the machine learning field, and

can be found in any good book or tutorial on the topic. For example, the interested reader can

refer to [Duda et al., 2001] for a general introduction to classification, to [Vapnik, 2000] for a

thorough coverage of statistical machine learning, or to [Muller et al., 2001] for an introduction to

kernel-based classification methods.

2.3.1 An overview of statistical machine learning

From expected to empirical risk

A good classifier is mainly one that generalises well to unseen (or novel) patterns. In other words,

a good classifier should map novel patterns to the correct labels with high probability. This notion

of generalisation can be formalised by introducing a loss function l : L×L → R that characterises

the cost of mapping a pattern to a wrong class. Assuming that the couples (x, y) of novel patterns

and labels are independently drawn from an unknown probability distribution p(x, y), the expected

risk R associated to a classification function f reads

R(f) =

∫

l(y, f(x)) dp(x, y). (2.1)

In theory, it suffices to select the function f, among a set of available classification functions

F , that minimises the expected risk to obtain the best classifier. In practice, however, several

complications arise and approximations have to be carried out. For instance, using the loss function

l(y, ŷ) = I{y} (ŷ) gives the expected average number of classification errors. While theoretically

attractive, this loss function leads to intractable optimisation problems. To obtain practically

feasible algorithms the indicator function is usually approximated by smooth functions that are

lower and upper bounded by 0 and 1, respectively. A further approximation concerns the expected

cost, which cannot be practically computed since the underlying probability distribution p is

unknown. To solve this problem, the empirical risk (average cost on the training set) is often used
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Figure 2.1: Three points in R
2 shattered by oriented half-planes. The eight possible labels

assignments can be correctly classifier using diverse oriented half-planes, which implies that the
VC-dimension of the set of oriented half-planes is at least three (actually exactly three since the
shattering is rendered impossible by the addition of a fourth point). In general, the VC-dimension
of half-planes in R

n is n+1. In addition, note that n+1 aligned points in R
n cannot be shattered

by oriented half-planes. This figure is courtesy of Burges [Burges, 1998].

instead of the expected risk

Remp(f) =
1

M

M
∑

i=1

l(yi, f(xi)). (2.2)

In this case, a classification function f can be found as follows

f = arg min
g∈F

Remp(g), (2.3)

where the xi are M known examples, and the yi are the corresponding labels. An interesting

question is whether minimising the empirical risk leads to a minimal expected risk. The answer is

affirmative only if the size of the training set tends to infinity. If however the number of training

examples is limited, the minimised empirical risk can become smaller than the minimal expected

risk. Consequently, minimising the empirical risk can be suboptimal and the classifier might not

generalise as well as expected.

Capacity and its link to the number of training examples

For most applications the number of the training examples is limited and consequently minimising

the empirical risk is likely to be suboptimal. The minimum number of training examples, needed

to find a classification function f that performs well, usually depends on the capacity of the

set of functions F . The capacity measures the intrinsic complexity of a set of functions. A

concrete example of a capacity measure is the Vapnik Chervonenkis dimension (VC-dimension)

that quantifies the maximum number of points that can be shattered by a set of functions. More

precisely, if for a given set of h points each of the 2h possible label assignments is correctly labelled

by a function of F then the h points are shattered by F . To illustrate this point, let us consider

the three points and the set of oriented half-planes depicted in figure 2.1.

While theoretically interesting the VC-dimension is not practical since difficult to compute in

most cases. Nevertheless it brings an important hindsight. More precisely, the VC-dimension h of
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a set of functions F permits to bound the minimal expected risk by

min
g∈F

R(g) ≤ min
g′∈F

Remp(g
′) +

√

h
(

ln 2M
h

+ 1
)

− ln δ
4

M
, (2.4)

where the inequality holds with a probability larger than 1 − δ for M > h. If the number of

examples M tends to infinity, the bound becomes tighter since the second term on the right hand

side of the equation tends to zero. In this case, a function f that minimises the empirical risk also

minimises the expected risk. For a fixed number of examples, however, the only way to obtain a

tighter bound is to diminish the VC-dimension h. This observation leads to the following rule of

thumb. If the number of training examples is small, the capacity of the set of functions should also

be small. Conversely, if the number of examples grows, better classifiers should be obtained by

using sets of functions with larger capacities. This rule is in accordance with the intuitive Occam’s

razor principle: “All things being equal, the simplest explanation is the best one.”

Regularisation as a mean to control capacity

In case of a limited number of examples, a possible way to obtain good classifiers consists in having

a parametric set of functions F(λ) where λ controls its capacity. While the direct definition of such

a set is not trivial, it can be easily constructed indirectly using an approach called regularisation.

Indeed, the regularised empirical risk minimisation reads as follows

fλ = arg min
g∈F(λ)

Remp(g) = arg min
g∈F

M
∑

i=1

l(yi, g(xi)) + λ · Ω(g) (2.5)

where the regularisation functional Ω : F → R takes values proportional to the complexity of the

functions g, and λ is a non-negative real. As a result, λ permits to effectively control the capacity

of F since the larger λ the smaller the capacity of the corresponding set of functions. In practice,

the regularisation functional is often the L2-norm if the functions f are elements of a Hilbert space,

in which case F(λ) biases more and more toward smooth functions as λ increases.

While the empirical risk usually decreases as the capacity increases, the expected risk first

decreases to reach a minimum before increasing again. Figure 2.2 illustrates this phenomenon,

note that the zone ont the right of the optimal capacity corresponds to overfitted classifiers while

that on the left corresponds to underfitted classifiers. The capacity entailing the optimal expected

risk has to be found, which implies an estimation of the expected risk.

2.3.2 Estimating the expected risk

Most classifiers have free parameters that need to be tuned in order to obtain good results, often

indirectly controlling the underlying set of functions’ capacity. As stated in section 2.3.1, the

optimal choice of these parameters corresponds to the minimal expected risk. It implies that the

expected risk has to be estimated.

The cross-validation procedure is a popular technique for estimating the expected risk for

arbitrary classification algorithms. In the k-fold cross-validation algorithm, the training patterns
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R

capacity

expected risk

empirical risk

zone of overfitting

optimal capacity

Figure 2.2: The empirical and expected risks for different capacities. The empirical risk decreases
as the capacity augments while the the expected risk reaches a minimum before increasing again.
The zone on the right hand of the optimal capacity corresponds to overfitted classifiers.

are randomly split into k mutually exclusive subsets (the folds) of approximately equal size. The

classification function is obtained by training on k − 1 of the subsets, and is then tested on the

remaining subset. This procedure is repeated k times, with each subset used for testing once.

Averaging the test error over the k trials gives an estimate of the expected risk. This method has

been shown to yield a good estimation of the generalisation error [Duan et al., 2003]. On the other

hand, it entails many computations since the classifier needs to be trained k + 1 times instead of

just once.

The leave-one-out estimate is an extreme case of the cross-validation technique. The leave-one-

out estimate consists in using as many folds as there are training examples. While computationally

expensive, it is known that the leave-one-out estimate is almost unbiased. There are many ongoing

research on how to efficiently bound the leave-one-out estimate. Most of the bound depends

however on the used classification technique.

2.3.3 From one-class, or two-class, to N-class classifiers

Two-class classifiers assign one of two classes to patterns. In this case, the labels are usually denoted

L = {−1, +1}. A special case of binary classifiers is the one-class classifier where a class support

is estimated. One-Class classifiers can be seen as a two-class classifier for which the negative class

span all possible patterns that do not belong to the positive class.

N -Class classifiers assigns one of N labels to patterns. An N -class classifiers can make use of a

native N -class algorithms or they can be constructed using several two-class or one-class algorithms.

Most machine learning algorithm are first designed for the simplest two-class problems and then

extended to the N -class problem. For some algorithms, the extension is straightforward while for

other approaches it is complex. In the latter case, the extension is often performed by combining

several two-class classifiers. Additionally, the second approach is preferred if the number of classes

is a priori unknown. In the following we are only interested by N -class classifiers obtained by

combining several two-class, or one-class, classifiers.
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There are two well-known ways to combine two-class classifiers in order to construct an N -class

classifier, namely one-vs-all and all-pairs [Allwein et al., 2000]. In both cases, an unknown pattern

is classified with all classifiers and their outputs are combined in order to determine the associated

class label. In the one-vs-all approach, there are N classifiers, each estimating the probability

that a pattern falls in the corresponding class or not. The class whose classifier gives the highest

probability is then used to label the pattern. In the all-pairs approach, there are N(N − 1)/2

classifiers, each corresponding to a possible pair of labels. For each class, an average probability

is then computed and class with the highest probability is assigned to the pattern. The all-pairs

approach becomes quickly impractical as the number of classes increases. Additionally, it is not

possible to use it when the number of classes is a priori unknown.

Finally, note that an important requirement on combining binary classifiers is that the binary

classifiers are calibrated. More precisely, if the binary classifiers output probability estimates,

the estimates of the different classifiers have to be comparable to each other. In other words, a

probability of, say 0.6, has to signify the same for every binary classifier. For more information on

the topic, the reader is referred to [Zadrozny and Elkan, 2002].

2.3.4 An introduction to support vector classifiers

The support vector classifiers (SVCs) are a set of optimal margin classifiers, which are nowadays

widely used. The following gives a brief introduction to some of the basic ideas underlying SVCs.

A more detailed review, and other kernel-based learning algorithms, can be found in [Burges, 1998;

Muller et al., 2001; Schoelkopf et al., 2000].

Linear support vector classifiers

We first consider the simple case where the training examples, drawn from two categories, can be

exactly separated by a hyperplane. In this case, the training data are said to be linearly separable.

In this instructive example, the SVC training algorithm chooses a separating hyperplane that

maximises the Euclidean distances between the hyperplane and the closest training example. In

the SVC literature, this distance is called the margin and the hyperplane maximising it is said to

be optimal. The assumption underlying the maximisation of the margin is “the larger the margin,

the better the generalisation of the classifier.” In other words, the probability that a novel pattern

falls on the wrong side of the hyperplane is expected to be low by maximising the margin.

Let yi = {−1, +1} denote the class labels, xi ∈ R
d a feature vector, and w the optimal

hyperplane. It can be shown that the margin is equal to the quantity ‖w‖−1
2 ; as a result the

maximisation of the margin is achieved by minimising the quantity ‖w‖ or equivalently ‖w‖2.

Consequently, the hyperplane that maximises the margin is found through the following constrained

optimisation problem

min
w

1

2
‖w‖2

subject to yi(w
Txi + b) ≥ 1.

(2.6)
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w

γ

x1

x2

Figure 2.3: Linear support vector classifier in two dimension for separable training examples. The
figure shows the margin γ = 1/ ‖w‖ and the weight vector w. The three points on the margin are
called support vectors and fully define the solution. In other words, the solution does not change
if the other points are moved and stay on the same side of the margin.

A geometrical interpretation of this optimisation problem, for the two-dimensional case, is

depicted in figure 2.3.

Unfortunately, no solution (respecting all the constraints) exists when the data are not linearly

separable. To deal with non-separable datasets, the constraints are relaxed by introducing non-

negative slack variables ξi. There are several ways of introducing them; one possible realisation is

called the C-SVC and uses a parameter C ∈ R
+. The optimisation problem reads as follows

min
w,ξ

1

2
‖w‖2

+ C ·
∑

i

ξi

subject to yi(w
T xi + b) ≥ 1 − ξi,

ξi ≥ 0.

(2.7)

As before, the margin’s maximisation is performed by minimising ‖w‖ but this time the number

of misclassified examples is controlled by
∑

i ξi. The parameter C controls the tradeoff between

the number of misclassified examples and the maximisation of the margin. As C tends to infinity,

the solution of equation (2.7) becomes equivalent to that of equation (2.6). Conversely, for small

values of C some training examples are allowed to lie inside the margin, or even on the wrong side

of the hyperplane.

Another possible realisation is called the ν-SVC and uses a parameter ν ∈ [0, 1]. The constrained

optimisation problem is given by

min
w,ξ

1

2
‖w‖2 − νρ +

1

m
·
∑

i

ξi

subject to yi(w
Txi + b) ≥ ρ − ξi,

ξi ≥ 0,

ρ ≥ 0.

(2.8)
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The minimisation problem proposed in equation (2.8) is less intuitive than that of the C-SVC given

by equation (2.7). However, it turns out that theoretical meanings can be given to the parameter

ν of equation (2.8), whereas the parameter C of equation (2.7) has no significant meaning. Indeed,

it can be shown that not only is ν an upper bound on the fraction of training errors, but also it is

a lower bound on the fraction of support vectors.

An equivalent dual formulation can be obtained by introducing a Lagrange multiplier αi for

each constraint in equation (2.8). The detailed derivation of the dual problem can be found in

[Muller et al., 2001], the resulting constrained optimisation problem is as follows

max
α

− 1

2
·
∑

i,j

αiαjyiyjx
T
i xj

subject to 0 ≤ αi ≤
1

m
,

∑

i

αiyi = 0,

∑

i

αi ≥ ν.

(2.9)

Note that a similar derivation also exists for the C-SVC.

The dual formulation permits to express the separating hyperplane w as a weighted sum of the

training examples, and to incidentally obtains a simple decision function

w =
∑

i

αiyixi, (2.10)

f(z) = sgn
(

∑

yiαiz
Txi + b

)

(2.11)

where the constant b is determined by the support vectors. More precisely, b = yk −∑ yiαix
T
i xk,

for all xk such that 0 < αk < 1/m.

In many SVC implementations, the dual formulation is used instead of the primal one given in

equation (2.7) because it can be solved through standard quadratic programming. Additionally,

many alternate (and often more efficient) schemes have been developed. Finally, the solution of the

dual formulation permits to explain the concept of support vectors. Indeed, many of the optimal

αi in equation (2.10) and equation (2.11) are equal to zero in practice, which implies that only the

xi corresponding to non-zero αi actually define the optimal hyperplane and the decision function.

For this reason, these xi are called support vectors.

Using the kernel trick to produce non-linear support vector classifiers

Since the training examples appear only as dot-products in equation (2.9), it is possible to construct

non-linear decision boundaries by simply replacing the standard Euclidean dot-product by a kernel

function ker(xi,xj). The non-linear kernel has to satisfy the Mercer’s condition so as to be a

dot-product in some space [Burges, 1998]. In this case, the kernel function represents the dot-

product in a (higher-dimensional) space obtained through a non-linear mapping Φ(·), such that

ker(xi,xj) = Φ(xi)Φ(xj) . Note that this non-linear mapping is often not explicitly known, as it



22 Chapter 2. General Material

is sufficient that the kernel satisfies the Mercer’s condition. Moreover, it can be shown that data

from two categories can always be separated by a hyperplane by using an appropriate non-linear

mapping to a sufficiently high dimensional space.

The Gaussian radial basis function (RBF) kernel and the polynomial kernel are two widely use

mapping functions. They are, respectively, given by

ker(xi,xj) = exp
(

−γ ‖xi − xj‖2
)

(2.12)

ker(xi,xj) =
(

xT
i xj + c

)d
. (2.13)

It can be shown, for example [Burges, 1998], that the Gaussian radial basis function maps the

features into a space of infinite dimension, while the polynomial kernel maps the features into

the space of all monomials up to degree d. In the absence of any a priori information hinting

otherwise, the Gaussian radial basis kernel should be considered first [Hsu et al., 2003]. This

particular choice is motivated by several considerations. Not only is the linear SVC a particular

case of the RBF kernel, but also the sigmoid and the RBF kernels behave similarly for certain

choices of parameters [Keerthi and Lin, 2003]. Additionally, the RBF kernel presents less numerical

difficulties than, for instance, the polynomial kernel. Finally, the RBF kernel is governed by only

one parameter instead of two for the polynomial kernel. The kernel parameter σ controls the

complexity of the decision boundary.

Using cross-validation to determine good ν-support vector classifier parameters

While ν has an intuitive signification, it is not clear what should be its optimal value [Chen et al.,

2005; Steinwart, 2003]. It was shown that twice R̄, a close upper bound on the expected optimal

Bayes’ risk, is an asymptotically good estimate [Steinwart, 2003]. While no such bound can

be easily determined a priori, this theorem induces an algorithm to find a good ν by starting

with the classification error of a well-trained classifier as an approximation of the optimal Bayes

risk [Steinwart, 2003].

Unfortunately, a good a priori approximation of the optimal Bayes risk is not always available.

In this case, good parameters for σ and ν can be estimated through a full grid search [Steinwart,

2003]. The procedure is divided in two steps: coarse and fine grid searches. In each step, a k-

fold cross-validation is carried out for each feasible pairs (ν, σ). The pair for which the estimated

expected risk is the lowest is then chosen. The following tried pairs experimentally give good

results

• Coarse search: (σ, ν) for ν = 0.05 · 2k, k = −4, ..., 4 and σ = k, k = 1, . . . , 10.

• Fine search: (σ, ν) for ν = ν1 · (1+k/6), k = −2, . . . , +2 and σ = σ1 · (1+k), k = −2, . . . , +2.

Here, ν1 and σ1 denote the value determined in the first step.
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2.4 Chapter summary

This chapter is about general materials that help to better understand the rest of the dissertation.

It is composed of three unconnected parts: visual description, multimedia databases indexing, and

machine learning.

The visual description part first accounts for the idea behind the description of images through

low-level features. It then moves to present different existing types of low-level descriptors. These

types are colour, texture, region, and salient points. It is pointed out that colour and texture

are the most commonly used descriptors in image retrieval applications. Additionally, it is noted

that region descriptors need the image to be segmented and are, for this reason, less interesting

although they provide local descriptions of images. Finally, salient points are presented as methods

providing local descriptions while avoiding the pitfall of segmentation.

The multimedia databases part first describes the difference between traditional and multimedia

databases. It turns out that databases containing visual features require multidimensional access

methods. This requirement signifies that conventional indexing methods, for example based on

hashing, are not directly usable. Two types of multidimensional access methods are then presented.

The first type of methods, called point access methods, is used to index multidimensional points

while the second type of methods, called spatial access methods, is used to index multidimensional

points that additionally possess a spatial extension.

Finally, the machine learning part first defines the classification problem. The text then gives

an overview of statistical machine learning. It turns out that classification methods are evaluated

using the expected risk, or the amount of error made when classifying novel patterns. In order

to select a good classifier, the expected risk needs thus to be estimated, for example using cross-

validation techniques. Additionally, most classification techniques are first designed for two classes

and then extended to several classes. Finally, the last section of this part gives an overview of a

popular classification technique, namely support vector classifier.
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A State of the Art on Image

Duplicate Image Detection 3
The problem of duplicate image detection originates from different — and often unrelated —

fields. As a result different problem definitions and solutions exist. We first loosely define the

duplicate detection problems in section 3.1. Two quite dissimilar solutions, namely watermarking

and content-based duplicate detection, are then compared in section 3.2. Finally in section 3.3,

existing content-based duplicate detection techniques are presented and analysed.

3.1 What is duplicate detection?

The definition of duplicate detection is now given. Duplicate detection is a task that aims at

detecting the duplicates of an original image. Consequently, it is first necessary to define what

a duplicate is. In short, a duplicate is a transformed version of an original artwork that keeps

a similar visual value. In other words, ‘being a duplicate’ is a pairwise equivalence relationship

that links the original to any of its variations through a transformation operation, for example,

compression, brightness changes or cropping. By extension, if an image A is a duplicate of another

image B and yet another image C is duplicate of image B, then image C is in turn a duplicate of

image A.

Finally, the task of duplicate detection can be expressed as follows. Duplicate detection aims at

detecting all the duplicates of a particular image among a collection of images. Or in a simplified

form, duplicate detection’s goal is to determine whether two given images are duplicates of each

other or unrelated to each other. This is a naive definition that contextualises this state of the art

whereas a more formal one is given in chapter 4.

25
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3.2 Two duplicate detection philosophies

Two very dissimilar duplicate detection philosophies exist, namely watermarking-based methods

and content-based approaches. The watermarking approach consists in embedding a signature

within the original image before the dissemination of the work. Duplicates of the original artwork

can subsequently be detected by checking the signature’s presence within images. On the other

hand, the content-based approach relies, as suggested by its name, on the analysis of the image’s

content in order to extract relevant visual features. Duplicates are then identified when their

features are close to those of the original image. In the next two subsections, these two philosophies

are presented in more details and their advantages and drawbacks are analysed.

3.2.1 Watermarking-based duplicate detection

Historically, image duplicate detection has been mainly performed using watermarking techniques.

The idea behind watermarking is rather simple: the content’s copyright owner incorporates, in a

robust and imperceptible manner, a secret signature within the image prior to its dissemination.

The hidden signature serves two goals. Firstly, it permits the identification of the content owner

in litigious cases. Secondly, it permits to detect copies of the content, for instance by browsing

the Internet, and subsequently to determine whether a copy is legally or illegally used. Many

books and surveys are available on watermarking as this field of signal processing becomes more

mature [for example Barnett, 1999; Cox et al., 2001; Cox and Miller, 2002; Hartung and Kutter,

1999].

Recently watermarking, as a mean to protect content, underwent strong criticisms. Herley

started a debate on the shortcomings of watermarking with a controversial paper entitled “Why

watermarking is nonsense [Herley, 2002].” The crux of Herley’s argumentation is that protecting

all objects in a small neighbourhood of the marked object, as performed in most published

watermarking algorithms, is necessary but not sufficient. He continues by arguing that a useful

watermarking algorithm needs to protect all valuable variations and not merely those that are

close to the marked object. Other authors continued to add to this debate, for example [Barni,

2003a,b; Moulin, 2003] emphasised that watermarking is still a young field of signal processing,

and that no method has yet been able to protect the content from all possible attacks. However,

Moulin partly dismissed the “watermarking is nonsense” statement by noticing that it may be

quite difficult to deliberately find a valuable transformation of the marked object that escapes

detection. Additionally, he remarked that watermarking has been quite useful in low-security

related applications, for instance in cable TV or message embedding, and that new methods may

yet further the performance of watermarking algorithms. Finally, Barni quite interestingly asked

“Why should we hide information within the data, when we could more easily use headers, or other

means, to reach the same goals [Barni, 2003a]?”

It is the author opinion that watermarking has important shortcomings, as described in the

following. While watermarking can be useful in certain situations, it cannot be regarded as

a mean to protect the content in the long term unless the watermark does indeed protect all

valuable variations of the marked object. For example, let us imagine that a photographer embeds
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a watermark into one of its most valuable image and then sells the marked image to different

clients. Subsequently, let us further imagine that a client finds a valuable transformation of the

image that escapes detection. Now, this client of dubious ethics is empowered to redistribute the

photographer’s work in all impunity since it is no longer possible to detect this modified copies’

copies by means of the watermark. In other words, once the mark has been removed from one object

while keeping the object value, watermarking becomes useless as a mean to protect this object.

Valuable unmarked copies of the object exist and, consequently, there is no more hindrance to

illegally use this particular work. Finally, while it might be indeed quite hard to create a valuable

copy that escapes detection, what prevents the use of the corresponding transformation on other

works watermarked with the same algorithm? In short, watermarking is not a flexible duplicate

detection approach in the sense that the mark is unchangeable and, thus, cannot be adapted in case

of failure. On a different note, watermarking requires to embed a signature before distribution,

which is not always practical, for example in the case of illegal images monitoring as presented

in section 3.2.3, nor even tolerated because some artists might be reluctant to accept any kind of

modifications to their works [Kalker et al., 2001].

3.2.2 Content-based duplicate detection

As said before, content-based approaches rely on image analyses rather than message embedding.

Most of the existing content-based approaches are based on the creation of an image summary,

called hash or digest. The hashes are subsequently used to compare between images using a

conventional L1 distance. In the following, these methods are termed robust hashing. To the

best of the author’s knowledge, few content-based methods are unrelated to hashing. However,

these particular works are of special interest since this thesis also aims at performing content-

based duplicate detection without relying on hashing. In the following, the methods unrelated

to hashing are termed fingerprinting. Fingerprinting techniques are basically of two kinds, as

detailed in section 3.3.1, either several hashes are generated for the description of an image or the

distance used to compare the hashes is not based on the conventional L1 distance. In the first

case, the similarity between images is not given by the distance between their hashes but rather

by the number of hashes that match. In the second case, the distance metric is often adapted

to the specificity of the pair of compared images. Note, however, that the usage of the term

fingerprinting is peculiar to this thesis. Indeed, in the signal processing literature, fingerprinting

often refers to any content-based duplicate detection technique or even to a particular application

of watermarking, where the embedded message is used to store the identity of the digital content’s

buyer.

In general, content-based duplicate detection approaches are more flexible than watermarking

techniques, and do not impact on the content. However, they also have their shortcomings. Indeed,

while content-based techniques can be adapted faster than watermarking-based duplicate detection,

for example to counter a novel duplicate generation algorithm, they are more prone to collisions,

or in other words, to false detections. For example, typical watermarking algorithms achieve false

detection rates in the order of one per million (or more). On the other hand, the best content-based

algorithms only achieve false detection rates in the order of one per tens of thousand.
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It is the author’s opinion that watermarking techniques will stay ahead in term of false detection

rate but that content-based techniques are going to close the gap. One of the main reasons lies

in the two philosophies principal dissimilarity. Indeed, in watermarking, the embedded message

is known and can be generated so as to avoid any ambiguity even in cases where images are very

similar yet different in terms of contents. None of this is possible with content-based techniques.

The only possibility to avoid any ambiguity is to on richer visual features and hope for better

discriminative power. On the other hand, it is common practical knowledge that richer features

often translate into features that are less robust and can thus change drastically when the image

is modified.

3.2.3 Applications and applicability

Monitoring

Monitoring refers to the tracking of images for, among other purposes, royalty collection, statistic

gathering, copyright infringement detection, and illegal material detection. This application is

passive is the sense that it has no direct influence on the content; for example, it does not prevent

an image to be displayed. In other words, the main function of this application is to observe and

report [Kalker et al., 2001].

Both watermarking and content based methods can be used to monitor image usage. For some

applications, not only is it necessary to detect the content, but also it is needed to trace the

distribution history. In this case, watermarking is the only solution since additional information

has to be carried. On the other hand, legacy contents tracing is not possible with watermarking

and, similarly, illegal images tracing cannot be solved by means of watermarking [Kalker et al.,

2001]. Indeed, watermarking requires embedding to be carried out before dissemination but, in

the last case, the source is controlled by someone who benefits to remain anonymous.

An example of illegal material detection is given in [Penna et al., 2005]. The police usually keep

a collection of paedophilia-related images that were caught in the course of their investigations.

They can then detect these known images by monitoring, for example, an Internet backbone

or scanning the computer’s content owned by a suspect. In this kind of applications, detection of

known illicit content usage, is typical of content-based duplicate detection algorithms. On the other

hand, there already exist systems [Fleck et al., 1996; Wang et al., 1997] that aim at detecting the

presence of naked bodies within an image. They are usually based on low-level features such as skin

detection or elongated objects detection. Consequently, they cannot make the difference between

legal pornography and illegal pornography since this would require automatic image understanding

at a level that today’s technology cannot achieve.

Clustering

Clustering refers to regroup images that are duplicates when querying a database. Typically, if

an image search engine, for instance Google or Yahoo image, is queried with popular keywords,

such as Lenna or Britney Spears, many of the returned images are actually the same or slightly

modified versions. This is typically illustrated in figure 3.1 where Google image is queried with the
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keyword Lenna. Hence, it would be useful to group the actual duplicates under a single image, so

as to not overwhelm the user with redundant information.

