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Abstract

Existing cellular networks are centrally managed and require a tremendous initial investment. With the
advancement of new wireless technologies, the operators of traditional networks have to face new com-
petition. New technologies make it possible to provide wireless services with substantially less invest-
ment. There are two interdependent trends that enable this progress: the evolution of technology and the
evolution of spectrum policy. These two trends point towards a more colorful landscape of wireless com-
munication technologies. In particular, new wireless technologies enable users and small operators to
deploy their own networks and to compete with the large network operators that run traditional wireless
networks. Because the participants have an increased control over their devices, they might be tempted
to adjust their devices in order to benefit more from the network. This selfish (i.e., non-cooperative)
behavior can dramatically decrease the efficiency of the operation of the network or even paralyze it
completely.

In this thesis, we consider various aspects of non-cooperative resource management in wireless net-
works using the methods provided by game theory. In the first part of the thesis, we present a compre-
hensive tutorial on game theory to facilitate the understanding of this theory as a tool. To emphasize the
appropriateness of game theory in wireless networking, we present a set of selected examples along with
their game-theoretic formalization.

In the second part of the thesis, we are concerned with the non-cooperative behavior of users. More
precisely, we focus on ad hoc wireless networks and assume that users can alter the default programming
of their communication devices to improve performance. First, we consider the problem of multi-radio
channel allocation and show that a Nash equilibrium driven by the selfish behavior of users achieves
load-balancing. We propose two algorithms, each based on a different set of available information, to
achieve the characterized Nash equilibria. Furthermore, we discuss other properties such as efficiency,
fairness and coalition-proofness. In the remainder of this second part, we focus on the fundamental
problem of packet forwarding in ad hoc networks. In static networks, we prove that cooperative Nash
equilibria exist, but the set of conditions that enable selfish participants to mutually forward each others’
packets are very restrictive. We also show that in dynamic networks, mobility promotes cooperation.

In the third part of the thesis, we model the non-cooperative behavior of wireless network operators.
We assume that they make strategic decisions to maximize the performance of their network. We also
assume that the networks of different operators mutually affect each other, hence we model the decisions
as network operator games. First, we study the scenario of co-located sensor networks and show that
the network operators can mutually increase the lifetime of their network by cooperating. We also show
that cooperation in terms of sharing sinks is more beneficial than providing packet forwarding of their
sensors only. Second, we focus on the pilot power control of cellular networks assumed to operate in
a shared spectrum. We identify Nash equilibria for different parameter values in a single-stage game
and show that the cooperative solution can be enforced in a repeated game. Third, we consider the co-
existence of cellular networks along national borders. We show that the operators have an incentive to be
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strategic at their borders, or, in other words, to adjust the transmit power of their pilot signals. We show
the efficiency of the Nash equilibria for different user densities. Finally, we extend the payoff function
to include the cost of using high pilot powers and relate this extended game to the well-known Prisoner’s
Dilemma.

Keywords: wireless networks, game theory, cooperation, selfishness, Nash equilibrium, Pareto-optimality,
price of anarchy, spectrum sharing, packet forwarding, operator games
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Résumé

Les réseaux cellulaires existants sont gérés de façon centralisée et leur déploiement demande un in-
vestissement initial très important. Avec l’évolution des nouvelles technologies sans-fil, les opérateurs
des réseaux traditionnels doivent faire face à une nouvelle concurrence. En effet, les nouvelles technolo-
gies permettent de fournir des services sans-fil avec un investissement considérablement moindre. Il y a
deux tendances interdépendantes qui permettent cette amélioration de service: l’évolution de la gestion
du spectre de fréquences et l’évolution de la technologie sans-fil. Ces deux tendances mènent à une
nouvelle ère pour les communications sans-fil. En particulier, les nouvelles technologies sans-fil perme-
ttent aux utilisateurs et aux petits opérateurs de déployer leurs propres réseaux et ainsi de concurrencer
les grands opérateurs qui gèrent habituellement les réseaux sans-fil. Puisque ces nouveaux participants
ont un contrle accru de leurs appareils, ils pourraient tre tentés de reprogrammer ces appareils afin de
bénéficier plus des ressources communes. Ce comportement égoı̈ste (également apellé non-coopératif)
peut nettement diminuer l’efficacité du réseau ou mme le paralyser complètement.

Dans cette thèse de doctorat, nous utilisons différentes méthodes proposées par la théorie des jeux
pour analyser divers aspects de la gestion non-coopérative des ressources dans les réseaux sans-fil. Dans
la première partie de la thèse, nous présentons une introduction à la théorie des jeux pour faciliter la
compréhension de cet outil. Nous présentons également quelques exemples de problèmes avec leur
formalisation en jeu pour montrer que la théorie des jeux est parfaitement adaptée à l’analyse des réseaux
sans-fil.

Dans la deuxième partie de la thèse, nous considérons le comportement non-coopératif des utilisa-
teurs. Plus précisément, nous nous concentrons sur les réseaux ad hoc sans fil et supposons qu’afin
d’améliorer leur performance, les utilisateurs peuvent changer la programmation par défaut de leurs
appareils de communication. D’abord, nous considérons le problème de l’attribution du canal de com-
munication et montrons que le comportement égoı̈ste des utilisateurs mène à un équilibre de Nash qui
réalise un équilibre le la charge dans le réseau. Nous proposons deux algorithmes, chacun basé sur un
ensemble différent d’informations disponibles, pour arriver à ces équilibres de Nash. En outre, nous dis-
cutons d’autres propriétés telles que l’efficacité, l’équité et la résistance à la coalition. Dans le reste de
cette deuxième partie, nous nous concentrons sur le problème fondamental de la volonté des utilisateurs
à participer au fonctionnement du réseau ad hoc en relayant les paquets des autres. Dans les réseaux
statiques, nous montrons que les équilibres de Nash coopératifs existent, mais que l’ensemble de condi-
tions qui permettent aux participants égoı̈stes de relayer les paquets des autres sont très restrictives. Nous
montrons également que dans les réseaux dynamiques, la mobilité encourage la coopération.

Dans la troisième partie de la thèse, nous modelons le comportement non-coopératif des opérateurs
de réseau sans-fil. Nous supposons qu’ils prennent des décisions stratégiques pour maximiser la per-
formance de leur réseaux. Nous supposons également que les réseaux contrlés par différents opérateurs
s’influencent mutuellement, par conséquent nous modelons les décisions en tant que jeu entre les opérateurs.
D’abord, nous étudions le scénario des réseaux de capteurs qui coexistent et montrons que les opérateurs
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peuvent augmenter la vie de leur réseaux en coopérant. Nous montrons également que la coopération
qui consiste à partager les collecteurs de données est plus bénéfique que cette qui consiste à uniquement
relayer les paquets. Deuxièmement, nous nous concentrons sur le contrle de la puissance du signal pi-
lote des réseaux cellulaires supposés opérer dans un spectre partagé. Nous identifions des équilibres de
Nash pour différentes valeurs de paramètres dans un jeu à une itération et montrons que, dans un jeu
répété, l’utilisation de certaines stratégies rend optimale la solution coopérative. Troisièmement, nous
considérons la coexistence des réseaux cellulaires le long des frontières nationales. Nous montrons que
les opérateurs sont encouragés à tre stratégiques à leurs frontières, et donc, en d’autres termes, à ajuster
la puissance de transmission de leurs signaux pilotes. Nous montrons l’efficacité des équilibres de Nash
pour différentes densités d’utilisateurs. En conclusion, nous étendons la fonction de profit pour inclure
le coût d’utilisation de puissances pilotes élevées et rapportons ce jeu étendu au fameux Dilemme du
Prisonnier.

Mots-clés: réseaux sans-fil, théorie des jeux, coopération, égoı̈sme, équilibre de Nash, optimalité de
Pareto, prix d’anarchie, partage de spectre, relais de paquets, jeux d’opérateurs.
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Introduction

Existing cellular networks are centrally managed and typically provide services to a large number of
users. The network operators invest substantial effort and money in the design and supervision of their
networks. This implies that only a few companies can afford the tremendous investment of bootstrapping
such a business.

With the advancement of new wireless technologies [BH07], the operators of cellular networks face
new competition. New technologies, such as WiFi, make it possible to provide wireless services with
substantially less investment. This is clearly shown in the spread of (affordable) WiFi access that threat-
ens the services provided by cellular networks. This competition is favorable for the users, because it
increases their choice. At the same time, it undermines the quasi-monopolistic situation of the tradi-
tional network operators, motivating them to adapt their services (and their business model) to the new
challenge.

There are two interdependent trends that enable this progress: the evolution of technology and the
evolution of spectrum policy [Ben04, FF03]. On the one hand, the development of new wireless technolo-
gies, notably WiFi, revolutionize the area of wireless communication. On the other hand, government
agencies are relaxing the rigid spectrum licensing process that prevented the entering of new technolo-
gies and operators. The first step toward a more flexible spectrum policy was to provide given spectrum
bands as unlicensed bands available for all technologies. These two changes reinforce each other and
could result in an open and flexible spectrum management.

There are several new technologies that enable networking in unlicensed bands. Because of the
popularity of these new technologies and the lack of regulation on unlicensed bands, the quality-of-
service (QoS) provided by networks operating in unlicensed bands is a serious issue. Meanwhile, there
exist large parts of the frequency spectrum that were previously licensed to certain operators, but are
largely unused. In line with the progress, both in policy and technology in wireless networking, the
government agencies consider adopting a new concept called cognitive radio communication [III01,
Hay05]. The cognitive radio architecture enables wireless devices to discover unused frequencies – on a
licensed or unlicensed frequency band – and to operate on them.

In the next section, we highlight some of the prospective wireless networks and the challenges at
their deployment.

Prospective Wireless Networks

Small operators in unlicensed bands: The need for more efficient spectrum usage led to the creation
of unlicensed bands. Unlicensed bands enable anyone to operate his own wireless network. One exam-
ple is the WiFi technology: WiFi access points are inexpensive and easily deployable, hence a flexible
wireless access infrastructure can be built up quickly without substantial initial investment. The lack of
substantial initial investments and ease of management opens the door for small operators to enter the
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competition for users. Clearly, as the number of network operators increases, each of them has an incen-
tive to fine-tune the protocol parameters of his access points in order to increase his profit. This is not
too difficult as the access points are flexible and – compared to cellular network base stations – relatively
easy to program. As the adjustments of the access points in a given network affect other networks in
the same unlicensed band, the operators are likely to engage in a strategic optimization problem. Due to
the potentially large number of network operators, settling these conflicts via the traditional process of
mutual agreements can be far from obvious to do.

Community and ad hoc networks: In contrast to small operators, users with wireless access points
can organize themselves into a community network to mutually provide wireless access to each other.
Community networks can be an additional threat to existing wireless operators, because they can provide
wireless access to their members for free. However, the basic principle of altruism that enables the
existence of community networks might be to their disadvantage as well. Because they rely on the service
offered by individuals, selfish individuals can exploit the service offered by others without contributing to
the community. This issue of free-riding can be a serious disadvantage of community networks [EFP06].

Taking the idea of community networks one step further, it is envisioned that users can form a lo-
cal communication network among themselves solely relying on their wireless devices. This vision is
summarized in the idea of ad hoc networks, an idea that generated an extensive set of research contribu-
tions. The basic principle of ad hoc networks is that users establish the connections among each other
using multi-hop communication. This means that they have to provide all the networking services them-
selves without the involvement of an external entity (i.e., the network operator). Similarly to community
networks, the issue of free-riding might be a serious problem in ad hoc networks as well [BH07].

Cognitive radio: Cognitive radio communication is a new concept that is being considered by govern-
ment agencies to utilize the available frequency spectrum more efficiently. Cognitive radios are able to
sense a wide band of frequency spectrum in order to select the frequency that is not or sparsely utilized to
communicate. This policy change on the part of the government agencies is in parallel with a technology
change towards software-defined radio (SDR) [III95]. The evolution of SDR is fueled by a set of new
techniques: smart antennas, multiband antennas and wideband RF devices. More and more functionali-
ties are implemented in general-purpose programmable processors. The purpose of SDR is to implement
an architecture that is able to accommodate any future technology. Even if this objective is not reached
completely, SDRs will be able to provide an appropriate platform for cognitive radio communication.

One key property of the cognitive radio architecture is that the programming of the devices makes
them highly adaptive. This means that they implement a strategic (i.e., cognitive) behavior by definition.
Hence, this architecture provides a fertile ground for users to re-program their devices in order to increase
their utility in the network. Unlike in traditional networks, where there is a need for a substantial effort
to re-program wireless devices, in cognitive radio networks the impact of strategic behavior has to be
taken into account from the very beginning of the network design.

Problem Formulation and Methodology

Existing cellular networks are centrally managed and thus each participant is assumed to follow the
pre-defined network protocols. This assumption is backed by the fact that existing wireless devices are
difficult to re-program. Prospective wireless networks are envisioned to operate with more flexibility
based on new technologies and protocols.
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In this thesis, we consider various aspects of non-cooperative resource management in prospective
wireless networks. We study two important areas: spectrum sharing on the physical and medium access
layer and packet forwarding in the networking layer. The major difference between the problems in
these areas is that spectrum sharing concerns the splitting of an available resource (i.e., the frequency
spectrum), whereas the core of the packet forwarding problem is providing a reliable service for multi-
hop, end-to-end packet transmissions. Consequently, the instantiation of non-cooperative behavior is
different as well. In spectrum sharing, selfish participants have the objective to obtain the largest possible
share from the available spectrum. In packet forwarding, however, selfish participants want to exploit the
packet forwarding service provided by others without contributing to it themselves.

Motivated by the potential selfishness of network participants, we seek the answer for the following
fundamental question in this thesis: What is the effect of selfish behavior in wireless networks? In
particular, we are interested in the existence of cooperation in networks with selfish participants and the
efficiency of such a non-cooperative, self-organizing solution with respect to a centralized method. We
study the effect of selfish behavior in two main settings: (a) on a microscopic level, we consider the
non-cooperative behavior of user devices in decentralized networks, whereas (b) on a macroscopic level,
we assume that networks are centralized, but their operators confront each other in strategic situations.

We study the problem of selfishness in different wireless networks using game theory [FH06a, FT91,
Gib92, OR94]. Game theory is an analytical tool that has been extensively applied to various problems
in different disciplines in the past: to model strategic decision problems in economics or to analyze
the rational behavior of different species in biology. In recent years, game theory has been applied to
computer networks as well, including wireless communication networks. We survey some of these works
in the next section.

Game theory in networking

In the following, we highlight a subset of research contribution in computer networking that rely on game
theory.

Peer-to-peer networks: Game theory has been used to solve various problems in peer-to-peer (P2P)
networks. In [GLBM01], Golle et al. consider the free-rider problem in peer-to-peer file sharing net-
works, notably in Napster. They construct a game-theoretic model and analyze equilibria of user strate-
gies under several novel payment mechanisms. Qiu and Srikant [QS04] propose a fluid model to study
the performance and the incentives of the BitTorrent file-sharing protocol. In [LFSC03], Lai et al. model
the free-riding problem using the Evolutionary Prisoners Dilemma (EPD) game. They investigate in-
centive techniques, such as reputation systems, to promote cooperation between P2P nodes. Feldman
et al. [FPCS06] consider both free-riding and white-washing in P2P systems. They propose a game-
theoretic model based on users’ types that express their willingness to contribute resources to the system.
They propose reputation-based penalization mechanism to prevent free-riding and initial penalization to
mitigate white-washing.

In [CFSK04], Chun et al. analyze the characteristics of overlay routing networks generated by selfish
nodes playing competitive network construction games. They highlight a fundamental tradeoff between
performance and resilience, and show that limiting the degree of nodes is of great importance in control-
ling this balance. Aberer et al. [ADGK06] study trust and reputation systems to promote cooperative
behavior in P2P networks. They argue that the simplifications made in existing models limit their appli-
cability and propose some guidelines to develop more realistic models.
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Wired networks: Game theory has also been used to solve various problems in wired networks. In
[CSEZ93], Cocchi et al. study the role of pricing policies in multiple service class networks. They
present an abstract formulation of service disciplines and pricing policies based on the Nash implemen-
tation paradigm.

Korilis, Lazar and Orda [KLO95] address the problem of allocating link capacities in routing deci-
sions; in [KO99], Korilis and Orda suggest a congestion-based pricing scheme. Roughgarden [Rou05]
quantifies the worst-possible loss in network performance arising from non-cooperative routing behav-
ior. In [HYR00], Yaı̈che, Mazumdar and Rosenberg present a game-theoretic framework for bandwidth
allocation; they study the centralized problem and show that the solution can be distributed in a way that
leads to a system-wide optimum. Jin and Kesidis [JK03] propose a generic mechanism for rate control
and study Nash equilibria in a networking game. Johari and Tsitsiklis [JT04] study the price of anarchy
in congestion games. Their analysis extends to a wide class of resource allocation systems where end
users simultaneously require multiple scarce resources.

He and Walrand [HW06] focus on revenue sharing of Internet service providers. They present a
pricing model and show that noncooperative pricing strategies may lead to unfair distribution of profit.
Then, they propose a fair revenue-sharing policy and show that this fair allocation policy encourages
collaboration among providers and hence it results in higher profits for them.

Wireless networks: In [GM01], Goodman and Mandayam introduce the concept of network-assisted
power control to equalize signal-to-interference ratio between the users. In [XSC03], Xiao, Schroff and
Chong describe a utility-based power control framework for a cellular system. In [SMG02], Saraydar,
Mandayam and Goodman present a power control mechanism in wireless network based on pricing.
They analyze this problem in a non-cooperative game and show that pricing can improve the inefficient
Nash equilibria to achieve a Pareto-optimal strategy profile. Alpcan et al. [ABSA02] apply game theory
for uplink power control in cellular networks.

Marbach and Berry [MB02] downlink resource allocation in wireless networks with variable channel
quality. They propose a two pricing schemes: in the first one, the base stations know the utility functions
of the users and in the second scheme, the base stations do not know these utilities. In both cases, they
propose schemes that are system optimal. Qiu and Marbach [QM03] define a price-based approach for
bandwidth allocation in wireless ad hoc networks.

MacKenzie and Wicker [MW03] investigate the effect of selfishness in the slotted Aloha medium
access protocol. They establish the Nash equilibria and the stability regions in the game for some well-
known channel models. Yuen and Marbach [MQ05b] study a price-based rate control mechanism for
random access networks based on the slotted Aloha protocol. They propose a mechanism that uses chan-
nel feedback information to control the aggregate packet arrival rate. They characterize the throughput
and delay at the operating point of the system and show how the operating point can be set a priori by ap-
propriately choosing the control parameters. In [CGAH05], Čagalj et al. use a game-theoretic approach
to investigate the problem of the selfish behavior of nodes in CSMA/CA networks, notably in IEEE
802.11. They characterize two families of Nash equilibria in a single-stage game, one of which always
results in a network collapse. In a repeated game, they establish a Pareto-optimal Nash equilibrium and
develop a distributed protocol to achieve it.

Musacchio and Walrand [MW04] study the economic interests of a wireless access point owner
and his paying client, and model their interaction as a dynamic game with asymmetric information. In
particular, they present a two player game in which the access point does not know whether he faces a
web browser or file transferor type client, and show conditions for which it is not a Nash equilibrium for
the access point to maintain a constant price.
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Figure 1: Illustration of the constitution of the thesis.

Outline of the Thesis

In this thesis, our objective is to bridge the potential gap between the efficiency of non-cooperative and
centrally managed wireless networks using game-theoretic techniques. We illustrate the constitution of
the thesis in Figure 1.

Part I: Introduction to Game Theory

In the first part of the thesis, which consists of Chapter 1, we provide a comprehensive introduction
to non-cooperative game theory in order to facilitate the understanding of this theory. Game theory
provides the basic theoretical building blocks for this thesis. To emphasize the appropriateness of game
theory in wireless networking, we present a set of selected examples, along with their game-theoretic
formalization. The trend towards distributed computing and more programmable user devices inspired
us to focus on non-cooperative game theory.

Part II: Non-Cooperative Behavior of Users

In the second part of the thesis, we are concerned with the non-cooperative behavior of users. More
precisely, we assume that they can alter the default programming of their communication devices to
improve their performance. Often, this improvement comes at the expense of other users.

In Chapter 2, we study the problem of multi-radio channel allocation in competitive wireless net-
works. We assume that there is a wireless network with communicating pairs of user devices, i.e. that
devices send data to their peers via a single hop. Using a static non-cooperative game, we analyze the
scenario of a single collision domain, i.e., that each of the devices can interfere with a transmission of
every other device. We derive the Nash equilibria in this game and show that they achieve load-balancing
by distributing the radios in use over the available channels. We also study fairness issues and the prob-
lem of coalition formation in the channel allocation problem. We show that a Nash equilibrium that
resists coalitions of users is necessarily fair as well. Furthermore, we propose two algorithms to achieve
the system-efficient Nash equilibrium solutions. The first is a sequential algorithm that needs global
coordination and the second is a distributed algorithm that is based on imperfect local information. We
provide the proof for the convergence properties of these algorithms.
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In Chapter 3, we study the problem of multi-hop packet forwarding in selfish ad hoc networks. In
particular, we address the problem of whether cooperation can exist without incentive mechanisms. We
propose a model, based on game theory and graph theory, to investigate the conditions of Nash equilibria
of packet forwarding strategies. We formulate a set of theorems to characterize the Nash equilibria
based on non-cooperative and cooperative strategies. We perform simulations to estimate the probability
that the conditions for a cooperative equilibrium hold in randomly generated network scenarios. As the
problem is rather involved, we deliberately restrict ourselves to a static configuration. We conclude that,
in static ad hoc networks, cooperation needs to be encouraged.

In Chapter 4, we study how mobility affects the cooperative packet forwarding behavior of user
devices. We prove several theorems about the existence of Nash equilibria in a simple scenario and
we investigate a more realistic scenario by simulations. We show that in the realistic model the level
of contribution of the nodes to reach cooperation is much higher than in the theoretical model, and we
quantify the relationship between mobility and cooperation. We conclude that spontaneous cooperation
is easier to reach when mobility is higher.

Part III: Non-Cooperative Behavior of Network Operators

In the third part of the thesis, we model the selfish behavior of wireless network operators. We as-
sume that they make strategic decisions to maximize the performance of their network. We assume
that the networks of different operators mutually affect each other, hence we model their decisions as
non-cooperative games.

In Chapter 5, we introduce the concept of multi-domain sensor networks that, to the best of our
knowledge, has never been considered before. We propose a game-theoretic model to investigate the ef-
fect of cooperation in joint packet forwarding and power control. Our results show that energy saving by
cooperation provides a “natural incentive” for the authorities. The advantage of cooperation is twofold:
(a) the authorities can largely benefit by providing service of their sinks for other’s sensor networks and
(b) if sinks are common resources, then cooperative packet forwarding is beneficial for sparse networks
or in hostile environments.