Both watermarking and content-based duplicate detection can be used to cluster the images

returned by a query. However, watermarking usage for this application is quite awkward since

it requires the images to be publicly watermarked for identification purposes. Again, the use of

watermarking is clearly not possible for legacy content. On the other hand, this kind of application

fits quite well to the content-based duplicate detection paradigm.

Version search

Version search refers to searching the right version of an image. For example, suppose that you

only have a thumbnail version of a picture that you like. It would be hence quite interesting to

be able to search an image database, for instance Google or Yahoo image, by querying it with the

thumbnail and expect all the existing variations of this image.

Both watermarking and content-based duplicate detection can used to perform search for image

versions. Again, watermarking is less suited to the task than content-based duplicate detection for

reasons similar to those given for clustering.

3.3 Content-based techniques

Content-based duplicate detection is still a relatively young field of signal processing since the first

major publication dates back to the end of the nineties to the best of the author’s knowledge. As

a consequence, not many works have yet been published, and most of the published algorithms are

not mature enough to properly assess their usability. Indeed, either the performance is relatively

poor or the method’s complexity is too high. Additionally, many reported works only perform

cursory testing, for example using only a few images or a limited number of transformations. The

remaining of the section presents the main contributions to content-based duplicate detection.

The text is divided into two parts, namely fingerprinting and robust hashing as distinguished in

section 3.2.2.

The performance of most content-based duplicate detection methods is assessed in terms of

recall and precision, defined as follows

recall =
number of correctly detected duplicates

total number of duplicates
, (3.1)

precision =
number of correctly detected duplicates

total number of (correctly of wrongly) detected duplicates
. (3.2)

The transformations used to generate the test duplicates vary from one work to another. Many

works use watermarking benchmarks but not all of them. Note that it has been argued that

watermarking benchmarks might not be adapted to test content-based duplicate detection systems

since they usually aim at producing duplicates whose embedded signatures are out-of-phase with

that of the original. Additionally, the image collections used to estimate recall and precision are

almost always different, be it in content or in size. Furthermore, the assessment methodology
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(a) Lenna (b) Pepper (c) Baboon

Figure 3.2: Example of typical original images used for testing content-based methods. These
images can be downloaded from http://sipi.usc.edu/database/.

is also not constant since some works consider databases containing the original images while

other considers that the originals are the queries to database containing suspect images. These

discrepancies signify that it is quite difficult to objectively compare the performance of the existing

algorithms. Finally, note that most works include the images shown in figure 3.2 in the set of

original images.

3.3.1 Fingerprinting techniques

Fingerprinting relates to any technique that uses a summary of the image content but does not rely

on a conventional distance metric to assess the similarity of two summaries. The boundary between

fingerprinting and robust hashing, as previously defined in section 3.2.2, can be quite blurred.

However, for simplicity sake, fingerprinting regroups methods that either generate several hashes

for a single image or are based on non-conventional distance functions. In both cases, fingerprinting-

based systems lead to more complex indexing techniques than hashing-based methods.

The general idea behind the fingerprinting techniques based on several hashes is now outlined

while actual methods are described thereafter [Ke et al., 2004; Lejsek et al., 2006b; Lu and Hsu,

2005; Monga and Evans, 2004]. In these four approaches, each hash usually describes a particular

region of the image. In other words, the description of the image is made richer. The number of

regions, as well as their localisations and shapes, typically depends on the image content. It ranges

from a handful of hashes to several thousands. Finally, two images are duplicates of each other if

the number of matching hashes is above a certain threshold. Within the family of content-based

duplicate detection approaches, these methods are by far those that obtain the best performance

in terms of precision and recall. However, they often rely on complex features and require a great

number of comparisons. To assess if two images are duplicate of each other, each hash of one image

has indeed to be compared to each hash of the other image. For this reason, database indexing

techniques play an important role in the computational efficiency of such approaches.

We now turn our attention to the general idea behind fingerprinting techniques based on non-

conventional distance functions. Actual methods are described thereafter[Lefebvre et al., 2003;

Qamra et al., 2005]. In these two approaches, the distance used to compare two feature vectors

extracted from two images is not a metric-based function but rather a more complex function. More

specifically, duplicates of an image do not necessarily lie within a hyper-sphere centred on that

http://sipi.usc.edu/database/
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(a) Hash of Lena (b) Hash of a rotated and scaled version

Figure 3.3: Example of a hashes for the method proposed in [Lefèbvre et al., 2002]. The left figure
corresponds to the hash extracted from the Lena image while the right figure corresponds to that
extracted from a rotated and scaled version. The x-axis gives the rotation degrees, while the y-axis
represents the amplitude of the medium point.

image. This observation has led to approaches that can have very good performance while using

simpler features with respect to the fingerprinting techniques based on several hashes previously

presented. The duplicate detection technique proposed in this thesis, see chapter 4 and chapter 5,

is actually based on a non-conventional distance function.

Fingerprinting based on the Radon transform

The image fingerprinting technique developed by Lefèbvre et al. is based on the Radon transform

of the image [Lefèbvre et al., 2002; Lefebvre et al., 2003]. The algorithm first consists in computing

the Radon transform of an image [Deans, 1983]. A medium point, invariant to similarity transform

of the image, is then computed for each angular projection. The hash is finally obtained by

concatenating together those invariant points. Examples of hashes are given in figure 3.3. Moreover,

the type of modifications applied to an image can be detected by comparing the original hash to

that derived from the modified image. Two images are determined to be duplicates of each other

by first computing the cross-correlation between their hashes, the position of the maximum is

then used to synchronise the two hashes.The distance between two images is finally given by the

mean square error (MSE) between the two hashes. With respect to the classification used in this

thesis, this approach corresponds to a fingerprinting technique based on non-conventional distance

function since it requires the computation of a cross-correlation function between the summaries.

The paper [Lefebvre et al., 2003] also presents some interesting results on collision and detection

robustness. A collection of 40 images taken from the USC-SIPI database∗ is used. Each image

is then modified according to the following eight transformations: 3 × 3 Gaussian filtering, 3 × 3

averaging filtering, JPEG compression with a quality of 25% and 15%, scaling with a factor of 0.8

and 1.2, and rotating by 1◦ and 2◦. Then, the distance between the original and each duplicate is

computed, resulting in a total of 320 values. It results that 312 out of 320 distances are below 10−3.

Additionally, the distance between each of the 780 possible original image pairs are also computed.

It results that all 780 distances are above 10−3. This corresponds to a recall of 0.975 = 312/320

and a precision of 1 = 1− 0/780. However, the size of the test set is too small to draw any definite

conclusion. Additionally, the range of transformations that can be detected seems quite poor.

∗see http://sipi.usc.edu/database/ for more information.

http://sipi.usc.edu/database/
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(a) Original image (b) A rotated, scaled, and sheared duplicate

Figure 3.4: Example of key points (KPs) in a pair of duplicate images [Ke et al., 2004]. The KPs
are shown as white circles with embedded lines denoting dominant orientations and circle size
denoting scale. Many of the KPs are found at the same relative positions. Note that the KPs
corresponding to smaller scales are not represented (that is, most KPs are absent).

Fingerprinting based on key points

Ke et al. propose a fingerprinting method based on the extraction of features, referred to as key

points (KPs), which are stable in a scale-space representation [Ke et al., 2004]. An image is

typically represented by thousands of KPs. Test images are then classified as duplicates or non-

duplicates using local sensitive hashing to match their KPs to those of the original image. More

specifically, no distance is directly computed but it is rather the number of matching KPs that

quantifies if two images are duplicates of each other. With respect to the classification used in this

thesis, this approach corresponds to a fingerprinting technique based on multiple hashes since an

image is represented by thousands of local summaries.

This fingerprinting technique is mainly based on the robustness of the key points, which are

popular local descriptors presented in [Lowe, 2004]. The KPs detector consists in four main steps,

namely, scale-space maxima detection, KPs localisations, and orientations assignment. The scale-

space maxima detection is efficiently implemented by constructing a Gaussian pyramid. The

pyramid is subsequently used to detect the local maxima (termed KPs) in a sequence of difference-

of-Gaussian images. In the second step, the KPs localisations are refined and the points that are

found to be unstable are eliminated. In the third stage, the dominant orientation of each KP

is determined as a function of the orientations found in its surrounding patch. Finally, the last

step consists in describing a local patch orientations histogram, normalised in such a way that

it is invariant to scale changes and affine transformations. Each image is then represented by

thousands of KPs, and hence extra care has to be taken when indexing the KPs. An example of

KPs localisations and dominant orientations is depicted in figure 3.4.

While this approach achieves very good performance, in terms of tradeoff between precision and

recall, it requires a computationally complex features extraction step as well as many matching

since each KP of an image has to be tested against all KPs of other images. A collection of 6261

images is used to test the system. 150 images are randomly selected from the collection and, for

each image, 40 duplicates among twelves categories are generated. These categories are colourising,
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contrast changes, cropping, despeckling, downsampling (no antialiasing filtering), flipping, colour

depth reduction, outer frame addition, right-angle rotation, scaling (with antialiasing filtering),

saturation and intensity changes. Section 4.3.1 gives more details about the used transformations.

This results in a total of 12 111 images that are used to create a database where an average of 1100

KPs per image are extracted. Then, the 150 original images are used to query the database and the

40 most similar images are tallied to determine the number of false positives and consequently that

of false negatives. The performance is finally synthesised in a single precision versus recall working

point: a recall of 0.9985 corresponds to a precision of 1. An additional experiment is carried out,

in which more difficult transformations are considered. This time, 10 duplicates are generated for

each original image. They result from cropping the image by 50%, 70%, and 90%, shearing the

image along the x-axis by 5◦, 10◦, and 15◦, changing the intensity by 50% and 150%, and severe

increase/decrease of the contrast. A total of 7611 images are thus used to create a database. In

this additional experiment, a recall of 0.984 corresponds to a precision of 0.9986.

While the performance obtained by this method is the best for a content-based approach to

date, the technique relies on a complex descriptor. More precisely, several seconds are needed on

an actual computer to analyse an image and the description of a single image consists of thousands

of 150-entry vectors. This means that, depending on the requirements of the duplicate detection

system in terms of the number of tested images per second, the computational infrastructure can

be very costly.

There exist other works based on feature points, for example those of [Lejsek et al., 2006b;

Monga and Evans, 2004]. Contrarily to the work of Ke et al., [Monga and Evans, 2004] converts

the set of feature points into a single binary hash. Additionally, the detection of the feature points

is much simpler since it is based on the Harris’ corner detector [Harris and Stephens, 1988]. On

the other hand, the work of Lejsek et al. is very similar to that of Ke et al.. The only noticeable

difference is that their own descriptor [Lejsek et al., 2006a] is used instead of Lowe’s KPs descriptor.

The used descriptor is slightly more efficient than that of Lowe: less KPs are computed while still

achieving better matching results.

Fingerprinting based on a mesh representation of the image

The fingerprinting method developed by Lu and Hsu is based on tiling the image with non-

overlapping triangles and then generating a hash per triangle [Hsu and Lu, 2004; Lu and Hsu,

2005; Lu et al., 2004]. The technique can be decomposed into two main steps. In the first step,

the image is represented by a set of right-angled triangles. In the second step, each right-angled

triangle is converted into a binary hash. These two steps are described in the next paragraph.

With respect to the classification used in this thesis, this approach corresponds to a fingerprinting

technique based on multiples hashes since an image is represented by as many local summaries as

there are triangles in the mesh.

To create the set of right-angled triangles, the Harris corner detector [Harris and Stephens,

1988] is first applied to a downsampled version of the image. The justification behind using

downsampling is twofold; firstly it avoids the detection of unstable corners, contained in the

high-frequency band, and secondly it reduces the number of detected corners. Subsequently, the
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Figure 3.5: Example of image meshing [Lu and Hsu, 2005] for robust hashing. Each triangle of
the mesh is then warped to a right-angled triangle and gives to a hash.

Delaunay triangulation’s algorithm [Lee and Schachter, 1980] is used to transform the set of corners

into a triangular mesh; an example is depicted in figure 3.5. Each triangle is then normalised or, in

other words, warped into a right-angled triangle of constant size. Now, each right-angled triangle is

converted into a binary sequence of fixed-length as follows. The normalised triangle and its flipped

version are superposed to create a 32 × 32 block. Then, the 2D discrete cosine transform (DCT)

is applied to each 4× 4 sub-block and the first AC coefficient is kept; this means that a triangle is

represented by a total of 64 AC coefficients. The justification behind the selection of this particular

coefficient is that higher-frequency coefficients are subject to noise and that the DC coefficient is

not very discriminative. Then, the AC sequence is converted into a binary sequence by assigning a

one to the 32 largest coefficient, and a zero to the 32 smallest coefficients. Finally, two images are

duplicates of each other if the Hamming distance between, at least, N pairs of hashes is smaller

than a certain threshold.

The performance of the method is interesting in terms of tradeoff between precision and recall.

More precisely, a collection of 20 000 images and ten traditional images, such as Lena or Baboon,

are used to create a database of original images. Then, the ten traditional images are modified

according to the watermarking benchmark StirMark benchmark version 3.1, see section 4.3.1 for

more information, and the original and the resulting 890 copies are used to query the database.

The performance is finally synthesised in a precision versus recall table. For example, recalls of

0.82 and 0.945 correspond to precisions of 0.82 and 0.009, respectively. On an interesting side-note,

the exact same method can be also used to generate authentication hashes.

Fingerprinting based on perceptual distance function

The fingerprinting technique developed by Qamra et al. is based on the computation of a perceptual

distance function (DPF) [Li et al., 2002; Qamra et al., 2005]. Note that the abbreviation PDF is

not used so as to avoid any confusion with Probability Density Function. More precisely, a DPF

is generated for each pair of original and unknown image and measures the similarity between

the two. The general idea of the approach is to activate different features for different image

pairs. Hence, only the most similar features are taken into account when computing the distance.

With respect to the classification used in this thesis, this approach corresponds to a fingerprinting
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technique based on non-conventional distance function since it takes only the most similar entries

of the summaries to compute the distance.

Let images be represented by p-dimensional feature vectors, and define the i-th distance ∆di

between two images as the absolute difference between the i-th feature. Then the basic perceptual

distance function (DPF) is defined as the r-th root of the sum of the m smallest i-th distances

(∆di)
r

where r and m are two parameters [Li et al., 2002]. The justification behind the use of DPF

is grounded in the science of cognitive psychology where it is shown that humans infer similarity

between objects from their similarities rather than from their dissimilarities [Medin et al., 1993;

Tversky, 1977]. The number m of features used to compute the distance is selected as the one

that achieves the best, on average, result on a training set. The proposed DPF achieves interesting

results but is limited by the fact that m is fixed. Indeed, the similarities of different pairs of objects

may depend on a different number of features. To overcome this restriction Qamra et al. propose

three complementary methods for adaptively selecting m [Qamra et al., 2005]. The first method,

called thresholding, selects all i-th distances below a fixed threshold. The second method samples

the DPF according to different values of m and averages them. The third method adds a weight

to each feature; the weight is set as the inverse of the feature’s standard deviation among similar

images. Note that these three methods are complementary and can be used together.

The performance of the method is interesting in terms of tradeoff between precision and recall.

A collection of 20 000 images is used to test the system. Among them, 500 images are randomly

selected and modified according to 40 duplicates, the same transformations than for Ke et al.’s work

are used, among twelves categories. These categories are colourising, contrast changes, cropping,

despeckling, downsampling (no antialiasing filtering), flipping, colour depth reduction, outer frame

addition, right-angle rotation, scaling (with antialiasing filtering), saturation and intensity changes.

Section 4.3.1 gives more details about the used transformations. A total of 40 000 images are thus

indexed in a database. Subsequently, the 500 seed images are used to query the database, and

the 40 most similar images are tallied to determine the number of false positives and consequently

that of false negatives. The performance is finally synthesised in a precision versus recall curve.

For example, recalls of 0.9 and 0.8 correspond to precisions of 0.67 and 0.93, respectively.

The cognitive psychology explanation is interesting but a more mundane reason, not cited

by the authors, exists for the algorithm’s good performance. Indeed, although some features

are robust against certain types of image transformations, they can vary drastically for other

transformations. Subsequently, by using a distance function that takes into account only the most

similar features, one insures that the most robust features are always used. While it results in

good general performances, it also signifies that the recall rates fall very quickly for high precision

rates. Indeed, this is symptomatic of the metric used that implies that the system is unable to

distinguish between similar yet unrelated images.

Fingerprinting based on image thumbnails

The fingerprinting technique developed by Wang et al. is based on thumbnail versions of the

image [Wang et al., 2006]. More specifically, images are divided into n by n blocks and the average

intensity within each block is computed. Different values of n are used to represent the image with
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more details, and the resulting thumbnails are concatenated into a single vector. The dimension

of the vector is then reduced by making use of principal component analysis [Jackson, 1991] and

selecting the K largest eigenvalues. Finally, a binary string is produced by assigning an one to

entries larger than the vector’s average and a zero otherwise. Two images are duplicates if the

most significant bits of their hashes are equal and if there is less than a certain number of bits

that differ for the least significant bits. With respect to the classification used in this thesis, this

approach corresponds to a fingerprinting technique based on non-conventional distance function

since two distances are actually computed.

The performance of the method is difficult to assess since it is based on a peculiar metric

and considers only a limited number of transformations. For instance, this study consider only

the following transformations, scaling, colour to greyscale conversion, and compression. In the

experiment, images are selected from the Internet. They contain the answer to four queries:

‘Angelina Jolie’, ‘Anime’, ‘Britney Spears’, and ‘Cartoon’. The first images returned by a query

are then grouped in a so-called scope. Then, each pair of images within a scope is labelled whether

they are duplicates of each other, according to the above transformations, or unrelated. Finally,

conventional precision and recall metrics are applied on the pair of images and summarised within

a table for different scope’s sizes. It results in a precision around 0.35 and a recall around 0.96 for

a scope’s size of 100. However, the performance degrades as the group size increase, for instance, a

scope size of 1000 corresponds to a precision of 0.28 and a recall of 0.93. Additionally, images that

are connected through a chain of pairwise duplicate relationship are grouped into a single group.

Grouping achieves a recall of 0.55 and a precision of 0.96 for a scope’s size of 100.

3.3.2 Robust hashing techniques

Hashing relates to techniques that use a single summary of the image content — often called

a digest or hash value. In duplicate detection based on robust hashing, the distance between

digests is used to determine the corresponding images relationship. More precisely, two images are

duplicates of each other if the distance between their hashes is smaller than a certain threshold.

A typical distance is based on the L1-norm. For example, the L1 distance between two binary

strings, often called Hamming distance, gives the number of bits that differ while the normalised

version scales this distance between zero, all bits are equal, and one, all bits are different.

The concept of hashing is very similar to that of cryptographic hash functions, which maps

data strings to a small and constant number of bits. Cryptographic hash functions are often, and

successfully, used to authenticate messages [Stinson, 2002]. They are not, however, directly usable

for multimedia content because images can undergo quite severe modifications without altering

their perceptual values. Indeed, cryptographic functions are designed so that the alteration of a

single bit of the message results in a totally different hash. This deficiency has led several research

teams to develop the notion of robust hashing.

Note also that robust hashing for duplicate detection is tightly linked to robust hashing for

authentication. Indeed, many of the hashing methods presented thereafter have also a security

component that aims at securing the produced hash through randomisation. This permits to use

the hash in the same fashion than cryptographic hash functions. However, this feature is not really
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(a) Random pattern (b) Smoothed version

Figure 3.6: Example of a random pattern and its smoothed version [Fridrich, 1999]. The left figure
shows a 64 × 64 random pattern while the right figure depicts one of its smoothed version.

relevant to duplicate detection as studied in this thesis.

Hashing based on random projections

The hashing technique developed by Fridrich is based on projecting the image onto random

patterns [Fridrich, 1999, 2000]. To achieve this, the author proposes two steps. In the first step,

the image is projected on N randomly generated patterns with zero mean. In the second step, the

projections’ values are converted into a binary sequence.

To create the N random patterns, an initial pattern is first generated using a random generator,

and the other patterns are obtained by filtering the initial pattern with different low-pass filters.

An example of a random pattern, as well as one of its smoothed version is depicted in figure 3.6.

Subsequently, the image is projected on each pattern. If the absolute value of the projection is

above a certain threshold, a one is assigned to the pattern and a zero otherwise. The ones and

zeros are finally concatenated together to form the hash. Note that the threshold is adaptively

adjusted so as to obtain approximately an equal number of zeros and ones.

In [Fridrich, 2000] two approaches are proposed to make the aforementioned method robust

against rotation and scaling. The first one uses the Fourier-Mellin transformation [Zwicke and Kiss,

1983]. On the other hand, the second approach is based on patterns with a circular symmetry that

have their centres mapped to the centre of gravity of the image.

Some basic tests are performed in order to shows the robustness of the scheme. The method

seems to be quite robust, StirMark benchmark version 3.1, on the few images that are tested.

However since the aim of this work is to generate a watermark correlated to the image content, no

study has been made regarding its discriminative power.

Hashing based on random image tiling

The hashing technique developed by Venkatesan et al. is based on a random rectangular tiling

of the image [Venkatesan and Jakubowski, 2000; Venkatesan et al., 2000]. In the initial work

of [Venkatesan and Jakubowski, 2000], a tiling framework, based upon four steps, is presented.

In the first step, the image is divided into possibly overlapping regions. In the second step, each

region is summarised with a value. In the third step, each value is randomly rounded to either the

nearest larger or the nearest smaller integers. In the fourth step, the values are aggregated into
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Figure 3.7: Example of a random rectangle tiling on the coarsest wavelet sub-band
[Venkatesan et al., 2000]. 64 rectangles are used on the Lena image.

an intermediate hash, and finally an error correcting code is used to compress the hash. In other

words, the intermediate hash is considered as a noise contaminated code.

An actual tiling technique is presented in [Venkatesan et al., 2000]. More precisely, the image

is first transformed in the wavelet domain, then each sub-band is decomposed into non-overlapping

rectangles, for an example of decomposition see figure 3.7, and each rectangle is summarised with

a statistic, namely mean for the coarse sub-band and variance for the others sub-bands. The

statistics are then randomly rounded to form 3-bit values. The aggregated string of 3-bit values is

finally decoded using a Reed-Muller error-correcting decoder. Two images are duplicates of each

other if the normalised Hamming distance between their hashes is lower than a certain threshold.

To test the algorithm, a database of 100 images, containing among other images Lena and

Baboon, is used. Duplicates are obtained by applying the StirMark benchmark version 3.1 benchmark.

No quantitative results are given but it is stated that the scheme is robust, in other words the

Hamming distance is close to zero, for the following transformations: rotations up to 2◦, cropping

up to 10% of image area, scaling by up to 10%, random deletion of up to 5 lines, shifting by up

to 5%, JPEG compression using quality factor as low as 10%, 4 × 4 median filtering. Then, the

probability of collision is tested by comparing Baboon’s hash to the 99 remaining hashes. It is

found that the corresponding Hamming distances range between 0.35 and 0.55. this signifies that

for the transformations mentioned above, the recall is near 1 and the precision is 1. However, the

considered transformations are mild, and hence it does not give any indication of the method’s

performance on the complete StirMark benchmark version 3.1 benchmark.

In [Mihçak and Venkatesan, 2001], an iterative region growing on each tile replaces the wavelet-

based description of the tiles. The iterative region growing aims at producing a binary low-

resolution version of the image where only geometrically strong components are present. To achieve

this, a iterative median filter is used to produce an image where each pixel corresponds to the

median value of a given rectangular region centred on the pixel. Note that the size of the rectangle

depends on the geometry of the surrounding region. The results seem to indicate that this scheme

is more robust than the wavelet-based description.

Additional work exists on the topic of intermediate hash compression, or in other words reducing

the size of the hash while adding robustness. For example, Johnson and Ramchandran use the

distributed coding paradigm to compress the intermediate hash by making use of a Wyner-Ziv

encoder [Johnson and Ramchandran, 2003]. Additionally, Monga et al. aims at ensuring that
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perceptually identical images are compressed to the same hash [Monga et al., 2004, 2006]. To

reach this goal, the authors propose to cluster the space of intermediate hashes into perceptually

close regions. They first built a cost function in an arbitrary metric space such that its minimisation

yields the ideal clustering. Additionally, they show that this ideal clustering problem is an

NP -complete problem and propose two heuristic approaches to approximate the minimisation.

Monga et al. give experimental results and compare them to those obtained for [Venkatesan et al.,

2000]. Their scheme is more flexible and obtains better performance than simple error-correcting

compression, but at the price of a higher complexity.

Hashing based on the discrete cosine transform

The image hashing technique developed by Kim is based on the DCT of a low resolution version of

the image [Kim, 2003]. The first step of the approach consists in computing a 8× 8 version of the

image. To achieve this, the image is subdivided into 64 non-overlapping and equal-sized blocks,

and the average intensity of the pixels within each block is computed. The justification of this

resizing relies on providing an invariance of the fingerprint to local changes. In the second step, the

2D DCT is computed on the 8×8 image. The AC coefficient of the DCT are then ranked according

to their magnitudes. The result is a hash given by a permutation of the first 63 integers. Finally,

two images are declared similar when the distance between their corresponding fingerprints (given

by the L1-norm) is below a certain threshold.

The performance of the method is unsurprisingly good for local transformations but quite

poor for geometric transformations. A collection of 40 000 images is used to create a database.

Additionally, 5 images and their 11 duplicates are added to this database and thus results in a total

of 40 055 images. The transformations used to create the duplicates are different for each original

but are mainly of non-geometric nature. For additional information on the used transformations,

the reader is referred to [Kim, 2003]. The system performance is then evaluated by querying the

created database with each of the original images. The performance is finally synthesised in a

precision versus recall curve. For example, recalls of 0.92 and 1 correspond to precisions of 0.86

and 0.06, respectively.

Hashing based on the Radon transform

The robust image hashing technique developed by Seo et al. is based on the Radon transform of

the image [Seo et al., 2003, 2004]. The idea behind the approach is as follows. In a first step, the

Radon transform [Deans, 1983] is modified so as to make it invariant to affine transformations of

the image. In a second step, the affine invariant transformation is converted into a binary hash.

These two steps are described in the next paragraph.

The auto-correlation makes the Radon transform invariant to translation while the log-mapping

and the Fourier transform bring the scale and rotation invariance. In the second step, a 20 × 20

binary fingerprint is computed. To achieve this, the 21×21 low-frequency coefficients of the Fourier

transform are selected. The justification of this choice relies on the tradeoff existing between

the robustness and the discriminatory power of the chosen feature. Indeed, practice has shown

that, in general, low-frequency features are more robust while high-frequency features are more



3.3. Content-based techniques 41

Original JPEG (Q=10%) Bit Errors

(a) (b) (c)

Figure 3.8: Example of fingerprints [Seo et al., 2004]. (a) Fingerprint of the original Lena image,
(b) Fingerprint of the compressed Lean Image with a 10% quality factor, and (c) the difference
between a and b showing the error in black.

discriminatory. Then, a 2 × 2 two-dimensional filter, designed to detect sign changes, is applied

to the selected coefficients and the result is converted to a binary hash. The justification of the

binary conversion is again empirical as it is indeed experimentally verified that the difference

between affine invariant features is very robust against many kind of transformations. Note that

two intermediate binary hashes are obtained, one for the amplitude of the Fourier transform and

the other one for the phase. Finally, the two hashes are merged using a bitwise exclusive or

function. The justification behind this merging is that it is experimentally verified to improve the

pairwise independence, thus lessening the risk of collisions.

Two images are duplicates of each other if the Hamming distance between their hashes is below

a certain threshold. For example, figure 3.8a shows an example of the hash extracted from the

Lena image. Additionally, figure 3.8b shows the hash extracted from a compressed version of the

Lena image while figure 3.8c illustrates the difference between the two hashes, corresponding to a

Hamming distance of 0.05. In this case, these two images are duplicates of each other only if the

threshold is larger than 0.05.

The performance of the method is globally interesting but relatively poor in terms of the tradeoff

between precision and recall. A collection of 1000 images is used to test the system. A database of

original images is then constructed using the robust hashing method. Then, the following eleven

transformations are used to create the test images: JPEG compression (quality 10%), Gaussian

filtering, sharpening filtering, 4 × 4 median filtering, 45◦ and 90◦ rotations, 0.5 and 0.15 scalings,

2% cropping, 17 columns and 4 rows removal, random bending. The transformations are used

to estimate the system’s recall rate. On the other hand, the system’s precision is estimated by

inputting the originals themselves and then logging how many originals are returned. Note that

an ideal system should return only a single original. In [Seo et al., 2004], two working points

are reported for two different values of the threshold: 0, or no error, and 10/200. In the first

case, 878 out of 11 000 test images are not correctly detected, which corresponds to a recall of

0.92 = 1 − 878/11000. On the other hand, an average of 2.396 original images are returned per

query, which corresponds to a precision of 0.38 = (1000×0.92)/(1000×2.396). In the second case,

20 test images are not correctly detected, which corresponds to a recall of 0.998 = 1 − 20/11000.

On the other hand, an average of 51.5 original images are returned per query, which corresponds

to a precision of 0.02 = 1000× 0.998/(1000× 51.5).
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Note that considering only pairwise relationship is, in the author’s opinion, limitative and

sometime misleading. Indeed, two real duplicates that are quite different, and result in very

different hashes, will never be considered to be duplicates of each other unless a chain of duplicate

images links them. In other words, this approach seems to work well when many duplicates of the

same image are considered at the same time.

3.3.3 Standardisation efforts

The moving picture experts group (MPEG) is a working group of ISO/IEC charged with the

development of video and audio encoding standards. One of the resulting standards, MPEG-7,

is a formal system for describing multimedia content. MPEG members are currently studying

the feasibility of incorporating a visual descriptor into the standard MPEG-7 that is specifically

designed to serve as visual identifier. In other words, they are proposing a standardised feature

that should performs well for the duplicate detection task [MPEG12816, 2006; MPEG13152, 2006;

MPEG13579, 2006]. This duplicate detection task is taken very seriously within MPEG since test

conditions [MPEG12841, 2006] and image management database tools [MPEG13861, 2006] are

being modified so as to accommodate this new search task.

The proposed features is based on feature points and is very similar to [Ke et al., 2004;

Lejsek et al., 2006b; Monga and Evans, 2004]. Actually, this descriptor is a simplified version,

for complexity reasons, of Lowe’s detector [Lowe, 2004]. For instance, the localisation of feature

points is based on the Harris corner detector [Harris and Stephens, 1988], and the description of

the feature points is based on the local gradient histogram but for a region with a fixed size rather

than a size that depends on the region’s content. This is ongoing work, and the visual identifier

that is going to be standardised will certainly improve.

In the MPEG’s study, duplicates are generated according to the following transformations:

brightness changes, aspect ratio changes, colour to grey-level conversion, JPEG compression,

colour-depth reduction, cropping, histogram equalisation, blurring, rotation, scaling, translation,

and flipping. Each transformation is then parameterised according to three severity level: heavy,

medium, and light modifications. Currently, the proposed descriptor is robust against most of

these transformations except rotation, scaling and flipping. In any case, it performs better, for the

duplicate detection task, than the edge detector already present in the MPEG-7 standard but is

more complex.

3.4 Chapter summary

In this chapter, the state of the art for image duplicate detection is presented. We first distinguish

between two philosophies, namely watermarking and content-based, and describe the advantages

and drawbacks of each of them. Basically, watermarking is less flexible than content-based method

because it requires modifying the image for incorporating the signature. More precisely, the

embedding’s requirement entails that watermarking is adapted only if one has total control over

the original artwork and means that a watermarked image can be detected only as long as a mean
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Table 3.1: Synthesis of state of the art duplicate detection methods. This table synthesises some
state of the art methods. The marks +, ++, +++ refer to, respectively, so-so, good and excellent
while − denotes a drawback. The appearance order of the methods are the same as in section 3.3.

method type memory complexity performance

[Lefebvre et al., 2003] fingerprinting + + −
[Ke et al., 2004] fingerprinting − − + + +
[Hsu and Lu, 2004] fingerprinting + + ++
[Qamra et al., 2005] fingerprinting + ++ ++
[Wang et al., 2006] fingerprinting + ++ −
[Fridrich, 2000] hashing + + + + +
[Venkatesan et al., 2000] hashing ++ + +
[Kim, 2003] hashing ++ + + + +
[Seo et al., 2004] hashing + + + + +

to remove the signature is not discovered. On the other hand, content-based duplicate detection

is more flexible but not yet as mature as watermarking in terms of precision and recall rates.

We then presented several existing content-based techniques. These methods are classified into

two sub-categories, namely robust hashing and fingerprinting. Robust hashing approach consists in

summarising the image with a digest, often binary, and then use a simple L1 distance to determine

if two images are duplicates of each other or unrelated. On the other hand, fingerprinting refers

to method that cannot be classified as robust hashing, according to the previous definition. It

turns out that most content-based duplicate detection techniques are of the robust hashing type.

However, they often rely on simpler features than fingerprinting techniques and, consequently, do

not perform as well. Still, the produced hash can be easily used to index images while this is not

always the case with fingerprinting techniques.

It is also noted that content-based duplicate detection is still a recent field of signal processing.

As such, there is not yet standardised methods to assess the performance of content-based duplicate

detection techniques. Additionally, there is still a lot of different opinions on the exact definition

of the problem or even on what a duplicate is. Still, it is an active research domain that is quickly

growing. For instance, it is the object of standardisation proposal within the MPEG-7 framework,

at least for features that could be specifically used for duplicate detection. The road is still long as

many related problems have to be first solved, such as defining a standard way of testing duplicate

detection system.

We now synthesise the existing content-based duplicate detection techniques. The synthesis can

be found in table 3.1, where the different methods are synthesised in terms of memory, complexity

and performance. Memory refers to the amount of memory required to store the description

of an original or other information necessary to detect its duplicates. Complexity refers to the

computational complexity necessary to describe the test image and to compare the description

with that of an original image. In other words, complexity does not relate to the time necessary

to train the system. Performance concerns the tradeoff between falsely detected unrelated images

and falsely rejected duplicates. Finally, note that the marks given are the qualitative appreciations

of the author obtained through the available published information.
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A Framework for

Content-based Image

Duplicate Detection 4
In the first part of this chapter, we define a generic framework for content-based duplicate detection

systems. The proposed framework begins with a simple mathematical model of the duplicates of an

image. The model defines the subspace spanned by the duplicates of an original and is presented

in section 4.1. This model permits to gain some understanding on how duplicates are organised,

and gives useful indications of how to design an efficient duplicate detection system. The second

element of the framework is a generic system to detect the duplicates of original images; it is

accounted for in section 4.2. Two cases are analysed. The first case concerns a system that detects

the duplicates of a single image while the second case deals with a more general system that

simultaneously detects the duplicates of several images. The next element of the framework is the

assessment methodology, reported in section 4.3, in which we detail the test images and the error

metrics used to assess the performance of the proposed duplicate detection system.

In the second part of this chapter, we give an overview of the proposed duplicate detection

system in section 4.4. Additionally, this section also presents common components of the proposed

duplicate detection system. More precisely, it includes the preprocessing operations applied to the

image, and the subsequent low-level visual features extraction procedure, used in chapter 5 and

chapter 6.

4.1 Model of the duplicates of an image

The general idea behind the approach proposed in this thesis is to estimate the region of the image

space in which the duplicates of a particular image lie. Duplicates can then be easily detected by

asserting whether a test image lies inside or outside this particular region. For example, the region

determined by all the resized versions of an image by a resizing factor going from 0.1 to 5 is, under

certain assumptions, a continuous smooth curve embedded within the image space. The curve

49
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Figure 4.1: Curve defined by an image and its duplicates. The figure shows a two-dimensional
feature space that exemplifies the duplicates obtained from the modification of an original image
by a smooth transformation, for example resizing by a factor going from 0.1 to 5, in this case a
resizing factor of one corresponds to the original image.

starts at factor 0.1, goes through the original for the resizing factor equals to one, and finishes

at factor 5. Consequently, transformations of the original image by other operations result in as

many curves going through the original, and the duplicates of a particular image lie in the region

defined by the union of these curves.

It is relatively difficult to imagine a curve embedded within the image space since this space has

a large number of dimensions. On the other hand, a relatively limited number of visual features

can be used to describe an image. In this case, the curves embedded within the image space, a very

large number of dimensions, are mapped into curves embedded within the feature space, relatively

low number of dimensions. This idea is illustrated in figure 4.1 for two visual features and for the

resizing operation. In the following, the model of the duplicates of an image is given for the image

space but can be easily extended to the feature space. We next formalise this idea and extend it

to duplicates of the duplicates.

Let us assume that images are smooth bi-dimensional functions and consequently that the

image space is the space of the smooth functions. We further assume that the considered image

transformations are smooth functionals defined on this space. Then, the set containing the

duplicates of the original image I can be defined as follows

D(I) = {fi (I, p) : p ∈ Ci, i = 1, 2, . . . , N} , (4.1)

where the fi (I, p) are the N considered transformation functionals, p stands for each functional’s

parameter, and the set Ci give the correspond parameterisations or, in other words, the possible

values of the parameters. To give a better intuitive feeling, lets consider that f1 (I, p) corresponds

to the resizing transformation functional or operation. In this case, p stands for the scaling factor

and C1 corresponds to the range of allowed scaling factors; for instance C1 is given by the interval

[0.1, 5] for the example presented previously. The original image I is implicitly part of D(I) because

we assume that for any transformation f(·, ·) there exists an invariant parameterisation p such that

I = f (I, p). For example, in the case of the resizing operation it implies that the corresponding
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parameterisation, C1, contains the real number one, which creates a duplicate image equals to the

original image.

Additionally, duplicates of the duplicates can be considered in turn to be duplicates of the

original, in which case, other curves going through each duplicate are also included. The duplicate

set En(I) for up to n-level of compositions can be recursively defined by

En(I) = {D(J) : J ∈ En−1(I)} , (4.2)

E1(I) = D(I). (4.3)

Note that En(I) ⊇ En−1(I) ⊇ · · · ⊇ E1(I) because of the existence of the invariant parameterisation.

The set En(I) is a complex object to apprehend. To analyse En(I), we first introduce a

simplification. Indeed, let us now consider that duplicates resulting from n-level of composition

can be expressed by a single functional gn(I,p). The first variable I is the original image, and the

other variable p is a vector of parameters that controls the duplicate aspect, for example p1 can

be the scaling factor and p2 the rotation angle. Such a functional can be recursively constructed

by using the previously introduced transformation functionals fi(I, p). More precisely

gn(I,p) = fn

(

gn−1(I,p),pn

)

, (4.4)

g1(I,p) = f1 (I, 1) . (4.5)

Note that the order of operations can be modified by permuting the indices i of the transformations

fi(I, p). In this simplified case, the set of duplicates for n-level of composition is given by

F(I, n) = {gn (I,p) : p ∈ C1 × C2 × . . . × Cn} . (4.6)

The duplicate set F(I, n) is thus defined by a bounded smooth high-dimensional surface, or

smooth manifold, embedded within the image space. The manifold intrinsic dimensionality is

upper bounded by n, the number of considered compositions, since the manifold is created by a

function controlled by n + 1 parameters and one of them is the original image.

Additionally, it is possible to link the manifold F(I, n) with the more complex object En(I)

defined above. Indeed, lets now consider that the number of compositions n is equal to the

number of transformations N . Since different sets F(I, n) can be constructed for different orders

of operations, we get

EN (I) =
⋃

ν

F(I, ν), (4.7)

where ν is a permutation of the first N positive integers,
⋃

ν signifies the union on all possible

permutations, and F(I, ν) stands for the duplicate set as defined in equation (4.6) but with the

order of operations modified according to the permutation ν. This result implies that EN (I) is

given by the union of the N ! smooth manifolds.

We now analyse the effect of varying the order of operations on the duplicate set EN (I). To

achieve this, we assume that varying the order of operations changes the resulting duplicate but
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not drastically. Let d(·, ·) be a distance function on the image space, and define

ξ(I) = max
p

max
ν1,ν2

d
(

gN (I,p, ν1), gN (I,p, ν2)
)

(4.8)

where ν1,2 are permutations of the first N positive integers, and gN(I,p, ν) stands for the single

transformation functional defined above but with the order of operations modified according to

the permutation ν. Then the maximisation on ν1 and ν2 gives the maximal possible distance

between duplicates for a given parameterisation p. Finally, the value of ξ(I) gives the largest such

distance among all possible parameterisations. Now, let us define the high-dimensional volume

V(I, ν) based on the manifold generated by an arbitrary order of operations ν

V(I, ν) = {J : d(J,K) ≤ ξ(I),K ∈ F(I, ν)} . (4.9)

For any order of operations, defined by the permutation µ, we then have V(I, ν) ⊃ F(I, µ). This

result implies that the duplicates of an image can be enclosed within a high-dimensional volume

that has a thickness 2ξ(I). The thickness is proportional to the influence of the order of operations.

For instance, if varying the order of operations does not change the resulting duplicate then the

duplicates of an image lie on a smooth manifold whose intrinsic number of dimensions is upper

bounded by N , the number of considered transformations.

In the real world many assumptions do not hold. For instance, images are not smooth signals

but rather sampled and spatially bounded signals. Additionally, transformations might not be

smooth; typical examples of non-smooth transformations are joint picture experts group (JPEG)

compression or cropping. Nevertheless, the model developed in this section remains useful as it

gives clues as to how to develop an efficient duplicates detection system. When referring to this

model in the following, we often call it the subspace spanned by the duplicates of an original.

4.2 Generic duplicate detection system

In this section, a generic duplicate detection system is proposed. The generic system consists in a

system that simultaneously detects the duplicates of multiple original images. However, a simplified

version of the general system, where only a single original image is considered, is first presented in

section 4.2.1. The multiple original duplicate detection system is then presented in section 4.2.2.

Not only is the duplicate detection system proposed in this thesis based on the general system,

but also the simplified version is one of the key components of the proposed system. Finally,

the simplified and general systems serve as basis to develop adequate methods to evaluate their

performance, as done in section 4.3.

4.2.1 Generic duplicate detection — single original image system

The detection of the duplicates of a single original can be modelled as follows. We consider a

system tuned to the detection of the duplicates of a specific original image O. This duplicate

detection system can be viewed as a binary classifier that maps the test image T into one of two

classes. More precisely, the label +1 corresponds to the class “the test image T is a duplicate of
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Simplified Duplicate Detection

original O

test image T

{

+1 T is a duplicate of O

−1 T is unrelated to O

Figure 4.2: Simplified duplicates detection system (single original).

the original image O” while the label −1 stands for the class “T is unrelated to O.” Such a system

can be summarised to a binary function d1
O (·, u) ∈ {−1, +1} where u is a parameter controlling

the system’s selectiveness. More precisely, d1
O (T, u) is equal to +1 if the test image T is estimated

to be a duplicate of O and to −1 if T and O are considered unrelated. The detection of the

duplicates of a single original is illustrated in figure 4.2.

The system’s mechanics can be defined as follows. The main idea is to estimate the probability

Pr{T ∼ O} that a test image T is a duplicate of the original image O. A decision can then be

obtained by comparing the estimated probability Pr {T ∼ O} to a fixed threshold u ∈ [0, 1]. If

the probability is larger than the threshold then the test image is considered to be a duplicate of

the original image; otherwise both images are regarded as unrelated. Finally, d1
O (·, u) is formally

given by

d1
O (T, u) = 2 ·

(

I{x:x>u} (Pr {T ∼ O}) − 1

2

)

(4.10)

where u ∈ [0, 1] is a threshold, O is the original image, T is the test image, Pr {T ∼ O} is the

estimated probability that T is a duplicate of O, and IA (x) is the indicator function. Recall that

IA (x) is equal to one if x ∈ A and to zero otherwise.

4.2.2 Generic duplicate detection — multiple original image system

The detection of duplicates of multiple original images can be modelled as follows. We now consider

a system tuned to the simultaneous detection of the duplicates of any original among a set of specific

original images O. Each element · of O, thereafter denoted O(·), corresponds to a specific original

image. This duplicate detection system can be viewed as a multi-class classifier that maps the

test image T into one of N + 1 classes, where N is equal to |O|, the number of original images.

More precisely, N classes, labelled +1, +2, . . . , + |O|, correspond to the case “the test image T is a

duplicate of the corresponding original images.” On the other hand, the remaining class, labelled

−1, stands for the case “T is unrelated to any image among O.” Such a system boils down to

the integer-valued function dN
O (·, u) ∈ {−1, +1, . . . , |O|} where u is a parameter controlling the

system’s selectiveness. More precisely, dN
O (T, u) is equal to a positive integer i if the test image T

is estimated to be a duplicate of the original image O(i) and to −1 if T is considered unrelated to

any of the images contained in O. The detection of the duplicates of multiple originals is illustrated

in figure 4.3.

The system’s mechanics can be defined as follows. The main idea is to estimate the set
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test image T
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9

the set of originals O
{

−1 T is unrelated to any image in O
+i T is a duplicate of the original image O(i)

Generic Duplicate Detection

Figure 4.3: Generic duplicates detection system (multiple original images).

of probabilities {Pr{T ∼ O(i)}}N
i=1 where each element Pr {T ∼ O(i)} is an estimation of the

probability that T is a duplicate of the corresponding original image O(i). In other words, the

probabilities can be estimated using the single original duplicate detectors presented in the previous

section. A decision can then be obtained by comparing the largest probability contained in the

aforementioned set to a fixed threshold u. If the probability is larger than the threshold then the

test image T is considered a duplicate of the corresponding original image while otherwise T is

regarded as unrelated to any of the original images. Finally, dN
O (·, u) is formally given by

m = arg max
i=1,...,N

pT∼O(i), (4.11)

dN
O (T, u) = m · I{x:x>u} (Pr{T ∼ O(m)}) − I{x:x≤u} (Pr {T ∼ O(m)}) , (4.12)

where u ∈ [0, 1] is a threshold, O is the set of original images, T is the test image, Pr {T ∼ O(i)}
are the estimated probability that T is a duplicate of the corresponding original image O(i), and

IA (x) is the indicator function. If the largest estimated probability is smaller than the threshold,

the first term in the right hand side of equation (4.12) is then equal to zero and the second term

is equal to minus one. On the other hand, if the largest estimated probability is larger than the

threshold, the second term in the right hand side of equation (4.12) is then equal to zero and the

first term is equal to the label of the estimated original of the test image.

4.3 Performance evaluation methods

In this section, we present the images and the metrics used to assess the performance of the

duplicate detection algorithms proposed in the following chapters. The test images are introduced

in section 4.3.1. Two metrics are then defined in section 4.3.2. One metric is used to assess the

performance of the single original image duplicate detection system while the other one is used for

the multiple original images duplicate detection system.

4.3.1 Test images

To assess the performance of the proposed systems, the same image collections as in [Ke et al.,

2004] are used. The first collection contains 18 785 photographs including, but not limited to,

landscapes, animals, constructions, and people. The image sizes and aspect ratios are variable,

for example 900 × 600, 678 × 435, or 640 × 480 pixels. They are mostly colour images, except
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Table 4.1: Duplicate images test set Qamra. This test set contains the duplicates proposed
in [Qamra et al., 2005] and used in [Ke et al., 2004] as well. It simulates transformations often
encountered when publishing images on the Internet.

categories ♯, parameterisations

Colourising 3, Tint the red, green, or blue channel by 10%
Contrast changes 2, Increase or decrease the contrasta

Cropping 4, Crop by 5, 10, 20 and 30%
Despeckling 1, Apply ImageMagick’s despeckling operation

Downsampling 6, Downsample by 10, 20, 30, 40, 50, 70 and 90%b

Flipping 1, Flip along the horizontal axis
Colour depth reduction 1, Reduce the colour palette to 256 colours

Outer frame 4, Add an outer frame of 10% the image size
Rotation 3, Rotate by 90, 180 and 270◦

Scaling 6, Scale up by 2, 4, 8 times, and down by 2, 4, 8 timesc

Saturation changes 6, Change the values of the saturation channel by 70, 80, 80, 90, 110,
120 and 130%

Intensity changes 4, Change the intensity channel by 80, 90, 110 and 120%

ausing ImageMagick’s [Still, 2005] default parameter
bwithout antialiasing filtering
cwith antialiasing filtering

for about one thousand images that are grey-levels. The second collection contains photographs

of 9000 paintings. The use of collections with varied contents permits to assess the performance

of the duplicate detection algorithms in a variety of situations. For instance, the first collection

contains photographs covering a wide-range of scenes while the second collection contains very

similar images in terms of colours and textures.

The collections are randomly split into two mutually exclusive subsets O and F . The set O
represents the originals and contains 200 images, and the set F are images that are used to estimate

the false positives error rate of the system.

The test duplicates are generated by applying two sets of transformations on the original

images. The first set of transformations, denoted Qamra, is the same as that used in [Ke et al.,

2004; Qamra et al., 2005]. It represents transformations often encountered when publishing images

on the Internet. There are twelve categories of transformations, as shown in table 4.1. An example

for each of them is depicted in figure 4.4. The second set of transformations, denoted StirMark, is

based on the duplicates generated to assess the robustness of watermarking methods, namely

StirMark benchmark version 3.1 [Petitcolas and Kutter, 2001]. It mainly concerns geometric

transformations. There are fourteen categories of transformations, as shown in table 4.2. An

example for each of them is depicted in figure 4.5. The number of duplicates per original image is

40 for the test set Qamra and to 88 for the test set StirMark.

A complete test set consists of two components: a set of images and a set of labels. The

set of images, denoted T , is given by the union of the unrelated images F and either one of the

duplicates sets Qamra or StirMark. The set of labels, denoted L, associates each image in T with

a label; namely, 0 for the unrelated images, and different positive numbers (+1, +2, . . . , + |O|) for

the duplicates of each original image.
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(a) Original

(b) Duplicates

Figure 4.4: Examples of test duplicates generated by the benchmark Qamra. There is one duplicate
example per category, the order used (left-right, top-down) is the same as in the table 4.1. Every
images are resized so to have an equal height. For information, the photograph was taken on the
highs of Nendaz — Switzerland.
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(a) Original

(b) Duplicates

Figure 4.5: Examples of test duplicates generated by the benchmark StirMark. There is one
duplicate example per category, the order used (left-right, top-down) is the same than in table 4.2.
Every images are resized so to have an equal height. For information, the photograph was taken
from the Jungfraujoch — Switzerland.
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Table 4.2: Duplicate images test set StirMark. This test set contains the duplicates proposed
in [Petitcolas and Kutter, 2001] and used in the assessment of most watermarking algorithms. It
simulates transformations often encountered when copying images.

categories ♯, parameterisations

Median filtering 3, filter of size 2 × 2, 3 × 3 and 4 × 4
Gaussian filtering 1, approximate filter of size 3 × 3
JPEG compression 12, JPEG compression with quality factors 90, 80, 70, 60, 50,

40, 35, 30, 25, 20, 15 and 10
Shearing 6, shearing in (X, Y) directions by (0, 1), (0, 5) (1, 0), (5, 0),

(1, 1) and (5%, 5%)
Cropping 9, centred cropping by 1, 2, 5, 10, 15, 20, 25, 50 and 75%
Flipping 1, horizontal flip
Scaling 6, scaling by factors 0.5, 0.75, 0.9, 1.1, 1.5 and 2

Line removal 5, removal of (n columns, m rows): (1, 1), (1, 5), (5, 1), (5, 17)
and (17, 5)

Random bending 1, ‘StirMark’ random geometric distortions
Aspect ratio 8, change aspect ratio of X(Y) by a factor 0.8, 0.9, 1.1 and 1.2

Rotation 16, rotations by -2, -1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 1, 2, 5,
10, 15, 30, 45 and 90◦

Rotation/scaling 16, same as above but followed by scaling
Linear transform 3, general linear geometric transformation c′ = Tc a

FMLR 3, frequency mode Laplacian removal attack

avalues of T :

(

1.010 0.013
0.009 1.011

)

,

(

1.007 0.010
0.010 1.012

)

, and

(

1.013 0.008
0.011 1.008

)

4.3.2 Performance metrics

There are different ways to assess the performance of a duplicate detection system. For example,

one can measure the tradeoff between false positives and false negatives error rates, or between

precision and recall. For more information about precision and recall, the reader is referred to

chapter 3. In the following, we use the paradigm of false positive versus false negative rates

because the duplicate detection problem is considered, in this thesis, from a classification point of

view and not from a retrieval point of view.

As mentioned previously, the performance of a duplicate detection system can be evaluated

through the tradeoff between the false positives and false negatives error rates. A false positive

error is a test image that is estimated to be a duplicate of an original but is not. Conversely, a false

negative error is a test image that is a duplicate of an original but is not detected as such. In the

following, the true class label of a generic test image is denoted by ct and its estimated class label

by ce. While false positive errors can occur whenever the test image is estimated to be a duplicate,

ce > 0, false negative errors happen only when the test image is really a duplicate, ct > 0. In both

cases, errors signify that the estimated label and the true label differ. More precisely, given a true

class ct and an estimated class ce, an error happens if the function e(ct, ce), given thereafter, is

equal to one.

e(ct, ce) = 1 − I{ct} (ce) , (4.13)

where IA (x) is the indicator function. As said before, a false positive error happens if there is

an error and if the estimated label is larger than zero. Accordingly, given a true class ct and an
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estimated class ce, a false positive error happens if

fp(ct, ce) = e(ct, ce) · IN⋆ (ce) , (4.14)

is equal to one. Similarly, a false negative error means that

fn(ct, ce) = e(ct, ce) · IN⋆ (ct) , (4.15)

is equal to one. Finally, no error signifies that there are no false positive nor false negative errors

or, in other words both fp(ct, ce) and fn(ct, ce) are equal to zero.

In the following, we define the false positives and false negatives error rates to be the probability

that the corresponding error happens given that the tested image can potentially produce that

error. Now, the exact definitions of the error rates depend on whether the duplicate detector

knows a single original or multiple originals. For example, a false positive error can potentially

happen to any test image if the system knows multiple original images. Indeed, a real duplicate

assigned the wrong original is a false positive error. In this case, the false positives error rate is

given by pFP = Pr {ce 6= ct, ce > 0}. On the other hand, a false positive error can only happen for

unrelated test images if the system knows a single original image. In this case, the false positives

error rate is given by pFP = Pr {ce 6= ct|ct < 0}.
Nonetheless, for both types of system, a false negative error is only possible if the test image is a

duplicate and the corresponding error rate is given by pFN = Pr{ce 6= ct|ct > 0}. To give a better

intuitive understanding, lets consider a pFP equals to 0.05. In this case, five out of one hundred

test images are, on average, wrongly detected as duplicates or, in other words, are assigned to the

wrong originals. Similarly, a pFN equals to 0.08 means that, on average, eight out of one hundred

true duplicates are not detected.