In Chapter 6, we investigate the problem of co-existing wireless network operators in a shared spec-
trum. We assume that the operators apply power control at the base stations to mitigate interference,
while providing a permanent service to the users. Furthermore, we assume that mobile devices can
freely roam among the networks of various operators. Free roaming means that the mobile devices mea-
sure the signal strength of the pilot signals (i.e., beacon signals) of the base stations and attach to the
base station with the strongest pilot signal. We model the behavior of the network operators in a game
theoretic setting in which each operator decides about the power of the pilot signal of his base stations.
We first identify possible Nash equilibria in the theoretical setting in which all base stations are located
on the vertices of a two-dimensional lattice. We then prove that a socially optimal Nash equilibrium
exists and that it can be enforced by using punishments. Finally, we relax the topological assumption
and show that, in the more general case, finding the Nash equilibria is an NP-complete problem.

In Chapter 7, we investigate the strategic interaction of the operators of 3G wireless networks on the
border of two countries. More precisely, we focus on the scenario of two operators, who want to fine-
tune the emitting power of the pilot signals of their base stations. This operation is crucial, because the
pilot signal power determines the number of users the operators can attract and hence the revenue they
obtain. Due to the complexity of the problem, we restrict ourselves to the scenario of two competing base
stations. We show that the operators have an incentive to be strategic at their borders, i.e., to adjust the
transmit power of their pilot signals. In addition, we study Nash equilibrium conditions in an empirical
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model and show the efficiency of the Nash equilibria for different user densities. We provide a distributed
convergence algorithm to achieve the identified Nash equilibria. Finally, we extend the payoff function
to include the cost of using high pilot powers. The game with power costs corresponds to the well-known
Prisoner’s Dilemma: The players still have the incentive to adjust their pilot powers, but their strategic
behavior leads to a Nash equilibrium that is sub-optimal from the system’s point of view.
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Chapter 1

A Tutorial on Game Theory

1.1 Introduction

Game theory [FT91, Gib92, OR94] is a discipline aimed at modeling situations in which decision makers
have to make specific actions that have mutual, possibly conflicting, consequences. It has been used
primarily in economics, in order to model competition between companies: for example, should a given
company enter a new market, considering that its competitors could make similar (or different) moves?
Game theory has also been applied to other areas, including politics and biology.1

The first textbook in this area was written by von Neumann and Morgenstern, in 1944 [vNM44]. A
few years later, John Nash made a number of additional contributions [Nas50, Nas51], the cornerstone of
which is the famous Nash equilibrium. Since then, many other researchers have contributed to the field,
and in a few decades game theory has become a very active discipline; it is routinely taught in economics
curricula. An amazingly large number of game theory textbooks have been produced, but almost all of
them consider economics as the premier application area (and all their concrete examples are inspired
by that field). Our tutorial is inspired by three basic textbooks and we mention them in the ascending
order of complexity. Gibbons [Gib92] provides a very nice, easy-to-read introduction to non-cooperative
game theory with many examples using economics. Osborne and Rubinstein [OR94] introduce the game-
theoretic concepts very precisely, although this book is more difficult to read because of the more formal
development. This is the only book out of the three that covers cooperative game theory as well. Finally,
Fudenberg and Tirole’s [FT91] book covers many advanced topics, in addition to the basic concepts.2

Not surprisingly, game theory has also been applied to networking, in most cases to solve routing
and resource allocation problems in a competitive environment. The references are so numerous that we
cannot list them due to space constraints. A subset of these papers is included in [ABA+06]. Recently,
game theory was also applied to wireless communication: the decision makers in the game are rational
users or networks operators who control their communication devices. These devices have to cope with a
limited transmission resource (i.e., the radio spectrum) that imposes a conflict of interests. In an attempt
to resolve this conflict, they can make certain moves such as transmitting now or later, changing their
transmission channel, or adapting their transmission rate.

There is a significant amount of work in wired and wireless networking that make use of game theory.

1The name itself of “game theory” can be slightly misleading, as it could be associated with parlor games such as chess
and checkers. Yet, this connection is not completely erroneous, as parlor games do have the notion of players, payoffs, and
strategies - concepts that we will introduce shortly.

2Note that there exist books on the application of game theory to specific topics in wireless networking, such as on routing
[Rou05].
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Oddly enough, there exists no comprehensive tutorial specifically written for wireless networkers.3 We
have wrote this tutorial with the hope of contributing to fill this void. As game theory is still rarely
taught in engineering and computer science curricula, we assume that the reader has no (or very little)
background in this field; therefore, we take a basic and intuitive approach. Because in most of the
strategic situations in wireless networking the players have to agree on sharing or providing a common
resource in a distributed way, our approach focuses on the theory of non-cooperative games. Cooperative
games require additional signalization or agreements between the decision makers and hence a solution
based on them might be more difficult to realize.

In a non-cooperative game, there exist a number of decision makers, called players,4 who have
potentially conflicting interests. In the wireless networking context, the players are the users or network
operators controlling their devices. In compliance with the practice of game theory, we assume that the
players are rational, which means that they try to maximize their payoffs (or utilities). This assumption of
rationality is often questionable, given, for example, the altruistic behavior of some animals. Herbert A.
Simon was the first one was to question this assumption and introduced the notion of bounded rationality
[Sim69]. But, we believe that in computer networks, most of the interactions can be captured using the
concept of rationality, with the appropriate adjustment of the payoff function. In order to maximize their
payoff, the players act according to their strategies. The strategy of a player can be a single move (as we
will see in Section 1.2) or a set of moves during the game (as we present in Section 1.4).

In this tutorial, we devote particular attention to the selection of the examples so that they match our
focus on wireless networks. For the sake of clarity, and similarly to classic examples, we define these
examples for two decision makers, hence the corresponding games are two-player games. For each of the
examples, we highlight a corresponding research contribution that models the same problem in a more
complex scenario. As we demonstrate in this thesis, the application of game theory extends far beyond
two-person games. Indeed, in most networking problems, there are several participants.

We take an intuitive top-down approach in the protocol stack to select the examples in wireless
networking as follows. Let us first assume that the time is split into time steps and each device can make
one move in each time step.

1. In the first game called the Forwarder’s Dilemma,5 we assume that there exist two devices as play-
ers, p1 and p2. Each of them wants to send a packet to his destination6, dst1 and dst2 respectively,
in each time step using the other player as a forwarder. We assume that the communication be-
tween a player and his receiver is possible only if the other player forwards the packet. We show
the Forwarder’s Dilemma scenario in Figure 1.1. If player p1 forwards the packet of p2, it costs
player p1 a fixed cost 0 < C << 1, which represents the energy and computation spent for the
forwarding action. By doing so, he enables the communication between p2 and dst2, which gives
p2 a benefit7 of 1. The payoff is the difference of the benefit and the cost. We assume that the game
is symmetric and the same reasoning applies to the forwarding move of player p2. The dilemma

3To the best of our knowledge, there exist only two references: a monograph [MDT06] that provides a synthesis of lectures
on the topic, and a survey [ABA+06] that focuses mostly on wired networks.

4Note that there exists no convention to refer to the players with a particular gender. In this work, we will use the male
pronouns following the basic textbooks [FT91, OR94].

5We have chosen this name as a tribute to the famous Prisoner’s Dilemma game in the classic literature [Axe84, Gib92,
FT91, OR94].

6Note that in the networking context, wireless engineers use the terms source and destination to refer to the endpoints to a
given network flow. In case of a direct transmission between two devices, the terms sender and receiver are used.

7Note that we introduce the concept of benefit to express the positive results for a given player in the game. Hence, the
concept of benefit should be interpreted as “something that contributes to or increases one’s well-being.”
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p1 p2 dst1dst2

Figure 1.1: The network scenario in the Forwarder’s Dilemma game.

p1 p2 dstsrc

Figure 1.2: The Joint Packet Forwarding Game.

is the following: Each player is tempted to drop the packet he should forward, as this would save
some of his resources; but if the other player reasons in the same way, then the packet that the first
player wanted to send will also be dropped. They could, however, do better by mutually forward-
ing each other’s packet. Hence the dilemma. The Forwarder’s Dilemma serves as a basis for our
packet forwarding games in Chapters 3 and 4.

2. In the second example, we present a scenario, in which a source src wants to send a packet to his
destination dst in each time step. To this end, he needs both devices p1 and p2 to forward for him.
Thus, we call this game the Joint Packet Forwarding Game. Similarly to the previous example,
there is a forwarding cost 0 < C << 1 if a player forwards the packet of the sender. If both players
forward, then they each receive a benefit of 1 (e.g., from the sender or the receiver). We show this
packet forwarding scenario in Figure 1.2. The packet forwarding games in Chapters 3 and 4 are
also inspired by the Joint Packet Forwarding Game.

3. The third example, called Multiple Access Game,8 introduces the problem of medium access.
Suppose that there are two players p1 and p2 who want to access a shared communication channel
to send some packets to their receivers re1 and re2. We assume that each player has one packet to
send in each time step and he can decide to access the channel to transmit it or to wait. Furthermore,
let us assume that p1, p2, re1 and re2 are in the power range of each other, hence their transmissions
mutually interfere. If player p1 transmits his packet, it incurs a sending cost of 0 < C <<
1. The packet is successfully transmitted if p2 waits in that given time step (i.e., he does not
transmit), otherwise there is a collision. If there is no collision, player p1 gets a benefit of 1 from
the successful packet transmission. The framework presented by Čagalj et al. in [CGAH05] is a
generalized version of the Multiple Access Game.

4. In the last example, we assume that player p1 wants to send a packet in each time step to a receiver
re1. In this example, we assume that the wireless medium is split into two channels x and y
according to the Frequency Division Multiple Access (FDMA) principle [Rap02, Sch05]. The
objective of the malicious player p2 is to prevent player p1 from a successful transmission by
transmitting on the same channel in the given time step. In wireless communication, this is called

8In the classic game theory textbooks, this type of game is referred to as the “Hawk-Dove” game, or sometimes the
“Chicken” game.
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Figure 1.3: The classification of the examples according to protocol layers.

jamming, hence we refer to this game as the Jamming Game.9 Clearly, the objective of p1 is to
succeed in spite of the presence of p2. Accordingly, he receives a payoff of 1 if the attacker cannot
jam his transmission and he receives a payoff of−1 if the attacker jams his packet. The payoffs for
the attacker p2 are the opposite of those of player p1. We assume that p1 and re1 are synchronized,
which means that re1 can always receive the packet, unless it is destroyed by the malicious player
p2. Note that we neglect the transmission cost C, since it applies to each payoff (i.e., the payoffs
would be 1 − C and −1 − C) and does not change the conclusions drawn from this game. The
Jamming Game models the simplified version of a game-theoretic problem presented by Zander
in [Zan91].

We deliberately chose these examples to represent a wide range of problems over different protocol
layers (as shown in Figure 1.3). There are indeed fundamental differences between these games as
follows. The Forwarder’s Dilemma is a symmetric nonzero-sum game, because the players can mutually
increase their payoffs by cooperating (i.e., from zero to 1 − C). The conflict of interest is that they
have to provide the packet forwarding service for each other. Similarly, the players have to establish
the packet forwarding service in the Joint Packet Forwarding Game, but they are not in a symmetric
situation anymore. The Multiple Access Game is also a nonzero-sum game, but the players have to share
a common resource, the wireless medium, instead of providing it. Finally, the Jamming Game is a zero-
sum game because the gain of one player represents the loss of the other player. These properties lead to
different games and hence to different strategic analyses, as we will demonstrate in the next section.

1.2 Static Games

In this section, we assume that there exists only one time step, which means that the players have only
one move as a strategy. In game-theoretic terms, this is called a single-stage game. In the game-theoretic
terms this is called a static game. We will demonstrate how game theory can be used to analyze the games
introduced before and to identify the possible outcomes of the strategic interactions of the players.

1.2.1 Static Games in Strategic Form

We define a game G = (N ,S,U) in strategic form (or normal form) by the following three elements.
N is the set of players. Note that in this chapter we have two players, p1, p2 ∈ N , but we present each
definition such that it holds for any number of players. For convenience, we will designate by subscript
−i all the players belonging to N except i himself. These players are often designated as being the

9In the classic game theory literature, this game corresponds to the game of “Matching Pennies.”
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opponents of i. In our games, player i has one opponent referred to as j. Si corresponds to the pure
strategy space of player i. This means that the strategy assigns zero probability to all moves, except one
(i.e., it clearly determines the move to make). We will see in Section 1.2.4, that the players can also use
mixed strategies, meaning that they choose different moves with different probabilities. We designate
the joint set of the strategy spaces of all players as follows S = S1 × · · · × S|N |. We will represent the
pure strategy space of the opponents of player i by S−i = S\Si. The set of chosen strategies constitutes
a strategy profile s = {s1, s2}. In this tutorial, we have the same strategy space for both players, thus
S1 = S2. Note that our examples have two players and thus we refer to the strategy profile of the
opponents as s−i = sj ∈ S. The payoff 10 or utility ui(s) quantifies the outcome of the game for player i
given the strategy profile s. In our examples, we have U = {u1(s), u2(s)}. Note that the objectives (i.e.,
payoff functions) might be different for the two players, as for example in the Jamming Game.

At this point of the discussion, it is very important to explicitly state that we consider the game to be
with complete information.

Definition 1.1. A game with complete information is a game in which each player has full knowledge of
all aspects of the game.

In particular, complete information means that the players know each element in the game definition:
(i) who the other players are, (ii) what their possible strategies are and (iii) what payoff will result for
each player for any combination of moves. The concept of complete information should not be confused
with the concept of perfect information, another concept we present in detail in Section 1.3.3.

Let us first study the Forwarder’s Dilemma in a static game. As mentioned before, in the static game
we have only one time step. The players can decide to forward (F ) the packet of the other player or to
drop it (D); this decision represents the strategy of the player. As mentioned earlier, this is a nonzero-
sum game, because by helping each other to forward, they can achieve an outcome that is better for both
players than mutual dropping.

Matrices provide a convenient representation of strategic-form games with two players. We can
represent the Forwarder’s Dilemma game as shown in Table 1.1. In this table, p1 is the row player and
p2 is the column player. Each cell of the matrix corresponds to a possible combination of the strategies
of the players and contains a pair of values representing the payoffs of players p1 and p2, respectively.

p2

F D

p1
F (1-C,1-C) (-C,1)
D (1,-C) (0,0)

Table 1.1: The Forwarder’s Dilemma game in strategic form, where p1 is the row player
and p2 is the column player. Each of the players has two strategies: to forward (F ) or to
drop (D) the packet of the other player. In each cell, the first value is the payoff of player
p1, whereas the second is the payoff of player p2.

1.2.2 Iterated Dominance

Once the game is expressed in strategic form, it is usually interesting to solve it. Solving a game means
predicting the strategy of each player, considering the information the game offers and assuming that the

10The notation we use to denote payoffs / utilities corresponds to the conventional notation of many game theory textbooks
[FT91, Gib92, OR94].
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players are rational. There are several possible ways to solve a game; the simplest one consists in relying
on strict dominance.

Definition 1.2. Strategy s
′
i of player i is said to be strictly dominated by his strategy si if,

ui(s
′
i, s−i) < ui(si, s−i),∀s−i ∈ S−i (1.1)

Coming back to the example of Table 1.1, we solve the game by iterated strict dominance (i.e., by
iteratively eliminating strictly dominated strategies). If we consider the situation from the point of view
of player p1, then it appears that for him the F strategy is strictly dominated by the D strategy. This
means that we can eliminate the first row of the matrix, since a rational player p1 will never choose this
strategy. A similar reasoning, now from the point of view of player p2, leads to the elimination of the
first column of the matrix. As a result, the solution of the game is (D, D) and the payoffs are (0, 0). This
can seem quite paradoxical, as the pair (F , F ) would have led to a better payoff for each of the players.
It is the lack of trust between the players that leads to this suboptimal solution.

The technique of iterated strict dominance cannot be used to solve every game. Let us now study
the Joint Packet Forwarding Game. The two devices have to decide whether to forward the packet
simultaneously, before the source actually sends it.11 Table 1.2 shows the strategic form.

p2

F D

p1
F (1-C,1-C) (-C,0)
D (0,0) (0,0)

Table 1.2: The Joint Packet Forwarding Game in strategic form. The players have two
strategies: to forward (F ) or to drop (D) the packet sent by the sender. Both players p1

and p2 get a benefit, but only if each of them forwards the packet.

In the Joint Packet Forwarding Game, none of the strategies of a certain player strictly dominates the
other. If player p1 drops the packet, then the move of player p2 is indifferent and thus we cannot eliminate
his strategy D based on strict dominance. To overcome the requirements defined by strict dominance,
we define the concept of weak dominance.

Definition 1.3. Strategy s
′
i of player i is said to be weakly dominated by his strategy si if,

ui(s
′
i, s−i) ≤ ui(si, s−i),∀s−i ∈ S−i (1.2)

with strict inequality for at least one s−i ∈ S−i.

Using the concept of weak dominance, one can notice that the strategy D of player p2 is weakly
dominated by the strategy F . One can perform an elimination based on iterated weak dominance, which
results in the strategy profile (F , F ). Note, however, that the solution of the iterated strict dominance
technique is unique, whereas the solution of the iterated weak dominance technique might depend on the
sequence of eliminating weakly dominated strategies, as explained at the end of Section 1.2.3.

It is also important to emphasize that the iterated elimination techniques are very useful, even if they
do not result in a single strategy profile. These techniques can be used to reduce the size of the strategy
space (i.e., the size of the strategic-form matrix) and thus to ease the solution process.

11In Section 1.3, we will show that the game-theoretic model and its solution changes if we consider a sequential move of
the players (i.e., if player p2 knows the move of player p1 at the moment he makes a move).
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1.2.3 Nash Equilibrium

In general, the majority of the games cannot be solved by the iterated dominance techniques. As an
example, let us consider the Multiple Access Game introduced at the beginning. Each of the players
has two possible strategies: either access the channel (i.e., to transmit) (A) or wait (W ). As the channel
is shared, a simultaneous transmission of both players leads to a collision. The game is represented in
strategic form in Table 1.3.

p2

W A

p1
W (0,0) (0,1-C)
A (1-C,0) (-C,-C)

Table 1.3: The Multiple Access Game in strategic form. The two moves for each player
are: access (A) or wait (W ).

It can immediately be seen that no strategy is dominated in this game. To solve the game, let us
introduce the concept of best response. If player p1 accesses the channel, then the best response of
player p2 is to wait. Conversely, if player p2 waits, then p1 is better off transmitting a packet. We can
write bri(s−i), the best response of player i to an opponents’ strategy vector s−i as follows.

Definition 1.4. The best response bri(s−i) of player i to the profile of strategies s−i is a strategy si such
that:

bri(s−i) = arg max
si∈Si

ui(si, s−i) (1.3)

One can see, that if two strategies are mutual best responses to each other, then no player would have
a reason to deviate from the given strategy profile. In the Multiple Access Game, two strategy profiles
exist with the above property: (W , A) and (A, W ). To identify such strategy profiles in general, Nash
introduced the concept of Nash equilibrium in his seminal paper [Nas50]. We can formally define the
concept of Nash equilibrium (NE) as follows.

Definition 1.5. The pure strategy profile s∗ constitutes a Nash equilibrium if, for each player i,

ui(s∗i , s
∗
−i) ≥ ui(si, s

∗
−i), ∀si ∈ Si (1.4)

This means that in a Nash equilibrium, none of the users can unilaterally change his strategy to
increase his payoff. Alternatively, a Nash equilibrium is a strategy profile comprised of mutual best
responses of the players.

A Nash equilibrium is strict [HS88] if we have:

ui(s∗i , s
∗
−i) > ui(si, s

∗
−i), ∀si ∈ Si (1.5)

It is easy to check that (D, D) is a Nash equilibrium in the Forwarder’s Dilemma game represented
in Table 1.1. This corresponds to the solution obtained by iterated strict dominance. This result is
true in general: Any solution derived by iterated strict dominance is a Nash equilibrium. The proof of
this statement is presented in [FT91]. In the Multiple Access Game, however, the iterated dominance
techniques do not help us derive the solutions. Fortunately, using the concept of Nash equilibrium, we can
identify the two pure-strategy Nash equilibria: (W , A) and (A, W ). Note that the best response bri(s−i)
is not necessarily unique. For example in the Joint Packet Forwarding Game presented in Table 1.2,
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player p2 has two best responses (D or F ) to the move D of player p1. Multiple best responses are the
reason that the solutions of the iterated weak dominance technique in a given game might depend on the
order of elimination.

1.2.4 Mixed Strategies

In the examples so far, we have considered only pure strategies, meaning that the players clearly decide
on one behavior or another. But in general, a player can decide to play each of these pure strategies with
some probabilities; in game-theoretic terms such a behavior is called a mixed strategy.

Definition 1.6. The mixed strategy σi(si), or shortly σi, of player i is a probability distribution over his
pure strategies si ∈ Si.

Accordingly, we will denote the mixed strategy space of player i by Σi, where σi ∈ Σi. Hence, the
notion of profile, which we defined earlier for pure strategies, is now characterized by the probability
distribution assigned by each player to his pure strategies: σ = σ1, ..., σ|N |, where |N | is the cardinality
of N . As in the case of pure strategies, we denote the strategy profile of the opponents by σ−i. For a
finite strategy space, i.e. for so called finite games12 [FT91] for each player, player i’s payoff to profile
σ is then given by:

ui(σ) =
∑

si∈|Si|
σi(si)ui(si, σ−i) (1.6)

Each of the concepts that we have considered so far for pure strategies can be also defined for mixed
strategies. As there is no significant difference in these definitions, we refrain from repeating them for
mixed strategies.

Let us first study the Multiple Access Game. We call q1 the probability with which player p1 decides
to access the channel, and q2 the equivalent probability for p2 (this means that p1 and p2 wait with
probability 1− q1 and 1− q2, respectively).

The payoff of player p1 is:

u1 = q1(1− q2)(1− C)− q1q2C = q1(1− C − q2) (1.7)

Likewise, we have:
u2 = q2(1− C − q1) (1.8)

As usual, the players want to maximize their payoffs. Let us first derive the best response of p2 for
each strategy of p1. In (1.8), if q1 < 1 − C, then (1 − C − q1) is positive, and u2 is maximized by
setting q2 to the highest possible value, namely q2 = 1. Conversely, if q1 > 1 − C, u2 is maximized
by setting q2 = 0 (these two cases will bring us back to the two pure-strategy Nash equilibria that we
have already identified). More interesting is the last case, namely q1 = 1− C, because here u2 does not
depend on q2 anymore (and is always equal to 0); hence, any strategy of p2 (meaning any value of q2)
is a best response. The game being symmetric, reversing the roles of the two players leads of course to
the same result. This means that (q1 = 1−C, q2 = 1−C) is a mixed-strategy Nash equilibrium for the
Multiple Access Game.

12The general formula for infinite strategy space is slightly more complicated. The reader can find it in [FT91] or [OR94].
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q1

q2

1

1

1-C

1-C0

Figure 1.4: Best response functions in the Multiple Access Game. The best response
function of player p1 (q1 as a function of q2) is represented by the dashed line; that of
player p2 (q2 as a function of q1) is represented by the solid one. The two dots at the
edges indicate the two pure-strategy Nash equilibria and the one in the middle shows the
mixed-strategy Nash equilibrium.