There exists a tradeoff between the false positives and false negatives error rates. Indeed,

different values of pFP and pFN are obtained by varying the parameters of the duplicate detection

system, for example the threshold u given in section 4.2. The receiver operating characteristic

(ROC) curve [Fawcett, 2003] is often used to represent the tradeoff between error types. In this

representation the true positive rate, one minus the false negatives error rate, is plotted as a

function of the false positives error rate. In this thesis, we use a variant of the ROC curve called

detection error tradeoff (DET) curve [Martin et al., 1997].

Contrary to ROC curves, the DET curves represent the false negatives error rate as a function

of the false positives error rate. Since both axes correspond to error measurements, they can both

make use of a logarithmic scale. The interpretation of DET curves is analogous to that of ROC

curves: a classifier X is more accurate than a classifier Y when its DET curve is below that of Y.

The exact construction of the DET curve depends on the duplicate detection system used, and is

given in the next two subsections.
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Performance metrics — single original image system

For the single original duplicate detection model, the false positives and false negatives error rates

are equal to pFP = Pr{ce 6= ct|ct < 0} and pFN = Pr {ce 6= ct|ct > 0}, respectively. They develop

as follows

pFP = Pr {ce = +1|ct = −1} , (4.16)

pFN = Pr {ce = −1|ct = +1} , (4.17)

since in the binary detectors only know two classes.

Hence, an estimate of the false positives error rate, for a selectiveness threshold value of u and

a given original image O(n), is given by

p̂FP (O(n), u) =
1

∑|L|
j=1 I{−1} (L(j))

|T |
∑

i=1
s.t. L(i)=−1

fp
(

−1, d1
O(n) (T (i), u)

)

, (4.18)

where T is the set of test images defined in section 4.3.1, L is the corresponding set of labels,

d1
O(n) (T (i), u) is the function (defined in section 4.2.1) that estimates the class label of the test

image T (i) with respect to original image O(n), fp(·, ·) is the function that indicates a false positive

error and is defined in the previous section. Similarly, the estimates for the false negatives error

rate, for a selectiveness threshold value of u and a given original image O(n), is given by

p̂FN (O(n), u) =
1

∑|L|
j=1 I{n} (L(j))

|T |
∑

i=1
s.t. L(i)=n

fn
(

+1, d1
O(n) (T (i), u)

)

. (4.19)

To assess the performance of a system that detects the duplicates of a single original, we make

use of several detectors. Each detector is tuned to a specific image O(n). The algorithm’s tradeoff

between false positives and false negatives error rates is summarised into a single DET curve

constructed as follows. For each original image O(n) , a DET curve is produced by gathering the

estimated probabilities p̂FP(n, u) and p̂FN(n, u) for different values of the threshold u.

All the curves are finally synthesised into a single DET curve, denoted DET, by using vertical

averaging, algorithm 5 in [Fawcett, 2003]. In the vertical averaging procedure, a false negatives

error rate is obtained by averaging the false negatives error rates given by the different DET

curves at the same false positives error rate. This implies that a working point on the DET curve

corresponds to thresholds that are, possibly, different for each detector. In practice, a lookup table

can be used to determine the correct threshold values in function of the chosen working point.

Using vertical averaging on the DET curves permits to have an estimates of the optimal

performance of the ensemble of binary detectors regardless of the method used to combine them.
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Performance metrics — multiple original images system

For the multiple originals duplicate detection model, the false positives and false negatives error

rates are equal to pFP = Pr {ce 6= ct, ce > 0} and pFN = Pr {ce 6= ct|ct > 0}, respectively. Using

the prior probabilities p· = Pr {ct = ·}, the false positives error rate becomes

pFP =

|O|
∑

i=−1

Pr {ce 6= ct, ce > 0|ct = i} pi, (4.20)

=

|O|
∑

i=1

Pr {ce 6= ct, ce > 0|ct = i} pi + Pr{ce > 0|ct = −1}p−1. (4.21)

Conversely, the false negative develops as follows

pFN =
1

∑|O|
i=1 pi

|O|
∑

i=−1

Pr {ce 6= ct|ct = i} pi, (4.22)

=
1

1 − p−1

|O|
∑

i=1

Pr {ce 6= ct|ct = i} pi, (4.23)

=
1

1 − p−1

|O|
∑

i=1

(Pr {ce 6= ct, ce > 0|ct = i} + Pr {ce = −1|ct = i}) pi (4.24)

where equation (4.23) derives from the fact that the events ct = +1 to ct = |O| form a partition

of the event ct 6= −1, similarly the events ce = −1 and ce 6= −1 form a partition of the outcome

space. Using Bayes’s theorem, this leads to equation (4.24). Let us define the following quantities

pD↔D ≡ 1

1 − p−1

|O|
∑

i=1

Pr {ce 6= ct, ce > 0|ct = i} pi, (4.25)

pD→U ≡ 1

1 − p−1

|O|
∑

i=1

Pr {ce = −1|ct = i} pi, (4.26)

pU→D ≡ Pr {ce 6= −1|ct = −1} . (4.27)

They can be interpreted as follows. pD↔D gives the probability that a wrong original is assigned

to a duplicate. Similarly, pD→U gives the probability that an actual duplicate is estimated as

unrelated to any original images. Finally, pU→D gives the probability that an unrelated image is

estimated as a duplicate of some original. Then the false positives and false negatives error rates

can be expressed in terms of pD↔D, pD→0, and pU→D

pFP = pD↔D(1 − p−1) + pU→Dp−1 (4.28)

pFN = pD↔D + pD→U . (4.29)

We can now give an estimator for the probabilities of errors. First note that the priors are

usually unknown. On the other hand, we can assume that the test image is more frequently an
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unrelated image than a duplicate of an original; thus p−1 ≫ ∑|O|
i=1 pi. It implies that p−1 ≈ 1,

and conversely that 1 − p−1 is very small. Let us define α ≡ p−1

1−p−1

≈ (1 − p−1)
−1 ≫ 1. Then, an

approximation for the probability of false positive is the following

pFP ≈ pD↔Dα−1 + pU→D. (4.30)

Since pD↔Dα−1 ≤ α−1, the false positives error rate is dominated by pU→D when pU→D ≫ α−1.

Furthermore, note that for a decent duplicate detection system pD↔D is likely to be extremely

small since the system has an extensive knowledge about all its original images. In this particular

case, a further approximation is carried out: pFP ≈ pU→D.

We further assume that the priors are the same for all the positive ct, namely pt = (1−p−1)/ |O|.
In other words, a test image has the same likelihood to be a duplicate of an original or another.

In this case pD↔D and pD→U simplify to

pD↔D =
1

|O|

|O|
∑

i=1

Pr {ce 6= ct, ce > 0|ct = i} , (4.31)

pD→U =
1

|O|

|O|
∑

i=1

Pr {ce = −1|ct = i} , (4.32)

and estimates of the error rates, for a selectiveness threshold value of u, are then given by

p̂D↔D(u) =
1

|O| ·∑|L|
j=1 I{x:x>0} (L(j))

|T |
∑

i=1
s.t. L(i)>0

fp
(

L(i), dN
O (T (i), u)

)

, (4.33)

p̂D→U (u) =
1

|O| ·∑|L|
j=1 I{x:x>0} (L(j))

|T |
∑

i=1
s.t. L(i)>0

fn
(

L(i), dN
O (T (i), u)

)

, (4.34)

p̂U→D(u) =
1

∑|L|
j=1 I{−1} (L(j))

|T |
∑

i=1
s.t. L(i)=−1

fp
(

L(i), dN
O (T (i), u)

)

, (4.35)

where T is the set of test images defined in section 4.3.1, L is the corresponding set of labels,

dN
O (T (i), u) is the function (defined in section 4.2.2) that estimates the class label of the test

image T (i) with respect to the set of original images O, fp(·, ·) and fn(·, ·) are the functions that

indicate false positive and false negative errors as defined previously in this section.

To assess the performance of an algorithm that detects the duplicates of multiples originals, we

make use of a single system tuned to the set of original images. The DET curve is constructed by

gathering the probabilities p̂FP and p̂FN estimated using the probabilities p̂D↔D(u), p̂D→U (u),

and p̂U→D(u) computed for different values of threshold u.
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Figure 4.6: Block diagram of the duplicate detection approach. The four main steps are detailed
thereafter. The feature extraction step extracts relevant visual features f from the test image
T. The pre-classifier step selects potential original images C ⊆ O from an indexing structure.
The latter indexes the corresponding duplicate manifolds and uses indices among the set O.
For each most probable original image O(i) ∈ C, the binary detectors estimate the probabilities
Pr{I ∼ O(i)} that the test image T is a duplicate of the original image O(i). Finally, the decision
step either decides that the test image T is unrelated to any of the selected potential original
images in C or that O ∈ C is the most probable original.

4.4 Approach overview and common components

The approach proposed in this thesis relies on the observation made in section 4.1. More precisely,

the duplicates of an image lie, under certain conditions, on a smooth manifold. We further assume

that the manifolds defined by different original images are different in location as well as in shape.

This additional assumption leads to an approach where the manifolds are explicitly estimated for

every original image. Following this idea, an efficient method that estimates the probability that

a test image lies on this manifold is first proposed. In the following, we call this single original

image duplicate detector a binary detector. Then, this approach is extended to the case where

many original images are available and that the test image must be asserted to be a duplicate of

one of them or unrelated to any of them. This extended duplicate detection approach is divided

into four main steps, which are illustrated with a block diagram in figure 4.6. In section 4.4.2, the

feature extraction step is introduced. The remaining step are detailed in the two next chapters.

More precisely, the binary detectors step is detailed in the chapter 5 while the pre-classifier step

and the decision are elaborated in chapter 6.
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As said previously, the feature extraction step is detailed in this section. It is a common

component used in both chapter 5 and chapter 6. The feature extraction step is composed of two

parts. In the first part, the test image T is preprocessed as detailed in section 4.4.1. In the second

parts, visual information is extracted from the preprocessed image as presented in section 4.4.2.

4.4.1 Image preprocessing

This section describes the preprocessing operations that are applied to an image before feature

extraction. The preprocessing operations have two goals. First, the image is described in a colour

space that permits to easily extract meaningful information. And second, a weak form of robustness

to transformations such as resizing, framing, or changes in intensity, is introduced. In the following,

we suppose that an image of height I and width J is given by three I × J matrices R, G, and

B corresponding to the Red, Green, and Blue channels, respectively. The matrices are indexed as

follows. R(i,j) corresponds to the element given on the i-th line of the j-th column of R. Similarly,

R(i,·) corresponds to the i-th line, and R(·,j) to the j-th column.

Before anything else, we introduce a weak robustness to framing by removing nearly constant

lines and columns. The removal of lines and columns is performed in an iterative way; a single

iteration is described in the following. We first compute, for each line i, the standard deviation

σ(R,i) = std
(

R(i,·)

)

on the red channel, and similarly σ(G,i) and σ(B,i) on the green and blue

channels. Then, the averaged standard deviation σi is computed for each line i and each colour

channel. Finally, a line i is removed only if the corresponding averaged standard deviation σi is

smaller than s ·∑i σi/J̃ where s is a parameter that controls the sensitivity of the line removal

algorithm, and J̃ is the current number of columns. For the first iteration, J̃ equals the number

of columns in the image. Typically, s is set to 0.1 in the following. Similarly, nearly ‘constant’

columns are then removed. The processus is finally iterated as long as there exist lines or columns

to be removed.

Then, a weak form of scale invariance is introduced by resizing the image. More precisely,

the image is resized such that it contains approximately 214 pixels, this number corresponds to a

square image of 128×128 pixels, while keeping its original aspect ratio. Apart from the weak form

of scale invariance, the size of preprocessed image is mostly constant regardless of the test image

size, it also permits to speed up feature extraction by reducing the number of pixels to process.

The scaled image is then represented in a modified hue saturation intensity (HSI) space: the

logarithmic Hue, Saturation, and equalised-Intensity space. More specifically, the logarithmic Hue

Hlog is defined as follows [Finlayson and Schaefer, 2001]

Hlog =
logR − logG

logR + log G− 2 logB
, (4.36)

where R, G and B are the red, green and blue channels, and the operations are performed element-

wise. The logarithmic Hue has the advantage to be invariant to gamma and brightness changes.

The Saturation S is the same as for classical HSI [Gonzalez and Woods, 2002, chapter 6], and is

given by

S = 1 − 3 · min(R,G,B)

R + G + B
, (4.37)
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Table 4.3: Used features overview. This table lists the used features, the statistic types, and the
number of extracted values.

name feature type number of features

Gabor mean of the squared coefficients 30
Gabor standard deviation of the squared coefficients 30
Colour class histogram 10
Colour mean of each class 24
Colour standard deviation of each class 24
Colour spatial distribution of each class 20
Grey-level class histogram 8
Grey-level spatial distribution of each class 16

total = 162

where the operations are applied element-wise. By construction, the Saturation is quite invariant

to changes in illumination. Finally, the equalised Intensity Iequ is given by

Iequ = equ

(

R + G + B

3

)

, (4.38)

where equ(·) is the global histogram equalisation operator [Gonzalez and Woods, 2002, section 3.3],

and the addition and division operations are performed element-wise. The equalisation permits to

make the Intensity mostly invariant to changes of gamma and brightness as shown in [Maret et al.,

2006a].

4.4.2 Features

This section introduces the features used for the experiments carried out through the remaining

chapters. Note that a more thorough discussion on general visual feature extraction can be found

in chapter 2. The features are extracted after the image has been processed as described in

section 4.4.1.

The features used in this thesis are of three types: texture, colour and grey-level statistics.

They are similar to those used in [Qamra et al., 2005], in which they are found to give good

results in image duplicate detection applications. The main differences are the added 24 grey-level

features and the absence of ‘local’ statistics. The added grey-level features capture a characteristic

missed by the colour features, namely the distribution of the intensity level, and bring increased

performance as demonstrated in chapter 5 and chapter 6. Table 4.3 summarises the 162 used

features. Each group of features is then detailed in the following subsections.

Texture

The texture features are composed of the first and second order statistics of each sub-band of

the Gabor transform. The latter is performed as in [Manjunath and Ma, 1996] on the equalised

intensity channel Iequ. To be self-contained, the construction of the set of Gabor filters is now

summarised. The two-dimensional Fourier transform of the mother Gabor filter G(u, v) can be
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written as follows

G(u, v) = exp−0.5

(

(u − W )2

σ2
u

+
v2

σ2
v

)

, (4.39)

where u and v are the horizontal and vertical frequencies, respectively. The parameter W controls

the central horizontal frequency while the parameters σu and σv control the filter horizontal and

vertical widths, respectively. A set of oriented Gabor filters {Gmn(u, v)}mn can then be obtained

by performing a change of variables on the mother filter

Gmn(u, v) = a−m · G
(

a−mu cos θ + a−mv sin θ,−a−mu sin θ + a−mv cos θ
)

, (4.40)

where θ = nπ/K, K is the total number of orientations, a is a factor larger than one, and n and

m are the orientation and scale indices, respectively. The set of Gabor filters is quite redundant

because the filters overlap. In [Manjunath and Ma, 1996], this redundancy is reduced by choosing

the filters parameters (a, σu, σv, and W ) so that the half-peak magnitude contours of adjacent

filters touch but do not overlap. These parameters are controlled by four meta-parameters: the

upper centre frequency of interest Uh, the lower centre frequency of interest Ul, the number of

orientations K and the number of scales S. The parameters are then given by

a = (Uh/Ul)
− 1

S−1 , (4.41)

σu =
(a − 1)Uh

(a + 1)
√

2 ln 2
, (4.42)

σv = tan
( π

2K

)

(

Uh − 2 ln(σ2
u/Uh)

)

(

2 ln 2 − (2 ln 2)2σ2
u

U2
h

)−0.5

, (4.43)

and W = Uh, n = 0, 1, . . . , K − 1, and m = 0, 1, . . . , S − 1. Additionally, the filters sensitivity to

global intensity changes is eliminated by adding constants to the Gabor filters so that the means

of their real parts are equal to zero.

In this thesis, the parameters actually used are Uh = 0.75 for the upper centre frequency,

Ul = 0.05 for the lower centre frequency, five scales S = 5 and six orientations K = 6. This results

in a total of 30 filters. Then, the image is filtered using these 30 filters, resulting in 30 sub-band

images. The obtained 30 sub-band images are finally summarised to the estimates of the means

and the standard deviations of their squared coefficients. This results in a total of 30 mean and

30 variance estimates.

Colour

The colour features are computed in the HSI colour space. Each pixel in the image is classified into

one of ten colour classes depending on its position in this space. The classes are the achromatic

colours (S = 0) black, grey and white, and the chromatic colours (S > 0) red, orange, yellow,

green, cyan, blue and purple. The equalised intensity is used to classify a pixel into one of the

three achromatic classes. The logarithmic Hue is used to classify a pixel in one of the seven

chromatic classes.

This is similar to the culture colour approach proposed in [Smith and Chang, 1995] and used
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in the duplicate detection system presented in [Qamra et al., 2005]. In this study, pink and brown

are also considered, whereas in our case they are classified as red or orange. Brown and pink have

similar values for the Hue channel as red or orange, but differ in the Intensity and/or Saturation

channels. Operations such as saturation or intensity changes are common in image processing;

they modify the Intensity and the Saturation channels but not the Hue channel. If brown and pink

are considered, red or orange pixels could be transformed into brown or pink pixels, or vice versa.

For this reason, we have decided to include brown and pink within the red and orange classes.

A colour classes histogram is first computed. It gives the proportion of each colour class in the

image. It is normalised such that it sums to one, and comprises 10 values. Channel statistics are

then computed. For each colour class, chromatic or achromatic, mean and variance estimates of

the equalised Intensity channel are computed. On the other hand, mean and variance estimates of

Saturation and logarithmic Hue channels are computed only for the chromatic colour classes. This

results in a total of 24 mean and 24 variance estimates. The shape of the spatial distribution of

each colour class is finally computed. This is achieved by computing two shapes characteristics for

each colour class, namely spreadness and elongation [Hu, 1962; Leu, 1991]. The first characteristic

measures the compactness of the spatial distribution of a colour class. The second gives the

ratio between the shape length and width. Note that even if pixels assigned to a colour form

totally disconnected components, this feature still captures useful information, namely the spatial

distribution of these components. This results in a total of 10 spreadness and 10 elongation

measures.

Grey-Level

The grey-level features are based on the equalised Intensity channel of the HSI model. The dynamic

range of the image is linearly partitioned into eight bins corresponding to as many classes. Each

pixel of the image falls into one of these bins.

The use of grey-level feature is important because the colour features can be unsuited in some

cases. For instance, it can happen when the reference or the test images are grey-level, or when

conversion to grey-level is one of the considered operations in the duplicate detection system.

A grey-level classes histogram is first computed. It gives the proportion of the image’s pixels for

eight intensity ranges. It is normalised such that it sums to one, and comprises 8 values. Similarly

to colour, the shape of the spatial distribution of each grey-level class is finally computed. This

results in a total of 8 spreadness and 8 elongation measures.

4.5 Chapter summary

In this chapter, a framework for image duplicate detection is presented. The duplicate detection

framework first consists in a model of duplicates. This model permits to explore the characteristics

of the subspace spanned by the duplicates of an image; for example it is found that, under certain

assumptions, this subspace is a manifold embedded within the image space. The second element

of the framework is a generic duplicate detection system. Through this generic system, we develop

our view of duplicate detection, namely, the classification of a test image into one of K +1 classes.
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K classes correspond to the K original images known to the system, or in other words “the test

image is a duplicate of one of the known originals,” while the remaining class stands for “the test

image is unrelated to any of the known original images.” Finally, the last element of the framework

concerns the evaluation methodology of a duplicate detection system based on the classification

approach.

In this chapter, an overview of the duplicate detection system proposed in this thesis is given.

The system is composed of four steps: feature extraction, pre-classification, binary detectors and

decision. Feature extraction consists in describing images by means of relevant visual statistics.

The pre-classifier aims at selecting a limited number of originals among the K original images;

an original is selected if the test image is potentially one of its duplicates. The binary detectors

are a set of several binary classifiers; each binary classifier determines the probability that the

test image is a duplicate of the corresponding original image. Note that only the binary classifiers

corresponding to originals selected by the pre-classifier are used. In the last step, the decision

simply consists in selecting the most probable original.

The feature extraction step is entirely described within this chapter while the binary detectors

and the pre-classifier are the objects of the two following chapters.



A Single Original Duplicate

Detection System 5
In this chapter, we detail our approach to image duplicate detection of a single original image.

The approach is partially based on previous works [Maret et al., 2005a, 2006a, 2005b]. The main

idea behind the proposed system is to adapt duplicate detection to a specific original image. The

system is then able to classify test images as duplicates of the original image or as unrelated

images. An overview of the system is first given in section 5.1. The training example, as well as

the performance metric, used to build the detectors are given in section 5.2. Then, the system

is thoroughly described in section 5.3. The system performance and analysis are then detailed in

section 5.4. Finally, possible research directions are proposed in section 5.5.

5.1 System overview

We now present an overview of the proposed single original image duplicate detection system, or

binary detector. The system consists of four steps as shown in figure 5.1, each of them outlined

thereafter. Before going further, notice that the method can be decomposed into two distinct

parts. The first one, consisting of the step shown in the upper part of figure 5.1, is independent

from the original image. Conversely the second one, comprising the steps shown in the lower

part of figure 5.1, depends on the original image; training is therefore needed. The used training

examples and metric are presented in section 5.2 while additional details about step-dependant

training procedures are given, along with the thorough description of each step, in section 5.3.

Feature extraction The goal of the feature extraction step is to map images into a common

space, where comparisons are more efficient. For this purpose global statistics, such as colour

channels and textures, are extracted from the test image. The test image T is first preprocessed

as described in section 4.4.1. Then features are extracted for the preprocessed image. The list of

69
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Figure 5.1: Block diagram for a binary detector. A test image is given to the system, which
determines if it is a duplicate of the original image O for which the detector is built. The method
can be decomposed into two distinct parts: a step that is independent from the original image,
upper part of the figure, and steps that depend on the original image, lower part of the figure).

features is described into more details in section 4.4.2. This second step results in a feature vector

f containing D elements.

Feature projection In the second step, the features are linearly transformed so as to obtain a

better separation between duplicates of the original image and unrelated images. More precisely,

the projected features are given by f̃ = W·f where W is a D×D projection matrix. The projection

can depend on the original image or be common to every original. In the following, W is found

through a simple principal component analysis (PCA) algorithm and is common to every original.

Statistical normalisation In the third step, the elements of f̃ are normalised with respect to the

statistical distribution of the duplicates. Accordingly, this step’s parameterisation depends on the

original image. The goal of this step is to give the same importance to each feature, independently

of their value range. This results in a normalised vector x containing D elements.

Decision function In the last step, a non-linear decision function is used to determine the

probability Pr {T ∼ O} that the test image T, represented by the pattern x, is a duplicate of the

original image O. Clearly, this step is parameterised according to the original image.
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5.2 Remarks on training

As mentioned earlier, the last three steps shown in figure 5.1 need to be parameterised according

to the original image and, consequently, require training. In this section, we present the training

procedure, which is performed in cascade. Firstly, the projection matrix W is computed, and

the projected features are then normalised. And finally, the decision function is trained using the

normalised features.

The remaining of this section is composed of two parts. The first part presents the examples

used to train the system while the second part accounts for the metric used to assess the training

performances.

Training examples

Examples of duplicate images, positive examples, can be generated artificially. Indeed, the original

image can be modified using different operations, resulting in several duplicates. Furthermore, it

is possible to have a richer set of training examples by nesting two or more operations to form a

new operator known as a composition. However, in this thesis we explore a training method that

does not require operations’ composition. This is advantageous because it limits the number of

training examples. Indeed, the number of training examples generated by using composition grows

factorially as the number of nesting levels increases.

In this work, the duplicates are generated by the operations listed in table 5.1. Note that

a single training set is used to create detectors that work well with both Qamra and StirMark

benchmarks, see section 4.3 for more details on the benchmarks. The choice of these particular

training examples is now motivated. We first determine the transformations that, on average,

result in feature vectors farther from that of the original. The order of the transformations, as in

the previous sense, is experimentally found to be as follows

1. rotation and rotation/scaling;

2. JPEG compression and cropping;

3. saturation changes and intensity changes;

4. colourising;

5. aspect ratio changes and downsampling;

6. scaling and shearing;

7. linear transformation and frequency mode Laplacian removal.

We then assign a number of duplicates per transformation proportional to the corresponding

average distance. For instance, more examples corresponding to duplicates generated through

rotations are selected than these generated through scaling. The exact breakdown is, for one-

hundred training examples, as follows: eleven rotations, eleven rotations and scaling, ten JPEG

compression, ten cropping, eight saturation changes, eight intensity changes, six colourising per

channel, five aspect ratio changes, five downsampling, four scaling, four shearing, three linear
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transformations, and three frequency mode Laplacian removal. Finally, the range of each trans-

formation’s parameterisation is evenly sampled. Note that additional care is taken so as to avoid

parameterisations used in the benchmark. For example, ten duplicates should be based on the

JPEG compression. Since the JPEG quality parameter ranges, for the test set StirMark, from 90

down to 10 (by steps of 10 above a quality of 40 and by steps of 5 below this mark), we then choose to

use JPEG-compressed training examples with the following quality factors 98, 88, 78, . . . , 28, 18, 8.

Finally, we added the six duplicates from the following non-parameterisable transformations to the

training set

1. contrast changes (plus and minus);

2. despeckling;

3. colour depth reduction;

4. horizontal flipping;

5. grey-level conversion.

Note that this last transformation, grey-level conversion, is neither part of Qamra nor StirMark

benchmarks. It is however added so that the detectors work well for grey-level test images. It thus

results in the 106 positive examples reported in table 5.1.

Examples of unrelated images, negative examples, can be obtained by using a set of images

that are known to be different from the original image. This set can also be enriched by applying

operations on its elements. In this study, we only consider the grey-level conversion. It permits

to enrich the training set with grey-level images in order to avoid relying too heavily on the

colour features. To construct the set of negative examples, 250 images are selected from the image

collection. It thus results in 500 negative examples.

Finally, it is important to note the optimal choice of the training examples is still an open issue

and is the focus of future research. However, some possible directions are given in section 5.5.