We can graphically represent the best responses of the two players as shown in Figure 1.4. In the
graphical representation, we refer to the set of best response values as the best response function.13

Relying on the concept of mutual best responses, one can identify the Nash equilibria as the crossing
points of these best response functions.

Note that the number of Nash equilibria varies from game to game. There are games with no pure-
strategy Nash equilibrium, such as the Jamming Game. We show the strategic form of this game in
Table 1.4.

p2 (jammer)
x y

p1 (sender)
x (-1,1) (1,-1)
y (1,-1) (-1,1)

Table 1.4: The Jamming Game in strategic form.

The reader can easily verify that the Jamming Game cannot be solved by iterated strict or weak
dominance. Moreover, this game does not even admit a pure-strategy Nash equilibrium. In fact, there
exists only a mixed-strategy Nash equilibrium in this game that dictates each player to play a uniformly
random distribution strategy (i.e., select one of the channels with probability 0.5).

The importance of mixed strategies is further reinforced by the following theorem of Nash [Nas50,
Nas51]. This theorem is a crucial existence result in game theory. The proof uses the Brouwer-Kakutani
fixed-point theorem and is provided in [Gib92].

Theorem 1.1 (Nash, 1950). Every finite strategic-form game has a mixed-strategy Nash equilibrium.

1.2.5 Efficiency of Nash Equilibria and Equilibrium Selection

As we have seen so far, the first step in solving a game is to investigate the existence of Nash equilibria.
Theorem 1.1 states that in a broad class of games there always exists at least a mixed-strategy Nash
equilibrium. However, in some cases, such as in the Jamming Game, there exists no pure-strategy Nash

13Let us emphasize that, according to the classic definition of a function in calculus, the set of best response values does not
correspond to a function, because there might be several best responses to a given opponent strategy profile.
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equilibrium. Once we have verified that a Nash equilibrium exists, we have to determine if it is a unique
equilibrium point. If there is a unique Nash equilibrium, then we have to study its efficiency. One specific
concept that characterizes the efficiency of Nash equilibria is the price of anarchy (POA) [KP99, Rou05].
The price of anarchy of a game is the ratio between the sum of the payoff of all players in a globally
optimal solution compared to the those achieved in a worst-case Nash equilibrium (or alternatively, how
much more cost does the Nash equilibrium bear with respect to the globally optimal solution). If we
consider the best-case Nash equilibria instead of the worst-case Nash equilibria, then we refer to the
price of stability [Rou05].

Efficiency can also be used to compare different Nash equilibria and to select the most appropriate
one. Equilibrium selection means that the users have identified the desired Nash equilibrium profiles,
but they also have to coordinate which one to choose. For example, in the Multiple Access Game both
players are aware that there exist three Nash equilibria with different payoffs, but each of them tries to
be “the winner” by deciding to access the channel (in the expectation that the other player will wait).
Hence, their actions result in a profile that is not a Nash equilibrium. The topic of equilibrium selection
is one of the active research fields in game theory [FL98, Sam97].

1.2.6 Pareto-Optimality

So far, we have seen how to identify Nash equilibria. We have also seen that there might be several
Nash equilibria, as in the Joint Packet Forwarding Game. One method for identifying the desired Nash
equilibrium point in a game is to compare strategy profiles using the concept of Pareto-optimality. To
introduce this concept, let us first define Pareto-superiority.

Definition 1.7. The strategy profile s is Pareto-superior to the strategy profile s
′

if for any player i ∈ N :

ui(si, s−i) ≥ ui(s
′
i, s

′
−i) (1.9)

with strict inequality for at least one player.

In other words, the strategy profile s is Pareto-superior to the strategy profile s
′
, if the payoff of a

player i can be increased by changing from s
′

to s without decreasing the payoff of other players. The
strategy profile s

′
is defined as Pareto-inferior to the strategy profile s. Note that the players might need

to change their strategies simultaneously to reach the Pareto-superior strategy profile s.
Based on the concept of Pareto-superiority, we can identify the most efficient strategy profile or

profiles.

Definition 1.8. The strategy profile spo is Pareto-optimal (or Pareto-efficient) if there exists no other
strategy profile that is Pareto-superior to spo.

In a Pareto-optimal strategy profile, one cannot increase the payoff of player i without decreasing the
payoff of at least one other player. Using the concept of Pareto-optimality, we can eliminate the Nash
equilibria that can be improved by changing to a more efficient (i.e. Pareto-superior) strategy profile.
The game can have several Pareto-optimal strategy profiles and the set of these profiles is called the
Pareto-frontier. It is important to stress that a Pareto-optimal strategy profile is not necessarily a Nash
equilibrium.

We can now use the concept of Pareto-optimality to study the efficiency of pure-strategy Nash equi-
libria in our running examples.
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• In the Forwarder’s Dilemma game, the Nash equilibrium (D, D) is not Pareto-optimal. The strat-
egy profile (F , F ) is Pareto-optimal, but not a Nash equilibrium.

• In the Joint Packet Forwarding game, both strategy profiles (F , F ) and (D, D) are Nash equilibria,
but only (F , F ) is Pareto-optimal.

• In the Multiple Access Game, both pure-strategy profiles (A, W ) and (W , A) are Nash equilibria
and Pareto-optimal.

• In the Jamming game, there exists no pure-strategy Nash equilibrium, and all strategy profiles are
Pareto-optimal (because it is a zero-sum game).

We have seen that the Multiple Access Game has three Nash equilibria. We can notice that the mixed-
strategy Nash equilibrium σ = (q1 = 1− C, q2 = 1− C) results in the expected payoffs (0, 0). Hence,
this mixed-strategy Nash equilibrium is Pareto-inferior to the two pure-strategy Nash equilibria. In fact,
it can be shown in general that there exists no mixed strategy profile that is Pareto-superior to all pure
strategy profiles, because any mixed strategy of a player i is a linear combination of his pure-strategies
with positive coefficients that sum up to one.

1.3 Dynamic Games

In the strategic-form representation it is usually assumed that the players make their moves simulta-
neously without knowing what the other players do. This might be a reasonable assumption in some
problems, for example in the Multiple Access Game. In most of the games, however, the players might
have a sequential interaction, meaning that the move of one player is conditioned by the move of the
other player (i.e., the second mover knows the move of the first mover before making his decision).
These games are called dynamic games and we can represent them in an extensive form. We refer to a
game with perfect information, if the players have a perfect knowledge of all previous moves in the game
at any moment they have to make a new move.

1.3.1 Extensive Form with Perfect Information

In the extensive form, the game is represented as a tree, where the root of the tree is the start of the
game and shown with an empty circle. We refer to one level of the tree as a stage. The nodes of a tree,
denoted by n and a filled circle, show the possible unfolding of the game, meaning that they represent
the sequence relation of the moves of the players. This sequence of moves defines a path on the tree and
is referred to as the history h of the game. It is generally assumed that a single player can move when
the game is at a given node.14 This player is represented as a label on the node. Note that this is a tree,
thus each node is a complete description of the path preceding it (i.e., each node has a unique history).
The moves that lead to a given node are represented on each branch of the tree. Each terminal node (i.e.,
leaf) of the tree defines a potential end of the game called outcome and it is assigned the corresponding
payoffs. In addition, we consider finite-horizon games, which means that there exist a finite number of
stages. Otherwise, we call it an infinite-horizon game.

14Osborne and Rubinstein [OR94] define a game where a set of players can move in one node. Also, there exist specific
examples in [FT91], in which different players move in the same stage. For the clarity of presentation, we do not discuss these
specific examples in this tutorial.
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Note that the extensive form is a more convenient representation, but basically every extensive form
can be transformed to a strategic form and vice versa. However, extensive-form games can be used to
describe sequential interactions more easily than strategic-form games. In extensive form, the strategy
of player i assigns a move mi(h(n)) to every non-terminal node in the game tree with the history h.
The strategies define a Nash equilibrium, which definition is basically the same as the one provided in
Definition 1.5. For simplicity, we use pure strategies in this section.

To illustrate these concepts, let us consider the Sequential Multiple Access Game. This is a modified
version of the Multiple Access Game supposing that the two transmitters p1 and p2 are not perfectly
synchronized, which means that p1 always moves first (i.e., accesses or not) and p2 observes the move
of p1 before making his own move.15 We show this extensive form game with perfect information in
Figure 1.5. In this game, the strategy of player p1 is to access the channel (A) or to wait (W ). But the
strategy of player p2 has to define a move given the previous move for player p1. Thus, the possible
strategies of p2 are AA, AW , WA and WW , where for example AW means that player p2 accesses if
p1 does the same and he waits if p1 waits as well. Thus, we can identify the pure-strategy Nash equilibria
in the Sequential Multiple Access Game. It turns out that there exist three pure-strategy Nash equilibria:
(A, WA), (A, WW ) and (W , AA).

p1

A

A

W

W

(-C,-C) (1-C,0)(0,1-C)

A W

(0,0)

p2 p2

Figure 1.5: The Sequential Multiple Access Game in extensive form.

Kuhn formulated a relevant existence theorem about Nash equilibria in finite extensive-form games
in [Kuh53]. The intuition of the proof is provided in [FT91].

Theorem 1.2 (Kuhn, 1953). Every finite extensive-form game of perfect information has a pure-strategy
Nash equilibrium.

The proof relies on the concept of backward induction, which we introduce in the following.

1.3.2 Backward Induction

We have seen that there exist three Nash equilibria in the Sequential Multiple Access Game. For example,
if player p2 plays the strategy AA, then the best response of player p1 is to play W . Let us notice,
however, that the claim of player p2 to play AA is an incredible (or empty) threat. Indeed, AA is not the
best strategy of player p2 if player p1 chooses A in the first round.

In games with perfect information, we can eliminate equilibria based on such incredible threats using
the technique of backward induction. Let us first solve the Sequential Multiple Access Game presented
in Figure 1.5 with the backward induction method as shown in Figure 1.6.

The Sequential Multiple Access Game is a finite game with complete information. Hence, player p2

knows that he is the player that has the last move. For each possible history, he predicts his best move.
15In fact, this is called the carrier sense and it is the basic technique in the CSMA/CA protocols [Rap02, Sch05].
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p1

A

A

W

W

(-C,-C)(1-C,0) (0,1-C)

A W

(0,0)

p2 p2

Figure 1.6: The backward induction solution of the Sequential Multiple Access Game in
extensive form.

For example, if the history is h = A in the game, then player p2 concludes that the move W results in the
best payoff for him in the last stage. Similarly, player p2 defines A as his best move following the move
W of player p1. In Figure 1.6, similarly to the examples in [Gib92], we represent these best choices
with thick solid lines in the last game row. Given all the best moves of player p2 in the last stage, player
p1 calculates his best moves as well. In fact, each reasoning step reduces the extensive form game by
one stage. Following this backward reasoning, we arrive at the beginning of the game (the root of the
extensive-form tree). The continuous thick line from the root to one of the leaves in the tree gives us the
backward induction solution. In the Sequential Multiple Access Game, we can identify the backward
induction solution as h = {A,W}. Backward induction can be applied to any finite game of perfect
information. This technique assumes that the players can reliably forecast the behavior of other players
and that they believe that the other can do the same. Note, however, that this argument might be less
compelling for longer extensive-form games due to the complexity of prediction. Note that the technique
of backward induction is analogous to the technique of iterated strict dominance in strategic-form games.
It is an elimination method for reducing the game.

Let us now derive the backward induction solution in the Sequential Multiple Access Game by con-
sidering how player p1 argues. If p1 chooses A, then the best response for p2 is to play WW or WA,
which results in the payoff of 1 − C for p1. However, if p1 chooses Q, then the best response of p2 is
WA or AA, which results in the payoff of zero for p1. Hence, p1 will choose A and (A, WA) or (A,
WW ) are the backward induction solutions in the Sequential Multiple Access Game.

Let us now briefly discuss the extensive form of the other three wireless networking examples with
sequential moves. In the extensive-form version of the Forwarder’s Dilemma, the conclusions do not
change. Both players will drop each others’ packets. In the extensive form of the Joint Packet Forwarding
Game, if player p1 chooses D, then the move of player p2 is irrelevant. Hence by induction, we deduce
that the backward induction solution is (F , F ). Finally, in the Jamming Game, let us assume that p1 is
the leader and the jammer p2 is the follower. In this case, the jammer can easily observe the move of p1

and jam.

1.3.3 Extensive Form with Imperfect Information

In this section, we will extend the notions of history and information. As we have seen, in the game with
perfect information, the players always know the moves of all the other players when they have to make
their moves. However, in the examples with simultaneous moves (e.g., the static games in Section 1.2),
the players have an imperfect information about the unfolding of the game. To define perfect information
more precisely, let us first introduce the notion of information set h(n), i.e. the amount of information
the players have at the moment they choose their moves in a given node n. The information set h(n) is a
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partition of the nodes in the game tree. The intuition of the information set is that a player moving in n
is uncertain if he is in node n or in some other node n

′ ∈ h(n). We can now formally define the concept
of perfect information.16

Definition 1.9. The players have a perfect information in the game if every information set is a singleton
(meaning that each player always knows the previous moves of all players when he has to make his
move).

It is not a coincidence that we use the same notation for the information set as for the history. In fact,
the concept of information set is a generalized version of the concept of history.

To illustrate these concepts, let us first consider the extensive form of the original Multiple Access
Game shown in Figure 1.7. Recall that this is a game with imperfect information. The dashed line
represents the information set of player p2 at the time he has to make his move. The set of nodes in
the game tree circumvented by the dashed line means that player p2 does not know whether player p1 is
going to access the channel or not at the time he makes his own move, i.e. that they make simultaneous
moves.

p1

A

A

W

W

(-C,-C) (1-C,0)(0,1-C)

A W

(0,0)

p2 p2

Figure 1.7: The original Multiple Access Game in extensive form. It is a game with
imperfect information.

The strategy of player i assigns a move mi(h(n)) to every non-terminal node n in the game tree
with the information set h(n). Again, we deliberately restrict the strategy space of the players to pure
strategies, but the reasoning holds for mixed strategies as well [FT91, OR94]. The possible strategies
of each player in the Multiple Access Game are to access the channel (A) or to wait (W ). As we have
seen before, both (A, W ) and (W , A) are pure-strategy Nash equilibria. Note that in this game, player
p2 cannot condition his move on the move of player p1.

1.3.4 Subgame-Perfect Equilibria

As we have seen in Section 1.3.2, backward induction can be used to eliminate incredible threats. Un-
fortunately, the elimination technique based on backward induction cannot always be used. To illustrate
this, let us construct the game called Multiple Access Game with Retransmissions and solve it in the pure
strategy space. In this game, the players play the Sequential Multiple Access Game, and they play the
Multiple Access Game if there is a collision (i.e., they both try to access the channel). We show the
extensive form in Figure 1.8.

16Note that two well-established textbooks on game theory, [FT91] and [OR94], have different definitions of perfect infor-
mation. We use the interpretation of [FT91], which we believe is more intuitive. The authors of [OR94] define, in Chapter 6 of
their book, a game with simultaneous moves also as a game with perfect information, where the players are substituted with a
set of players, who make their moves. Indeed, there seems to be no consensus in the research community either.
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p1
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A

W

W

(1-C,0) (0,1-C)

A W

(0,0)

p2 p2

p1

A

A

W

W

(-2C,-2C)

(1-2C,-C)

(-C,1-2C)

A W

(-C,-C)

p2 p2

Figure 1.8: The Multiple Access Game with Retransmissions in extensive form. It is also
a game with imperfect information.

Note that the players have many more strategies than before. Player p1 has four strategies, because
there exist two information sets, where he has to move; and he has two possible moves at each of these
information sets. For example, the strategy s1 = AW means that player p1 accesses the channel at the
beginning and he waits in the second Multiple Access Game. Similarly, player p2 has 23 = 8 strategies,
but they are less trivial to identify. For example, each move in the strategy s2 = WAA means the
following: (i) the first move means that player p2 waits if player p1 accessed, or (ii) p2 accesses if p1

waited and (iii) p2 accesses in the last stage if they both accessed in the first two stages. This example
highlights an important point: The strategy defines the moves for a player for every information set in
the game, even for those information sets that are not reached if the strategy is played. The common
interpretation of this property is that the players may not be able to perfectly observe the moves of each
other and thus the game may evolve along a path that was not expected. Alternatively, the players may
have incomplete information, meaning that they have certain beliefs about the payoffs of other players
and hence, they may try to solve the game on this basis. These beliefs may not be precise and so
the unfolding of the game may be different from the predicted unfolding. Game theory covers these
concepts in the notion of Bayesian games [FT91], but we do not present this topic in our tutorial due to
space constraints.

It is easy to see that the Multiple Access Game with Retransmissions cannot be analyzed using
backward induction, because the Multiple Access Game in the second stage is of imperfect information.
To overcome this problem, Selten suggested the concept called subgame perfection in [Sel65, HS88]. In
Figure 1.8, the Multiple Access Game in the second stage is a proper subgame of the Multiple Access
Game with Retransmissions. Let us now give the formal definition of a proper subgame.

Definition 1.10. The game G
′

is a proper subgame of an extensive-form game G if it consists of a single
node in the extensive-form tree and all of its successors down to the leaves. Formally, if a node n ∈ G

′

and n
′ ∈ h(n), then n

′ ∈ G
′
. The information sets and payoffs of the subgame G

′
are inherited from

the original game G: this means that n and n
′

are in the same information set in G
′

if they are in the
same information set in G; and the payoff function of G

′
is the restriction of the original payoff function

to G
′
.

Now let us formally define the concept of subgame perfection. This definition reduces to backward
induction in finite games with perfect information.
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Definition 1.11. The strategy profile s is a subgame-perfect equilibrium of a finite extensive-form game
G if it is a Nash equilibrium of any proper subgame G

′
of the original game G.

One can check the existence of subgame perfect equilibria by applying the one-deviation property.

Definition 1.12. The one-deviation property requires that there must not exist any information set, in
which a player i can gain by deviating from his subgame perfect equilibrium strategy and conforming to
it in other information sets.

A reader somewhat familiar with dynamic programming may wonder about the analogy between the
optimization in game theory and in dynamic programming [Bel57]. Indeed, the one-deviation property
corresponds to the principle of optimality in dynamic programming, which is based on backward induc-
tion. Hence, strategy profile s is a subgame-perfect equilibrium of a finite extensive-form game G if the
one-deviation property holds.

Subgame perfection provides a method for solving the Multiple Access Game with Retransmissions.
We can simply replace the Multiple Access Game subgame (the second one with simultaneous moves)
with one of his pure-strategy Nash equilibria. Hence, we can obtain one of the game trees presented in
Figure 1.9. Solving the reduced games with backward induction, we can derive the following solutions.
In the game shown in Figure 1.9a, we have the subgame perfect equilibrium (WW , AAA). In Figure 1.9b
we obtain the subgame perfect equilibria (AA, W ∗W ), where ∗ means any move from {A,W}.

p1

A

A

W

W

(-C,1-2C)(1-C,0)(0,1-C)

A W

(0,0)

p2 p2

p1

A

A

W

W

(1-2C,-C)(1-C,0)(0,1-C)

A W

(0,0)

p2 p2

a) b)

Figure 1.9: Application of subgame perfection to the Multiple Access Game with Re-
transmissions. In a) the proper subgame is replaced by one of the Nash equilibria of that
game, namely (W , A). Solution b) represents the case, where the subgame is replaced
by the other Nash equilibrium (A, W ). The thick lines show the result of the backward
induction procedure on the reduced game trees.

Because any game is a proper subgame of itself, a subgame-perfect equilibrium is necessarily a Nash
equilibrium, but there might be Nash equilibria in G that are not subgame-perfect. In fact, the concept
of Nash equilibrium does not require that the one-deviation property holds. We leave it to the reader as
an exercise to verify that there are more Nash equilibria than subgame-perfect equilibria in the Multiple
Access Game with Retransmissions.

The concept of subgame perfection has often been criticized with arguments based on equilibrium
selection (recall the issue from Section 1.2.5). Many researchers point out that the players might not
be able to determine how to play if several Nash equilibria exist in a given subgame. As an example,
they might both play A in the Multiple Access Game with Retransmissions in the second subgame as
well. This disagreement can result in an outcome that is not an equilibrium according to the definitions
considered so far.
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1.4 Repeated games

So far, we have assumed that the players interact only once and we modeled this interaction in a static
game in strategic form in Section 1.2 and partially in Section 1.3. Furthermore, we have seen the Multiple
Access Game with Retransmissions, which was a first example to illustrate repeated games, although the
number of stages was quite limited. As we have seen in Section 1.3, the extensive form provides a more
convenient representation for sequential interactions. In this section, we assume that the players interact
several times and hence we model their interaction using a repeated game. The analysis of repeated
games in extensive form is basically the same as presented in Section 1.3, hence we focus on the strategic
form in this section. To be more precise, we consider repeated games with observable actions and perfect
recall: this means that each player knows all the moves of others, and that each player knows his own
previous moves at each stage in the repeated game.

1.4.1 Basic Concepts

In repeated games, the players interact several times. Each interaction is called a stage. Note that the
concept of stage is similar to the one in extensive form, but here we assume that the players make their
moves simultaneously in each stage. The set of players is defined similarly to the static game presented
in Section 1.2.1.

As a running example, let us consider the Repeated Forwarder’s Dilemma, which consists of the
repetition of the Forwarder’s Dilemma stage game. In such a repeated game, all past moves are common
knowledge at each stage t. The set of the past moves at stage t is commonly referred to as the history
h(t) of the game. We call it a history (and not an information set), because it is uniquely defined at the
beginning of each stage. Let us denote the move of player i in stage t by mi(t). We can formally write
the history h(t) as follows:

h(t) = {(m1(t), . . . , m|N |(t)), . . . , (m1(0), . . . ,m|N |(0))} (1.10)

For example, at the beginning of the third stage of the Repeated Forwarder’s Dilemma, if both players
always cooperate, the history is h(2) = {(F, F ), (F, F )}.

The strategy si defines a move for player i in the next stage t+1 for each history h(t) of the game.17

mi(t + 1) = si(h(t)) (1.11)

Note that the initial history h(0) is an empty set. The strategy si of player i must define a move mi(0)
for the initially empty history, which is called the initial move. For a moment, suppose that the Repeated
Forwarder’s Dilemma has two stages. Then one example strategy of each player is FFFFF , where the
entries of the strategy define the forwarding behavior for the following cases: (i) in the first stage, i.e. as
an initial move, (ii) if the history was h(1) = {(F, F )}, (iii) if the history was h(1) = {(F, D)}, etc. As
we can notice, the strategy space grows very quickly as the number of stages increases: In the two-stage
Repeated Forwarder’s Dilemma, we have |Si| = 25 = 32 strategies for each player i. Hence in repeated
games, it is typically infeasible to make an exhaustive search for the best strategy and hence for Nash
equilibria.

The payoff in the repeated game might change as well. In repeated games, the users typically want
to maximize their payoff for the whole duration T of the game. Hence, they maximize:

ui =
T∑

t=0

ui(t, s) (1.12)

17Recall that in the static game, the strategy was a single move.
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where ui(t, s) denotes the stage payoff, i.e., the payoff player i receives in stage t.
In some cases, the objective of the players in the repeated game can be to maximize their payoffs

only for the next stage (i.e., as if they played a static game). We refer to these games as myopic games as
the players are short-sighted optimizers. If the players maximize their total payoff during the game, we
call it a long-sighted game.

Recall that we refer to a finite-horizon game if the number of stages T is finite. Otherwise, we refer
to an infinite-horizon game. We will see in Section 1.4.3 that we can also model finite-horizon games
with an unpredictable end as an infinite-horizon game with specific conditions.

1.4.2 Nash Equilibria in Finite-Horizon Games

Let us first solve the finite Repeated Forwarder’s Dilemma using the concept of Nash equilibrium. As-
sume that the players are long-sighted and want to maximize their total payoff (the outcome of the game).
As we have seen, it is computationally infeasible to calculate the Nash equilibria based on strategies that
are mutual best responses to each other as the number of stages increases. Nevertheless, we can apply
the concept of subgame perfection as we have learned in Section 1.3.4. Because the game is of complete
information, the players know the end of it. Now, in the last stage game, they both conclude that their
dominant strategy is to drop the opponent’s packet (i.e., to play D). Given this argument, their best
strategy is to play D in the penultimate stage. Following the same argument, this technique of backward
induction dictates that the players should choose a strategy that plays D in every stage. Note that many
strategies exist with this property.

In repeated games in general, it is computationally infeasible to consider all possible strategies for
every possibly history, because the strategy space increases exponentially with the length of the game.
Hence, one usually restricts the strategy space to a reasonable subset. One widely-used family of strate-
gies is the strategies of history-1. These strategies take only the moves of the opponents in the previous
stage into account (meaning that they are “forgetful” strategies, because they “forget” the past behavior
of the opponent). In the games we have considered thus far, we have two players and hence the history-1
strategy of player i in the repeated game can be expressed by the initial move mi(0) and the following
strategy function:

mi(t + 1) = si(mj(t)) (1.13)

Accordingly, we can define the strategies in the Repeated Forwarder’s Dilemma as detailed in Ta-
ble 1.5. Note that these strategies might enable a feasible analysis in general, i.e., if there exists a large
number of stages.

We can observe that in the case of some strategies, such as All-D or All-C, the players do not condi-
tion their next move on the previous move of the opponents. One refers to these strategies as non-reactive
strategies. Analogously, the strategies that take the opponents’ behavior into account are called reactive
strategies (for example, TFT or STFT).

Let us now analyze the Repeated Forwarder’s Dilemma assuming that the players use the history-1
strategies. We can conclude the same result as with the previous analysis.

Theorem 1.3. In the Repeated Forwarder’s Dilemma, the strategy profile (All-D, All-D) is a Nash equi-
librium.

Although not proven formally, the justification of the above theorem is provided in [Axe84].
Let us now consider the finite repeated version of the Multiple Access Game. Suppose that accessing

the channel A corresponds to defection (competitive behavior) and waiting W corresponds to coopera-
tion. Then, All-D for example means to access the channel independently of the move of the other player.
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m1(0) m1(t)|m2(t) = F m1(t)|m2(t) = D strategy function s1 name of the strategy
D D D m1(t + 1) = D Always Defect (All-D)
D F D m1(t + 1) = m2(t) Suspicious Tit-For-Tat (STFT)
D D F m1(t + 1) = m2(t) Suspicious Anti Tit-For-Tat (SATFT)
D F F m1(t + 1) = F Suspicious Always Cooperate (S-All-C)
F D D m1(t + 1) = D Nice Always Defect (Nice-All-D)
F F D m1(t + 1) = m2(t) Tit-For-Tat (TFT)
F D F m1(t + 1) = m2(t) Anti Tit-For-Tat (ATFT)
F F F m1(t + 1) = F Always Cooperate (All-C)

Table 1.5: History-1 strategies of player 1 in the Repeated Forwarder’s Dilemma. The
entries in the first three columns represent: the initial move of player p1, a move of player
p1 to a previous move m2(t) = F of player p2, and the move of p1 as a response to
m2(t) = D. The bar represents the alternative move (e.g., F = D). As an example, let
us highlight the TFT strategy, which begins the game with forwarding (i.e., cooperation)
and then copies the behavior of the opponent in the previous stage.

As opposed to the two-stage Repeated Forwarder’s Dilemma, this game admits several Nash equilibria
in the history-1 strategy space: (All-D, All-C), (All-C, All-D), (STFT, TFT) and (TFT, STFT). We leave
the verification of this claims as an exercise for the interested reader.

1.4.3 Infinite-Horizon Games with Discounting

In the game theory literature, infinite-horizon games with discounting are used to model a finite-horizon
game in which the players are not aware of the duration of the game. Clearly, this is often the case in
strategic interactions, in particular in networking operations. In order to model the unpredictable end of
the game, one decreases the value of future stage payoffs. This technique is called discounting. In such
a game, the players maximize their discounted total payoff :

ui =
∞∑

t=0

ui(t, s) · δt (1.14)

where δ denotes the discounting factor. The discounting factor δ determines the decrease of the value
for future payoffs, where 0 < δ < 1 (although in general, we can assume that δ is close to one). The
discounted total payoff expressed in (1.14) is often normalized, and thus we call it the normalized payoff :

ui = (1− δ) ·
∞∑

t=0

ui(t, s) · δt (1.15)

The role of the factor 1 − δ is to let the normalized payoff of the repeated game be expressed in
the same unit as the static game. Indeed, with this definition, if the stage payoff ui(t, s) = 1 for all
t = 0, 1, ..., then the normalized payoff is equal to 1, because

∑∞
t=0 δt = 1

1−δ .
We have seen that the Nash equilibrium in the finite Repeated Forwarder’s Dilemma was a non-

cooperative one. Yet, this rather negative conclusion should not affect our morale: in most networking
problems, it is reasonable to assume that the number of iterations (e.g., of packet transmissions) is very
large and a priori unknown to the players. Therefore, as discussed above, games are usually assumed to
have an infinite number of repetitions. And, as we will see, infinitely repeated games can lead to more
cooperative behavior.
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Consider the history-1 strategies All-C and All-D for the players in the Repeated Forwarder’s Dilemma.
Thanks to the normalization in (1.15), the corresponding normalized payoffs are exactly those presented
in Table 1.1. A conclusion similar to the one we drew in Section 1.4.2 can be directly derived at this
time. The strategy profile (All-D, All-D) is a Nash equilibrium: If the opponent always defects, the best
response is All-D. A sketch of proof is provided (for the Prisoner’s Dilemma) in [FT91].

To show other Nash equilibria, let us first define the Trigger strategy. If a player i plays Trigger, then
he forwards in the first stage and continues to forward as long as the other player j does not drop. As
soon as the opponent j drops his packet, player i drops all packets for the rest of the game. Note that
Trigger is not a history-1 strategy. The Trigger strategy applies the general technique of punishments.

If no players drops a packet, the payoffs corresponds to (F , F ) in Table 1.1, meaning that it is equal
to 1− C for each player. If a player i plays mi(t) = D at stage t, his payoff will be higher at this stage
(because he will not have to face the cost of forwarding), but it will be zero for all the subsequent stages,
as player j will then always drop. The normalized payoff of player i will be equal to:

(1− δ)
[
(1 + δ + ... + δt−1)(1− C) + δt · 1]

= 1− C + δt(C − δ) (1.16)

As C < δ (remember that, in general, C is very close to zero, whereas δ is very close to one), the last
term is negative and the payoff is therefore smaller than 1 − C. In other words, even a single defection
leads to a payoff that is smaller than the one provided by All-C. Hence, a player is better off always
forwarding in this infinite-horizon game, in spite of the fact that, as we have seen, the stage game only
has (D, D) as an equilibrium point. It can be easily proven that (Trigger, Trigger) is a Nash equilibrium
and that it is also Pareto-optimal (the intuition for the latter is the following: there is no way for a player
to go above his normalized payoff of 1−C without hurting his opponent’s payoff). Note that by similar
arguments, one can show that (TFT, TFT) is also a Pareto-optimal Nash equilibrium, because it results
in the payoff 1− C for each of the players.

It is important to mention that the players cannot predict the end of the game and hence they cannot
exploit this information. As mentioned in [FT91], reducing the information or the strategic options (i.e.,
decreasing his own payoff) of a player might lead to a better outcome in the game. This uncertainty is the
real reason that the cooperative equilibrium appears in the repeated version of the Forwarder’s Dilemma
game.

1.4.4 The Folk Theorem

We will now explore further the mutual influence of the players’ strategies on their payoffs. We will start
by defining the notion of minmax value (sometimes called the reservation utility). The minmax value is
the lowest stage payoff that the opponents of player i can force him to obtain with punishments, provided
that i plays the best response against them. More formally, it is defined as follows:

ui = min
s−i

[
max

si

ui(si, s−i)
]

(1.17)

This is the lowest stage payoff that the opponents can enforce on player i. Let us denote by smin =
{si,min, s−i,min} the strategy profile for which the minimum is reached in (1.17). We call the s−i,min the
minmax profile against player i within the stage game.

It is easy to see that player pi can obtain at least his minmax value ui in any stage and hence we call
feasible payoffs the payoffs higher than the minmax payoff. In the Repeated Forwarder’s Dilemma, the
feasible payoffs for any player p1 are higher than 0. Indeed, by playing s1=All-D, he is assured to obtain
at least that value, no matter what the strategy of p2 can be. Similar argument applies to player p2. Let
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us graphically represent the feasible payoffs in Figure 1.10. We highlight the convex hull of payoffs that
are strictly non-negative for both players as the set of feasible payoffs.

u2

(1-c,1-c)

u1

1

1

(1,-c)

(-c,1)

(0,0)

feasible payoffs

Figure 1.10: The feasible payoffs in the Repeated Forwarder’s Dilemma.

The notion of minmax what we have just defined refers to the stage game, but it has a very interesting
application in the repeated game, as the following theorem shows.

Theorem 1.4. Player i’s normalized payoff is at least equal to ui in any equilibrium of the infinitely
repeated game, regardless of the level of the discount factor.

The intuition can be obtained again from the Repeated Forwarder’s Dilemma: a player playing All-D
will obtain a (normalized) payoff of at least 0. The theorem is proven in [FT91].

We are now in a position to introduce a fundamental result, which is of high relevance to our frame-
work: the Folk Theorem.18

Theorem 1.5 (Folk Theorem). For every feasible payoff vector u = {ui}i with ui > ui, there exists a
discounting factor δ < 1 such that for all δ ∈ (δ, 1) there is a Nash equilibrium with payoffs u.

The intuition is that if the game is long enough (meaning that δ is sufficiently close to 1), the gain
obtained by a player by deviating once is outweighed by the loss in every subsequent period, when loss
is due to the punishment (minmax) strategy of the other players.

We have seen the application of this theorem in the infinite Repeated Forwarder’s Dilemma. A player
is deterred from deviating, because the short term gain obtained by the deviation (1 instead of 1− C) is
outweighed by the risk of being minmaxed (for example using the Trigger strategy) by the other player
(provided that C < δ).

1.5 Discussion

One of the criticisms of game theory, as applied to the modeling of human decisions, is that human
beings are, in practice, rarely fully rational. Therefore, modeling the decision process by means of a few
equations and parameters is questionable. In wireless networks, the users do not interact with each other

18This denomination of “folk” stems from the fact that this theorem was part of the oral tradition of game theorists, before it
was formalized. Strictly speaking, we present the folk theorem for the discounting criterion. There exist different versions of
the folk theorem, each of them is proved by different authors (as they are listed in [OR94] at end of Chapter 8).
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on such a fine-grained basis as forwarding one packet or access the channel once. Typically, they (or the
device manufacturer, or the network operator, if any) program their devices to follow a protocol (i.e., a
strategy) and it is reasonable to assume that they rarely reprogram their devices. Hence, such a device can
be modeled as a rational decision maker. Yet, there are several reasons the application of game theory
to wireless networks can be criticized. We detail them here, as they are usually never mentioned, for
understandable reasons, in research papers.

Payoff function and cost The first issue is the notion of payoff function: How important is it for a
given user that a given packet is properly sent or received? This very much depends on the situation:
the packet can be a crucial message, or could just convey a tiny portion of a figure appearing in a game.
Likewise, the sensitivity to delay can also vary dramatically from situation to situation.

Similarly, the definition of cost might be a complex issue as well. In our examples (and in the
state of the art in the application of game theory to wireless networks), the cost represents the energy
consumption of the devices. In some cases, however, a device can be power-plugged, thus its “cost” could
be neglected. Likewise, a device whose battery is almost depleted probably has a different evaluation of
cost than when his battery is full. Furthermore, cost can include other considerations than energy, such
as the previously mentioned delay or the consumed bandwidth. Expressing this diversity properly in the
game models is still an open research issue.

Pricing and mechanism design Mechanism design is concerned with the question of how to lead the
players to a desirable equilibrium by changing (designing) some parameters of the game. In particular,
pricing is considered to be a good technique for regulating the usage of a scarce resource by adjusting
the costs of the players. Many network researchers have contributed to this field. These contributions
provide a better understanding of specific networking mechanisms.

Yet it is not clear today, even for wired networks how relevant these contributions are going to be
in practice. Usually the pricing schemes used in reality by operators are very coarse-grained, because
operators tend to charge based on investment and personnel costs and on the pricing strategy of their
competitors, and not on the instantaneous congestion of the network. If a part of the network is frequently
congested, they will increase the capacity (deploy more base stations, more optical fibers, more switches)
rather than throttle the user consumption by pricing.

Hence, the only area where pricing has practical relevance is probably for service provisioning among
operators (e.g., renting transmission capacity); but very little has been published so far on this topic.

Infinite-horizon games As mentioned, games in networking are usually assumed to be of infinite
horizon, in order to capture the idea that a given player does not know when the interaction with another
player will stop. This is, however, not perfectly true. For example, a given player/device could “know”
that he/it is about to be turned off and moved away (e.g., his/its owner is about to finish a given session for
which the player has been attached at a given access point). Yet we believe this not to be a real problem:
indeed, the required “knowledge” is clearly related to the application layer, whereas the games we are
considering involve networking mechanisms (and thus are typically related to the MAC and network
layers).

Discounting factor As we have seen, in the case of infinitely repeated games, it is common practice to
make use of the discounting factor. This notion comes from the application of game theory to economics:
a given capital at time t0 has “more value” than the same amount at a later time t1 because, between t0
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and t1, this capital can generate some (hopefully positive) interest. At first sight, transposing this notion
into the realm of networking makes sense: a user wants to send (or to receive) information as soon as he
expresses the wish to do so.

But this may be a very rough approximation, and the comment we made about the payoff function
can be applied here as well: The willingness to wait before transmitting a packet heavily depends on the
current situation of the user and on the content of the packet. In addition, in some applications such as
audio or video streaming, the network can forecast how the demand will evolve.

A more satisfactory interpretation of the discounting factor in our framework is related to the uncer-
tainty that there will be a subsequent iteration of the stage game, for example, connectivity to an access
point can be lost. With this interpretation in mind, the discounting factor represents the probability that
the current round is not the last one.

It is important to emphasize that the average discounted payoff is not the only way to express the
payoff in an infinitely repeated game. Osborne and Rubinstein [OR94] discuss other techniques, such
as “Limit of Means” and “Overtaking”. But, none of them captures the notion of users’ impatience, and
hence we believe that they are therefore less appropriate for our purpose.

Reputation In some cases, a player can include the reputation of another player in order to anticipate
his moves. For example, a player observed to be non-cooperative frequently in the past is likely to
continue to be so in the future. If the game models individual packet transmissions, this attitude would
correspond to the suspicion that another player has been programmed in a highly “selfish” way. These
issues go beyond the scope of this tutorial. For a discussion of these aspects, the reader is referred to
[FT91], Chapter 9.

Cooperative vs. non-cooperative players In this tutorial, we assume that each player is a selfish in-
dividual, who is engaged in a non-cooperative game with other players. We do not cover the concept
of cooperative games, where the players might have an agreement on how to play the game. Cooper-
ative games include the issues of bargaining and coalition formation. These topics are very interesting
and some of our problems could be modeled using these concepts. Due to space limitation, the reader
interested in cooperative games is referred to [OR94].

Information In this thesis, we mostly study games with complete information. This means that each
player knows the identity of other players, their strategy functions and the resulting payoffs or outcomes.
In addition, we consider games with observable actions and perfect recall. In wireless networking, these
assumptions might not hold: For example, due to the unexpected changes of the radio channel, a given
player may erroneously reach the conclusion that another player is behaving selfishly. This can trigger
a punishment (assuming there is one), leading to the risk of further retaliation, and so on. This means
that, for any design of a self-enforcement protocol, special care must be devoted to the assessment of
the amount and accuracy of the information that each player can obtain. The application of games with
incomplete and imperfect information is an emerging field in wireless networking, with very few papers
published so far.

Publication: [FH06a]
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Part II

Non-Cooperative Behavior of Users
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Chapter 2

Multi-Radio Channel Allocation in
Wireless Networks

2.1 Introduction

Wireless networks provide a flexible and cost-efficient method for establishing connections between
communication devices. Each wireless network operates in a frequency band assigned by the authorities
that regulate the frequency spectrum in a given country. In general, the communication medium assigned
to a given network is shared among the communication devices using a multiple access technique.

Frequency Division Multiple Access (FDMA) is one of the widely used techniques that enables sev-
eral users to share a communication medium that consists of a given frequency band [Rap02, Sch05].
The basic principle of FDMA is to split up the available bandwidth to distinct sub-bands called channels.
Assigning the radio transceivers to these channels is commonly referred to as the channel allocation
problem.1 Not surprisingly, an efficient channel allocation is a cornerstone of the design of wireless
networks.

In this chapter, we present a game-theoretic analysis of fixed channel allocation strategies of devices
that use multiple radios. Using a static non-cooperative game, we analyze the scenario of a single colli-
sion domain, i.e., where each of the devices can interfere with a transmission of every other device. We
derive the Nash equilibria in this game and show that they result in load balancing over the channels.
Our main results show that there exist two types of Nash equilibria: in the first type, each user distributes
his radios over the available channels, whereas in the second type, some users allocate multiple radios
on certain channels. We also study fairness issues and the problem of coalition formation in the channel
allocation problem. We show that a Nash equilibrium that resists coalitions of users is necessarily fair as
well. Furthermore, we propose three algorithms to achieve the Nash equilibria. The first is a sequential
algorithm that needs global coordination, the second is a distributed algorithm that needs perfect infor-
mation and the third is a distributed algorithm that is based on imperfect information. We provide the
proof for the convergence properties of these algorithms.

This work is a first step towards a deeper understanding of the non-cooperative behavior of such
devices and is applicable in particular in the emerging field of cognitive radio systems [Hay05].

1In the literature, the terms channel assignment and frequency assignment are also used for the channel allocation problem.
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2.2 System Model and Concepts

We assume that the available frequency band is divided into orthogonal channels of the same bandwidth
using the FDMA method (e.g., 8 orthogonal channels in case of the IEEE 802.11a protocol). We denote
the set of available orthogonal channels by C.

In our model, pairs of users want to communicate with each other over a single hop. We assume
that each user participates in only one such communication session, hence we denote the set of such
communication links byN . Each user owns a device equipped with k ≤ |C| radio transmitters, all having
the same communication capabilities. The communication between two devices is bidirectional and they
always have some packets to exchange. Due to the bidirectional links, the sender and the receiver are
able to coordinate and thus to select the same channels to communicate. Accordingly, we assume that the
sender controls the communication in a certain pair and we refer to him as a selfish player. The objective
of each player is to maximize his total throughput or channel utilization. We assume that there is a finite
number of players. We further assume that each device can hear the transmissions of every other device
if they are using the same channel. This means that the players reside in a single collision domain. We
make this assumption to avoid the hidden terminal problem described for example in [Sch05]. Because
the devices reside in a single collision domain, it is reasonable to assume that the channels have roughly
the same expected channel characteristics.

We assume that there is a mechanism that enables the players to use multiple channels to communi-
cate at the same time (as it is implemented in [ABP+04] for example). We denote the number of radios
of player i using channel x by ki,x for every x ∈ C. For the simplicity of presentation, let us denote the
set of channels used by player i by Ci, where Ci ⊂ C and 0 ≤ |Ci| ≤ k. We further assume that there is
no limitation on the number of radios per channel.

We formulate the multi-radio channel allocation problem as a non-cooperative game as follows. We
define the strategy of player i as his channel allocation vector:

si = {ki,1, . . . , ki,|C|} (2.1)

Hence, his strategy consists in defining the number of radios on each of the channels.2 The strategy
vectors of all players defines the strategy matrix S (i.e., the strategy profile), where the row i of the
matrix corresponds to the strategy vector of player i:

S =




s1

. . .
s|N |


 (2.2)

Furthermore, we denote the strategy matrix except for the strategy of player i by S−i as shown in (2.3):

S−i =




s1

. . .
si−1

si+1

. . .
s|N |




(2.3)

Figure 2.1 presents an example channel allocation with six available channels (|C| = 6), four players
(|N | = 4) and each user device equipped by four radios (k = 4). Figure 2.2 presents the strategy matrix
that corresponds to this example.
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channels

c1 c2 c3 c4 c5

channels: c1 - c6
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p2 p2 p2

p3 p3

p3
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p4

players: p1 - p4

c6

p2

Figure 2.1: An example for a channel allocation, where |C| = 6, |N | = 4 and k = 4.
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Figure 2.2: Strategy matrix of the example in Figure 2.1.

The total number of radios employed by player i can be written as ki =
∑

x∈C ki,x. Similarly, we
can obtain the number of radios using a particular channel kx =

∑
i∈N ki,x. In Figure 2.1, each player

has a radio on channel c1, but channel c5 is occupied only by player p2. Player p3 employs two radios on
channel c2 to get more bandwidth on that particular channel. Regarding the number of radios per player,
we have kp1 = kp2 = kp3 = 4 and kp4 = 2, meaning that player p4 is not using all of his radios.

We assume that the players are rational and their objective is to maximize their payoff in the network.
We denote the payoff of player i by ui. For simplicity, we assume that each player i wants to maximize
his aggregated throughput τi in the system and this corresponds to his payoff. We leave the study of
other payoff functions for future work.

We assume that the total throughput on channel x is shared equally among the radio transmitters
using that channel. We denote the throughput of one radio on channel x by τx(kx). As we assume that
channels have the same bandwidth and channel characteristics, the achieved throughput does not depend
on the channel and thus we can write τ(kx) for any channel x ∈ C. The fair throughput allocation is
achieved, for example, by using a reservation-based TDMA schedule on a given channel. A similar
result was reported by Bianchi in [Bia00] for the CSMA/CA protocol. Even if the radio transmitters
are controlled by selfish users in the CSMA/CA protocol, they can achieve this fair sharing as shown in
[CGAH05]. We further assume that the total throughput τ t(kx) = kx · τ(kx) on a channel x (i.e., the
sum of the achieved throughput of all players on channel x) is a non-increasing function of the number
of radios kx deployed on this channel. In fact τ t(kx) is independent of kx for a TDMA protocol and for
the CSMA/CA protocol using optimal backoff window values [Bia00]. In practice, the backoff window
values used in the CSMA/CA protocol implementation (e.g., in the 802.11 standard) are not optimal; and
due to packet collisions τ t(kx) becomes a decreasing function of kx for kx > 1. If kx = 0, we define
τ t(0) = 0; note however that this case has no relevance in our model. We emphasize that our system
model is general enough to incorporate many multiple access techniques, such as TDMA or CSMA/CA.