Training metric

The F-score metric is used to assess the detection performance during the training phase. The

F-score is defined as follows [Fawcett, 2003]

F (TP, FP, P) =
TP

P
× TP

TP + FP
, (5.1)

where P is the the total number of positive instances, TP is the number of positive instances

correctly classified, and FP is the number of negative instances wrongly classified. The first term

in the right hand side of equation (5.1) corresponds to the recall. Conversely the second term

represents the precision. F-score balances these two conflicting properties: precision increases

as the number of false positives decreases, and recall decreases as the number of false negatives

diminishes, usually meaning that the number of false positives increases. Equation equation (5.1)
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Table 5.1: Training duplicates. These duplicates have been found to give rise to duplicate detectors
that work well on the Qamra and StirMark benchmarks.

categories ♯ parameterisations

Colourising 18 Tint the red, green, or blue channel from -11% to
+11% by steps of 4%

Contrast changes 2 Increase or decrease the contrasta

Despeckling 1 Apply ImageMagick’s despeckling operation
Downsampling 5 Downsample by 3% to 83% by steps of 20%

Colour depth reduction 1 Reduce the colour palette to 256 colours
Saturation changes 8 Change the values of the saturation channel by -22%

to +22% by steps of 6%
Intensity changes 8 Change the intensity with the same parameters than

for saturation
JPEG compression 10

JPEG compression with quality factors from 8 to 98
by steps of 10

Shearing 4 shearing in (X◦, Y ◦) directions with X and Y varying
from 0◦ to 6◦ by steps of 3◦

Cropping 10 centred cropping from 2% to 94% by steps of 10%
Flipping 1 horizontal flip
Scaling 4 scaling by factors from 0.45 to 0.95 by steps of 0.2

Aspect ratio 5 change aspect ratio of X(Y) by a factor from 0.75 to
1.25 by steps of 0.2

Rotation 11 rotations by angles from 4◦ to 92◦ by steps of 8◦

Rotation/scaling 11 same as above but followed by scaling

Linear transform 3 general linear geometric transformation c′ = Tc b

FMLR 3 frequency mode Laplacian removal attack with
parameters 0.02, 0.04, and 0.06

Grey-level conversion 1

total 106

ausing ImageMagick’s [Still, 2005] default parameter
bsame matrices as for testing but with entries multiplied by 0.99.

can be rewritten as

Fρ

(

p̂FP, p̂FN
)

=
(

1 − p̂FN
)

×
(

1 − p̂FN
)

1 + ρ · p̂FP − p̂FN
, (5.2)

where p̂FP = FP/N and p̂FN = FN/P are the estimated false positives and false negatives error

rates as defined in section 4.3. ρ = N/P gives the ratio between the number of negative and

positive instances. As for equation (5.1), the first term in the right hand side of equation (5.2)

corresponds to the recall, and the second one to the precision. In the rest of the document, we use

the formulation given by equation (5.2). One drawback of this metric lies in the ratio ρ between

the number of negative and positive instances; it has to be known beforehand.

5.3 Binary detector

We now thoroughly describe the proposed single original duplicate detection system. In particular,

the steps presented in the lower part of figure 5.1, namely feature projection, normalisation and

decision function, are detailed along with the training procedures whenever required. On the other
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hand, the step presented in the upper part of figure 5.1, namely feature extraction, has been already

described in section 4.4.

5.3.1 Features projection

The idea behind this step is to project the features into a space that permits to separate well

duplicates and non-duplicates. The transformation could be linear or non-linear and, additionally,

it can be adapted to the original or independent of it. In [Maret et al., 2006a], we use a projection

step adapted to each original, namely ICA-fx [Kwak and Choi, 2003]. ICA-fx is a dimensionality

reduction method based on independent component analysis [Hyvarinen and Oja, 2000], it adds

the class information to the feature vector in order to elect the independent components best suited

to the binary classification problem. Further experiments, run for this thesis, showed that better

results are obtained by simply using a PCA on a large set of images to produce a projection matrix

W common to all detectors.

More precisely, the PCA algorithm projects the features by finding the directions along which

the scatter of the cloud of points is maximised [Duda et al., 2001]. In other words, PCA projections

lead to a good representation of the data. By computing the PCA on features representing various

images, we thus obtain a projection that separates well, in the sense given previously, the images.

For this reason, the PCA is used on images unrelated to the original image in order to find a D×D

projection matrix W common to all detectors. And the projected features are given by

f̃ = W · f . (5.3)

Note that the matrix W depends on the image collection characteristic but is independent from

the original image. For this reason, it can be computed on a very large set of feature vectors, and

the same matrix can be used for every detector.

5.3.2 Normalisation

The goal of normalisation is to ensure that the feature elements are commensurable or, in other

words, that the range of the entries of the feature vectors are comparable. The projected features f̃

are normalised using a statistical normalisation method [Smith and Natsev, 2002]. More precisely,

let µα and σα be the mean and standard deviation estimates of the α-th projected features over

a subset of the training set. More precisely, the training subset consists in the duplicate examples

of the original and, to avoid taking into account outliers, training examples for which any feature

is an extremum over the training set are ignored. The normalised α-th feature xα is then given by

xα =
f̃α − µα

k · σα

, (5.4)

where f̃α is the projected feature given in equation (5.3). By Tchebychev’s theorem, at least a

fraction 1 − 1/k2 of the f̂α are within the interval [−1, 1]. In the following k is set to 3 so that

more than 90% of the features xα are within [−1, 1].
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5.3.3 Decision Function

The decision function needs to determine whether the vector x corresponds to a duplicate of

the original image. This is a binary classification problem, where the two classes correspond to

duplicates and non-duplicates, respectively. The goal is to build, using a limited number of training

examples, a classifier that generalises well to novel patterns. Many classification algorithms can be

used for this purpose. In published works, we showed that support vector classifier (SVC) yields

good performance for the duplicate detection problem. In these works [Maret et al., 2005a,b], the

SVC approach is compared to two particular approaches, namely support vector data description

(SVDD) and orthotope. The SVDD approach [Tax and Duin, 2004] uses a one-class classifier,

similar to SVC, while the orthotope approach [Maret et al., 2005b,c] is an ad hoc method based

on a high-dimensional rectangle that separates duplicates and unrelated images. The performance

of the SVC is found to be superior to those two approaches. Possible reasons are as follows. The

SVDD generates very tight boundaries and, hence, is more prone to over-training. For the same

reason, the SVDD is more sensitive to the chosen training examples than the SVC. On the other

hand, the orthotope approach provides only a very crude approximation and, hence, results in

poorer performance than the SVC. In the following, we only use the SVC-based decision function.

The basic SVC [Burges, 1998; Schoelkopf et al., 2000] is a binary classifier that separates two

classes with a hyperplane. Furthermore, non-linear kernels allow mapping patterns into a space

where they can be better discriminated by a hyperplane. More information about SVC can be

found in figure 2.3.4. In the following we first give a quick overview of the ν-SVC before detailing

the choice of the training procedure.

Overview of ν-SVC

We use the ν-parameterisation [Chen et al., 2005; Schoelkopf et al., 2000] of the SVC, and a radial

basis function as kernel. The dual constrained optimisation problem is given in equation (5.5). In

the dual form, the Lagrangian is maximised by optimising the Lagrangian multipliers αi

max
α

−1

2

m
∑

i,j=1

αiαjyiyj ker(xi,xj), (5.5)

subject to the constraints
∑m

i=1 αiyi = 0,
∑m

i=1 αi ≥ ν, and 0 ≤ αi ≤ 1/m, where m is the number

of training examples, the xi are the training patterns, the yi are corresponding training labels

(−1 for the negative examples and +1 for the positive examples), and ker(·, ·) is a kernel function

satisfying the Mercer’s conditions. In this work, we use a radial basis function (RBF) kernel given

by

ker(xi,xj) = exp
(

−γ · |xi − xj |2
)

. (5.6)

The particular choice of kernel is motivated by several considerations. Not only is the linear SVC

a particular case of the RBF kernel, but also the sigmoid and the RBF kernels behave similarly

for certain choices of parameters [Keerthi and Lin, 2003]. Additionally, the RBF kernel presents

less numerical difficulties than, for instance, the polynomial kernel since the influence of a support

vector decays exponentially with respect to its distance. Finally, the RBF kernel is governed by
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only one parameter instead of two for the polynomial kernel.

The parameters of this classification technique are ν ∈ [0, 1] and γ ∈ R
+. The parameter ν can

be shown to be an upper bound on the fraction of training errors, and a lower bound on that of

support vectors [Chen et al., 2005; Schoelkopf et al., 2000]. The kernel parameter γ controls the

complexity of the decision boundary. The constrained optimisation problem given in equation (5.5)

can be solved by means of standard quadratic programming techniques.

Finally, the decision function indicates to which class the test pattern z belongs. It is given by

f(z) = sgn

(

m
∑

i=1

yiαi ker(z,xi) + b

)

, (5.7)

where the constant b is determined by the support vectors. More precisely, b is given by

b = yk −
m
∑

i=1

yiαi ker(xi,xk), (5.8)

for all xk such that 0 < αk < 1/m. The value f =
∑m

i=1 yiαi ker(z,xi) + b in equation (5.7) is

called the margin, and give the distance to the decision boundary.

A support vector classifier predicts only class label but not the probability of being of that

class. In the following, we briefly describe how the SVC is extended for probability estimates.

More details are in [Platt, 2000; Wu et al., 2004]. Given two classes of data, the goal is to estimate

for any pattern x the posterior probabilities p+1 and p−1, namely

p+1 = Pr {y = +1|x} and p−1 = Pr {y = −1|x} . (5.9)

One way of transforming the SVC output in probability consists in training directly a classifier

using a kernel based on the maximum likelihood. A more appropriate method is proposed by

Platt, where a sigmoid function maps the margins into probability estimates [Platt, 2000]. The

advantage of this technique is that the posterior probabilities Pr {y = +1|x} and Pr {y = −1|x}
are directly obtained and the class conditional probability need not be estimated. The sigmoid is

given by

Pr {y = +1|x} =
1

1 + exp(a · f + b)
, (5.10)

where the parameters a and b are estimated by minimising the negative log-likelihood function

using known training data and their margin values f . Labels and decision values are required to

be independent, so k-fold cross-validation can be used to obtain the decision values [Chang and Lin,

2007].

Basic method to determine the SVC parameters

In the ν-SVC, the kernel parameter γ and the parameter ν are to be determined in order to

minimise the generalisation error. The latter is the error obtained when testing novel patterns,

patterns not used during training, with a trained decision function.

More precisely, we want to minimise the F-score Fρ(p̂FP, p̂FN) where p̂FP and p̂FP are the
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estimated generalisation error for false positives, novel non-duplicates classified as duplicates, p̂FP
is the generalisation error for false negatives, novel duplicates classified as non-duplicates, and

ρ is the ratio between the number of novel non-duplicates and duplicates. In the considered

applications, there are usually many more non-duplicates than duplicates so that ρ ≫ 1. Nevertheless,

ρ remains a priori unknown. Moreover, p̂FP and p̂FN are also unknown and need to be estimated.

Cross-validation is a popular technique for estimating generalisation errors. In k-fold cross-

validation, the training patterns are randomly split into k mutually exclusive subsets (the folds)

of approximately equal size. The SVC decision function is obtained by training on k − 1 of the

subsets, and is then tested on the remaining subset. This procedure is repeated k times, with

each subset used for testing once. Averaging the test error over the k trials gives an estimate of

the expected generalisation error. This method has been shown to yield a good estimation of the

generalisation error [Duan et al., 2003].

In the following, we use a normalised version of the radial basis function kernel where γ in

equation (5.6) is replaced by γ/κ. The normalisation constant κ is set to the second decile of the

distribution of the intra-duplicate distances within the training set. It ensures that the optimal

value of γ is around one with high probability.

While ν has an intuitive signification, it is not clear what its optimal value is [Chen et al.,

2005; Steinwart, 2003]. It was shown that twice R̄, a close upper bound on the expected optimal

Bayes risk, is an asymptotically good estimate [Steinwart, 2003]. While no such bound can

be easily determined a priori, this theorem induces an algorithm to find a good ν by starting

with the classification error of a well-trained classifier as an approximation of the optimal Bayes

risk [Steinwart, 2003].

In this thesis, a good a priori approximation of the optimal Bayes risk is unfortunately

unavailable. Consequently, good parameters for γ and ν are estimated through a full grid search.

The procedure is divided in two steps, namely coarse and fine grid searches. In each step, a tenfold

cross-validation is carried out for each feasible pairs (ν, γ). The pair for which the estimated F-score

is the highest is then chosen. The tried pairs are as follows.

• Coarse search: (γ, ν) for ν = 0.1 · k − 0.05, k = 1, ..., 10 and γ = 5 · 10k, k = −3, . . . , 3.

• Fine search: (γ, ν) for ν = ν1 + 0.01 · k, k = −5, . . . , +5 and γ = 0.2 · σ1 · k, k = 1, . . . , +10.

Here, ν1 and γ1 denote the value determined in the first step.

Extended method to determine the SVC parameters

The major challenge behind finding the correct training parameters of the ν-SVC for duplicate

detection is twofold. Firstly, overtraining is to be avoided. In other words, novel duplicates should

be well classified by the system. Secondly, the decision boundary needs to encompass a volume as

small as possible. In other words, the probability that a randomly chosen image falls within the

boundary is to be as low as possible.

Now, the method given previously, in the subsection “basic method to determine the SVC

parameters,” works well in general but is not entirely suited to the duplicate detection problem.

Indeed, there is quite a high probability that the chosen negative examples lie, on average, far
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from the duplicate region. In other words, the resulting decision boundary will encompass a larger

volume than necessary. Additionally, we want the detection system to be able to detect a large

range of duplicate that include, possibly, nested transformations, for examples a change in contrast

followed by a low quality JPEG compression.

To take the above particularities into account, we proceed as follows. Recall that the positive

training examples consists in the 106 patterns, given in table 5.1, and the negative training examples

in 500 patterns. We, first, select the 106 negative examples that are nearer to the duplicate. To

achieve this, a hyper-sphere covering all positives examples is computed [Elzinga and Hearn, 1972].

The hyper-sphere is parameterised by its centre and radius. Subsequently, the hyper-sphere sphere

can be used to select negative training examples. More precisely, the 106 patterns closer to the

hyper-sphere centre are kept while the others are discarded. Training of the SVC is then only

performed on these 106 positive and 106 negative patterns.

The second step consists in generating synthetic patterns used to, on the one hand, minimise

the volume enclosed by the decision boundary and, on the other hand, maximise the generalisation

on novel duplicate images. More precisely, 394 synthetic negative examples are generated as

random elements evenly distributed within the hyper-sphere [Tax and Duin, 2001]. By minimising

the number of these examples falling within the decision boundary, one indirectly minimise the

corresponding enclosed volume. Similarly, 394 synthetic positive examples are generated using

linear interpolations of the real positive examples [Chawla et al., 2002]. More precisely, the nearest

neighbours of a pattern are linearly mixed, with random positive weights, to produce a synthetic

pattern. By maximising the number of these examples falling within the decision boundary, one

insures that the detector is not over-training since it works for examples that are slightly different

than that used to train the classifier.

Finally, good SVC parameters are found using the same grid search than for the method

given previously, in the subsection “basic method to determine the SVC parameters,” but with

the following modifications. The k-fold cross-validation is performed on the 212 real patterns

and results in estimates for p̂cv

FP and p̂cv

FN for each point on the grid. These estimates are then

corrected as follows. First, a classifier is trained using the parameter corresponding to the current

grid point and the 212 real patterns. Then, it is used to classify the 792 synthetic patterns and the

classification errors are accounted for. It results in two new estimates p̂synth

FP and p̂synth

FN . Finally,

the error estimates used to compute the F-score at the corresponding grid point are given by

p̂FP = λ · p̂cv

FP + (1 − λ) · p̂synth

FP , (5.11)

p̂FN = λ · p̂cv

FN + (1 − λ) · p̂synth

FN
, (5.12)

where λ is a constant giving more weight to the cross-validation estimates or to the synthetic

estimates. In the following, we use λ = 106/392 which is simply the ratio between the number of

real and that of synthetic examples.
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5.4 Results

In this section, we present experimental results in order to evaluate the performance of the proposed

single original image duplicate detector. The fist experiment, presented in section 5.4.1, compares

the performance of the proposed duplicate detection system with system based on standard metrics,

in this case L1 and L2. The second experiment, described in section 5.4.2, explores the influence

of the F-score parameterisation. The third experiment, depicted in section 5.4.3, analyses the

performances of the individual detector. The fourth experiment, accounted for in section 5.4.4,

presents the storage space and the computational resource required by the proposed duplicate

detection system. The final experiments, described in section 5.4.5, analyses the proposed system’s

performance with respect to two other state of the art methods.

5.4.1 Baseline

In this first experiment, we compare the performance of the proposed system with that of simpler

methods. These systems are based on the standard L1 and L2 metrics. The goal of this test is to

analyse the performance improvements by using complex boundary decisions instead of ellipsoids

(L2) or union of hyper-planes (L1).

Baseline — Ln-based duplicate detection systems

These methods are based on computing the distance between the normalised feature vector of the

original image and that of unknown image. More precisely, the feature vectors are normalised as

presented in section 5.3.2 but using mean and variance vectors computed on the entire image

collection. The distances, based on the L1 and L2 metrics, are then computed between the

normalised feature vector of the original image and those corresponding to the test images. More

specifically, the distance d between two vectors x and y is given by n

√

∑

α |xα − yα|n, where n = 1

for L1 and n = 2 for L2. The resulting distances are then converted in the [0, 1] range as follows

d̃ = e−d. (5.13)

The d̃ take values close to one for test images whose features are similar to that of the original

image. Conversely they take values near zero for test images dissimilar to the original. This

mapping permits to compute the DET curves using the same algorithm than for probabilities.

Note that the function mapping d to d̃ is not so important. Indeed, as long as it is strictly

monotically decreasing, from one to zero, it results in the same DET curve.

Baseline — experimental setup

We now compare the proposed SVC-based system to systems using distances based on the L1 and

L2 metrics. For this purposes, the system is parameterised as follows. The ratio between unrelated

and duplicate examples, for computing the F-score, is set to ρ = 104. Additionally, two-hundred

original images are used to create two-hundred independent duplicate detectors, as described in

section 5.3. Test images, corresponding to duplicate and unrelated images, are then feed to each
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duplicate detector. This procedure generates a single DET curve per original image. The resulting

two-hundred curves are then synthesised into a single curve by using vertical averaging, refer to

section 4.3.2 for more information. L1,2-based systems go through the same procedure, using the

same original and test images, and their performance is similarly synthesised into two DET curve.

The performance is evaluated on two different image collections, MM270k — commercial image

collection [Ke et al., 2004] — (MM270k) and CGFA — virtual museum [Ke et al., 2004] — (CGFA),

which are described in more detail in section 4.3. The first collection contains 18 785 photographs

while the second collections contains photographs of 9000 artworks (paintings and drawings). Then,

two benchmarks, extensively described in section 4.3, are used to test each collection. They contain

the same unrelated images but differ in the duplicates’ generation. The first benchmark, Qamra

benchmark (Qamra), contains transformations mainly based on colour modifications. On the other

hand, the second test set, StirMark benchmark version 3.1 (StirMark), contains transformation

mainly based on geometric modifications.

Baseline — MM270k image collection

Figure 5.2 shows the performance of the L1,2-based system compared to that of the proposed

system for the image collection MM270k and the two benchmarks. For Qamra benchmark, the

proposed system displays about a factor two of improvements in terms of false negatives (FNs)

error rates for a fixed false positives (FPs) error rate of 10−4 as shown in figure 5.2c. On the

other hand, when using more difficult transformations, StirMark, the proposed system achieves

better than five times less false negatives for a false positives rate of 10−4 as shown in figure 5.2d.

Finally, figure 5.2a shows the performance when the test set contains the duplicates generated by

both Qamra and StirMark. It can be observed that the system perform almost twice as good as

L1 when no false positive is detected. Additionally, figure 5.2b depicts the improvement, in term

of false negatives decrease, of the proposed system with respect to its L1 counterpart. Note that

the improvement brought by the proposed duplicate detection system is always above 70%.

Baseline — CGFA image collection

A similar trend can be observed for the more difficult, yet smaller, CGFA image collection, as

depicted in figure 5.3. We consider the CGFA image collection more difficult than the MM270k

image collection because, one, CGFA contains only paintings and, two, the same painter is often

present with more than a work. Contrarily to our expectation, the detection of duplicates performs

better on the CGFA collection than on the MM270k collection. The reason is that the MM270k

image collection contains many photographs of the same scene but taken from a slightly different

location or at a somewhat different time [Ke et al., 2004]. This is illustrated in figure 5.7 and

detailed explanation are given in section 5.4.3.

Baseline — L1 versus L2

Finally, figure 5.2 and figure 5.3 both show that the L1 metric always performs much better than

the L2 metric. While this phenomenon is not related to the proposed duplicate detection system,

it deserves some explanations. This results was already observed in the context of image retrieval,
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(a) Test set A — include the 128 duplicates generated
by both Qamra and StirMark benchmarks. The false
negatives error rates are, for no false positive error,
0.043, 0.081 and 0.117 for the SVC, L1 and L2 based
systems, respectively.
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(b) FNs rate decreases w.r.t to L1 for test set A

false positives rate

fa
ls
e

n
eg

a
ti
v
es

ra
te

vertically averaged DET curve (over 200 DET curves)

SVC-based

L1

L2

10−5 10−4 10−3 10−2 10−1 100

0

0.01

0.02

0.03

0.04

0.05

(c) Qamra— include only the 40 duplicates generated
by Qamra benchmark benchmark. The FNs error rates
are, for no false positive error, 0.041, 0.053 and 0.078
for the SVC, L1 and L2 based systems, respectively.
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(d) StirMark — include only the 88 duplicates
generated by StirMark benchmark version 3.1
benchmark. The FNs error rates are, for no false
positive error, 0.044, 0.094 and 0.135 for the SVC, L1

and L2 based systems, respectively.

Figure 5.2: Baselines for the collection MM270k (18 835 images). This figure shows the
performances that the SVC, L1 and L2 duplicate detection systems obtain for the collection
MM270k. The vertical lines represent five specific working points: one to five false positives
are detected, respectively. Additionally, the working points corresponding to no recorded false
positives are given in the sub-captions, instead of the figure, for the three systems.

for example see [Russell and Sinha, 2002]. Russell and Sinha simply concluded that the L1 metric

better captures the features of the human visual system. In the context of duplicate detection,

however, a possible reason is as follows. First, notice that if the difference between xα and yα

is below one, elevating the difference to the square results in a smaller value. And conversely, if

the difference is above one, the difference to the square results in a larger value. Consequently, if

the vector x and y represent duplicates, it suffices that a single entry α be much larger than one
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(a) Test set A — include the 128 duplicates generated
by both Qamra and StirMark benchmarks. The false
negatives error rates are, for no false positive error,
0.011, 0.043 and 0.086 for the SVC, L1 and L2 based
systems, respectively.
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(b) FNs rate decreases w.r.t to L1 for test set A
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(c) Qamra— include only the 40 duplicates generated
by Qamra benchmark benchmark. The FNs error rates
are, for no false positive error, 0.006, 0.009 and 0.032
for the SVC, L1 and L2 based systems, respectively.
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(d) StirMark — include only the 88 duplicates
generated by StirMark benchmark version 3.1
benchmark. The FNs error rates are, for no false
positive error, 0.014, 0.060 and 0.112 for the SVC, L1

and L2 based systems, respectively.

Figure 5.3: Baselines for the collection CGFA (9600 images). This figure shows the performances
that the SVC, L1 and L2 duplicate detection systems obtain for the collection CGFA. The vertical
lines represent five specific working points: one to five false positives are detected, respectively.
Additionally, the working points corresponding to no recorded false positives are given in the
sub-captions, instead of the figure, for the three systems.

to obtain quite a large distance. Figure 5.4 shows the histogram of the differences, on all entries

and for the 128 duplicates generated by the Qamra and StirMark benchmarks. While more than

90% of the differences are smaller than one, about 10% are outside this interval and very small

percentage of the differences are quite large. In other words, 10% of the differences are somewhat

arbitrary amplified while 90% of them are made smaller. On the other hand, this phenomenon

does not occurs for the L1 metric. This theory is also supported by the good performance obtained

by DPF, see section 3.3.1 and section 5.4.5, where entries corresponding to larger differences are
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Figure 5.4: Difference histogram. This figure shows the histogram of the differences between
the entries of vectors, corresponding to the features of duplicates, and the entries of the vector
corresponding to the original.

not used to compute the distance. In short, the L1 metric is more robust to outliers than the L2

metric. This is a well-know result in other fields such as estimation theory.

Baseline — conclusions

These results show that the proposed system is interesting when difficult transformations are

considered. Moreover, notice that the performances of the L1 metric deteriorates rapidly as the

working point moves to smaller false positives rates. This result is of particular importance because

we argue that, depending on the application, the working point of a real-world duplicate detection

system would be in the magnitude of the 10−6, or even 10−7, as million of images are to be checked.

In this case, the proposed system is clearly a better choice. However, the scalability of the proposed

system cannot be proven without further tests, which are part of the future works.

5.4.2 Influence of the F-score metric parameterisation

In this second experiment, we explore the effect of possible parameterisations of the F-score metric

Fρ(·). The value ρ gives the ratio between the number of expected non-duplicate instances and

that of expected duplicate instances. In the considered applications, these numbers can hardly be

determined a priori. However, we can safely assume that ρ is much larger than one because there

are many more non-duplicates than duplicates.

The experiment is carried out only on the MM270k image collection and both Qamra and

StirMark benchmarks are used. Figure 5.5a shows the DET curve for ρ = {100, 103, 105}. Additionally,

figure 5.5b depicts the FNs rates decrease brought by using ρ =
{

105, 103
}

instead of ρ = 100.

Note that the peaky nature of the curves above 10−3 FPs error rates is due to the low values of the

FNs error rates and also to the relatively small differences between the three curves in figure 5.5a.

Globally, different values of ρ influence only slightly on the results, namely the absolute
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Figure 5.5: Influence of the F-score parameterisation. This figures depicts the influence of the
F-score parameterisation. Different values of ρ, giving the ratio between the number of expected
non-duplicate instances and that of expected duplicate instances, are used.

differences are less than 0.2% as shown in figure 5.5a. In the case of this particular test, set the

correct value of ρ would be 160 = (18 835− 1)/118 because each detector is tested with 18 835− 1

unrelated images and 118 duplicates. However, high ρ values favour classifiers with very low false

positives error rates while keeping reasonable false negatives error rates. Indeed, higher values

of ρ signify that false positives errors are more penalised during the cross-validation procedure.

This means that the larger ρ, the smaller the volume enclosed by the decision boundary becomes.

Consequently, the probability that a negative example falls within this boundary is made smaller.

All in all, the influence of the F-score parameterisation is thus quite low. This is a positive fact

because it means that even if the a priori estimate of ρ is quite off, the performance hit suffered by

the system will not be very important. In the following, we choose to use an intermediate value for

ρ, namely ρ = 104. With this choice, much larger that the correct value 160, the idea is to improve

the performance for low false positives rates. Of course, it remains to be seen if this allegation

holds true for very low FPs error rates, which necessitates further experimentations with much

larger test sets.

5.4.3 Distribution of the false negatives error rates for no false positive

error

We now analyse the distribution of the DET curves before vertical averaging. To achieve this,

a specific working point is selected on the DET curves. More precisely, the FNs error rates are

recorded when no false positive error is achieved by the detectors. As before, the experiments are

carried out on the MM270k and CGFA image collections. The benchmark used is the largest one,

namely both Qamra and StirMark are used to generate the duplicates.
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Figure 5.6: FNs error rates distribution for MM270k image collection. This figure depicts the FNs
error rates distribution of the individual 200 detectors for no false positive error.

Distribution of the false negatives error rates — MM270k image collection

Figure 5.6 shows the FNs error rates histogram for no false positive error on the MM270k image

collection and the Qamra and StirMark benchmarks. Additionally, similar histograms are given

for the systems based on the L1 and L2 metrics. For example, figure 5.6a indicates that over

ninety percent of the SVC-based detectors have FNs error rates around 0%, and five percent of

the detectors have FNs error rates of 30% or above.

The ten detectors that have FNs error rates above 30% correspond to originals for which near-

duplicates exist in the image collection, as already mentioned in section 5.4.1. This is illustrated

in figure 5.7. Finally, figure 5.6b gives a more precise idea of the FNs error rates distribution.

Indeed, about thirty percent of the SVC-based detectors achieves no false negative, or in other

words no error at all, and about thirty-five percent reaches false negatives error rates around 1%.

This signifies that the number of perfect detectors is six times higher for the SVC-based system

than for the L1-based system.

Distribution of the false negatives error rates — CGFA image collection

Figure 5.8 shows the FNs error rates histograms for no false positive error on the CGFA image

collection and the Qamra and StirMark benchmarks. For example, figure 5.8a indicates that over

ninety-four of the SVC-based detectors have FNs error rates around 0%, and no detector have FNs

error rates of 30% or above.

The performance obtained with the CGFA collection contrasts with the results obtained for

the MM270k collection and indicates that the CGFA collection does not contain duplicates or

near-duplicates. This is quite significant as the results’ analysis is thus not blurred by them. For

instance, the examinations of the number of perfect detectors based on the L1 metric shows that

the CGFA collection is more difficult than the MM270k collection. Indeed, while there are about

five percent of perfect detectors based on the L1 metric for the MM270k collection, there are
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Figure 5.7: Near-duplicate in MM270k. This figure shows that the MM270k image collection
contains many near-duplicate, photographs from the same scene taken at different locations and at
different time. The first column on the left depicts ten images for which duplicate detectors have
been trained. The remaining columns shows the images, taken from the MM270k collection, that
the detectors find most likely to be duplicates of the respective original images.
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Figure 5.8: FNs error rates distribution for CGFA image collection. This figure depicts the FNs
error rates distribution of the individual 200 detectors for no false positive error.

less than two percent of them for the CGFA collection. Additionally, the same observation can

be made for detectors having FNs error rates around 1%. On the other hand, the percentage of

perfect detectors based on the SVC is higher for the CGFA collection than for the MM270k. This

result clearly demonstrates the adaptability of the proposed duplicate detection approach.

Now, the six duplicate detectors that give the highest FNs error rates for no false positive

error are shown in figure 5.9. On a total of six, three detectors corresponds to grey-level original

images while the other three are for colour images. Concerning the latter, it can be observed that

the unrelated image with the highest probability of being a duplicate is very similar in terms of

colour, tone, and contents. This is quite as expected since the features, describing the images,

are based on the colour and on the texture contents. This also suggests that, depending on the

desired performance, more sophisticated features are necessary. More on this topic is developed in

section 5.5. Additionally, this highlights a typical limitation of content-based duplicate detection

systems, whose performance are indeed bounded by the features used to describe the images as

already pointed out in section 3.2.

We now turn our attention to the duplicates that correspond, for the same six detectors, to low

detection probabilities. For the grey-level images, they are mainly of two types, namely colourising

and downsampling to very low resolutions. On the other hand, the transformations corresponding

to low detection probabilities on colour images are more varied. They include, for example, very

low quality JPEG compression, extreme cropping, or downsampling to very low resolutions.

5.4.4 Requirements on storage and computational effort

The proposed duplicate detection method requirements are now analysed in terms of storage space

and computational effort.

A number of parameters are needed to compare a test image to a given original. Namely,

they are the PCA projection matrix, the normalisation constants, and the support vectors of the

decision functions. In the following, we refer to the aforementioned elements as the description of
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(a) generated duplicates: p = 0.17, 0.17, 0.17, 0.39, unrelated images: p = 0.98, 0.93, 0.9, 0.83

(b) generated duplicates: p = 0.24, 0.25, 0.41, 0.60, unrelated images: p = 0.99, 0.94, 0.86, 0.82

(c) generated duplicates: p = 0.70, 0.81, 0.83, 0.83, unrelated images: p = 0.99, 0.57, 0.47, 0.46

(d) generated duplicates: p = 0.58, 0.81, 0.82, 0.94, unrelated images: p = 0.97, 0.96, 0.95, 0.93

(e) generated duplicates: p = 0.42, 0.66, 0.76, 0.85, unrelated images: p = 0.98, 0.96, 0.91, 0.87

(f) generated duplicates: p = 0.31, 0.33, 0.40, 0.40, unrelated images: p = 0.85, 0.73, 0.67, 0.62

Figure 5.9: Worst detectors for the CGFA collection. This figure shows the six duplicate detectors
that give the highest FNs rates for zero false positive. For each sub-figure, the leftmost image
corresponds the original, the top row represents the duplicates that obtained the lowest detection
probabilities while the bottom row gives the unrelated images that achieved the highest detection
probabilities.
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Table 5.2: Storage requirements estimation and average running time for testing.

name size, B

PCA projection matrix 162 · 162 · 2 = 52 488
normalisation constants 2 · 162 · 2 = 648
SVC, support vectors xi 162 · 130 · 2 = 21 060
SVC, yiαi 162 · 2 = 324
total 74 520 ≤ 75 kB

(a) Storage requirements estimation. Real number
are coded on 16 bits (two bytes). In our experiments,
the average number of support vectors is found to be
about 130.

original image name time, s

independent
preprocessing 0.1
feature extraction 0.5∗

dependent

PCA projection 10 × 10−6

normalisation 60 × 10−6

decision function 50 × 10−6

(b) Average running time for testing. The experiments
were carried out on a PC with a 2.8GHz processor and
2Go of memory.

the original image. The storage requirements are detailed in table 5.3a. On average, about 75 kB

are needed to store each description. In other words, one megabyte can held, on average, up to

fourteen descriptions. This is a negligible amount of memory for today’s computers.

Another important aspect is that of computational complexity of the method. The proposed

method requires training for each original image. The training is computationally complex and

it can, indeed, take up to ten minutes to train a detector on a PC with a 2.8GHz processor and

2Go of memory. Feature extraction from the synthetic duplicate examples and cross-validation to

find good parameters of the SVC are the most complex parts of the training, and together take

up to ninety percent of the running time. Since training can be done off-line, its computational

complexity is less critical than that of testing.

The computational complexity of testing is estimated in table 5.3b. Note that except for

the SVC part, the method is implemented in Matlab without any optimisation. This incurs longer

running time. For instance, the feature extraction could be reduced to, at least, 0.1 seconds [Qamra et al.,

2005]. In the discussion that follows, we assume an optimised feature extraction step. The

preprocessing and feature extraction steps are independent of the original image, and take about

0.2 seconds. On the other hand, the remaining steps depend on the original image, they take about

0.1 × 10−3 seconds per detector.

Let us consider the following scenario. A company is checking images circulating on the Internet

to see whether they contain duplicates of original images for which it holds copyright. In this

scenario, the company has to test an image with different detectors. When the number of owned

original images is less than 200, most of the testing time is spent on preprocessing and extracting

features from the test images. In that case, up to five test images can be processed per second

and per computer. For a larger number of original images, most of the testing time is spent on

the original image dependent steps. The number of test images that can be processed per second

decreases linearly as the number of original images grows. Chapter 6 concentrates on pruning the

original images, in order to avoid testing them all. That is, only the original images for which the

test image can be potentially a duplicate are selected. Such methods can reduce the testing time,

and have been applied with success in [Ke et al., 2004; Qamra et al., 2005].
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5.4.5 Comparison with existing duplicate detection methods

We now compare the performance of the proposed method with that of existing duplicate detection

systems. The choice of these systems is not easy since, as remarked in chapter 3, no standardised

benchmark exists and the testing methodology is often not clearly given. For this reason, systems

for which the set is clearly defined are chosen, namely [Ke et al., 2004] and [Qamra et al., 2005].

By clearly, we mean that either the image collection is given, or that the transformations used to

define the duplicates are given, together with their parameters. For instance, Ke et al. made their

image collections available, namely MM270k and CGFA, and use the transformations proposed in

Qamra et al., namely Qamra. Unfortunately, none of these two publications give results for the

StirMark benchmark and, consequently, comparisons are only for the Qamra benchmark.

Comparison — from precision versus recall to FPs error rates versus FNs error rates

Both [Qamra et al., 2005] and [Ke et al., 2004] methods are set in the image retrieval framework

and, therefore, give their result in terms of precision versus recall measurements. It is, however,

possible to translate a precision-recall curve into a DET curve. Indeed, the first term in the right-

hand side of equation (5.1) is equal to the recall, and permits to trivially compute the FNs error

rate. Similarly, since the second term in the right-hand side of equation (5.1) is equal to the

precision, it is also straightforward to determine the false positives rate given the ratio ρ and the

previously computed false negatives rate.

Accordingly, the DET curve for the DPF method is obtained by inspecting the precision-recall

curve reported in figure 5 of [Qamra et al., 2005] and using ρ = 40 000/40. However, Qamra et al.

do not use the same image collection. Consequently, they are not subject to the near-duplicate

problem encountered for the MM270k collection, as detailed in section 5.4.3. This means that their

estimated performance are somewhat inflated for this particular collection.

Similarly, the point for KPs method is computed using the information reported in Table 1 and

Table 2 of [Ke et al., 2004] and ρ = 18 722/40 for the MM270k collection and ρ = 12 000/40 for the

CGFA collection. Note that strangely enough Ke et al. do not give performance for the MM270k

collection and the Qamra benchmark. They, however, give a result for this collection and another,

non-standard, benchmark. From this, one can deduce the false positives error rate obtained on

the MM270k collection. On their system, the number of false positives actually depends only on

the threshold on the number of matching key points, which is the same for the two experiments.

Finally, the false negatives error rate is approximated from the results obtained for the CGFA

collection on the Qamra benchmark. Note that this likely inflates their performance since their

system performs much better on the CGFA benchmark than on the MM270k one.

Comparison — results and analyse

Figure 5.10 compares the performance of the proposed duplicate detection system with state of

the arts techniques reported in [Ke et al., 2004; Qamra et al., 2005]. The black line corresponds

to the vertically averaged DET curve obtained with our system. The light grey line represents

the estimated performance of a duplicate detection method based on perceptual distance function
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(b) CGFA collection. The FNs error rates are, for no
false positive error, as follows: 1 for Qamra, 6 × 10−3

for the proposed system, and 1.5 × 10−3 for KPs.

Figure 5.10: Comparison with state of the art methods. The proposed system is compared with
two state of the art system, namely KPs [Ke et al., 2004] and DPF [Qamra et al., 2005]. The test
are carried out on two different image collections, MM270k and CGFA, and the Qamra benchmark
is used to generate the test duplicates. To keep a point of comparison, the performance of the L1

system is also given.

(DPF) [Qamra et al., 2005]. The cross indicates the performance of a duplicate detection system

based on key points (KPs) [Ke et al., 2004].

It can be seen that the proposed method achieves quite a good performance. For instance, on

the CGFA collection, an average FNs error rate of 1 × 10−3 corresponds to a fixed false positive

error rate of 1 × 10−3. On the other hand, on the MM270k collection, an average FNs error rate

of 2 × 10−3 corresponds to a fixed false positive error rate of 2 × 10−3. This is not as good than

on the CGFA collection because the MM270k collection contains near-duplicate as explained in

section 5.4.3.

Now, comparing the performance of the DPF method with that of the proposed system two

things can be observed. First, the DPF method achieves no FN error for false positives error rates

above 1 × 10−3. However, once below that point the performance degrades extremely rapidly.

Recall that the DPF method consists in a metric where only the most similar entries in two vectors

are used to computer the distance between them. While this improves the chance that duplicates

are closer to the original, it similarly increases the probability that unrelated images become closer.

This explains the sudden FNs error rates increase when the FPs error rates go below 1 × 10−3.

Second, while DPF performs somewhat better than the proposed system for false positive error

rates above 1 × 10−3, it is clearly outclassed below that threshold. Moreover, it should be noted

that the features used in the current work are mainly a subset of those used in DPF: we use 162

features against 298 in the latter study, refer to section 4.4.2 for more details. This signifies that

adapting the metric to each original image, as done in this thesis, brings tremendous increases in

performance for the same image description.

On the other hand, the proposed method is outperformed by KPs. Indeed, on the CGFA

collection, KPs achieves a FNs error rate of 1.5 × 10−3 for no false positive error. On the other



92 Chapter 5. A Single Original Duplicate Detection System

hand, the proposed method reaches, for the same test set, a false negatives error rate of 6 × 10−3

for also no false positive error. Additionally, the performance gap is slightly larger for the MM270k

collection but these results are less significant since they are extrapolated for the KPs method and

possibly the estimated performance of KPs is inflated. A possible explanation is as follows. In our

method, most of the wrongly classified duplicates, false negatives errors, correspond to duplicates

for which the illumination, or the intensity, has been changed to a great extent. The KPs method

uses features invariant to this change but computationally more complex to extract, namely salient

points [Lowe, 2004] and refer to section 2.1.4 and section 3.3.1 for more and information. Indeed,

the feature extraction time of KPs is, depending on the image, between one and ten seconds per

image [Ke et al., 2004; Qamra et al., 2005]. This is between five to fifty times, again depending on

the image, slower than that for the proposed method. The fact that the extraction of key points

is slower than the extraction of features, as used in the proposed system, can be of paramount

importance for applications where many images have to be tested per seconds. Indeed, the proposed

system require between five and fifty less computational resources. It would be interesting to

build a duplicate detection system based on a fast and approximated version of Lowe method.

For example Grabner et al. achieves a speedup in the order of eight to ten with respect to the

original [Grabner et al., 2006]. Their approximation is based on the very successful integral image

algorithm [Crow, 1984; Viola and Jones, 2001]. However, since the approximation is quite severe

it means that the resulting duplicate detector could perform quite poorly.

5.5 Exploratory works

In this section, we present possible research directions related to the topic of this chapter. Most

of the proposal concerns performance improvement. Additionally, results are given whenever

preliminary experiments have been run.

5.5.1 Optimal training examples

The choice of the training examples is an important topic that is not fully treated in this thesis.

In this section we carry out an experiment, namely almost doubling the number of duplicate

examples by more finely sampling the parameterisable transformations. The resulting duplicate

training examples are given in table 5.3. Compare this with the examples given previously in

table 5.1. This new training set contains 200 duplicates instead of 106 previously.

Figure 5.11 shows the performance for the previous training set, and that of the new one.

Additionally, Figure 5.11b demonstrates that using the new training examples decreases by more

than fifty percent the FNs error rates across the entire range of FPs error rates.

This preliminary experiment opens a very interesting research direction for duplicate detection,

namely that of selecting the optimal set training examples. A possible solution stems from

considering the duplicate model developed in section 4.1. Indeed, good training examples should

specify as much as possible the subspace spanned by the duplicates. Consequently, a good training

set is one that samples as evenly as possible this subspace. An explicit formulation for this sampling

is certainly very difficult since the subspace is, in the simplest case, a manifold. However, a first
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Table 5.3: New duplicates examples for training. This training set is the same than the one given
in table 5.1 but the parameterisable transformations are more finely sampled. It contains 200
duplicates instead of 116 previously.

categories ♯ parameterisations

Colourising 36 Tint the red, green, or blue channel from -11% to
+11% by steps of 2%

Contrast changes 2 Increase or decrease the contrasta

Despeckling 1 Apply ImageMagick’s despeckling operation
Downsampling 10 Downsample by 3% to 93% by steps of 10%

Colour depth reduction 1 Reduce the colour palette to 256 colours
Saturation changes 15 Change the values of the saturation channel by -22%

to +22% by steps of 3%
Intensity changes 15 Change the intensity with the same parameters than

for saturation
JPEG compression 19

JPEG compression with quality factors from 8 to 98
by steps of 5

Shearing 9 shearing in (X, Y) directions with X and Y varying
from 0 to 6 by steps of 2

Cropping 19 centred cropping from 2% to 94% by steps of 5%
Flipping 1 horizontal flip
Scaling 8 scaling by factors from 0.45 to 0.95 by steps of 0.1

Aspect ratio 10 change aspect ratio of X(Y) by a factor from 0.75 to
1.25 by steps of 0.1

Rotation 22 rotations by angles from 4◦ to 92◦ by steps of 4◦

Rotation/scaling 22 same as above but followed by scaling

Linear transform 6 general linear geometric transformation c′ = Tc b

FMLR 3 frequency mode Laplacian removal attack with
parameters 0.02, 0.04, and 0.06

Grey-level conversion 1

total 200

ausing ImageMagick’s [Still, 2005] default parameter
bsame matrices as for testing but with entries multiplied by 0.99 and 1.01.

approach can be to evenly sample the curve defined by a single transformation. This is much easier

since the length of the curve can be easily approximated. Then another question is how to proceed

when a transformation is controlled by more than a single parameter? Finally, another interesting

question is whether the optimal training set depends on the image or if a single set, adequate for

most original images, can be determined.

5.5.2 Combining classifiers

This proposal is based on the results displayed in figure 5.9. It can be observed that in some cases

the unrelated images, assigned high probabilities by the detector, possess similar tones and colour

than the corresponding original but in different quantities. Ideally this should not happen because

all the necessary information is present in the features describing the images. However, the SVC

does not capture this fact. This, most probably, happens because of the limited number of training

examples, for instance, absence of unrelated training images behaving as mentioned above.

A possible way of improving this flaw is to incorporate more training examples. Another
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Figure 5.11: Performance improvement brought by more training examples. The training previous
training examples are given in table 5.1 and the new training examples are given in table 5.3.

possible solution is to create another classifier, one that just takes into account the quantity of

each colour in an image. We tried this approach, and extracted from the feature vectors, the entries

that represent the quantity of each colour and grey-level contained within the image. Using the

exact same procedure than for the entire features vector, a duplicate detector is so created. Alone,

this duplicate detector performs quite poorly. When combined with the detector using the entire

vector, however, the performance is greatly improved. To illustrate this point, lets consider the

performance obtained for the MM270k image collection and for duplicates generated by the Qamra

and StirMark benchmarks. They are depicted in figure 5.12. Both detectors output a detection

probability, which are combined as follows

pc = 1 −
√

(1 − p1)2 + w · (1 − p2)2√
1 + w

, (5.14)

where p1,2 are the probabilities given by the single detectors and w is a positive number used

to gives more weights to one of the detectors. Note that this combination is in fact inversely

proportional to the distance to the point (1, 1). In the experiments, w = 1/2, p1 corresponds to

the detector using all features while p2 is for the simpler detector. The particular choice of w was

motivated by the fact that p1 results from a better performing detector than p2. Figure 5.12a shows

the performance for the single detector, and that of the combination. Additionally, Figure 5.12b

demonstrates that the combination decreases by about thirty percent the FNs rates below 1 × 10−2

and up to eighty percent above this threshold. Indeed, for FPs rates above 1 × 10−2, the combined

detector is able to achieve almost no FNs errors.

This preliminary experiment opens a very interesting research direction for duplicate detection,

namely that of classifiers combinations [Breiman, 1996]. Many questions have to be answered. For

instance, what is the best way to combine different detectors? How to select the features subset?

Is it necessary to have a detector that uses all the features or is it enough to combine only simple
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Figure 5.12: Performance improvement brought by detector combination. The single detector use
all the available features, it is then combined with a simpler detector that uses only features related
to the quantity of each colour, and grey-level, presents within an image.

detectors?

5.6 Chapter summary

In this chapter we presented a duplicate detection system based on a support vector classifier (SVC).

The performance of the proposed system is then analysed and compared with state of the art

methods. Finally, possible research directions are explored.

The proposed system is composed of the four steps outlined thereafter. In the first step,

described in the previous chapter, global statistics are used to describe the image. In the second

step, the features are linearly transformed so as to obtain a better separation between duplicates

of the original image and unrelated images. In the third step, the elements of projected feature are

normalised according to the statistical distribution of the duplicates. In the last step, a non-linear

decision function, based on SVC, is used to determine the probability that the test image is a

duplicate of the original image.

The performance of the proposed system is assessed, using standard benchmarks, and the result

is analysed. It is found out that the proposed SVC-based duplicate detector greatly outperforms

detectors using the same features but based on the L1 metric. Additionally, the system is compared

to existing state of the art methods. More precisely, it outperforms the DPF method, which uses

more feature to describe the image. While slightly outperformed by the KPs method, the proposed

method is five to ten times less computationally complex.

Finally, the performance of the proposed system can be greatly improved by using better

training example, or by combining simpler classifiers. However, these two avenues of research

necessitate further works.
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Multiple Original Images

Duplicate Detection System 6
In this chapter, we detail our approach to image duplicate detection of multiple original images.

The approach is partially based on previous works [Maret et al., 2006b,c]. The main idea behind

the proposed system is to create a binary duplicate detector, as developed previously in chapter 5,

and then to efficiently combine them together. The system is then able to classify a test image as

duplicates of one of the original images or as an unrelated image. The main contribution of this

chapter is the pre-classifier proposed to prune the images known to the system, which avoids to

use every binary detector with every test image.

The approach is first motivated in section 6.1. Then, an overview of the system is given in

section 6.2. Some remarks on training are given in section 6.3. Then, the pre-classifier’s algorithm

is thoroughly described in section 6.4 and the corresponding results are reported in section 6.5.

The analysis of the entire system performances is given in section 6.6. Possible research directions

are finally proposed in section 6.7.

6.1 Approach motivation

The system presented in this chapter aims at detecting duplicates of one of the many original

images known to the system whereas the system presented previously, in chapter 5, knew only a

single original. For more information on the differences between the two approaches, the reader is

referred back to chapter 4 and chapter 5.

The main idea behind the proposed multiple original images duplicate detection system is to

use a binary detectors, as developed in chapter 5, per original image. The combination of their

results is then used to determine whether a test image is a duplicate of one of original images known

to the system. Note that the number of original can be fairly large depending on the application,

for example in the thousands or even millions. The problem is then as follows. When using a set

97
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Algorithm 1 Multiple images duplicate detection

Require: test image T, trained pre-classifier and set of binary detectors
Ensure: label l of most probable original, and the corresponding probability p
1: procedure determine original(T)
2: f = feature extraction(T) ⊲ step 1 — feature extraction
3: C = pre classier(f ) ⊲ step 2 — set of candidates
4: for i = 1 to |C| do

5: m = Ci

6: pi = binary detectorm(f) ⊲ step 3 — binary detectors

7: if |C| > 0 then

8: m = arg maxi pi ⊲ step 4 — most probable original
9: l = Cm

10: p = pm

11: return (l, p)
12: else

13: return (−1, 1)

of binary detectors, each tuned to a specific original image, a test image need to be sequentially

checked with each binary detector. Unfortunately, this procedure becomes quickly cumbersome as

the number of original images grows. Therefore, we propose to use a pruning step based on an

indexing structure, where the most likely original images are efficiently selected and the remaining

originals are discarded. We call candidates the most likely original images. Ideally, the set of

candidates contains a single element if the test image is indeed a duplicate and none otherwise.

Nonetheless, a more realistic goal is to have a set whose size is a fixed fraction of the total number

of original images.

6.2 System overview

We now give the gist of the proposed multiple original images duplicate detection system. The

system consists of fours steps as shown in figure 4.6, each of them is outlined thereafter. Algorithm 1

gives the pseudo-code of the system’s mechanics. Recall that the system’s goal is to determine

whether a test image is a duplicate of one the original images known to the system, each labelled

from 1 to N . The algorithm thus returns the estimated label l ∈ {−1, +1, . . . , N} and the

corresponding probability p. An estimated label of −1 signifies that the test image has been

discarded by the pre-classifier and means that the test image is considered unrelated to any of the

originals. As already mentioned in section 4.2.2, a decision can then be obtained by comparing the

estimated probability p to a fixed threshold u. If the probability is larger than the threshold then

the estimated original is the one given by the label while otherwise the test image is considered

unrelated to any of the original images.

Preprocessing and feature extraction The first step consists in preprocessing the image and

then in extracting descriptive features from the preprocessed image. Preprocessing and feature

extraction operations are both identical to those used for the binary detectors, and are thoroughly

described in section 4.4.1 and section 4.4.2, respectively.
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Pre-classifier The second step, in fact the main contribution of this chapter, aims at efficiently

selecting a limited number of potential originals among all the original images known to the system.

More precisely, we denote by C the set of candidates. Since the set of original images is given by

O, C is a subset of O. Ideally, C contains only few elements and includes the correct original if

the test image is indeed a duplicate of one of the originals. The pre-classifier is built around an

indexing structure. More precisely, an estimate of the subspace spanned by the duplicates, see

section 4.1 for more details, is indexed for each original.

Binary detectors In the third step, the binary detectors developed in chapter 5 are used to

order the elements within the set of candidates from the most probable to the least probable

original. More precisely, the probabilities pi that the test image is a duplicate of the originals Ci are

estimated. Finally, the elements of the set of candidates are sorted according to the corresponding

probabilities.

Decision The last step selects the most probable original and also outputs the corresponding

probability.

6.3 Remarks on training

The pre-classification step needs training, namely the estimated subspaces have to be indexed.

The training is performed independently on each original. This means that new original images

can be added without retraining the original images already indexed within the pre-classifier.

The training procedure requires only positive examples to index the estimate of the subspace

spanned by the duplicates. However, both positive and negative examples are needed to evaluate

the resulting indexation. To achieve this, the same training examples as for the binary detector

are used. More precisely, the 200 positive examples are given in table 5.3 while the 500 negative

examples are obtained by randomly selecting examples from the image collection. For more

information, the reader is referred back to section 5.2 and section 5.5.1.

6.4 Pre-classifier

In this section, we detail the proposed pre-classifier and the corresponding training procedure.

The pre-classifier’s pseudo-code is given is algorithm 2. The pre-classifier algorithm returns the

set candidates C associated to the test image I. Additionally, the pre-classifier algorithm is

parameterisable so that its selects more or less examples. This is accomplished by modifying

the value denoted δ. More precisely, for δ equals to zero the procedure selects as few candidates

as possible while it selects more candidates for larger values.

The pre-classifier is subdivided into three steps, namely feature extraction, feature projection,

and search. The feature extraction step is the same as for the binary detectors and was already

presented in section 4.4.2. The second step consists in reducing the number of features, since 162 are

too many for an efficient indexation scheme, and is presented in section 6.4.1. Finally, section 6.4.2

presents an indexation scheme based on a specific indexing structure, namely R-Trees.
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Algorithm 2 Finds the potential originals of a test image

Require: Originals to be indexed in the R-trees Rtree with algorithm 3 or algorithm 4
1: procedure pre classify(I, δ)
2: f = feature extraction (I)
3: f̃ = Wd · f
4: C = search

(

Rtree, f̃ ± δ
)

5: return C

6.4.1 Feature projection and normalisation for indexing

Many features are needed in order to have enough information to discriminate between duplicates

and non-duplicates. Nonetheless, 162 features are too many for building an efficient indexing

structure. For this reason, the dimensionality of the feature vector is reduced to d by making use

of PCA. Recall that the PCA algorithm finds the directions along which the scatter, or variance,

of the cloud of points is maximised [Duda et al., 2001]. The construction of the projection matrix

Wd is as follows.

1 — W̃: The PCA algorithm is applied to a training set containing the features of original

images, for more details the reader is referred back to section 5.3.1, and results in a projection

matrix W̃. Then the projected features are given by W̃ · f .