2Note that this number can be zero.
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Figure 2.3 presents the total throughput τ t(kx) as a function of the number of radios using channel
x.

kx

τt(kx)

reservation TDMA

optimal CSMA/CA

practical CSMA/CA

Figure 2.3: The total available throughput τ t(kx) for different MAC protocols.

If player i chooses to operate ki,x radios in a given channel, his throughput on this channel can be
written as τi,x = ki,x ·τ(kx). We assume that the players do not cheat at the MAC layer as opposed to the
model for example in [CGAH05]. Thus, we can write that τi,x > 0 for all x ∈ C, where ki,x > 0. Recall
that in Figure 2.1, the higher the number of radios in a given channel is, the lower the throughput per radio
is. Hence in Figure 2.1, for player p2 the following conditions hold τp2,c1 < τp2,c4 < τp2,c3 < τp2,c5 . We
can obtain the aggregated throughput τi for player i by τi =

∑
x τi,x.

In summary, we can write the payoff function for player i as:

ui(S) = τi =
∑

x∈C
τi,x =

∑

x∈C
ki,x · τ(kx) (2.4)

We model the channel allocation problem with a single stage game, which corresponds to a fixed
channel allocation among the players.

In order to study the strategic interaction of the players, we rely on the concept of Nash equilibrium
we introduced in Definition 1.5. Recall that in a NE none of the players can unilaterally change his
strategy to increase his payoff. A NE solution is often inefficient from the system point of view. We
characterize the efficiency of the solution by the concept of Pareto-optimality (see Definition 1.8).

2.3 Nash Equilibria

In this section, we study the existence of Nash equilibria in the single collision domain channel allocation
game. It is straightforward to see that if the total number of radios is smaller than or equal to the number
of channels, then a flat channel allocation, in which the number of radios per channel does not exceed
one, is a Nash equilibrium.

Fact 2.1. If |N | · k ≤ |C|, then any channel allocation, in which kx ≤ 1, ∀x ∈ C is a Pareto-optimal NE.

For the remainder of this chapter, we assume that |N | · k > |C|, hence the devices have a conflict
during the channel allocation process.

In the following, we consider a NE strategy matrix in the multi-radio channel allocation game denoted
by S∗, where s∗i ∈ S∗ is the NE strategy of player i (i.e., the i-th row of the matrix).

We first show the following intuitive result: a selfish player should use all of his radios in order to
maximize his total throughput. This is a necessary condition for a Nash equilibria.
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Lemma 2.2. If S∗ is a NE of the multi-radio channel allocation game, then ki = k, ∀i.
In the example presented in Figure 2.1, Lemma 2.2 does not hold for player p4, because he uses only

two radios. Hence, the example cannot be a NE.

Proof. We can prove the lemma by contradiction. Assume that there exists a NE, in which player i uses
only ki < k radios. As mentioned previously, in our model we assume that k ≤ |C| and also that in the
NE |Ci| ≤ ki < k, thus we necessarily have |Ci| < |C|. This implies that there always exists a channel
x /∈ Ci. If the player deploys an additional radio on this channel x, then he increases his payoff due to
the fact that τi,x > 0 for ki,x = 1. Hence, we arrive at a contradiction and S∗ cannot be a NE.

Let us now divide the channels in a certain channel allocation S into three sets. We define the set of
channels C+ with the maximum number of radios, i.e., where x ∈ C+ has kx = maxl∈C kl. Similarly, let
us define the set of channels C− for which ky = kx − 1. We denote the set of the remaining channels by
C−−. In Figure 2.1, C+ = {c1}, C− = {c2, c4} and C−− = {c3, c5, c6}.

Let us now consider two arbitrary channels x and y. Without loss of generality, we assume that
the number of radios using channel x is higher than or equal to the number of radios using channel y,
meaning that kx ≥ ky. We denote their difference by:

dx,y = kx − ky (2.5)

Assume that player i moves one of his radios from channel x to y. Let us define the payoff differ-
ence (∆) of player i, i.e. the change of his payoff due to the move of the radio, as follows:

∆ = ui(s
′
i, S

∗
−i)− ui(s∗i , S

∗
−i)

= (ki,x − 1) · τ(kx − 1) + (ki,y + 1) · τ(ky + 1)− ki,x · τ(kx)− ki,y · τ(ky) (2.6)

We can show a second necessary condition for a NE, namely that player i can increase his payoff by
moving one radio to a channel where he has no radios if the difference of the number of radios deployed
on the two channels exceeds one.

Lemma 2.3. If ki,x > 0, ki,z = 0 and dx,z ≥ 2 for any player i and channels x, z ∈ C, then S∗ is not a
NE channel allocation.

In the example presented in Figure 2.1, Lemma 2.3 holds e.g. for player p1 and the channels x = c1

and z = c5. Hence, the example cannot be a NE.

Proof. Assume that S∗ is a NE channel allocation. Suppose that player i moves one of his radios from
channel x to z. Using the conditions in the lemma, we can write the payoff difference defined in (2.6) as:

∆ = (ki,x − 1) · τ(kx − 1) + τ(kz + 1)− ki,x · τ(kx)
= ki,x · τ(kx − 1)− τ(kx − 1) + τ(kx − dx,z + 1)− ki,x · τ(kx) (2.7)

Let us notice that the sum of the first and last terms is always positive, because dx,z ≥ 2 implies that
kx > 1. The sum of the two other terms is non-negative, because dx,z ≥ 2. Hence, the payoff difference
is positive and thus S∗ cannot be a NE. This contradiction concludes the proof.

Let us now derive the third necessary condition. This condition shows that player i should again
change the position of one of his radios if he has at least two radios more on channel x than on another
channel y and if the total number of radios on channel x is more than the total number of radios on
channel y.
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Lemma 2.4. If ki,x ≥ 2, ki,y = 0 and dx,y = 1 for any player i, then S∗ is not a NE.

In the example presented in Figure 2.1, the conditions of Lemma 2.4 hold for player p3 and the
channels x = c2 and y = c3. Hence, the example cannot be a NE.

Proof. We prove the lemma by contradiction. Assume that S∗ is a NE and there exists a player i with
ki,x ≥ 2, ki,y = 0 and dx,y = 1. Assume that this player moves one of his radios from channel x to y.
Let us express the payoff difference (2.6) given the conditions of the lemma:

∆ = (ki,x − 1) · τ(kx − 1) + τ(ky + 1)− ki,x · τ(kx) (2.8)

Using dx,y = 1, we can reformulate (2.8) as follows:

∆ = (ki,x − 1) · τ(kx − 1) + τ(kx)− ki,x · τ(kx)
= (ki,x − 1) [τ(kx − 1)− τ(kx)] (2.9)

Note that the expression in (2.9) is always positive, because ki,x ≥ 2. Hence moving one radio is
beneficial to player i and S∗ cannot be a NE.

Using Lemmas 2.3 and 2.4, we conclude on another necessary condition. This shows that in a Nash
equilibrium, the difference in the total number of radios between any two channels cannot exceed one.

Proposition 2.5. If S∗ is a NE in the multi-radio channel allocation game, then dx,y ≤ 1 for all x, y ∈ C.

Proof. We prove the proposition by contradiction. As introduced before, let us divide the set of channels
C into three subsets: C+, C− (with ky = kx − 1) and C−− (with kz ≤ kx − 2). Suppose then that there
exists a NE channel allocation S∗ such that dx,z ≥ 2 for two channels x, z ∈ C.

In the following, we will show a procedure that should result in the NE channel allocation S∗. Let
us consider the set of players N+ who have at least one radio on one of the channels x ∈ C+. We
will assign the radios of the players in N+ in a sequential order; we start with a player i ∈ N+. We
derived in Lemma 2.3 that player i, who has a radio in any channel in x ∈ C+, must have at least radio
on each of the channels z ∈ C−−. In addition, his channel allocation regarding the channels in C+ can
be categorized into two cases as shown in Figure 2.4: (a) player i has at most one radio on each channel
x ∈ C+ or (b) player i has multiple radios on at least one channel x ∈ C+. In the second case (b), player
i must have at least one radio on each channel y ∈ C− as well, because of the conditions in Lemma 2.4
Player i has k ≤ |C| = |C+|+ |C−|+ |C−−| radios. In case (b), he allocates at least |C−|+ |C−−| radios
on the channels in C− and C−−. Thus, he has k − |C−| + |C−−| ≤ |C+| radios left for the channels
x ∈ C+. This implies, that in both of the aforementioned cases, it is true that

∑
x∈C+ ki,x ≤ |C+|.

Let us denote the average number of radios on the channels in C+ and in C−− by K+ and K−−,
respectively. Here K+ =

∑
x∈C+ kx

|C+| and K−− =
∑

z∈C−− kz

|C−−| . Based on the above derivation, we know
that after the introduction of the radios of the first player i ∈ N+, we obtain K+ ≤ 1 and K−− ≥ 1.

One can continue the procedure by allocating the radios of the other players in N+. But, for each
player, K+ increases by at most by 1 and K−− increases by at least by 1. Upon finishing this procedure,
we obtain K+ ≤ K−−. But, we defined the set of channels C+ such that for any two channels x ∈ C+

and z ∈ C−−, dx,z ≥ 2 holds. This implies that K+ ≥ K−− + 2. This is in a contradiction with the
result of the allocation procedure.

Proposition 2.5 shows that in a NE only C+ and C− exist. This establishes an interesting property
about NE: In fact, all NE channel allocations achieve load-balancing over the channels in C. Based on
Proposition 2.5, we express a set of sufficient conditions for the NE.
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Figure 2.4: An illustration for the proof of Proposition 2.5.

Theorem 2.6. Assume that |N | · k > |C|. Then a channel allocation S∗ is a NE if the two following
conditions hold:

. dx,y ≤ 1 for any x, y ∈ C and

. ki,x ≤ 1 for any x ∈ C.

Proof. The proof is straightforward. Assume that player i moves one radio from x to y. This is obviously
not beneficial if both x, y ∈ C+ or both x, y ∈ C−. Furthermore, it results in the decrease of the payoff
of i if x ∈ C− and y ∈ C+. Finally, if x ∈ C+ and y ∈ C−, then the payoff of player i is unchanged.

An example of a NE channel allocation corresponding to Theorem 2.6 is shown in Figure 2.5.

channelsc1 c2 c3 c4 c5

p1 p1p1

p2

p2

p2 p3

p3

p3

p4

p4 p4

c6

p1

p2 p3

p4

Figure 2.5: A NE channel allocation corresponding to Theorem 2.6. Here |C| = 6, |N | =
4 and k = 4. Each player distributes his radios over the channels (i.e., ki,x ≤ 1, ∀i, ∀c).

Theorem 2.6 suggests that players should distribute their radios over the set of available channels.
Surprisingly, there exist another type of Nash equilibria in which some players use multiple radios in
some channels. We characterize these Nash equilibria in the following theorem.

Theorem 2.7. Assume that |N |·k > |C|. Then a channel allocation S∗ is a NE if the following conditions
hold:

. dx,y ≤ 1 for any x, y ∈ C and

. for any player i that has ki,x ≥ 2, ki,x ≤ τ(kx−1)−τ(kx+1)
τ(kx−1)−τ(kx) also holds; and

. for any player i that has ki,x ≥ 2 and x ∈ C+, it is also true that ki,y ≥ ki,x − 1, ∀y ∈ C−
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Proof. Let us consider a player i who has ki,x ≥ 2 on a channel x ∈ C. We know that k ≤ C. These two
conditions ensure that there exists another channel y ∈ C such that ki,y = 0. Consider the following four
cases as shown in Figure 2.6:
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Figure 2.6: An illustration for the proof of Theorem 2.7.

C1: x ∈ C+ and y ∈ C−
In this case, there exists a channel that i is not using and it is in C−. Based on Lemma 2.4, ∆ ≥ 0.
Hence, this cannot be a NE.

C2: x ∈ C+, y ∈ C+ and ∀z ∈ C− it holds that ki,z > 0

In this case, player i uses each channel in C−. Let us consider two subcases:

C2a: Player i attempts to move one radio from x ∈ C+ to z ∈ C−. Then, the payoff difference is:

∆ = (ki,x − 1) · τ(kx − 1) + (ki,z + 1) · τ(kz + 1)− ki,x · τ(kx)− ki,z · τ(kz)

Using that kz = kx − 1, we obtain:

∆ = (ki,x − 1) · τ(kx − 1) + (ki,z + 1) · τ(kx)− ki,x · τ(kx)− ki,z · τ(kx − 1)
= (ki,x − ki,z − 1) · [τ(kx − 1)− τ(kx)] (2.10)

The second factor in (2.10) is always positive. Thus, ∆ ≤ 0 for ki,z ≥ ki,x − 1. This results
in the third condition of Theorem 2.7.

C2b: Player i attempts to move one radio from x ∈ C+ to y ∈ C+, where ki,y = 0. Since kx = ky,
we can rewrite the payoff difference as:

∆ = (ki,x − 1) · τ(kx − 1) + τ(kx + 1)− ki,x · τ(kx)
= ki,x · [τ(kx − 1)− τ(kx)]− [τ(kx − 1)− τ(kx + 1)]
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In a NE, we should have ∆ ≤ 0, which is true for:

ki,x ≤ τ(kx − 1)− τ(kx + 1)
τ(kx − 1)− τ(kx)

(2.11)

This implies the second condition in Theorem 2.7 for ki,x ≥ 2 and x ∈ C+.

C3: x ∈ C− and y ∈ C−
In this case, player i has multiple radios on one of the channels in C−, but there is another channel
in the same set, where he has no radios. Then, we consider the payoff difference, when player i
moves one radio from x to y. In this case, we obtain the same condition as for C2b as expressed
in (2.11), but let us recall that the value of kx is smaller because x ∈ C−:

ki,x ≤ τ(kx − 1)− τ(kx + 1)
τ(kx − 1)− τ(kx)

(2.12)

This implies the second condition in Theorem 2.7 for ki,x ≥ 2 and x ∈ C−.

C4: x ∈ C− and y ∈ C+ and ∀z ∈ C− it holds that ki,z > 0

Then, we distinguish two subcases:

C4a: Player i attempts to move one radio from x ∈ C− to z ∈ C−, where ki,z > 0. Then, the
payoff difference is:

∆ = (ki,x − 1) · τ(kx − 1) + (ki,z + 1) · τ(kz + 1)− ki,x · τ(kx)− ki,z · τ(kz)

Using that kz = kx, we obtain:

∆ = (ki,x − 1) · τ(kx − 1) + (ki,z + 1) · τ(kx + 1)− ki,x · τ(kx)− ki,z · τ(kx)
= ki,x · [τ(kx − 1)− τ(kx)]−

− ki,z · [τ(kx)− τ(kx + 1)]− [τ(kx − 1)− τ(kx + 1)] (2.13)

From (2.13), we can see that ∆ ≥ 0 for:

ki,x ≤ ki,z · τ(kx)− τ(kx + 1)
τ(kx − 1)− τ(kx)

+
τ(kx − 1)− τ(kx + 1)

τ(kx − 1)− τ(kx)
(2.14)

We can observe that the condition for case C3 in (2.12) is always smaller than the one for
case C4a in (2.14). Hence the condition of C3 is more restrictive.

C4b: Player i attempts to move one radio from x ∈ C− to y ∈ C+, where ki,y = 0. Since
ky = kx + 1, we can rewrite the payoff difference as:

∆ = (ki,x − 1) · τ(kx − 1) + τ(ky + 1)− ki,x · τ(kx)
= (ki,x − 1) · τ(kx − 1) + τ(kx + 2)− ki,x · τ(kx)
= ki,x · [τ(kx − 1)− τ(kx)]− [τ(kx − 1)− τ(kx + 2)] (2.15)

In a NE, we should have ∆ ≤ 0, which is true for:

ki,x ≤ τ(kx − 1)− τ(kx + 2)
τ(kx − 1)− τ(kx)

=
τ(kx − 1)− τ(kx + 1)

τ(kx − 1)− τ(kx)
+

τ(kx + 1)− τ(kx + 2)
τ(kx − 1)− τ(kx)

(2.16)
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Again, the condition in (2.16) is always larger than the condition for case C3 in (2.12). Thus
the condition of C3 is more restrictive.

Figure 2.7 presents an example for Theorem 2.7 assuming that the second (numerical) condition of
the theorem holds.
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Figure 2.7: An example for a NE channel allocation corresponding to Theorem 2.7. Here
|C| = 6, |N | = 7 and k = 4. Note that player p1 uses multiple radios on channel c1.

In summary, Theorems 2.6 and 2.7 characterize two types of Nash equilibria. In the first type, each
player distributes his radios such that he has at most one radio per channel. Intuitively, this results in
load balancing. Note, however, the existence of a second type of Nash equilibria, in which some players
allocate multiple radios on certain channels. We mention that there could be a small set of other Nash
equilibria that are not covered by these theorems, but they exist for very specific conditions on the total
throughput function τ t(kx). These Nash equilibria can be derived from the proof of Theorem 2.7.

2.4 Efficiency

In this section, we study the efficiency of the previously identified Nash equilibria. In the next theo-
rem, we will show that selfish channel allocation results in an efficient bandwidth utilization if the total
throughput function is independent of the number of radios on a given channel.

Theorem 2.8. Assume that |N | · k > |C| and the total throughput function τ t(kx) is independent of kx

on any channel x. Then any NE channel allocation S∗ is Pareto-optimal.

Proof. The proof is straightforward. If S∗ is a NE channel allocation, then kx > 0 for each x ∈ C. If
the total throughput function τ t(kx) is independent of kx, then in S∗ the sum of the payoff of all players
utotal = maxi

∑
i ui which implies Pareto-optimality.

Note that this property might not hold for decreasing total throughput functions, because the players
might remove some of their radios to decrease the total number of radios on certain channels. If they
do this mutually, they could mutually increase each others’ payoff, because they decrease the amount of
throughput loss due to collisions. A simple example is shown in Figure 2.8.

From Figure 2.8, we can conclude on the following property of Pareto-optimal channel allocations.

Fact 2.9. If |N | · k > |C| and τ t(kx) is a decreasing function of kx, then every Pareto-optimal channel
allocation has the property kx = 1,∀x ∈ C.

Using the concept of the price of anarchy (POA) introduced in Section 1.2.5, we can express the
inefficiency caused by selfish behavior.
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Figure 2.8: A simple example to show that Nash equilibria are not necessarily Pareto-
optimal if τ t(kx) decreases with kx. Here |C| = 2, |N | = 2 and k = 2. If both players
remove one radio each, then they achieve a higher payoff.

Theorem 2.10. If τ t(kx) is a decreasing function of kx, then the price of anarchy (POA) is given by:

POA =
τ t(1)

(kx + 1− |N |·k
|C| ) · (τ t(kx)− τ t(kx + 1)) + τ t(kx + 1)

(2.17)

where kx =
⌊ |N |·k

|C|
⌋

(i.e., kx + 1 =
⌈ |N |·k

|C|
⌉

).

Proof. The price of anarchy is the ratio between the sum of the payoffs of the players in a system
optimal solution (in our case, the Pareto-optimal solution) and the sum of their payoffs achieved in a
Nash equilibrium. Hence, we can write the inverse of the POA as follows.

1
POA

=
|C−| · τ t(kx) + |C+| · τ t(kx + 1)

|C| · τ t(1)

=
|C−|
|C|

τ t(kx)
τ t(1)

+
|C+|
|C|

τ t(kx + 1)
τ t(1)

=
|C| − |C+|

|C|
τ t(kx)
τ t(1)

+
|C+|
|C|

τ t(kx + 1)
τ t(1)

=
τ t(kx)
τ t(1)

− |C+|
|C|

(
τ t(kx)
τ t(1)

− τ t(kx + 1)
τ t(1)

)
(2.18)

We know that |C+| = |N | · k − |C| · kx.

1
POA

=
τ t(kx)
τ t(1)

− |N | · k − |C| · kx

|C|
(

τ t(kx)
τ t(1)

− τ t(kx + 1)
τ t(1)

)

=
τ t(kx)
τ t(1)

+ kx
τ t(kx)− τ t(kx + 1)

τ t(1)
− |N | · k

|C| · τ t(kx)− τ t(kx + 1)
τ t(1)

=
τ t(kx)− τ t(kx + 1)

τ t(1)
+

τ t(kx + 1)
τ t(1)

+ kx
τ t(kx)− τ t(kx + 1)

τ t(1)
− |N | · k

|C| · τ t(kx)− τ t(kx + 1)
τ t(1)

=
(

kx + 1− |N | · k
|C|

)
τ t(kx)− τ t(kx + 1)

τ t(1)
+

τ t(kx + 1)
τ t(1)

(2.19)

The result of the theorem follows from (2.19).

Let us now further examine the expression obtained for the price of anarchy. The first factor in the
first term in (2.19) can be written as follows:

kx + 1− |N | · k
|C| =

⌈ |N | · k
|C|

⌉
− |N | · k

|C| ≥ 1
|C| (2.20)
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Thus, we can give a lower bound on (2.19):

1
POA

≥ 1
|C| ·

τ t(kx)− τ t(kx + 1)
τ t(1)

+
τ t(kx + 1)

τ t(1)
(2.21)

Hence, we obtain that

POA ≤ τ t(1)
τ t(kx)−τ t(kx+1)

|C| + τ t(kx + 1)
(2.22)

In the remainder of this section, we will further develop (2.22) for specific assumptions on the total
throughput function τ t(kx).

2.4.1 Price of Anarchy for Linear τ t(kx)

Let us now approximate the total throughput function with a linear function. We can express the change
of the total throughput as:

τ t(kx + 1) = τ t(kx)−H = τ t(1)−H · (kx − 1) (2.23)

where 0 < H < τ t(1) is a constant value.
In this case, we can reformulate (2.21) as follows:

1
POA

≥ 1
|C| ·

τ t(kx)− τ t(kx + 1)
τ t(1)

+
τ t(kx + 1)

τ t(1)

=
1
|C| ·

H

τ t(1)
+

τ t(1)−H · (kx − 1)
τ t(1)

=
H
|C| + τ t(1)−H · (kx − 1)

τ t(1)

= 1 +
H

τ t(1)

(
1
|C| − kx + 1

)
(2.24)

Let us take a closer look at (2.24).

. If H → 0, we obtain that the right-hand side of (2.24) approaches 1. Hence, POA → 1. Intuitively,
if the total throughput function τ t(kx) differs very little from a constant function, then the Nash
equilibria are close to being Pareto-optimal.

. If H → τ t(1), then we obtain from (2.24) that

1
POA

≥ 2 +
1
|C| − kx (2.25)

There exist two cases, depending on the sign of the right-hand side of (2.25).

– The right-hand side expression is non-positive:

2 +
1
|C| − kx ≤ 0

2 +
1
|C| ≤ kx

2 +
1
|C| ≤

⌊ |N | · k
|C|

⌋

(2.26)
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This case is true for |N | · k ≥ 3|C|. In this case, the price of anarchy is unbounded, meaning
that POA < ∞. This suggests that if the total throughput function drops rapidly, then the
system falls into the well-know problem of the tragedy of the commons [Har68].

– For 2 + 1
|C| − kx > 0, meaning that |C| ≤ |N | · k < 3 · |C|, we obtain:

POA ≤ 1
2 + 1

|C| − kx
=

|C|
2 · |C|+ 1−

⌊ |N |·k
|C|

⌋
· |C|

(2.27)

2.4.2 Price of Anarchy for Geometric τ t(kx)

Second, we approximate the total throughput function with a geometric function. Then, we express the
change of the throughput as:

τ t(kx + 1) = τ t(kx) ·H = τ t(1) ·H(kx−1) (2.28)

where 0 < H < 1 is a constant value.
In this case, we can reformulate (2.21) as follows:

1
POA

≥ 1
|C| ·

τ t(kx)− τ t(kx + 1)
τ t(1)

+
τ t(kx + 1)

τ t(1)

=
1
|C|

(
H(kx−1) −Hkx

)
+ Hkx

=
1
|C|

(
H(kx−1) −Hkx

)
+ Hkx

= Hkx

(
1

|C| ·H − 1
|C| + 1

)
(2.29)

We can further study (2.29) as follows.

. If H → 0, we obtain from (2.29) that 1
POA ≥ 0. This means that POA < ∞, i.e., the price

of anarchy is unbounded. The reason is similar to the arguments in case of the linear throughput
function.

. If H → 1, then 1
POA ≥ 1 and the price of anarchy converges to one. Analogously to the previous

case in Section 2.4.1, this means that the throughput function τ t(kx) differs very little from a
constant function, then the Nash equilibria are close to being Pareto-optimal.

In theory, the total throughput function of the CSMA/CA protocol is independent of the number of
radios using a particular channel [Bia00]. Note that this independence requires that the users know the
total number of radios using the channel to be able to adjust their backoff window accordingly in order
to reduce collision to the minimum. In practice, the users do not possess this knowledge and hence they
operate their radios according to the pre-defined protocol. Nevertheless, the throughput function declines
rather slowly, notably thanks to the RTS/CTS extension of the basic CSMA/CA protocol. This suggests
that the price of anarchy is one in theory and it is close to one in practice.

Let us emphasize that neither the Nash equilibria nor the Pareto-optimal strategy profiles ensure
fairness among the players. We devote the next section to study the fairness of selfish channel allocation.
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2.5 Fairness Issues

In this section, we study the fairness properties of the selfish multi-radio channel allocation game. Fair-
ness is an important aspect of resource allocation problems in general, and of computer networks in
particular. Very often, a system-efficient resource allocation gives more (or all) resources to a few play-
ers while neglecting other players (e.g. in the NE derived for the CSMA/CA protocol in [CGAH05]).
Such a solution might be system-efficient, but it is not desired from the network designer’s point of view
(i.e., neither from the users’ point of view). In this section, we will show, which additional properties are
required to make a NE a fair channel allocation.

We have seen in Section 2.3 that in the selfish multi-radio channel allocation problem, the NE achieve
load balancing. Unfortunately, these NE might be highly unfair by giving advantage to some players and
neglecting others. For example, in the channel allocation presented in Figure 2.7 assuming that the total
throughput function τ t(kx) is constant and normalized (i.e., τ t(1) = 1), then player p1 has the aggregated
throughput u1 = 19

20 whereas player p4 has the aggregated throughput u4 = 16
20 . In order to study the

fairness properties of the NE channel allocations, we use a particular metric called max-min fairness
(MMF) as defined in [BG92]:

Definition 2.1. (Max-Min Fairness – MMF): The strategy matrix Smmf is max-min fair if the payoff of
player i cannot be increased without decreasing the payoff of another player j for which ui(Smmf ) ≥
uj(Smmf ).

Using this concept, we identify the max-min fair NE channel allocations as expressed in Theo-
rem 2.11.

Theorem 2.11. A NE channel allocation S∗ is max-min fair if and only if
∑

x∈C− ki,x =
∑

x∈C− kj,x,
for all i, j ∈ N . This implies that ui = uj , ∀i, j ∈ N .

In other words, if the total number of radios in the least allocated channels are equal for every player,
the NE allocation is max-min fair. For example, the channel allocation in Figure 2.5 is max-min fair, but
the one shown in Figure 2.7 is not.

In the proof, we will show that the condition implies an equal payoff for each player.

Proof. Let us express the payoff of any player i in a NE allocation S∗. In the equation below, kx denotes
the number of radios that use channel x ∈ C−.

ui =


 ∑

x∈C−
ki,x


 · τ(kx) +


k −

∑

x∈C−
ki,x


 · τ(kx + 1)

=
∑

x∈C−
ki,x · (τ(kx)− τ(kx + 1)) + k · τ(kx + 1)

Similarly, we can express the payoff of another player j:

uj =
∑

x∈C−
kj,x · (τ(kx)− τ(kx + 1)) + k · τ(kx + 1)

If and only if every player has an equal number of radios in the channels x ∈ C−, meaning that∑
x∈C− ki,x =

∑
x∈C− kj,x, does ui = uj hold for players i, j ∈ N .

Second, we prove by contradiction that the equality of the payoffs is necessary and sufficient to max-
min fairness. Let us suppose that there exist a max-min fair NE channel allocation S∗ in which ui < uj
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for some i, j ∈ N . We know from Lemma 2.2 that ki = kj = k, and hence we can interchange the
radios of player i with the radios of player j. This results in ui > uj , but the payoffs of other players do
not change. Hence, the original channel allocation S∗ is not max-min fair. Conversely, if ui = uj , this
implies max-min fairness by definition.

From this theorem, we can immediately see that the perfectly balanced channel allocation is also
max-min fair.

Corollary 2.12. If S∗ is a NE such that C− = C+ (i.e., ky = kx, ∀x, y ∈ C), then S∗ is max-min fair as
well.

2.6 Coalition-Proof Nash Equilibria

The definition of NE expresses the resistance to the deviation of a single player. In a realistic situation,
it might be possible that several players collude to increase their payoff at the expense of other players.
Such a collusion is called a coalition. The problem of how these coalitions are formed is a research topic
in itself, thus in this chapter we assume that any group of players can form a coalition. We can generalize
the notion of NE for coalitions as defined in [BPW87].

Definition 2.2. (Coalition-Proof Nash Equilibrium – CPNE): The strategy matrix Scpne defines a coalition-
proof Nash equilibrium if there does not exist any coalition Γ ⊂ N and any strategy of this coalition S

′
Γ

such that the following set of conditions is true:

ui(S
′
Γ, Scpne

−Γ ) ≥ ui(S
cpne
Γ , Scpne

−Γ ), ∀i ∈ Γ (2.30)

with strict inequality for at least one player i ∈ Γ.

This means that no coalition can deviate from Scpne such that the payoff of at least one of its members
increases and the payoff of other members do not change.3

Players in a coalition can help each other in two ways. The first possibility is if a player relocates his
radio to improve the payoff of another player he is in a coalition with. This property is expressed for two
players in Lemma 2.13.

Lemma 2.13. If there exist two channels x ∈ C+ and y ∈ C− and two players i, j ∈ N such that
ki,x > 0 and kj,x > 0 whereas ki,y = 0 and kj,y = 0, then the NE channel allocation Scpne is not
coalition-proof.

Proof. It is easy to see that if the conditions hold, then i and j can form a coalition and one of them (for
example player i) can increase the payoff of the other by moving one radio from x to y.

The players in a coalition can also improve their payoff if they mutually remove some radios to
reduce the number of radios contending for these channels. This property is shown for two players in
Lemma 2.14.

Lemma 2.14. If there exist two channels x, y ∈ C+ or x, y ∈ C− and two players i, j ∈ N such that
ki,x > 0, kj,x > 0, ki,y > 0 and kj,y > 0, then the NE channel allocation Scpne is not coalition-proof.

3Note that our definition corresponds to the principle of weak deviation. One can define the notion of a strict deviation
of a coalition which requires that each coalition member increases his payoff by deviating. In the literature of coalition-proof
equilibria, both concepts are used.
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Proof. If the above conditions hold, then the two players can remove one radio each from the channels
x and y (for example, i removes from x and j removes from i). This way, the players mutually increase
the payoffs of each other.

Based on Lemmas 2.13 and 2.14, we can prove the following theorem.

Theorem 2.15. If in a NE channel allocation S∗ it is true that |C+| ≥ 2, then S∗ is not coalition-proof.

Proof. We prove the theorem by contradiction. Let us consider two channels x ∈ C+ and y ∈ C−. Let
us denote the set of players who have at least one radio in channel x and y byN+ and N−, respectively.

Assume first that S∗ corresponds to Theorem 2.6, thus ki,x ≤ 1 for any channel. Then, we can state
thatN− = N+−1, otherwise the two players not present inN− could form a coalition. The same logic
applies to any other channel x

′ ∈ C+. This implies that x and x
′

must contain the same set of users and
hence the conditions of Lemma 2.14 hold.

If S∗ corresponds to Theorem 2.7 and ki,y ≥ 2 for a channel y ∈ C−, then the above reasoning
applies.

If S∗ corresponds to Theorem 2.7 and ki,x ≥ 2 for a channel x ∈ C+, then we know that ki,y ≥
ki,x − 1 for each channel y ∈ C−. If we disregard (remove) ki,y radios from channel x and each channel
in C−, then by the same reasoning, we can conclude that N− = N+ − 1 for any channels x ∈ C+ and
y ∈ C−. Hence, the contradiction applies to this case as well.

We narrowed down the set of potential coalition-proof Nash equilibria by Theorem 2.15. However,
we could not find a set of sufficient conditions for coalition-proof Nash equilibria. Nevertheless, we can
show that each coalition-proof NE is max-min fair as well. Note that the converse is not true.

Theorem 2.16. If NE channel allocation S∗ is coalition-proof, then it is max-min fair as well.

Proof. If |C+| = 1, then by the same arguments as in the proof of Theorem 2.15, we can conclude that
N− = N+ − 1. In other words, each player must have one radio in x. That means that

∑
y∈C− ki,y =∑

y∈C− kj,y and hence the channel allocation S∗ is max-min fair. If |C+| = 0, then the theorem follows
from Corollary 2.12.

As a summary, Figure 2.9 shows all channel allocations by properties.

All channel allocations

Nash equilibria

Max-min fair Nash equilibria

Coalition-proof Nash equilibria

Figure 2.9: Summary of channel allocations with different properties.

2.7 Convergence to a Nash Equilibrium

In Section 2.3, we have demonstrated that the non-cooperative behavior of the selfish players leads to
load-balancing Nash equilibria. In this section, we propose two algorithms, each using a different set of
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available information, to enable the selfish players to converge to one of these Nash equilibria from an
arbitrary initial configuration. The two algorithms are the following: 1) a centralized algorithm using
perfect information and 2) a distributed algorithm using imperfect (local) information.

2.7.1 Centralized Algorithm Using Perfect Information

We have proved in Proposition 2.5 that a Nash equilibrium channel allocation has a load-balancing
property. In addition, we have shown in Theorem 2.8 that for a constant throughput function the Nash
equilibria are Pareto-optimal as well. Here, we present the pseudo-code of Algorithm 2.1, a simple
centralized algorithm to achieve one of these efficient Nash equilibria.

Algorithm 2.1 NE channel allocation with global coordination and perfect information
1: for i = 1 to |N | do
2: for j = 1 to k do
3: if kx = ky,∀x, y ∈ C then
4: use radio j on a channel x, where ki,x = 0
5: else
6: use radio j on a channel x, where kx = miny∈C ky

7: end if
8: end for
9: end for

Using the algorithm, the players allocate their radios such that they fill the channels almost equally.
Note that the algorithm requires the sequential action of the players and hence it needs global coordina-
tion. In addition, the players must have perfect information about the number of radios on each of the
channels. This can be achieved by the global coordination mentioned before or by having an extra radio
per device for scanning the channels. Global coordination is unlikely to exist in a wireless networking
scenario with selfish players. The second assumption about perfect information might not hold either,
because selfish players should allocate all of their radios for communication as shown in Lemma 2.2.
It is possible to model the cost of scanning with one radio instead of using it for communication. The
investigation of this issue is part of our future work.

2.7.2 Distributed Algorithm Using Imperfect Information

In order to overcome the limitations of the centralized algorithm proposed in Section 2.7.1, we suggest a
second algorithm that does not require global coordination and uses only imperfect information. In this
subsection, we assume that players have imperfect information, meaning that they know the total number
of radios on only those channels on which they operate a radio.

We define a round-based distributed algorithm that works as follows. First, we assume that there
exists a random radio assignment of the players over the channels. For simplicity, we focus on the Nash
equilibria that correspond to Theorem 2.6. This means that we assume that no player allocates more
than one device on any channel. After the initial channel assignment, each player tries to improve his
total throughput by reorganizing his radios. To avoid that all players change together, we leverage the
technique of backoff mechanism well known in the IEEE 802.11 medium access technology [Sch05].
We define a backoff window BW and each player chooses a random initial value for his backoff counter
with uniform probability from the set {1, . . . , BW}. Then in every round each player decreases his
backoff counter by one and applies the re-allocation of his radios only when the backoff counter reaches
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zero. After he changes his channel allocation, he resets the backoff counter as described previously. We
can notice that using the backoff mechanism, the players play a game in an almost sequential order.

In each round, when player i’s backoff counter is equal to zero, he calculates the average number of
devices on the channels he knows (recall that we denote this set by Ci). We denote the average number
of devices on the channels in Ci by Ki. For each channel y ∈ Ci with ky −Ki ≥ 1 player i moves his
radio to another channel x /∈ Ci. The probability to chose a channel x /∈ Ci is 1

|C\Ci| . This is the first
property of the algorithm with imperfect information.

We can show that the above procedure reaches a stable state. Unfortunately, the available local infor-
mation might be insufficient for the players to determine if the achieved stable state is Nash equilibrium.
We show an example for such a “false Nash equilibrium” in Figure 2.10.

channels

p4

p3

p2

p1

p3

p5 p1

p3

p4

c4c3c2c1 c5

p1 p5

p2p2

p4

c6

p5

Figure 2.10: An example for a stability state using the distributed algorithm with imper-
fect information. Here |C| = 6, |N | = 5 and k = 3. Each player believes that this is a
Nash equilibrium due to the insufficient local information.

In order to solve the problem of inefficient stable states, we introduce the following mechanism:
player i checks the number of radios for each of the channels y ∈ Ci as suggested above and with a small
probability ε he moves his radio to another channel x /∈ Ci even if 0 < ky −Ki < 1. He chooses the
new channel x with a probability 1

|C\Ci| as presented before. This second property allows us to resolve
the inefficient stability states, but at the same time, it will also cause the instability of the Nash equilibria.

We provide the description of our algorithm below. Note that this algorithm now includes both
properties: 1) the backoff mechanism and 2) the mechanism to resolve inefficient stable states.

Due to the second property of our algorithm, it does not perfectly converge to the existing Nash
equilibria (more precisely, it converges there with high probability, but it does not stay in a Nash equi-
librium solution). Nevertheless, we can observe that the algorithm remains in states that are “close” to
Nash equilibria in terms of load-balancing. We demonstrate this intuition by the simulations presented
in Section 2.7.3.

2.7.3 Simulation Results for Algorithm 2.2

We implemented Algorithm 2.2 in MATLAB and with a special focus on wireless IEEE 802.11a protocol
(meaning that we have chosen 8 orthogonal channels as a default value for |C|). In this subsection, we
present our simulation results showing the convergence time and efficiency of Algorithm 2.2. In each of
the simulations, we assume a constant throughput function τ(·). Note however, that the algorithm shows
similar properties for any decreasing throughput function introduced in Section 2.2.

Let us first highlight the best and worst case in terms of the desired load-balancing for Algorithm 2.2.
The best case is one of the NE channel allocations, and the worst case is characterized by the fact that
there exist k channels where each of the players have a radio, whereas the rest of the channels have no
radios at all. In Figure 2.11, we present an example of the worst case channel allocation that is opposed
to the best case NE in Figure 2.5 for |C| = 6 and we refer to it as unbalanced (UB) channel allocation.
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Algorithm 2.2 Distributed NE channel allocation algorithm using local information
1: random channel allocation
2: while () do
3: get the current channel allocation
4: for i = 1 to |N | do
5: if backoff counter is 0 then
6: if (maxx∈Ci(kx)−minx∈Ci(kx) > 1) then
7: for j = 1 to k do
8: assume that radio j uses channel y
9: if ky > Ki then

10: move the radio j from y to x /∈ Ci, where x is chosen with uniform random probability from the set
C\Ci

11: end if
12: end for
13: else
14: for j = 1 to k do
15: assume that radio j uses channel y
16: if ky ≥ Ki then
17: move the radio j from y to x /∈ Ci with probability ε, where x is chosen with uniform random probability

from the set C\Ci

18: end if
19: end for
20: end if
21: reset the backoff counter to a new value from the set {1, . . . , BW}
22: else
23: decrease the backoff counter value by one
24: end if
25: end for
26: end while
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Figure 2.11: An example for a worst case channel allocation for Algorithm 2.2. The
channel allocation is completely unbalanced, as opposed to the NE (best case) shown in
Figure 2.5. Here |C| = 6, |N | = 4 and k = 4.

We calculate the average number of radios per channel as K = |N |·k
|C| . We can compare the utilization

of every channel x to the average to achieve the total balance of the channel allocation S:

Definition 2.3. (Balance:) The balance β of a channel allocation S is defined as the sum β(S) =∑
x∈C |kx −K|.
The notion of balance allows us to define the efficiency of a given channel allocation as a proportion

between the worst case and the best case channel allocations.

Definition 2.4. (Efficiency:) The efficiency φ of a channel allocation S is defined as φ(S) = β(SUB)−β(S)
β(SUB)−β(SNE) .

Let us emphasize that for any channel allocation S, it is true that 0 ≤ φ(S) ≤ 1. Furthermore,
φ(SNE) = 1 and φ(SUB) = 0 as desired by this measure.

Let us now define the average efficiency over time and the efficiency ratio. To this end, we denote
the efficiency in round t by φ(t, S).

Definition 2.5. (Average efficiency and efficiency ratio:) The average efficiency φ at round T is defined

as the sum φ(T, S) =
∑T

t=1 φ(t,S)
T . We define the efficiency ratio as Φ = lim infT→∞ φ(T, S).

Note that the efficiency ratio expresses the performance of the distributed channel allocation algo-
rithm per round over a long period of time. In our simulations, we applied a finite simulation time, hence
we measured the efficiency ratio for T = 10000 rounds.

Finally, let us define the convergence time of Algorithm 2.2 as follows.

Definition 2.6. (Convergence Time): We define the convergence time of Algorithm 2.2, as the time when
the channel allocation efficiency first reaches the value of one (i.e., the efficiency of a NE, φ(SNE)).

We assume that the duration of one round in the updating algorithm is 10ms. This duration of one
round corresponds roughly to the time needed for all these devices to transmit one MAC layer packet,
i.e., the time that the devices can learn about other devices in the channel. As mentioned previously, we
run each simulation for 10000 rounds, which corresponds to 100s according to the assumption above.
Each figure shows the average values of 100 simulation runs and the corresponding confidence interval
of 95 per cent.

Let us first present an example run for our distributed algorithm with imperfect information in Fig-
ure 2.12 for 20s. One can notice that the algorithm quickly reaches the NE state and thus the average
efficiency converges to one. Also, one can observe that the players sometimes leave the NE state due to
the second property (change a radio on a channel x ∈ C+ in a stable state with probability ε), but they
quickly return to it.
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Figure 2.12: One simulation run: Efficiency and averaged efficiency vs. time using the
values |C| = 8, |N | = 10, k = 3, ε = 10−4 and W = 15.

Suppose that the total available throughput per channel is τ(kx) = 54Mbps, for any kx. In Fig-
ure 2.13, we present a snapshot of the total payoff for the players in the first NE reached in the previous
simulation. One can observe that the total throughput is very similar for the users, hence we conclude
that our algorithm converges to fair channel allocations.
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Figure 2.13: Total throughput (payoff) received by each device in the first NE channel
allocation. The parameter values are those of Figure 2.12.

Next, we investigate the effect of the number of radios per device on the efficiency ratio (shown in
Figure 2.14a) and on the convergence time of the algorithm (presented in Figure 2.14b). We can observe
on the figures that Algorithm 2.2 converges fast with high efficiency ratio if the number of radios per
device is 3 or 5. The higher the number of radios per device, the more channels the players know. Hence,
more information helps them making their decisions. This is the reason that the convergence is slower
if the number of radios is 2. For two radios per devices, the effect of changing the channel for even one
radio has a significant impact that undermines the stability of the NE more easily. If the number of radios
is 4, then convergence is slow for another reason: There is only one Nash equilibrium channel allocation,
namely the perfectly flat one; thus it takes more time to find it. With longer convergence, the efficiency
ratio decreases as well.
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Figure 2.14: The effect of the total number of radios: (a) The efficiency ratio and (b)
the convergence time as a function of the number of radios per device k. Similarly, we
show (c) the efficiency ratio and (d) the convergence time as a function of the number of
players |N |. The simulation parameters are |C| = 8, ε = 10−4 and W = 15. In addition,
we used the following default values |N | = 10 and k = 3, where they did not correspond
to the measured parameter.

Then, we investigate the effect of the number of players, each device having three radios and present
our results in Figures 2.14c and 2.14d. We can see that our distributed algorithm keeps the system in an
efficient state, although the efficiency is slightly lower for multiples of |N |with higher convergence time.
As mentioned above, the reason is that in this case, there exists only one NE (the perfectly load-balanced)
and thus it is more difficult to converge to.

In the second set of simulations, we study the effect of the two parameters that introduce the random-
ness to Algorithm 2.2. First, we show the effect of ε on the efficiency ratio and the convergence time in
Figures 2.15a and 2.15b. One can observe that the efficiency ratio is very high, but slightly decreases as
ε increases. The reason is that with a higher ε value it is more likely that the algorithm does not stay in a
NE, once it has reached it.

Finally, we study the effect of the size of the backoff window in Figures 2.15c and 2.15d. Intuitively,
efficiency increases with the backoff window size, because of the decreasing number of simultaneous
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Figure 2.15: The effect of randomness parameters: (a) Efficiency ratio and (b) conver-
gence time as a function of ε. Furthermore, we present (c) the efficiency ratio and (d) the
convergence time as a function of the backoff window size W . The simulation parame-
ters are |C| = 8, |N | = 10 and k = 3. In addition, we used the following default values
ε = 10−4 and W = 15, where they did not correspond to the measured parameter.

channel changes. Interestingly, this increase is very rapid and the algorithm is very efficient for small
backoff window values. With a larger backoff window, our algorithm realizes with high probability a
sequential procedure similar to the centralized algorithm with perfect information described in Algo-
rithm 2.1. Note, however, that setting a very high backoff window value is not reasonable, because it
makes the players wait for an unnecessarily long time. For the same reason, convergence time drops
quickly as the backoff window value increases.