2 — W̃d: The PCA produces a 162 × 162 projection matrix. In other words, the number of

dimensions of the projected features equals that of the extracted features. To reduce the number

of dimensions from 162 to d, the rows of the matrix W̃ are first ranked from the the direction

having the largest variance to the direction having the smallest variance. Subsequently, the d first

rows of the projection matrix are selected, resulting in a d×162 matrix. This results in a projection

matrix W̃d. This choice is motivated as follows. The direction for which the scatter is maximal

corresponds also to the direction along which the average distance between the points is maximal.

By selecting the d largest scatters, we indirectly select the d directions that, independently, best

separate the points.

3 — Wd: Finally, the projected features are normalised so that the variance along each projection

direction is equal to one. This normalisation can be directly incorporated in the projection matrix

by scaling each row accordingly.

We experimentally found out that PCA gives better results than ICA-fx for this purpose.

Recall that ICA-fx [Kwak and Choi, 2003] is a linear dimensionality reduction technique adapted

to classification problem. Indeed, if all remaining parameters are kept the same, a pre-classifier

built on features given by PCA returns, on average, two to ten times less candidates than one

constructed using features derived by ICA-fx [Maret et al., 2006c]. A possible reasoning for this

is the following. A good projection should separate, as much as possible, the clusters of feature

vectors representing the duplicates of each original in the database. With ICA-fx this separation

works well for the originals used for training since the algorithm maximises the separability of the

corresponding classes. However, no guarantee is provided for other original images. On the other
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hand, PCA reduces the dimensionality of the feature space by finding the directions along which

the scatter of the cloud of points is maximised. These directions are therefore not linked to a

particular classification problem, thus leading to a representation of the data that works well for

the pre-classification task.

6.4.2 R-Tree indexing

The chosen indexing structure is based on R-trees [Guttman, 1984], which are dynamic structures

used to efficiently index high-dimensional spaces. An R-tree is a height-balanced tree with index

records in its leaf nodes, containing pointers to data objects. Originally, R-trees were created to

index spatial objects using their bounding boxes. Therefore, the R-tree structure is constructed so

as to efficiently answer the point-based query “Return all records whose bounding boxes include

the search point p,” and the box-based query “Return all records whose bounding boxes intersect

the search box b.”

The choice of creating a pre-classifier around an indexing structure working on bounding boxes is

motivated as follows. Firstly, bounding boxes can be efficiently determined. Secondly, a bounding

box is very flexible since each of its side can be independently adjusted. Finally, the indexing

algorithms given thereafter can be readily adapted to more complex indexing structures such as

M-Trees [Ciaccia et al., 1997].

The two next sections introduce two distinct indexation schemes. More precisely, the first

scheme uses a single bounding box per original image, we call it coarse indexation, while the

second scheme builds on the first and uses multiple bounding boxes per original, we call it fine

indexation. The coarse and fine indexation schemes are used exactly the same way in algorithm 2

but differ on how an original is indexed or, in other words, the training procedure is different.

Coarse indexation scheme

Since the features extracted from images exhibit a certain degree of robustness against image

manipulations, the features of a duplicate are localised around those of the corresponding original

image. Therefore, an R-tree, optimised for duplicate detection, can be constructed by associating

a bounding box, encompassing all duplicate examples, with each original image known to the

system. In fact, since we are dealing with a d-dimensional space, the bounding boxes are d-

dimensional orthotopes, or generalised rectangular parallelepiped. The choice of these bounding

boxes is critical for the performance of the R-tree. Indeed, if the bounding boxes are too large,

many of them overlap. This results in a large number of elements in C. On the other hand, if the

bounding boxes are too small, a duplicate can fall outside the bounding box corresponding to its

original, which is thus not included in C.

In order to construct the bounding box associated with an original image, we generate duplicate

examples by making use of a set of image manipulations. More precisely, the bounding box is

defined by two vectors c− and c+, which control its extent in each dimension

c−(α) = min
i

f i(α), (6.1)

c+(α) = max
i

f i(α), (6.2)
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Algorithm 3 Coarse indexation

Require: the original image I, its identifier ID, the parameter δ ∈ [−1, +1], and the duplicate
examples {D}D

i=1

Ensure: the R-tree contains the duplicate region estimation for the original
1: procedure coarse indexation(I, ID, δ, {D}D

i=1)
2: for i = 1 to D do

3: f i = feature extracion (Di)

4: c− = [mini=1,...,D f i(α)]
d

α=1

5: c+ = [maxi=1,...,D f i(α)]
d

α=1
6: s = c+ − c− ⊲ compute the side lengths s(α) of the bounding box
7: insert (Rtree, c± ± δ · s/2, ID) ⊲ algorithm insert in [Guttman, 1984]

where the f i(α) correspond to the α-th feature of the i-th duplicate example, and the c(α) denotes

the α-th element of the vectors c. The examples used to compute the bounding boxes are detailed

in section 6.3. Additionally, the size of the indexed box can be tuned by adding δ · s/2 to c+ and

subtracting the same amount to c−. Now, the value of δ controls the tightness of the indexed box

around the duplicate examples. For instance, if δ is larger than zero, the indexed box is larger

than the bounding box. Conversely, if δ is smaller than zero, the indexed box is smaller than the

bounding box. The corresponding indexation procedure is given in algorithm 3.

The feature vector of a duplicate obtained by a manipulation less severe than those used to

build the R-tree is expected to be contained in the bounding box corresponding to its original.

Conversely, the feature vector of a duplicate generated by a more severe manipulation usually falls

outside the corresponding bounding box. Nonetheless, it can still be retrieved by making use of a

box-based query by using a value of delta larger than zero in algorithm 2. However, this implies a

larger set of candidates.

Fine indexation

The coarse indexation scheme given previously works well for light image manipulations but fails

for more severe transformations [Maret et al., 2006c]. Indeed, when the modifications undergone

by the image are important, the resulting feature vector will lie far from that resulting from the

corresponding original image. Consequently, a pre-classifier, using the coarse indexation scheme,

returns most of the original images when such difficult duplicates have to be detected. This,

of course, defeats the purpose of using a pre-classifier. For this reason, we now detail a more

sophisticated method to index duplicates. The basic idea behind the proposed algorithm is to

index a box for each training example. Each box partially estimates the subspace spanned by the

duplicates while its entire estimation is given by their union.

The size of a box is chosen such that a fixed number of the considered training example nearest

neighbours are covered by it. The idea behind using the nearest neighbours is twofold. On the

one hand, it creates an estimated duplicates’ subspace composed of as few connected components

as possible. Indeed, each box is connected to, at least, as many other boxes as the number of used

nearest neighbours. On the other hand, since the number of duplicates used for training is limited, it

is necessary to ensure that novel duplicates falls within one of the boxes with high probability. If the

sampling of the duplicate examples generated by a single transformation is dense enough, it is likely
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Algorithm 4 Fine indexation

Require: the original image I, its identifier ID, the parameters δ ∈ [−1, +1] and k, and the
duplicate examples {D}D

i=1

Ensure: the R-tree contains the duplicate region estimation for the original
1: procedure fine indexation(I, ID, δ, k, {D}D

i=1)
2: for i = 1 to D do

3: f i = feature extraction (Di)

4: for i = 1 to D do ⊲ add a box per duplicate example
5: σ = order by content

(

{fj}D
j=1, f i

)

6: c− =
[

minj=1,...,k fσ(j)(α)
]d

α=1

7: c+ =
[

maxj=1,...,k fσ(j)(α)
]d

α=1
8: s = c+ − c− ⊲ compute the side lengths s(α) of the bounding box
9: insert (Rtree, c± ± δ · s/2, ID) ⊲ algorithm insert in [Guttman, 1984]

10: procedure order by content({ci}N
i=1, c)

11: for i = 1 to N do

12: vi = (ci − f)T · (ci − f)

13: σ = sort({vi}N
i=1) ⊲ σ is a permutation of 1, . . . , N s.t. vσ(i) ≥ vσ(i−1)

14: return σ

that a novel duplicate created by the same transformation falls in-between two of the generated

duplicate examples. Thus, the boxes generated around these two duplicate examples are likely to

include the novel duplicate, assuming that they are part of each other nearest neighbours. Clearly,

the duplicate manifold estimated by the union of these boxes is likely to encompass many of the

potential duplicates. Conversely, it is also important that unrelated images do not fall within the

estimated manifold. This implies that the content, or higher-dimensional volume, of the partition

has to be somehow minimised. For this reason, the nearest neighbours are determined by making

use of the content of the box delimited by each pair of examples rather than by the conventional

Euclidian metric. This measure ensures that the determined boxes are those with the minimal

contents, for the given algorithm and used parameters. By extension, the estimated manifold is

also the one with the minimal content, again for the given algorithm and used parameters.

The above observations lead us to devise the indexation algorithm presented in the following.

More precisely, algorithm 4 describes the constructions of the subspace spanned by the duplicates

for a given original image. Synthetic duplicates are first generated, and features are extracted

from them and from the original. To achieve the subspace estimation, a box is created around

each duplicate example. First, the nearest neighbours of the duplicate example are determined,

using as measure the content delimited by each pair of examples. Then, the extremal coordinates

of the k nearest neighbours are used to determine the box corners; the tuning parameter δ permits

to increase the box size. Finally, the box is indexed using the insert procedure from [Guttman,

1984]; the used key contains the original identifier ID.

In the following, we use k = d in order to decrease the probability that single training examples

define more than two boundaries. Indeed, a d dimensional box is defined by its 2 · d boundaries.

For example, if k = d − 1 there is at least two training examples that define three boundaries,

or one training example that defines four boundaries. The parameter σ, controlling the bounding

boxes sizes, can be seen as a regularisation parameter, see section 2.3.1 for more information.
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Indeed, a large value of σ corresponds to large bounding boxes and, consequently, to a relatively

coarser estimation of the duplicate partition. On the other hand, a small value of σ corresponds

to small bounding boxes and, thus, to a finer estimation of the duplicate partition. This also

signifies that the smaller the value of δ, the higher the risk of overtraining. The value of δ is hence

quite critical for obtaining good performance. Consequently, the value of σ is chosen through a

cross-validation procedure similar to that used in section 5.3.3. In other words, σ is chosen as the

one that maximises the F-score.

6.5 Results for the pre-classifier

In this section, we present experimental results in order to evaluate the performance of the proposed

pre-classifier. The fist experiment, presented in section 6.5.1, compare the proposed pre-classifier

with a system based on a standard L1 metric. The second experiment, described in section 6.5.2,

explores the scalability of the proposed pre-classifier.

6.5.1 Baseline

In this first experiment, we compare the performance of the proposed pre-classification algorithm

with that of a simpler method — based on the standard L1 metric. More precisely, the L1 metric

is used to select the most likely originals given a test image. To achieve this, the feature vectors

are first projected on a lower-dimensional space, as presented in section 6.4.1. In other words,

the exact same features than for the proposed algorithm are used. The distances, based on the

L1 metric, are then computed between the projected feature vector of the test image and those

corresponding to the original images. More specifically, the distance between two vectors x and y

is given by
∑

α |xα − yα|. Finally, the k nearest neighbour algorithm is used to select the k most

likely original images. For instance, if k is set to one, the potential original is the one with the

smallest L1 distance to the features representing the test image.

Baseline — experimental setup

We now compare the proposed pre-classifier to a simpler one based on the L1 metric, as presented

previously. For this purposes, two-hundred original images are indexed using algorithm 4 as

described in section 6.4. Test images, corresponding to duplicate and unrelated images, are then

fed to the pre-classifier, given in algorithm 2, which is parameterised with different δ, or sizes of the

search box. Each box size corresponds to a given miss rate, the fraction of test duplicates for which

the set of candidates C does not contain the corresponding original, and to a given hit rate, the

average size of C. L1-based pre-classifier go through the same procedure, using the same original

and test images, except that the size of C is always equal to the number of nearest neighbour k,

we use k = 1, 2, . . . , 5. The best possible performances are obtained, on duplicate test images, for

a miss rate equals of zero and for a hit rate of one and, on unrelated test images, for a hit rate of

zero.

The performance is evaluated on two different image collections, MM270k and CGFA, which

are described in more detail in section 4.3. The first collection contains 18 785 photographs while
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the second collections contains photographs of 9000 artworks. Then, two benchmarks, extensively

described in section 4.3, are used to test each collection. They contain the same unrelated images

but differ in the duplicates’ generation. The first benchmark, Qamra, contains transformations

mainly based on colour modifications. On the other hand, the second test set, StirMark, contains

transformation mainly based on geometric modifications.

Baseline — MM270k image collection

Figure 6.1 shows the performances obtained by the L1-based pre-classifier compared to those

achieved by the proposed pre-classifier on the MM270k collection and the two benchmarks. The

left hand side column shows the hit rate versus the miss rate for duplicate test images while the

right hand side column depicts the same but for unrelated test images. Note that the figure on the

unrelated images does not show the L1 results. For the L1-based pre-classifier, the curves obtained

for the unrelated and duplicate test images are exactly the same. Also, recall that for the L1-based

pre-classifier, the k is nothing else than the average size of the set of candidates.

For the Qamra benchmark, figure 6.1c indicates that the L1 pre-classifier slightly outperforms

the proposed pre-classifier for k = 1 but is, in turn, slightly outmatched by the proposed pre-

classifier for k ≥ 2. For example, the proposed pre-classifier returns an average of 1.2 candidates

for a miss rate of 0.01 while the L1 pre-classifier needs only one candidate to achieve the same

miss rate. This indicates that for light transformations, as present in the Qamra benchmark, a

standard indexing scheme based on the L1 metric is sufficient to perform well.

For the StirMark benchmark, figure 6.1e indicates that the L1 pre-classifier performs similarly

to the proposed pre-classifier for k = 1 but is greatly outperformed by the proposed pre-classifier

for k ≥ 2. For example, the proposed pre-classifier returns an average of 1.6 candidates for a miss

rate of 0.01 while the L1 pre-classifier would need more than five candidates to achieve the same

miss rate. This indicates that for severe transformations, as present in the StirMark benchmark,

a standard indexing scheme based on the L1 metric is clearly not adapted.

Another interesting difference between the proposed pre-classifier and the L1 pre-classifier

relates to the number of dimension d necessary to achieve the best results. While the L1 pre-

classifier necessitates d = 60 to achieves them, the proposed pre-classifier needs only d = 30.

We, now, analyse in more details the results obtained by the proposed pre-classifier. It can be

observed that the hit rate increases sharply when the miss rate decreases below 0.004 for the Qamra

benchmark and below 0.008 for StirMark. This behaviour can be attributed to a few images for

which a limited number of modifications results in feature vectors very different than those of the

corresponding original images. More precisely, these transformations are colourising of grey-level

images for the Qamra benchmark and rotation and down-scaling for the StirMark benchmark.

The right hand side column shows the hit rate for unrelated test images. It can be seen that

the shapes of the curves are very similar to those obtained for test duplicates. The most notable

difference is that the curves on the right hand side are vertically shifted down by about one with

respect to those on the left hand side. This is easily explained since the set of candidates for a

duplicate test image contains with high probability the corresponding original image, this is not

the case for an unrelated test image. Moreover, assume that, for unrelated test images, a working
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(c) duplicate test images — Qamra benchmark
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(d) unrelated test images — Qamra benchmark
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(e) duplicate test images — StirMark benchmark
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(f) unrelated test images — StirMark benchmark

Figure 6.1: MM270k collection — pre-classifier baseline. This figure shows the performances
obtained by the L1-based pre-classifier compared to those achieved by the proposed pre-classifier.
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point on the curve is given by a miss rate of m and a hit rate of h. Now, it is possible to estimate

the corresponding working point for duplicate test images: the miss rate remains the same while

the hit rate is given by 1 − m + h. Indeed, since the miss rate is m, it means that the correct

original is present with a probability of 1−m. Additionally, if the original of the test images were

not present in the index, the hit rate would behave as for an unrelated test image. This latter fact

accounts for the additional h.

Finally, notice the importance of the dimension d for the performance of the proposed pre-

classifier. Indeed, for d = 10 the pre-classifier is performing quite badly although still better than

the L1-based one for low miss rates. This counter-performance occurs because the information

given by features containing only ten values is too poor to obtain a good estimation of the subspace

spanned by the duplicates. On the other hand, the proposed pre-classifier also under-performs for

d = 60, which is more surprising at first but yet quite comprehensible. Indeed, the number of

training examples is clearly insufficient to permit a fine approximation of the subspace for d = 60.

More precisely, recall that we use k = d for the number of nearest neighbour in algorithm 4.

This value, while previously justified, might not be an optimal choice because it tends to create

larger bounding boxes as d increases. Consequently, larger bounding boxes results in a coarser

approximation of the duplicates manifold. Future research are thus necessary to discover an optimal

value for k. Another possible explanation is related to the curse of dimensionality [Donoho, 1998],

which implies that a classifier tends to be overtrained as the number of dimensions grows.

Baseline — CGFA image collection

Figure 6.2 shows the performances obtained by the L1-based pre-classifier compared to those

achieved by the proposed pre-classifier on the CGFA collection and for the two benchmarks. The

left hand side column shows the hit rate versus the miss rate for duplicate test images while the

right hand side column depicts the same but for unrelated test images. These results are quite

similar to those obtained previously for the MM270k collection.

For the Qamra benchmark, figure 6.2c indicates that the L1 pre-classifier slightly outperforms

the proposed pre-classifier for k = 1 but is, in turn, slightly outmatched by the proposed pre-

classifier for k ≥ 2. For example, the proposed pre-classifier returns an average of 1.3 candidates

for a miss rate of 0.01 while the L1 pre-classifier needs only one candidate to achieve the same

miss rate. As for the MM270k collection, this result indicates that for light transformations, as

present in the Qamra benchmark, a standard indexing scheme based on the L1 metric is sufficient

to perform well.

For the StirMark benchmark, figure 6.2e indicates that the L1 pre-classifier performs similarly

to the proposed pre-classifier for k = 1 but is greatly outperformed by the proposed pre-classifier

for k ≥ 2. For example, the proposed pre-classifier returns an average of 2.2 candidates for a

miss rate of 0.01 while the L1 pre-classifier would need more than five candidates to achieve the

same miss rate. As for the MM270k collection, this indicates that for difficult transformations, as

present in the StirMark benchmark, a standard indexing scheme based on the L1 metric is clearly

not adapted.

Another interesting difference between the proposed pre-classifier and the L1 pre-classifier
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(c) duplicate test images — Qamra benchmark
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(d) unrelated test images — Qamra benchmark
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(e) duplicate test images — StirMark benchmark
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(f) unrelated test images — StirMark benchmark

Figure 6.2: CGFA collection — pre-classifier baseline. This figure shows the performances obtained
by the L1-based pre-classifier compared to those achieved by the proposed pre-classifier.
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relates to the number of dimension d necessary to achieve the best results. While the L1 pre-

classifier needs d = 80 to achieves its best performances, the proposed pre-classifier needs only

d = 30 to reach them. Additionally, notice that for the L1 pre-classifier the number of dimensions

d necessary to achieve the best performance depends on the image collection. Indeed, d is equal to

60 for the MM270k collection while it is equal to 80 for the CGFA collection. On the other hand,

for the proposed pre-classifier, it remains equal to d = 30 for both collections.

Now, notice that the performances obtained on the CGFA collection are slightly below those

obtained on the MM270k. This is as expected since, as already remarked in section 5.4.1, the CGFA

collection is more difficult than the MM270k collection. Indeed, it contains very similar images:

only photographs of paintings. In the previous chapter, it was also noticed that the MM270k

collection contains near-duplicates images of original images. These near-duplicates influenced the

results, and made the duplicate detectors perform better on the CGFA collection than on the

MM270k collection. However, this effect is not noticeable here. Indeed, these near-duplicates

concern only a few originals and, in the case of the pre-classifier, their influence is reduced because

the size of the set of candidates C is an average on all the test images whereas, in chapter 5, the

average was taken only on all original images.

Baseline — conclusion

The crux of the baseline experiment is that for light transformations, as present in the Qamra

benchmark, a standard indexing scheme based on the L1 metric is sufficient. On the other hand,

for more difficult transformations, such as these present in the StirMark benchmark, a standard

indexing scheme based on the L1 metric is clearly not adapted. However, the proposed pre-

classifier works very well in both cases and greatly outperforms the L1 pre-classifier for the difficult

transformations. Additionally, it requires less information than a L1 pre-classifier to do so.

6.5.2 Scalability

We now turn our attention to the scalability of the proposed pre-classifier. By scalability, we mean

the behaviour of the size of the set of candidates as the number of original images known to the

system grown. Ideally, a pre-classifier keeps the number of candidates constant as the number of

original images known to the system grows. For example, this is the case with the L1-based k

nearest neighbour method discussed in section 6.5.1. Unfortunately, it needs quite a large value

k to achieve low miss rates for difficult transformations. More realistically, a good pre-classifier

keeps the number of candidates to a fraction of the total number of images known to the system.

In the following, we first give an overview of the experimental setup used to study the scalability

of the proposed pre-classifier. Then, the results are analysed for the image collections MM270k

and CGFA. Finally, conclusions on the pre-classifier scalability are drawn.

Scalability — experimental setup

To test the scalability of the system, we use the same image collections and also the same

benchmarks as in section 6.5.1. Likewise, N original images are indexed using algorithm 4 with
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d = 30 as described in section 6.4. In this experiment, the number of original images N is first set

to 25, then to 50, 100 and 200. For the case N = 200, the two hundred images are the same than

those used in section 6.5.1. On the other hand, the original images for the other cases (N < 200)

are randomly chosen among these two-hundred images. In each case, the miss rate and the hit rate

are then measured for different search box size, see section 6.5.1 for more information. In order to

obtain smooth curves, the experiments are run five times in the cases where N < 200. For each

run different original images are selected; and the results are finally averaged.

Scalability — MM270k and CGFA

Figure 6.3 shows the scalability results for the image collection MM270k. The first row (figure 6.3a

and figure 6.3b) gives the hit rate, average size of the candidate set C, in function of the miss rate

while the second row (figure 6.3c and figure 6.3d) reports the same information but normalised

with respect to the number of original images known to the system. Similarly, the first column

(figure 6.3a and figure 6.3c) gives the hit rate found for duplicate test images while the second

column (figure 6.3b and figure 6.3d) shows the hit rate obtained for unrelated test images. The

first column additionally depicts the same information obtained using the L1-based k nearest

neighbour (KNN) pre-classifier.

As expected, the L1-based KNN pre-classifier is affected only slightly by the number of original

images. On the other hand, the average number of candidates returned by the proposed pre-

classifier grows proportionally with the number of original images known to the system. Figure 6.3c

shows that the differences between the proposed and the L1-based KNN pre-classifiers decrease

as the number of original images increases. Further experimentations are necessary in order to

determine until which point the proposed pre-classifier is better, or if the performances of the

L1-based KNN pre-classifier remain unaffected as the number of original images grows.

One really interesting point lies in the second rows of figure 6.3. Recall that figure 6.3c and

figure 6.3d show a hit rate normalised with respect to the number of original images known to

the system. For duplicate images, figure 6.3c shows that the normalised hit rate diminishes as the

number of original images grows. This is expected since, except for low miss rates, the hit rate for

duplicate test images is around one.

More interestingly, figure 6.3d shows that, for unrelated test images, the average fraction of

original images contained in the set of candidates is virtually independent from the number of

original images known to the system. This result is significant for two reasons. Firstly, it means

that the pre-classifier indeed works as expected because it selects a fixed fraction of the original

images as candidates and discard the rest. Secondly, it gives also an idea on the behaviour of the

normalised hit rate for duplicate test images as the number of original images grows large. More

precisely, let a working point on the curve duplicate test images be estimated as follows: the miss

rate is denoted by m and the estimated hit rate is given by 1 − m + h where m is the miss rate

and h is the corresponding hit rate obtained for unrelated test images, for more details refer back

to section 6.5.1. Then, the normalised hit rate is given by (1 − m + h)/N where N is the number

of original images, which is equals to (1−m)/N + h/N . Note that the first term, (1−m)/N , is at

most equals to one and quickly vanishes as N grows. On the other hand, the second term, h/N , is
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Figure 6.3: MM270k collection — pre-classifier scalability. This figure shows the scalability
obtained by the L1-based pre-classifier compared to that achieved by the proposed pre-classifier.
Both Qamra and StirMark benchmarks are used.

nearly constant, as observed in figure 6.3d. This means that h/N dominates the hit rate for large

values of N . Consequently, the normalised hit rate on duplicate test images tends toward that

obtained on unrelated test images as N grows. This implies that the fraction of original images

returned by the pre-classifier becomes also constant for duplicate test images as the number of

original images known to the system grows.

We now give an example of the efficiency of the proposed pre-classifier. In this paragraph, we

consider a working point corresponding to an average miss rate of 0.005. At this working point,

the pre-classifier returns 0.005 ·N potential candidates on average, where N is the total number of

original images. In other words, 99.5 percent of the original images are discarded while the correct

original, if the test image is a duplicate, is kept in 99.5 percent of the cases.

Finally, quite similar results are obtained for the CGFA collection, as shown in figure 6.4. The

same analysis than that made for the MM270k collection applies. As for many other experiments,
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Figure 6.4: CGFA collection — pre-classifier scalability. This figure shows the scalability obtained
by the L1-based pre-classifier compared to that achieved by the proposed pre-classifier. Both
Qamra and StirMark benchmarks are used.

it can be seen that the performances attained on the CGFA collection are lower than those obtained

on the MM270k.

Scalability — conclusion

The proposed pre-classifier scales well as the number of original images increases. Indeed, it returns,

in average, a fixed fraction of the total number of original images irrespective of the number of

original images known to the system. For example, for an average miss rate of 0.005, the pre-

classifier returns 0.005 ·N potential candidates on average where N is the total number of original

images. In other words, 99.5 percent of the original images are discarded.
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6.6 Results for the system

In this section, we present experimental results in order to evaluate the proposed duplicate detector.

The first experiment, presented in section 6.6.1, presents the performance obtained by the complete

multiple original images duplicate detector. The second experiment, accounted for in section 6.6.2,

present the storage space and the computational resource required by the proposed duplicate

detection system. The final experiments, described in section 6.6.3, analyses the proposed system’s

performance with respect to two other state of the art methods.

6.6.1 Performance

In this experiment we explore the performance of the proposed multiple original images duplicate

detection system.

To test the performance of the system, we use the same image collections and also the same

benchmarks as in section 6.5.1. Additionally, the system whose performances are assessed is the

one presented in algorithm 1. The pre-classifier is trained according to algorithm 4 using d = 30

dimensions, see section 6.4 for more information. Finally, the binary classifiers are constructed as

described in chapter 5 using α = 105 for the F-score, and the used training examples are given in

table 5.3. The number of original images is set to N = 200.

The metric used to evaluate the system’s performances is given in section 4.3. The performances

are measured in terms of tradeoff between false positives error rate and false negatives error rate.

More precisely, a false positive is a true unrelated image detected as a duplicate of one of the original

images. Conversely, a false negative is true duplicate image detected as an unrelated image. Recall

that in the case of the multiple original images duplicate detection system, a working point where

the false positive and false negative error rates equal, say, 0.0001 and 0.01 respectively, signifies

the following: given a randomly chosen original, the system detects a fraction of one out of ten-

thousand unrelated test images as duplicates of this original while one out of one-hundred duplicate

test images of this original are not detected as such.

There are two ways of estimating the false positives error rate. More precisely, the false positives

error rate can be first estimated by taking into account that the duplicates of one original images

are unrelated to any of the other original images. In this first way of estimating the false positives

error rate, a duplicate test image detected as a duplicate of the wrong original is considered to

be a false positive. This is quite correct but it gives rise to a skew in the estimation of the false

positives rate. For instance, forty test duplicates are generated per each original for the Qamra

benchmark. In this case, there are an additional 7960 = 199 × 40 test images that are considered

unrelated to each original. Now, in the CGFA collection there is about the same number of real

unrelated test images, actually 8800. Since it is quite likely that the system correctly classify the

duplicate test images, this means that about half of the images used to estimate the false positives

generates very few false positives. Consequently, the false positives error rate is, in the author

opinion, underestimated by a factor up to two. Due to its larger size, this effect is less important

for the MM270k collection but it is nevertheless present. The second way of estimating the false

positive error rate is simply not to take into account the duplicate test images in its estimation.
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In the following, both estimations are shown because some published works use the first method

[Qamra et al., 2005] and others use the second method [Ke et al., 2004]. Note that this problem is

not present in chapter 5 since the binary classifiers are tested independently. We denote the first

false positives error rate estimator E1
fp and second one E2

fp

Now, the system can be tested under different constraints. For instance, the size δ of the

search box used in the pre-classifier can be changed as shown in algorithm 2. Additionally, it is

also possible to vary the threshold u used to decide whether to trust or not the label returned

by algorithm 1. To synthesis, as much as possible, the different possible parameterisation of the

system we use three different values of δ, namely 0.025, 0.05 and 0.1, and, for each of them, we

estimate the tradeoff between the false negatives and the false positives error rates by varying the

threshold u between zero and one. Each values of δ corresponds to an average miss rate achieved by

the pre-classifier as well to an average hit rate, size of the set of candidates. The miss rate relates

to the the performance of the system while the hit rate is linked to the computational efficiency of

the system.

Performance — MM270k and CGFA

Figure 6.3 shows the performances obtained on the image collection MM270k. More precisely,

figure 6.5a depicts the performances achieved for both the Qamra and StirMark benchmarks

together while figure 6.5c and figure 6.5d picture the performance obtained for each benchmark

separately. Additionally, figure 6.5b shows the average size of the set of candidates for different

values of δ.

The false negatives versus false positives error rates curves can be split into two parts. In the

first part, right hand side of the curves, the system’s performance is limited by the pre-classifier

miss rate. Indeed, the system’s false negatives error rate cannot go below the miss rate imposed by

the pre-classifier and the curves flatten out. Consequently, the minimal achievable false negatives

rate is linked to the δ size of the search box used in algorithm 2. In the second part, left hand side

of the curves, the system performance is limited by the binary classifiers. Clearly, the influence of

the pre-classifier diminishes as the false positives rates diminishes and the curves obtained for the

different values of δ tend to the same asymptote.

Additionally, it can be seen that the false negatives error rate increases dramatically once

the false positives error rate goes below 10 × 10−5. This behaviour has two explanations. The

first reason relates to the presence of near-duplicate images in the MM270k collection, refer to

section 5.4.3 for more details. As already explained in chapter 5, some unrelated test images

are always detected by the system as duplicates because they are photographs taken at the same

place than some of the original images but at slightly different time. The second reason concerns

the limitation on the discriminatory power of the features; the used features do not permit to

differentiate between some visually similar yet unrelated images. As already hinted in chapter 5,

this is the key downside of any content-based duplicate detection system.

Now, we examine the effect of using one or the other method to estimate the false positives error

rate. Basically, both methods result in virtually the same curves but shifted on the horizontal axis.

Actually for the Qamra benchmark, a false positives error rate estimated using E1
fp is, for the same
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Figure 6.5: MM270k collection — system performance. This figure shows the performances
achieved by the proposed multiple original images duplicate detection system.

false negatives rate, smaller by a factor roughly equals to 1.41 than that estimated using E2
fp. For

this method, 7960 duplicate test images are used, in addition of the 18 585 unrelated test images, to

estimate the false positives. We believe, see the remarks given previously, that a false positives rate

estimated by this method can be underestimated by a factor up to (18 585 + 7960)/18 585 = 1.43.

This estimated value is slightly larger than the one observed in reality but not by much.

Finally, the results obtained for the CGFA collection are quite similar to those obtained for the

MM270k collection. There are two main differences. The first difference is the absence of a sharp

increase of the false negatives rate below false positives rates of 10−4. This is due to the absence

of near-duplicates in the CGFA collection. The second difference concerns the ratio between false

positives error rates estimated by one or the other method. For the CGFA collection, it is equal

to values ranging from 1.6 to 1.8. As already said previously, a false positives rate estimated by

taking into account duplicates can be underestimated by a factor up to (8800 + 7960)/8800 = 1.9.
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Figure 6.6: CGFA collection — system performance. This figure shows the performances achieved
by the proposed multiple original images duplicate detection system.

Performance — conclusion

The proposed duplicate detection system performs quite well. For instance, on the MM270k

collection and for a randomly selected original image it can, on average, detect 99 percent of its

duplicate (generated by the Qamra benchmark) while assigning a fraction of only about 3 × 10−5 of

the unrelated test image to that original. The performance are even better on the CGFA collection

where detecting 99 percent of the duplicate test images corresponds a false positives error rate of

only about 1.5 × 10−5. Additionally, it is remarked that there different ways of estimating the false

positives rate can result in quite different estimations. Finally, it is noticed that the minimal false

negatives rate achievable by the system is linked to the δ size of the search box (see algorithm 2).

On the other hand, for low false positives rate, the system’s performance is limited by the binary

classifiers.
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Table 6.1: Storage requirements estimation and average running time for testing.

name size, B

pre-classifier, projection 162 · 30 · 2 = 9720
pre-classifier, indexation 200 · 30 · 2 = 12 000
PCA projection matrix 162 · 162 · 2 = 52 488
normalisation constants 2 · 162 · 2 = 648
SVC, support vectors xi 162 · 130 · 2 = 21 060
SVC, yiαi 162 · 2 = 324

(a) Storage requirements estimation. Real number are
coded on 16 bits (two bytes).

original name time, s

independent

preprocessing 0.1
feature extraction 0.5∗

pre-classifier, projection 45 × 10−6

pre-classifier, search 1.1 × 10−3

dependent
PCA projection 10 × 10−6

normalisation 60 × 10−6

decision function 50 × 10−6

(b) Average running time for testing. The experiments were
carried out on a PC with a 2.8GHz processor and 2Go of
memory.

6.6.2 Requirements on storage and computational effort

The proposed duplicate detection method requirements are now analysed in terms of storage space

and computational effort. For this purpose, we build on the analysis already reported in chapter 5.

A number of parameters are needed to compare a test image to a given original. Namely, they

are the PCA projection matrix for the pre-classifier, the R-Tree indexing for the pre-classifier,

the PCA projection matrix for the binary detectors, the normalisation constants for the binary

detectors, and the support vectors of the decision functions of the binary detectors. The PCA

projection matrices used for the pre-classifier and that used for the binary detectors are independent

of the original images. The remaining parameters depend on the original images and are, in the

following, referred to as the description of the original image. The storage requirements are detailed

in table 6.2a. On average, about 33 kB are needed to store the description of each original. In

other words, one megabyte can held, on average, up to thirty originals. This is a negligible amount

of memory for today’s computers.

Another important aspect is that of the computational complexity of the method. The proposed

method requires training for each original image. Training is computationally complex and it can,

indeed, take up to twelve minutes to train a detector on a PC with a 2.8GHz processor and 2Go of

memory. Feature extraction from the synthetic duplicate examples, cross-validation to find good

parameters of the SVC and cross-validation to find good parameters of the pre-classifier are the

most complex parts of the training, and together take up to ninety percent of the running time.

Since training can be done off-line, its computational complexity is less critical than that of testing.

The computational complexity of testing is estimated in table 6.2b. Note that except for the

SVC and the R-Tree parts, the method is implemented in Matlab without any optimisation. This

incurs longer running time. For instance, the feature extraction could be reduced to, at least,

0.1 seconds [Qamra et al., 2005]. In the discussion that follows, we assume an optimised feature

extraction step. The preprocessing, feature extraction and the pre-classifier steps are independent

of the original image, and take about 0.22 seconds. On the other hand, the remaining steps depend

on the original image, they take about 0.1 × 10−3 seconds per binary detector. However, not all

originals have to be tested since the pre-classifier discard most of them. The exact number of

original images that are discarded depends on the search box size used in algorithm 2. In the

following, we use a search box size such that, on average, 99 percent of the original are discarded.
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This corresponds to a miss rate inferior to 0.005 for both Qamra and StirMark benchmarks and

on both MM270k and CGFA collections.

Let us consider the following scenario. A company is checking images circulating on the Internet

to see whether they contain duplicates of original images for which it holds copyright. In this

scenario, the company has to test an image with, on average, one percent of the detectors. When

the number of owned original images is less than 22 000, most of the testing time is spent on

preprocessing, extracting features from the test images, and in the pre-classifier. In that case, up

to four test images can be processed per second and per computer. For a larger number of original

images, most of the testing time is spent on the original image dependent steps. The number of

test images that can be processed per second decreases linearly as the number of original images

grows.

6.6.3 Comparison with existing duplicate detection methods

We now compare the performance of the proposed method with that of existing duplicate detection

systems. The same existing works are used as in chapter 5, namely key points (KPs) [Ke et al.,

2004] and perceptual distance function (DPF) [Qamra et al., 2005].

Comparison — results and analyse

Figure 6.7 compares the performance of the proposed duplicate detection system with state of the

arts techniques reported in [Ke et al., 2004; Qamra et al., 2005]. The black line corresponds to the

DET curve obtained with our system. The light grey line represents the performance of a duplicate

detection method based on DPF [Qamra et al., 2005]. The cross indicates the performance of a

duplicate detection system based on KPs [Ke et al., 2004].

It can be seen that the proposed method achieves quite good performance. For instance, on

the CGFA collection, an average FNs error rate of 5 × 10−3 corresponds to a fixed false positive

error rate of 5 × 10−5. On the other hand, on the MM270k collection, an average FNs error rate

of 2 × 10−4 corresponds to a fixed false positive error rate of 2 × 10−3. This is not as good than

on the CGFA collection because the MM270k collection contains near-duplicate as explained in

section 5.4.3.

Now, comparing the performance of the DPF method with that of the proposed system two

things can be observed. First, the DPF method achieves no FN error for false positives error rates

above 1 × 10−3. However, once below that point the performance degrades extremely rapidly.

Second, while DPF performs somewhat better than the proposed system for false positive error

rates above 1 × 10−3, it is clearly outclassed below that threshold.

On the other hand, the proposed method is outperformed by KPs. Indeed on the CGFA

collection, KPs achieves a FNs error rate of 1.5 × 10−3 for no false positive error. On the other

hand, the proposed method never reaches, for the same test set, no false positive error. However,

the performance gap is quite low for the MM270k collection but these results are less significant

since they are extrapolated for the KPs method, and possibly its performances are inflated. The

explanation for the better results of the KPs are the same than given in chapter 5.
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Figure 6.7: Comparison with state of the art methods. The proposed system is compared with two
state of the art system, namely KPs [Ke et al., 2004] and DPF [Qamra et al., 2005]. The test are
carried out on two different image collections, MM270k and CGFA, and the Qamra benchmark is
used to generate the test duplicates.

6.7 Exploratory and future works

In this section, we present two directions of research concerning the pre-classifier. The first direction

of research, given in section 6.7.1, concerns an indexing scheme that works well on high-dimensional

spaces. The second avenue of research, reported in section 6.7.2, relates to efficiently describe image

regions rather than the whole image.

6.7.1 Random projection

In section 6.5, it is noticed that the pre-classifier performs better when a low number of dimensions,

namely thirty, is used to index the duplicate than when more dimensions, namely sixty, are used.

This is a good example of the effect the curse of dimensionality [Donoho, 1998]. On the other hand,

the L1-based pre-classifier behaves similarly but the optimal number of dimensions is higher in this

case, namely eighty. Consequently, the difference of fifty in the optimal number of dimensions shows

that the added features, in the L1 case, still carry discriminative information. The question is then

how to efficiently use this additional information?

Indexing of high dimensional space has been extensively studied, and works abound on how

to avoid or lessen the curse of dimensionality. Nonetheless, no method exists that entirely solves

it. A popular solution that works quite well is called locally sensitive hash [Gionis et al., 1999;

Indyk and Motwani, 1998]. In short, this approach consists in randomly projecting the features

into a smaller space by randomly selecting subset of the entire features’ set. A single feature vector

is thus represented by many random projections. Finally, each projection can be indexed within

a small dimensionality space and hence avoid the curse of dimensionality. Later, the result of a
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l = 1 l = 2 l = 3
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Figure 6.8: Image Patches. This figure represents the image patches at different granularity levels.

query to the database consists in the records whose several random projections match those of the

query.

This approach could be applied to the pre-classifier presented in this chapter since it is based

on indexing. However, adaptation of the algorithm and experimentations are necessary so as to

determine the impact of random projection on the performance of the pre-classifier.

6.7.2 Hierarchical duplicate detection

We propose to analyse images at different granularity levels l. At each granularity level, the image

is subdivided into patches of the same size. For instance, at the coarsest granularity level there is

one patch of the size of the image, at the next level there are 4 patches, then 9 patches and so on.

Figure 6.8 shows these patches for the three first granularity levels. Each patch is then described

by the features detailed in section 4.4.2.

We next explain the potential behind the different granularity levels that are used for the image

description. Clearly, an image is composed of different regions, each having different characteristics,

as visible in figure 6.8. Global features, features describing the image as a whole, give an averaged

version of the characteristics of every regions and perform well for duplicate detection [Maret et al.,

2006a; Qamra et al., 2005]. It is however possible for unrelated images to have very similar global

features, in which case they will be considered to be duplicates of each other. The use of an image

descriptions with granularity levels permits to lessen the number of such clashes. While unrelated

images might have similar global features, it is less likely for the majority of their patches to

have similar features. This is the main idea underlying the hierarchical approach proposed in the

following. The subspace spanned by the duplicates is constructed for each granularity level. Then,

the potential originals of a test image are determined using only the global features granularity

level. Every patches of the test image are subsequently tested on the finer granularity partition of

each original found earlier, and the corresponding original is kept only if the number of matching

patches is sufficient. Finally, the operation can be repeated for the remaining originals until

reaching the finest granularity level, we experimented with up to L = 3. The above observations

lead us to devise the hierarchical pre-classifier presented thereafter.

Hierarchical pre-classifier

The proposed pre-classifier’s extension works in a hierarchical way. It starts at level l = 1 and

continues at finer granularity levels, possibly up to l = L. The initial set of candidates is determined
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Algorithm 5 Finds the potential originals of a test image

Require: originals to be indexed in the R-tree with algorithm 6
1: procedure hierarchical pre classifier(I, δ, m)
2: for l = 1 to L do

3: R = ∅
4: for b = 1 to (l + 1)2 do ⊲ treat each patch separately
5: Ĩ = get patches({D}D

i=1, l, b)

6: {(IDi, l̃i, b̃i)}i = pre classify

(

Ĩ, δl

)

⊲ see algorithm 2

7: R = R⋃{(IDi, l̃i, b̃i)}i

8: if l = 1 then

9: C = {ID such that (ID, l, 1) ∈ R} ⊲ determine the initial set potential originals
10: else

11: for ID ∈ C do

12: if |{b such that (ID, l, b) ∈ R}| < m(l) then

13: C = C \ ID ⊲ not enough patches match

14: return C

Algorithm 6 Estimates a set of duplicate manifolds of an original and indexes it

Require: the original image I, its identifier ID, the parameters δ ∈ [−1, +1], k and L, and the
duplicate examples {D}D

i=1

Ensure: the R-tree contains the duplicate region estimation for the original
1: procedure hierarchical indexation(I, ID, δ, k, L, {D}D

i=1)
2: for l = 1 to L do ⊲ treat each level separately
3: for b = 1 to (l + 1)2 do ⊲ treat each patch separately
4: {D̃}D

i=1 = get patches({D}D
i=1, l, b)

5: fine indexation
(

I, (ID, l, b), δ, k, {D}D
i=1

)

⊲ see algorithm 4

at level l = 1. At finer granularity levels, this set is pruned by removing the originals with not

enough matching patches. The operation is repeated until the finest granularity level is reached.

Algorithm 5 gives the pseudo-code of the hierarchical classifier. It makes use of the pre-classifier

given by algorithm 2 in section 6.4.

Algorithm 6 describes the constructions of the set of duplicate manifolds for a given original

image. At each granularity level l, the training examples are subdivided into (l+1)2 patches. Each

patch is then described by a feature vector. A duplicate manifold is then estimated for each patch

at a given granularity level. To achieve this, the algorithm 4 developed in section 6.4 is used.

Results and remarks

The proposed hierarchical algorithm is implemented and was presented with more details in

[Maret et al., 2006b]. The preliminary results are encouraging since the average size of the set

of candidates, for unrelated test images, can be reduced by a factor 2.6 for two levels of granularity

and by a factor 3.4 for three levels of granularity. Moreover, it should be noted that this hierarchical

approach could also be applied to the binary detectors. Of course, the applicability of such a

hierarchical system necessitates further research.
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6.8 Chapter summary

In this chapter we presented a multiple original images duplicate detection system based on the

binary detector previously presented in chapter 5. To create an efficient system, a test image

is checked only on the binary detectors corresponding to the most likely original images. Their

selection, using a pre-classifier, is the main contribution of this chapter. The performance of the

pre-classifier is then analysed. Subsequently, the entire system is analysed and compared with

state of the art methods. Finally, a possible improvement on the system is proposed.

The proposed system is composed of the five steps outlined thereafter. In the first step, global

statistics are used to describe the image. In the second step, the number of features is reduced. In

the third step, the most likely originals are selected by means of an R-Tree. They form the set of

candidates. In the four step, the binary detectors developed in the chapter 5 are applied to each

element of the set of candidates. Finally, the element with the highest probability is selected and

the test image is estimated, by the system, to be a duplicate of the corresponding original. The

system also provides a probability estimate of the correctness of this choice.

The performance of the proposed system is assessed, using standard benchmarks, and the

result is analysed. It is found out that the proposed multiple original images duplicate detector

greatly outperforms detectors using the same features but based on the L1 metric. The system is

additionally compared to state of the art duplicate detection techniques. It outperforms the DPF

method, which uses more feature to describe the image. While the proposed method is slightly

outperformed by the KPs method, it is five to ten times computationally less complex.

Finally, the performance of the proposed system can be greatly improved by using a hierarchical

system that subdivides the images into a pyramid of patches and create detectors tuned to each

patch. A second direction of research relates to a pre-classifier that performs better on high-

dimensional spaces. However, these avenues of research necessitate further works.
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7.1 Summary of the achievements

In chapter 3, we saw that the problem of duplicate image detection originates from different fields,

namely watermarking and content-based retrieval. The pros and cons of each approach were then

reviewed. Basically, content-based duplicate detection is more flexible but not yet as mature

as watermarking in terms of precision and recall rates. Additionally, an inherent weakness of

any content-based technique is the impossibility to distinguish between photographs of the same

scene taken from slightly different angles or at different time. On the other hand, watermarking

is less flexible than content-based method because it requires modifying the image prior to its

dissemination. This requirement is the cause of the two major drawbacks of watermarking as

described thereafter. Firstly, watermarking is adapted only if one has total control over the original

artwork and is ready to modify it. Secondly, a watermarked image is detectable as long as a mean

to efficiently remove the watermark is not discovered. Once the watermark has been removed from

an image, it is definitely impossible to detect copies of that unmarked image by using watermarking

techniques. All in all, watermarking and content-based approaches are quite complementary.

In chapter 4, we developed a framework for content-based duplicate detection systems. The

duplicate detection framework first consists in a model of the subspace spanned by the duplicates

of an original image. This model permits to explore some characteristics of the duplicates of an

image; for example it is found that, under certain assumptions, the duplicates form a manifold

embedded within the image space. The second element of the framework is a generic duplicate

detection system. Through this generic system, we develop our view of duplicate detection, namely

the classification of a test image into one of K + 1 classes. K classes correspond to the K original

images known to the system, or in other words “the test image is a duplicate of one of the known

originals,” while the remaining class stands for “the test image is unrelated to any of the known

123
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original images.” Finally, the last element of the framework concerns the evaluation methodology

of a duplicate detection system based on the presented classification approach.

Still in chapter 4, we gave an overview of the actual duplicate detection system developed in

this thesis. The system is composed of four steps, namely feature extraction, pre-classifier, binary

duplicate detectors, and final decision. Feature extraction consists in describing images by means

of relevant visual statistics. The pre-classifier aims at selecting a limited number of originals among

the K original images; an original is selected if the test image is potentially one of its duplicates.

The binary duplicate detectors consist in binary classifiers used to determine the probabilities that

the test image is a duplicate of each selected original image. In the last step, the decision simply

consists in selecting the most probable original.

In chapter 5, we presented our binary duplicate detector. The main idea behind the proposed

detector is to adapt duplicate detection to a specific original image. The system is then able to

classify test images as duplicates of the original image or as unrelated images. The binary detector

uses the image description given in chapter 4, and is composed of the three steps outlined thereafter.

In the first step, the features are linearly projected so as to obtain a better separation between

duplicates of the original image and unrelated images. In the second step, the elements of the

projected feature are normalised according to the statistical distribution of the duplicates. In the

last step, a non-linear decision function, based on a support vector classifier, is used to determine

the probability that the test image is a duplicate of the original image. The performance of the

proposed system is assessed and the results are analysed. It is found out that the proposed SVC-

based duplicate detector greatly outperforms detectors using the same features but based on the L1

metric. The proposed binary detector is then compared to state of the art system. It outperforms

the perceptual distance function (DPF) method, which uses more feature to describe the image.

While the proposed method is slightly outperformed by the key points (KPs) method, it is five to

ten times less computationally complex.

In chapter 6, we gave an account of the entire duplicate system. Contrary to chapter 5,

the system knows a set of original images and not only a single original. The proposed system

uses the image description given in chapter 4, and is additionally composed of the three steps

outlined hereafter. In the first step, the number of features is reduced. In the second step, the

originals that are most likely to be duplicates of the test image are selected by means of an R-

Tree. They form the set of candidates. In the third step, the binary detectors developed in the

chapter 5 are applied to each element of the set of candidates. Finally, the element with the highest

probability is selected. The system estimates that the test image is a duplicate of this original if

the corresponding probability is higher than a certain threshold. The performance of the proposed

system is assessed and the results are analysed. It is found out that the proposed multiple original

images duplicate detector greatly outperforms detectors using the same features but based on the

L1 metric. Additionally, it also outperforms the DPF method, which uses more features to describe

the image. While the proposed method is slightly outperformed by the KPs method, it is five to

ten times computationally less complex.

To conclude our summary, we would like to point out that this thesis’s nature is mainly

exploratory. Indeed, to the best of the author knowledge, it is one of the first attempts to apply

machine learning techniques to the problem of content-based duplicate detection.
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7.2 Perspectives

The work proposed in this dissertation can be improved and extended in several ways. Some

directions for further works are proposed below.

• The model given in chapter 4 can be extended by incorporating more knowledge on the

nature of the image transformations used to create the duplicates. A possible starting point

is the research’s results reported in [Simard et al., 1998].

• The benchmark procedure presented in chapter 4 can be standardised and offered to the

community in a manner similar to what has been done for watermarking. However, while

watermarking benchmarks only need to include transformations, content-based benchmarks

should also standardise sets of original images as well as sets of unrelated images. Indeed, an

important aspect of content-based duplicate detection methods is that of image description,

which clearly depends on the used images.

• The binary duplicate detectors presented in chapter 5 can be improved in several ways:

– The combination of several simpler classifiers per original can greatly improve the

detection performances. A possible starting point is the seminal paper [Breiman, 1996].

– The optimal choice of the training examples remains still an open issue. More precisely,

the duplicate examples used to train the classifier are manually chosen and might not

be optimal. It would be interesting to devise an automatic algorithm to determine a

set of good, possibly optimal, training examples given a set of transformations to be

detected.

– The projection step is, as implemented now, independent of the original image. This step

could be made original-dependant so as to find a representation of the images’ feature

that separates well the duplicates of a particular original image from the unrelated

images. Such a method might be based on existing dimensionality reduction techniques.

– In this thesis, we used a support vector classifier to decide whether a test image is a

duplicate or unrelated to an original image. Many other types of classifiers exist, and

it could be enriching to try different approaches.

– Under some assumptions (the transformations are smooth), the subspace spanned by

the duplicated is a smooth manifold embedded within the image space. For this reason,

it would be interesting to use non-linear principal component analysis to represent the

features describing an original and its duplicates because this technique is able to project

manifolds on simpler objects [Karhunen and Joutsensalo, 1994].

• The pre-classifier presented in chapter 6 can be improved in several ways:

– A second direction of research relates to a pre-classifier that performs better on high-

dimensional spaces. Indeed, the proposed pre-classifier performs best when the number

of features is around thirty but it was shown, in chapter 6, that additional features

contain information that helps to better pre-classify duplicates. A possible way of
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improving the pre-classifier behaviour in higher dimensional spaces is that of random

projections [Indyk and Motwani, 1998].

– The pre-classifier is based on the R-Tree indexing scheme that uses high dimensional

rectangles. There exist many other spatial access methods that can be used. For

example, some indexing schemes are based on high dimensional rectangles, hyper-

spheres, a mix of both, or generic metrics [Ciaccia et al., 1997]. It would prove certainly

enriching to adapt the proposed pre-classifier algorithm to these different spatial access

methods.

• The system can be extended in several ways that either bring improved performance or new

functionalities:

– An extension of the proposed method consists in using, for example, the more complex

key points method developed by Ke et al. as a refinement step on those test images

estimated to be duplicates by the proposed system.

– The features used to describe the images are of a global nature. Ke et al. showed that

the use of local features can greatly improve the performance of duplicate detection.

Possible approaches to incorporate local information to the proposed framework is, one,

to subdivide the image in rectangular tiles and to independently describe each tile and,

two, the work of Lowe. Additionally, it would permit to adapt the method to the

detection of duplicates of an image subpart or of an object within test images.

– Another possible extension, related to the previous proposition, is to adapt duplicate

detection to video. In this case the goal is to detect a particular object within a

video scene. For example, the police would like to detect a particular car on videos

taken on a closed-circuit televisions used for surveillance. In this case, the considered

transformations are of a particular nature, namely viewpoint changes and occlusions.

This means that the three-dimensional nature of the object has to be taken into account.

– Finally, an important avenue of research is that of adapting the system to the genre

of the test and original images. Indeed, images are varied and can represent outdoor

scenes, city pictures, paintings, cartoons, people, and more. Each visual genre can be

better described using different features, for example a city picture is better described if

the features contain descriptors about straight lines while this kind of descriptors might

not be very useful for a natural scenery. A possible approach is to use a multitude of

features that cover most visual genres. However, this approach is not realistic because,

one, each added feature results in higher computational complexity, two, more training

examples are needed to avoid overtraining (curse of dimensionality). For this reason,

we believe that a content-based duplicate detector should adapt itself to the genre of

each image. This kind of adaptation first presupposes the existence of a visual genre

classifier, or at least the existence of a method that selects, based on the visual genre of

the image, the features that best describe an image. Secondly, this also means that all

subsequent methods have to cope with different image representations. We believe this

approach to be the way to go for content-based duplicate detection.
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