In summary, we can observe that, in spite of the fact that convergence is not theoretically ensured,
the proposed distributed algorithm based on imperfect information ensures high system performance and
good convergence time.
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2.8 Related work

There has been a significant amount of work on channel allocation in wireless networks, notably for cellu-
lar networks. Channel allocation schemes in cellular networks can be divided into three categories: fixed
channel allocation (FCA), dynamic channel allocation (DCA) and hybrid channel allocation (HCA),
which combines the two former methods.

In a fixed channel allocation scheme, the same number of channels are permanently allocated to the
radios at the base stations. To study fixed channel allocation, most authors used graph coloring / labelling
techniques (e.g., in [vdHLS98]). The FCA method performs very well under a high traffic load, but it
cannot adapt to changing traffic conditions or user distributions.

To overcome the inflexibility of FCA, many authors propose dynamic channel allocation (DCA)
methods (e.g. as presented in [CC96, PW96, ZE93]). In contrast to FCA, there is no constant relationship
between the base stations in a cell and their respective channels. All channels are available for each base
station and they are assigned dynamically as new users arrive. Typically, the available channels are
evaluated according to a cost function and the one with the minimum cost is used [CR72]. Due to its
dynamic property, the DCA can adapt to changing traffic demand. Because adaptation implies some cost,
it performs worse than FCA in the case of a heavy traffic load. For a comprehensive survey on the topic,
we refer the reader to [KN96].

Due to the emergence of alternative communication technologies, channel allocation schemes are
becoming a focus of research again. Mishra et al. [MBA05] propose a channel allocation method for
wireless local area networks (WLANs) based weighted graph coloring. Zheng and Cao [ZC05] present
a rule-based spectrum management scheme for cognitive radios.

Recently, several researchers have considered devices using multiple radios, notably in mesh net-
works (for a survey on mesh networks, see [AWW05]). In the multi-radio communication context, chan-
nel allocation and access also became two of the crucial topics. Related work on multi-radio medium
access includes, but is not restricted to [ABP+04, ABL05, RC05].

In all the related work cited in this chapter so far, the authors assumed that the radio devices cooperate
to achieve a high system performance. But this assumption might not hold, as the users of these devices
are usually selfish and they want to maximize their own performance without necessarily respecting
the system objectives. Game theory provides a straightforward tool to study medium access problems in
competitive wireless networks and has been applied to the CSMA/CA protocol [CGAH05, Kon02] and to
the Aloha protocol [MW03]. Furthermore, a fixed channel allocation game was presented in [HHLM04]
based on graph coloring. Unfortunately, their model does not apply to multi-radio devices. For cognitive
radio networks, the authors of [NC05] propose a dynamic channel allocation scheme based on a potential
game. In addition, they suggest another technique based on machine learning with different payoff
functions. Cao and Zheng [CZ05] propose distributed spectrum allocation in cognitive radio networks
based on local bargaining.

2.9 Summary

In this chapter, we considered the problem of competitive channel allocation among devices that use
multiple radios. This model applies to wireless communications in general and to mesh networks in
particular. In mesh networks, if the access points are operated by home users, then the competition
presented in this chapter might threaten the performance of the network. But, we showed in this chapter
that selfish players are able to efficiently coordinate their channel allocation.
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We studied this problem in a static channel allocation game. Our main conclusion is that, in spite of
the non-cooperative behavior of such devices, their Nash equilibrium channel allocations result in load
balancing. Furthermore, we investigated the efficiency of these Nash equilibria and showed that they
are efficient from the system point of view (i.e., that the price of anarchy is close to one). Because the
static game model already identifies efficient Nash equilibria, we refrained from extending the model
to a repeated game. We also studied fairness issues and coalition-proof NE. Finally, we provided two
algorithms to achieve this efficient Nash equilibrium channel allocation and we studied their convergence
properties theoretically or numerically.

The results showed that efficient channel allocation can be reached even if the devices are selfish.
This is particulary encouraging because the channel allocation model can be easily extended to model
upcoming mesh and cognitive radio networks.

Publications: [FCH06], [FCSH07]
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Chapter 3

Packet Forwarding in Wireless Ad Hoc
Networks - the Static Case

3.1 Introduction

In multi-hop wireless ad hoc networks, networking services are provided by the nodes themselves. As a
fundamental example, the nodes must make a mutual contribution to packet forwarding in order to ensure
an operable network. If the network is under the control of a single authority, as is the case for military
networks and rescue operations, the nodes cooperate for the critical purpose of the network. However,
if each node is his1 own authority, cooperation between the nodes cannot be taken for granted; on the
contrary, it is reasonable to assume that each node has the goal to maximize his own benefits by enjoying
network services and at the same time minimizing his cost by contributing to these services. This selfish
behavior can significantly damage network performance [BH00, MGLB00].

In recent years, researchers have identified the problem of stimulating cooperation in ad hoc networks
and proposed several solutions to give nodes incentive to contribute to common network services. These
solutions are based on a reputation system [BB02, MM02] or on a virtual currency [BH03, ZYC03]. All
of these solutions are heuristics to provide a reliable cooperation enforcement scheme. However, it has
never been formally proven that these techniques are really needed.

Recently, some researchers have claimed that under specific conditions, cooperation may emerge
without incentive techniques [SNCR03, UBG03]. However, they have assumed a random connection
setup, thus abstracting away the topology of the network. This paper aims at determining under which
conditions such cooperation without incentives can exist, while taking the network topology into account.
Indeed, in reality, the interactions between nodes are not random, as they are determined by the network
topology and the communication pattern in the network.

We focus on the most basic networking mechanism, namely packet forwarding. We define a model in
a game-theoretic framework and identify the conditions under which an equilibrium based on cooperation
exists. As the problem is involved, we deliberately restrict ourselves to a static configuration. Note that
our system model is an extension of the simple packet forwarding games presented in Section 1.1.

1We consider the nodes as players in the packet forwarding game. As we have already mentioned in Section 1.1, we refer
to the players with male pronouns.
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3.2 Game-Theoretic Model of Packet Forwarding

3.2.1 Preliminaries

Let us consider an ad hoc network formed by a set of nodes N . Each node has a given power range and
two nodes are said to be neighbors if they reside within the power range of each other. We represent
the neighbor relationship between the nodes with an undirected graph, which we call the connectivity
graph. Each vertex of the connectivity graph corresponds to a node in the network, and two vertices are
connected with an edge if the corresponding nodes are neighbors.

Communication between two non-neighboring nodes is based on multi-hop relaying. This means
that packets from the source to the destination are forwarded by intermediate nodes. For a given source
and destination, the intermediate nodes are those that form the shortest path2 between the source and the
destination in the connectivity graph. We call such a chain of nodes (including the source and the desti-
nation) a route and denote it by r. We call the topology of the network with a given set of communicating
nodes a scenario.

We use a discrete model of time where time is divided into steps. We assume that both the connec-
tivity graph and the set of existing routes remain unchanged during a time step, whereas changes may
happen at the end of each time step. We assume that the duration of the time step is much longer than the
time needed to relay a packet from the source to the destination. This means that a node is able to send
several packets within one time step. This allows us to abstract away individual packets and to represent
the data traffic in the network with flows. We assume CBR flows, which means that a source node sends
the same amount of traffic in each time step. Note, however, that this amount may be different for every
source node and every route.

3.2.2 Forwarding Game

We model the operation of the network as a game, which we call the forwarding game. The players of the
forwarding game are the nodes, hence we use the two terms interchangeably in this chapter. In each time
step t, each node i chooses a cooperation level κi(t) ∈ [0, 1], where 0 and 1 represent full defection and
full cooperation, respectively. Here, defection means that the node does not forward traffic for the benefit
of other nodes, whereas cooperation means that he does. Thus, κi(t) represents the fraction of the traffic
routed through i in t that i actually forwards. Note that i has a single cooperation level κi(t), which he
applies to every route in which he is involved as a forwarder. We prefer to not require the nodes to be
able to distinguish the flows that belong to different routes, because this would require identifying the
source-destination pairs and applying a different cooperation level to each of them; this would probably
increase the computation at the nodes significantly.

Let us assume that in time step t there exists a route r with source node src and ` forwarder nodes
f1, f2, . . . , f`. Let us denote by Tsrc(r) the constant amount of traffic that src wants to send on r in each
time step. The throughput τ(r, t) experienced by the source src on r in t is defined as the fraction of
the traffic sent by src on r in t that is delivered to the destination. Since we are studying cooperation in
packet forwarding, we assume that the main reason for packet losses in the network is the non-cooperative
behavior of the nodes. In other words, we assume that the network is not congested and that the number
of packets dropped because of the limited capacity of the nodes and the links is negligible. Hence, τ(r, t)

2In other words, we abstract away the details of the routing protocol, and we model it as a function that returns the shortest
path between the source and the destination. If there are multiple shortest paths, then one of them is selected at random.
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can be computed as the product of Tsrc(r) and the cooperation levels of all forwarder nodes:

τ(r, t) = Tsrc(r) ·
∏̀

k=1

κfk
(t) (3.1)

In addition, we define the normalized throughput τ̂(r, t) as follows:

τ̂(r, t) =
τ(r, t)
Tsrc(r)

=
∏̀

k=1

κfk
(t) (3.2)

We will use the normalized throughput later as an input of the strategy function of src.
The benefit bsrc(r, t) of src on r in t depends on the experienced throughput τ(r, t). In general,

bsrc(r, t) = ϕsrc(τ(r, t)), where the benefit function ϕsrc(·) is non-decreasing. In this work, we further
assume that ϕsrc(·) is concave, derivable at Tsrc(r), and ϕsrc(0) = 0. We place no other restrictions on
ϕsrc(·). Note that the benefit function of different nodes may be different.

The cost cfj
(r, t) of the j-th forwarder node fj on r in t is non-positive and represents the cost for

node fj to forward packets on route r during time step t. It is defined as follows:

cfj (r, t) = −Tsrc(r) · C · τ̂j(r, t) (3.3)

where C is the cost of forwarding one unit of traffic, and τ̂j(r, t) is the normalized throughput on r in t
leaving node j. For simplicity, we assume that the nodes have the same, fixed transmission power, and
therefore C is the same for every node in the network, and it is independent from r and t. τ̂j(r, t) is
computed as the product of the cooperation levels of the forwarder nodes from f1 up to and including fj :

τ̂j(r, t) =
j∏

k=1

κfk
(t) (3.4)

In our model, the payoff of the destination is 0. In other words, we assume that only the source
benefits if the traffic reaches the destination (information push). However, our model can be applied in
the reverse case: all our results also hold when only the destination benefits from receiving traffic. An
example of this case is a file download (information pull).

The payoff ui(t) of node i in time step t is then computed as

ui(t) =
∑

r∈SRi(t)

bi(r, t) +
∑

r′∈FRi(t)

ci(r
′
, t) (3.5)

where SRi(t) is the set of routes in t where i is the source, and FRi(t) is the set of routes in t where i
is an forwarder node.

3.2.3 Strategy Space

In every time step, each node i updates his cooperation level using a strategy function si. In general, i
could choose a cooperation level to be used in time step t, based on the information he obtained in all
preceding time steps. In order to make the analysis feasible, we assume that i uses only information that
he obtained in the previous time step (i.e., he uses strategies of history-1 as introduced in Section 1.4.2).
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More specifically, we assume that i chooses his cooperation level κi(t) in time step t based on the
normalized throughput he experienced in time step t− 1 on the routes where he was a source:

κi(t) = si([τ̂(r, t− 1)]r∈SRi(t−1)) (3.6)

where [τ̂(r, t− 1)]r∈SRi(t−1) represents the normalized throughput vector for node i in time step t− 1,
each element of which is the normalized throughput experienced by i on a route where he was source in
t− 1. The strategy of a node i is then defined by his strategy function si and his initial cooperation level
κi(0).

Note that si takes as input the normalized throughput and not the payoff received by i in the previ-
ous time step. The rationale is that i should react to the behavior of the rest of the network, which is
represented by the normalized throughput in our model.

Our model requires that each source be able to observe the throughput in a given time step on each of
his routes. We assume that this is made possible with high enough precision by using some higher level
control protocol above the network layer.

3.3 Meta-Model

In this section, we introduce a meta-model in order to formalize the properties of the packet forwarding
game defined in the previous section. In the meta-model, we focus on the evolution of the cooperation
levels of the nodes; all other details of the model defined earlier (e.g., amounts of traffic, forwarding
costs, and utilities) are abstracted away. Unlike in the model, in the meta-model and in the remainder of
this chapter, we will assume that routes remain unchanged during the lifetime of the network. In addition,
we assume for the moment that each node is the source of only one route.3

Let us consider a route r. The payoff received by the source on r depends on the cooperation levels of
the forwarder nodes on r. We represent this dependency relationship between the nodes with a directed
graph, which we call the dependency graph. Each vertex of the dependency graph corresponds to a
network node. There is a directed edge from vertex i to vertex j, denoted by the ordered pair (i, j), if
there exists a route where i is an forwarder node and j is the source. Intuitively, an edge (i, j) means that
the behavior (cooperation level) of i has an effect on j. The concept of dependency graph is illustrated
in Figure 3.1.

Now we define the automaton Θ that will model the unfolding of the forwarding game in the meta-
model. The automaton is built on the dependency graph. We assign a machine Mi to every vertex i of
the dependency graph and interpret the edges of the dependency graph as links that connect the machines
assigned to the vertices. Each machine Mi thus has some input and some (possibly 0) output links.

The internal structure of the machine is illustrated in Figure 3.2. Each machine Mi consists of
a multiplication4 gate

∏
followed by a gate that implements the strategy function si of node i. The

multiplication gate
∏

takes the values on the input links and passes their product to the strategy function
gate.5 Finally, the output of the strategy function gate is passed to each output link of Mi.

3We will relax this assumption in Section 3.5. We emphasize that all of our analytical results hold in the extended case as
well.

4The multiplication comes from the fact that the experienced normalized throughput for the source (which is the input of
the strategy function of the source) is the product of the cooperation levels of the forwarders on his route.

5Note that here si takes a single real number as input, instead of a vector of real numbers as we defined earlier, because we
assume that each node is source of only one route.



3.3. META-MODEL 67

 (a) routes   (b) dependency graph

p1
p2

p3

p4

p5

p1
p2

p3

p4

p5

Figure 3.1: Representation of a network: (a) a graph showing 5 routes and (b) the corre-
sponding dependency graph.
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Figure 3.2: Internal structure of machine Mi.

The automaton Θ works in discrete steps. Initially, in step 0, each machine Mi outputs some initial
value xi(0). Then, in step t > 0, each machine computes his output xi(t) by taking the values that appear
on his input links in step t− 1.

Note that if xi(0) = κi(0) for all i, then in step t, each machine Mi will output the cooperation
level of node i in time step t (i.e., xi(t) = κi(t)), as we assumed that the set of routes (and hence the
dependency graph) remains unchanged in every time step. Therefore, the evolution of the values (which,
in fact, represent the state of the automaton) on the output links of the machines models the evolution of
the cooperation levels of the nodes in the network.

In order to study the interaction of node i with the rest of the network, we extract the gate that
implements the strategy function si from the automaton Θ. What remains is the automaton without si,
which we denote by Θ−i. Θ−i has an input and an output link; if we connect these to the output and
the input, respectively, of si (as illustrated in Figure 3.4), then we get back the original automaton Θ. In
other words, the automaton in Figure 3.4 is another representation of the automaton in Figure 3.3, which
captures the fact that from the viewpoint of node i, the rest of the network behaves like an automaton:
The input of Θ−i is the sequence xi = xi(0), xi(1), . . . of the cooperation levels of i, and his output is
the sequence yi = yi(0), yi(1), . . . of the normalized throughput values for i.

By using the system of equations that describe the operation of Θ, one can easily express any element
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Figure 3.3: The automaton that corresponds to the dependency graph of Figure 3.1.
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Figure 3.4: Model of interaction between node i and the rest of the network represented
by the automaton Θ−i.

yi(t) of sequence yi as some function of the preceding elements xi(t−1), xi(t−2), . . . , xi(0) of sequence
xi and the initial values xj(0) (j 6= i) of the machines within Θ−i. We call such an expression of
yi(t) the t-th input/output formula or the t-th i/o formula of Θ−i, for short. It is important to note that
the i/o formulae of Θ−i may involve any strategy function sj where j 6= i, but they never involve si.
Considering again the automaton in Figure 3.3, and extracting, for instance, s1, we can determine the
first few i/o formulae of Θ−1 as follows:

y1(0) = x3(0) · x5(0)
y1(1) = s3(x5(0)) · s5(x1(0))
y1(2) = s3(s5(x1(0))) · s5(x1(1))
y1(3) = s3(s5(x1(1))) · sE(x1(2))

. . . . . .

A dependency loop L of node i is a sequence (i, v1), (v1, v2), . . . , (v`−1, v`), (v`, i) of edges in the
dependency graph. The length of a dependency loop L is defined as the number of edges in L, and it
is denoted by |L|. The existence of dependency loops is important: if node i has no dependency loops,
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then the cooperation level chosen by i in a given time step has no effect on the normalized throughput
experienced by i in future time steps. In the example shown in Figure 3.1, nodes p2 and p4 have no
dependency loops.

Every node i has two types of dependency loops; these types depend on the strategies played by the
other nodes in the loop. If L is a dependency loop of i, and all other nodes j 6= i in L play reactive
strategies, then L is said to be a reactive dependency loop of i. If, on the contrary, there exists at least
one node j 6= i, j ∈ L that plays a non-reactive strategy, then L is called a non-reactive dependency loop
of i.

3.4 Analytical Results

Our goal, in this section, is to study the existence of Nash equilibria of packet forwarding strategies.
In the next section, we will investigate the probability of fulfillment of the conditions for possible Nash
equilibria in randomly generated scenarios. The existence of a Nash equilibrium based on cooperation
would mean that there are cases in which cooperation is “naturally” encouraged, i.e. without using
incentive mechanisms. In the following, we use the model and the meta-model that we introduced
earlier.

The goal of the nodes is to maximize the total payoff that they accumulate over time (i.e., we assume
that they are long-sighted players). However, the end of the game is unpredictable. Thus, we apply
the technique of discounting introduced in Section 1.4.3: We model the finite forwarding game with an
unpredictable end as an infinite game where future payoffs are discounted. The discounted total payoff
ui of a node i is computed as the weighted sum of the payoffs ui(t) that i obtains in each time step t:

ui =
∞∑

t=0

[ui(t) · δt] (3.7)

where δ is the discounting factor with 0 < δ < 1, and hence the multiplicative factor decreases expo-
nentially with t.

Let us repeat that SRi(t) denotes the set of routes for which i is the source, and that FRi(t) denotes
the set of routes for which i is an forwarder node. As we assume that the routes remain static, meaning
that SRi(t) and FRi(t) do not change over time, we will simply write SRi and FRi instead of SRi(t)
and FRi(t). In addition, since we assume that each node is a source on exactly one route, SRi is a
singleton. We denote the single route in SRi by ri, and the amount of traffic sent by i on ri in every time
step by Ti. The cardinality of FRi will be denoted by |FRi|. For any route r ∈ FRi, we denote the set
of forwarder nodes on r upstream from node i (including node i) by F(r, i). Moreover, F(r) denotes the
set of all forwarder nodes on route r, and src(r) denotes the source of route r. Finally, the set of nodes
that are forwarders on at least one route is denoted by F (i.e., F = {i ∈ N : FRi 6= ∅}).

Theorem 3.1. If a node i is in F , and he has no dependency loops, then his best strategy is All-D (i.e.,
to choose cooperation level 0 in every time step).

Proof. Node i wants to maximize his total payoff ui defined in (3.7). In our case, ui(t) can be written
as:

ui(t) = bi(ri, t) +
∑

r∈FRi

ci(r, t)

= ϕi(Ti · yi(t))−
∑

r∈FRi

Tsrc(r) · c ·
∏

k∈F(r,i)

xk(t)
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Given that i has no dependency loops, yi(t) is independent of all the previous cooperation levels xi(t′)
of node i, where t′ < t. Thus, ui is maximized if xi(t′) = 0 for all t′ ≥ 0.

Theorem 3.2. If a node i is in F , and he has only non-reactive dependency loops, then his best strategy
is All-D.

Proof. The proof is similar to the proof of Theorem 3.1. Since all dependency loops of i are non-reactive,
his experienced normalized throughput yi is independent of his own behavior xi. This implies that his
best strategy is full defection.

From this theorem, we can easily derive the following corollary.

Corollary 3.3. If every node j (j 6= i) plays All-D, then the best response of i to this is All-D. Hence,
every node playing All-D is a Nash equilibrium.

If the conditions of Theorems 3.1 and 3.2 do not hold, then we cannot determine the best strategy
of a node i in general, because it very much depends on the particular scenario (dependency graph) in
question and the strategies played by the other nodes.

Now, we will show that, under certain conditions, cooperative equilibria do exist in the network. In
order to do so, we first prove the following lemma:

Lemma 3.4. Let us assume that node i is in F , and let us consider a route r ∈ FRi. In addition, let
us assume that there exists a dependency loop L of i that contains the edge (i, src(r)). If all nodes in L
(other than i) play the TFT strategy, then the following holds:

yi(t + λ) ≤
∏

k∈F(r,i)

xk(t) (3.8)

where λ = |L| − 1.

Proof. Let L be the following sequence of edges in the dependency graph: (v0, v1), (v1, v2), . . . , (vλ, vλ+1),
where vλ+1 = v0 = i and v1 = src(r). We know that each node is the source of a single route; let us
denote by rvj (0 < j ≤ λ + 1) the route, on which vj is the source. It follows that rv1 = r. In addition,
we know that the existence of edge (vj , vj+1) (0 ≤ j ≤ λ) in the dependency graph means that vj is a
forwarder on rvj+1 . The following holds for every node vj (0 ≤ j ≤ λ):

xvj (t) ≥
∏

k∈F(rvj+1 ,vj)

xk(t) ≥
∏

k∈F(rvj+1 )

xk(t) = yvj+1(t) (3.9)

Furthermore, since every node except for v0 = vδ+1 = i plays TFT, we have the following for every
0 < j ≤ δ:

xvj (t + 1) = yvj (t) (3.10)

Using (3.9) and (3.10) in an alternating order, we get the following:

xv0(t) ≥
∏

k∈F(rv1 ,v0)

xk(t) ≥ yv1(t) = xv1(t+1) ≥ yv2(t+1) = xv2(t+2) ≥ . . . ≥ yvλ+1
(t+λ) (3.11)

By substituting i for v0 and vδ+1, and r for rv1 , we get the statement of the lemma:

xi(t) ≥
∏

k∈F(r,i)

xk(t) ≥ . . . ≥ yi(t + λ) (3.12)
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dependency graph

v1
V2

v3

v4

i = v0 = v5

= 4λ

y1(t) < xi(t)

x1(t+1) = y1(t)

y2(t+1) < x1(t+1)

x2(t+2) = y2(t+1)

x3(t+3) = y3(t+2)

x4(t+4) = y4(t+3)

y3(t+2) < x2(t+2)

y4(t+3) < x3(t+3)yi(t+4) < x4(t+4)

Figure 3.5: Example to illustrate the propagation of behavior as expressed formally in
Lemma 3.4.

As an example, let us consider Figure 3.5, which illustrates a dependency loop of length 5 (i.e.,
λ = 4). According to Lemma 3.4, if nodes v1, v2, v3, and v4 play TFT, then the normalized throughput
enjoyed by node i in time step t + 4 is upper bounded by his own cooperation level in time step t.
Intuitively, this means that if node i does not cooperate, then this defection “propagates back” to him on
the dependency loop. The delay of this effect is given by the length of the dependency loop.

Theorem 3.5. Assuming that node i is in F , the best strategy for i is full cooperation in each time step,
if the following set of conditions holds:

1. for every r ∈ FRi, there exists a dependency loop Li,src(r) that contains the edge (i, src(r));

2. for every r ∈ FRi,
ϕ′i(Ti) · Ti · δλi,src(r)

|FRi| > Tsrc(r) · C (3.13)

where ϕ′i(Ti) is the value of the derivative6 of ϕi(τ) at τ = Ti, and λi,src(r) = |Li,src(r)| − 1; and

3. every node in F (other than i) plays the TFT strategy.

The proof of Theorem 3.5 is provided in Section 3.7.
We have derived necessary conditions for spontaneous cooperation from Theorem 3.1 and 3.2. The

fulfillment of the three conditions of Theorem 3.5 is sufficient for cooperation to be the best strategy
for node i. We now discuss these three conditions one by one. Condition 1 requires that node i has
a dependency loop with all of the sources for which he forwards packets. Condition 2 means that the
maximum forwarding cost for node i on every route where i is a forwarder must be smaller than his
possible future benefit averaged over the number of routes where i is a forwarder. Finally, Condition 3
requires that all forwarding nodes in the network (other than node i) play TFT. This implies that all
the dependency loops of node i are reactive. We note that the reactivity of the dependency loops can
be based on other reactive strategies, different from TFT (for example Anti-TFT), but in that case the
analysis becomes very complex. The analysis of the case when every node plays TFT is made possible

6Recall the assumption that ϕi is derivable at Ti.
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by the simplicity of the strategy function s(y) = y, which belongs to the TFT strategy. If all three
conditions of Theorem 3.5 are satisfied, then node i has an incentive to cooperate, since otherwise his
defective behavior will negatively affect his own payoff. However, as we will show in Section 3.6,
Condition 1 is already a very strong requirement that is rarely satisfied in randomly generated scenarios.

Both the All-C and TFT strategies result in full cooperation if the conditions of Theorem 3.5 hold.
However, node i should not choose All-C, because All-C is a non-reactive strategy, and this might cause
other nodes to change their strategies to All-D, as we will show in Section 3.6. Hence, we can derive the
following corollary for cooperative Nash equilibria.

Corollary 3.6. If the first two conditions of Theorem 3.5 hold for every node inF , then all nodes playing
TFT is a Nash equilibrium.

In Section 3.6, we study Condition 1 of Theorem 3.5, more specifically, the probability that it is
satisfied for all nodes in randomly generated scenarios. Now, we briefly comment on Condition 2. As it
can be seen, the following factors make Condition 2 easier to satisfy:

• Steep benefit functions: The steeper the benefit function of node i is, the larger the value of its
derivative is at τ = Ti, which, in turn, makes the left side of (3.13) larger.

• Short dependency loops: In Condition 2, |Li,src(r)| = λi,src(r) +1 is the length of any dependency
loop of node i that contains the edge (i, src(r)). Clearly, we are interested in the shortest of such
loops, because the smaller λi,src(r) is, the larger the value of δλi,src(r) is, which, in turn, makes the
left side of (3.13) larger. It is similarly advantageous if δ is close to 1, which means, in general,
that the probability that the game will continue is higher and thus possible future payoffs count
more.

• Small extent of involvement in forwarding: The left side of (3.13) is increased if the cardinality of
FRi is decreased. In other words, if node i is a forwarder on a smaller number of routes, then
Condition 2 is easier to satisfy for i.

The first two theorems state that if the behavior of node i has no effect on his experienced normalized
throughput, then defection is the best choice for i. In addition, Corollary 3.3 says that if every node
always defects, then this is a Nash equilibrium. Theorem 3.5 leads to Corollary 3.6, which shows the
existence of a cooperative equilibrium (each node playing TFT) under certain conditions.

set of scenarios,
where every node

playing AllD 
is a Nash equilibrium

(Corollary 3.3)

set of scenarios,
where cooperation

is based on the condition
expressed in Corollary 3.6

set of scenarios 
where a Nash equilibrium 

based on cooperation
is not excluded 
by Theorem 3.1

C2
D C

Figure 3.6: Classification of scenarios defined by our analytical results.

Figure 3.6 shows a classification of scenarios from the cooperation perspective. In the figure, set D
denotes the set of all possible scenarios; indeed, we know from Corollary 3.3 that all nodes playing All-D
is a Nash equilibrium in any possible scenario. Set C2 contains those scenarios where the conditions of
Corollary 3.6 hold. Hence, all nodes playing TFT is a Nash equilibrium in every scenario in C2. Finally,
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set C contains those scenarios, where the condition of Theorem 3.1 does not hold for any of the nodes
in F , or in other words, where every node in F has at least one dependency loop. Determining the Nash
equilibria in the scenarios that belong to set C \C2 is still an open research problem. In Section 3.6, we
will describe our simulation results that quantify the size of the above sets.

3.5 Extended Model

In this section, we show that the assumption that each node is a source on only one route can be relaxed.
For this, we slightly modify our initial model illustrated in Figure 3.2, and we define another machine
representation for the node. This new representation is illustrated in Figure 3.7. The main novelty is
that the outputs of the multiplication gates that correspond to the various routes for which the node is the
source are aggregated into a single value using an aggregation function a(·).

Π
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.
.

.
.
.

Π

.
.
.

Π

.
.
.

.
.
.

a

si'

si

yi(t) xi(t)

Figure 3.7: Modified machine for a node (M
′
i ). s

′
i represents the modified strategy func-

tion for node i.

Theorems 3.1 and 3.2 still hold for an arbitrary a(·), because the existence of dependency loops does
not depend on the internal structure of the machine representing the nodes. Moreover, assuming that a(·)
has the property that a(y1, y2, . . . y|SRi|) ≤ yk for all 1 ≤ k ≤ |SRi|, we can prove a theorem similar to
Theorem 3.5, where Condition 1 and Condition 3 are unchanged, and Condition 2 has a slightly different
form:

Theorem 3.7. Assuming that node i is in F , the best strategy for i is full cooperation in each time step,
if the following set of conditions holds:

1. for every r ∈ FRi, there exists a dependency loop Li,src(r) that contains the edge (i, src(r));

2. for every r ∈ FRi,
δλi,src(r)

|FRi| ·
∑

q∈SRi

ϕ′i(Ti(q)) · Ti(q) > Tsrc(r) · C

where Ti(q) denotes the amount of traffic that node i sends as a source on route q, while ϕ′i and
λi,src(r) have the same meaning as in Theorem 3.5; and

3. every node in F (other than i) plays the TFT strategy.
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The proof of Theorem 3.7 is analogous to that of Theorem 3.5 and therefore we omit it.
An example for such a function a(·) is the minimum function (which we will use in our simulations).

This choice of a(·) represents a pessimistic perception for the node: he considers the minimum normal-
ized throughput he receives on the different routes as an aggregate view of all his routes. Similarly to
Corollary 3.6, if the (modified) conditions of Theorem 3.5 hold for every node that is a forwarder on at
least one route, then all nodes playing TFT is a Nash equilibrium.

3.6 Simulation Results

We have run a set of simulations to determine the probability that the conditions of our theorems and
their corollaries hold. In particular, our goal is to estimate the probability that the first condition of
Theorem 3.5 holds for every node in randomly generated scenarios.7 In addition, we also estimate the
probability that the condition of Theorem 3.1 does not hold for any of the nodes in randomly generated
scenarios. These probabilities quantify the size of sets C2 and C, respectively.

In our simulations, we randomly place nodes on a toroid area.8 Then, for each node, we randomly
choose a number of destinations and we determine a route to these destinations using a shortest path
algorithm. If several shortest paths existed to a given destination, then we randomly choose a single
one. From the routes, we build up the dependency graph of the network. The simulation parameters are
summarized in Table 3.1.

Parameter Value
Number of nodes 100, 150, 200
Distribution of the nodes random uniform
Area type Torus
Area size 1500x1500m, 1850x1850m, 2150x2150m
Radio range 200 m
Number of destinations per node 1-10
Route selection shortest path

Table 3.1: Parameter values for the simulation

Note that we increase the network size and the simulation area in parallel in order to keep the node
density at a constant level. All the presented results are the mean values of 1000 simulation runs.

In the first set of simulations, we investigate the probability that the first condition of Theorem 3.5
holds for every node (the size of the set C2 in Figure 3.6). Among the 1000 scenarios that we generated
randomly, we observed that there was not a single scenario in which the first condition of Theorem 3.5
was satisfied for all nodes. Thus, we conclude that the probability of a Nash equilibrium based on TFT
as defined in Corollary 3.6 is very small.

In the second set of simulations, we investigate the proportion of random scenarios, where coopera-
tion of all nodes is not excluded by Theorem 3.1. Figure 3.8 shows the proportion of scenarios, where

7The second condition of Theorem 3.5 is a numerical one. Whether it is fulfilled or not very much depends on the actual
utility functions and parameter values (e.g., amount of traffic and discounting factor) used. Since, by appropriately setting these
parameters, the second condition of Theorem 3.5 can always be satisfied, in our analysis, we make the optimistic assumption
that this condition holds for every node in F .

8We use this area type to avoid border effects. In a realistic scenario, the toroid area can be considered as an inner part of a
large network.
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each node in F has at least one dependency loop (the scenarios in set C in Figure 3.6) as a function of
the number of routes originating at each node. We can observe that for an increasing number of routes
originating at each node, the proportion of scenarios, where each node has at least one dependency loop,
increases as well. Intuitively, as more routes are introduced in the network, more edges are added to
the dependency graph. Hence, the probability that a dependency loop exists for each node increases.
Furthermore, we can observe that the proportion of scenarios in which each node has at least one depen-
dency loop decreases, as the network size increases. This is due to the following reason: the probability
that there exists at least one node for which the condition of Theorem 3.1 holds increases as the number
of nodes increases.

Figure 3.8 shows that the proportion of scenarios, where cooperation of all nodes is not excluded by
Theorem 3.1 (set C) becomes significant (with respect to set D) only for cases in which each node is a
source of a large number of routes. This implies that the necessary condition expressed by Theorem 3.1
is a strong requirement for cooperation in realistic settings (i.e., for a reasonably low number of routes
per node).
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Figure 3.8: Proportion of scenarios, where each node that is a forwarder has at least one
dependency loop.

Now let us consider the case, in which the nodes for which Theorem 3.1 holds begin to play All-D.
This non-cooperative behavior can lead to an “avalanche effect” if the nodes iteratively optimize their
strategies: nodes that defect can cause the defection of other nodes. We examine this avalanche effect in
a simulation setting as follows.

Let us assume that each node is a source on one route. First, we identify the nodes in the set of
forwarders F that have All-D as the best strategy due to Theorem 3.1. We denote the set of these
defectors by Z0. Then, we search for sources that are dependent on the nodes in Z0. We denote the set
of these sources by Z+

0 . Since the normalized throughput of the nodes in Z+
0 is less than or equal to

the cooperation level of any of their forwarders (including the nodes in Z0), their best strategy becomes
All-D, as well, due to Theorem 3.2. Therefore, we extend the set Z0 of defectors, and obtain Z1 =
Z0∪Z+

0 . We extend the set Zk of defectors iteratively in this way until no new sources are affected (i.e.,
Zk ∪ Z+

k = Zk). The remaining set F \ Zk of nodes is not affected by the behavior of the nodes in Zk

(and hence the nodes in Z0); this means that they are potential cooperators. Similarly, we can investigate
the avalanche effect when the nodes are sources of several routes. In that case, we take the pessimistic
assumption that the defection of a forwarder causes the defection of his sources. Then, we can iterate the
search for the nodes that are affected by defection in the same way as above.
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In Figure 3.9, we present the proportion of scenarios, where there exists a subset of nodes that are not
affected by the defective behavior of the initial All-D players. We can see that this proportion converges
rapidly to 1 as the number of routes originating at each node increases. The intuitive explanation is that
increasing the number of routes per source (i.e., adding edges to the dependency graph) decreases the
probability that Theorem 3.1 holds for a given node. Thus, as the number of routes per sources increases
the number of forwarders that begin to play All-D decreases and so does the number of nodes affected
by the avalanche effect.
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Figure 3.9: Proportion of scenarios, where at least one node is not affected by the defec-
tive behavior of the initial nodes.

Additionally, we present in Figure 3.10 the proportion of forwarder nodes that are not affected by
the avalanche effect. The results show that if we increase the number of routes originating at each node,
the average number of unaffected nodes increases rapidly. For a higher number of routes per node, this
increase slows down, but we can observe that the majority of the nodes are not affected by the defective
behavior of the initial All-D players.
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Figure 3.10: Average proportion of forwarder nodes that are not affected by the avalanche
effect.
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3.7 Proof of Theorem 3.5

Proof. In this proof we will express the maximum possible value of the total payoff ui for node i in
general. Then we will show that the maximum corresponds to the case in which node i fully cooperates.
First, we introduce the linear function ψ(τ) = ϕ′i(Ti) · τ + ϕi(Ti) − ϕ′i(Ti) · Ti. Function ψ(·) is the
tangent of function ϕi at τ = Ti. Note that due to the fact that ϕi is non-decreasing and concave, we
have that ψ(τ) ≥ ϕi(τ) for all τ ; in addition, we have equality at τ = Ti (i.e., ψ(Ti) = ϕi(Ti)).

By definition, the total payoff ui of node i is the following:

ui =
∞∑

t=0


bi(ri, t) +

∑

r∈FRi

ci(r, t)


 δt

=
∞∑

t=0


ϕi(Ti · yi(t))−

∑

r∈FRi

Tsrc(r) · C ·
∏

k∈F(r,i)

xk(t)


 δt (3.14)

Because of Condition 1 and Condition 3, we can use Lemma 3.4 to obtain the following inequality for
every r ∈ FRi:

∏

k∈F(r,i)

xk(t) ≥ yi(t + λi,src(r)) (3.15)

which leads to the following upper bound on ui:

ui ≤
∞∑

t=0


ϕi(Ti · yi(t))−

∑

r∈FRi

Tsrc(r) · C · yi(t + λi,src(r))


 δt (3.16)

Since the first term of the right side of (3.16), ϕi(Ti · yi(t)), is independent of r, the following holds:

ϕi(Ti · yi(t)) =
∑

r∈FRi

ϕi(Ti · yi(t))
|FRi| (3.17)

By substituting the right side of (3.17) into (3.16), we get the following:

ui ≤
∞∑

t=0


 ∑

r∈FRi

ϕi(Ti · yi(t))
|FRi| −

∑

r∈FRi

Tsrc(r) · C · yi(t + λi,src(r))


 δt

=
∑

r∈FRi

[ ∞∑

t=0

ϕi(Ti · yi(t))
|FRi| · δt −

∞∑

t=0

Tsrc(r) · C · yi(t + λi,src(r)) · δt

]
(3.18)

Let us consider the first term of (3.18). We will now split up the summation that goes from t = 0 to ∞
into two summations such that one goes from t = 0 to λi,src(r) − 1, and the other goes from t = λi,src(r)
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to ∞. We shift the index in the second sum such that the summation goes from t = 0 to ∞ again:

∞∑

t=0

ϕi(Ti · yi(t))
|FRi| · δt

=
λi,src(r)−1∑

t=0

ϕi(Ti · yi(t))
|FRi| · δt +

∞∑

t=λi,src(r)

ϕi(Ti · yi(t))
|FRi| · δt

=
λi,src(r)−1∑

t=0

ϕi(Ti · yi(t))
|FRi| · δt +

∞∑

t=0

ϕi(Ti · yi(t + λi,src(r)))
|FRi| · δt+λi,src(r) (3.19)

By writing (3.19) back into (3.18), we get the following:

ui ≤
∑

r∈FRi




λi,src(r)−1∑

t=0

ϕi(Ti · yi(t))
|FRi| · δt

+
∞∑

t=0

[
ϕi(Ti · yi(t + λi,src(r)))

|FRi| · δλi,src(r) − Tsrc(r) · C · yi(t + λi,src(r))
]
· δt

]
(3.20)

Let us consider the first term of (3.20). Since the utility function ϕi is non-decreasing and yi(t) ≤ 1, we
get the following:

λi,src(r)−1∑

t=0

ϕi(Ti · yi(t))
|FRi| · δt ≤

λi,src(r)−1∑

t=0

ϕi(Ti)
|FRi| · δ

t

=
ϕi(Ti)
|FRi| ·

1− δλi,src(r)

1− δ
(3.21)

Now let us consider the second term of (3.20). By using the fact that ψ(τ) ≥ ϕi(τ) for all τ , we get the
following:
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∞∑

t=0

[
ϕi(Ti · yi(t + λi,src(r)))

|FRi| · δλi,src(r) − Tsrc(r) · C · yi(t + λi,src(r))
]
· δt

≤
∞∑

t=0

[
ψ(Ti · yi(t + λi,src(r)))

|FRi| · δλi,src(r) − Tsrc(r) · C · yi(t + λi,src(r))
]
· δt

=
∞∑

t=0

[
ϕ′i(Ti) · Ti · yi(t + λi,src(r)) + ϕi(Ti)− ϕ′i(Ti) · Ti

|FRi| · δλi,src(r) − Tsrc(r) · C · yi(t + λi,src(r))
]
· δt

=
∞∑

t=0

[
ϕi(Ti)− ϕ′i(Ti) · Ti

|FRi| · δλi,src(r) +

(
ϕ′i(Ti) · Ti · δλi,src(r)

|FRi| − Tsrc(r) · C
)

yi(t + λi,src(r))

]
· δt

=
ϕi(Ti)− ϕ′i(Ti) · Ti

|FRi| · δλi,src(r)

1− δ
+

∞∑

t=0

(
ϕ′i(Ti) · Ti · δλi,src(r)

|FRi| − Tsrc(r) · C
)

yi(t + λi,src(r)) · δt (3.22)

≤ ϕi(Ti)− ϕ′i(Ti) · Ti

|FRi| · δλi,src(r)

1− δ
+

∞∑

t=0

(
ϕ′i(Ti) · Ti · δλi,src(r)

|FRi| − Tsrc(r) · C
)
· δt (3.23)

=
ϕi(Ti)− ϕ′i(Ti) · Ti

|FRi| · δλi,src(r)

1− δ
+

(
ϕ′i(Ti) · Ti · δλi,src(r)

|FRi| − Tsrc(r) · C
)
· 1
1− δ

=
ϕi(Ti)
|FRi| ·

δλi,src(r)

1− δ
− Tsrc(r) · C

1− δ
(3.24)

where in the transition from (3.22) to (3.23), we used Condition 2 and the fact that yi(t + λi,src(r)) ≤ 1.
By using (3.21) and (3.24) in (3.20), we get the following:

ui ≤
∑

r∈FRi

[
ϕi(Ti)
|FRi| ·

1− δλi,src(r)

1− δ
+

ϕi(Ti)
|FRi| ·

δλi,src(r)

1− δ
− Tsrc(r) · C

1− δ

]

=
1

1− δ
·

∑

r∈FRi

[
ϕi(Ti)
|FRi| − Tsrc(r) · C

]

=
1

1− δ
·

ϕi(Ti)− C ·

∑

r∈FRi

Tsrc(r)


 (3.25)

Now let us consider what payoff is achieved by node i if he fully cooperates in every time step. In this
case, since all the other nodes play TFT, every node will always fully cooperate, and hence, every node
will experience a normalized throughput equal to 1 in each time step. This can easily be derived from
the i/o formulae describing the behavior of the nodes, which take a simple form due to the simplicity of
the strategy function of the TFT strategy. As a consequence, we have that yi(t) = 1 for every t, and
xk(t) = 1 for every k and for every t. In this case expression 3.14 becomes:

ui =
∞∑

t=0


ϕi(Ti · yi(t))−

∑

r∈FRi

Tsrc(r) · C ·
∏

k∈F(r,i)

xk(t)


 δt

=
1

1− δ
·

ϕi(Ti)− C ·

∑

r∈FRi

Tsrc(r)
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This means that by fully cooperating, the payoff of node i reaches the upper bound expressed in (3.25);
in other words, there is no better strategy for node i than full cooperation.

3.8 Related Work

3.8.1 Incentive Mechanisms in Ad Hoc Networks

The operation of ad hoc networks relies on the contribution of nodes. Several researchers have realized
that this cooperation is not obvious and have proposed solutions to give nodes incentive to contribute.
There are basically two approaches to encourage nodes: (i) by denying service to misbehaving nodes
by means of a reputation mechanism or (ii) by remunerating honest nodes, using for example a micro-
payment scheme. We provide an overview of these approaches below.

Marti et al. [MGLB00] consider an ad hoc network where some misbehaving nodes agree to forward
packets but then fail to do so. They propose a mechanism, called watchdog, in charge of identifying
the misbehaving nodes, and another mechanism, called pathrater, that deflects the traffic around them.
The drawback of their solution is that misbehaving nodes are not punished, and thus there is no incen-
tive for the nodes to cooperate. To overcome this problem, Buchegger and Le Boudec [BB02] as well
as Michiardi and Molva [MM02] define protocols that are based on a reputation system. In both ap-
proaches, the nodes observe the behavior of each other and store this knowledge locally. Additionally,
they distribute this information in reputation reports. According to their observations, the nodes are able
to behave selectively (e.g., nodes may deny forwarding packets for misbehaving nodes). However, such a
scheme requires a reliable authentication scheme, otherwise it is vulnerable to the Sybil attack [Dou02].
Note that authentication is an open issue in ad hoc networks and the Sybil attack is proven to be always
possible if a central authority is not present in the network. Luo et al. [LKZ+04] use a ticket certification
service to identify misbehaving nodes. their scheme relies on a collaboration of nodes to decide about
their neighbors. Mahajan et al. [MRWZ05] propose using anonymous probes for neighbor testing to
encourage nodes to cooperate in an ad hoc network.

Other researchers proposed schemes that employ a virtual currency system to encourage cooperation.
Zhong, Yang and Chen [ZYC03] present a solution, where an off-line central authority collects receipts
from the nodes that relay packets and remunerates them based on these receipts. They rely on public key
cryptography to process each packet. Thus, their solution might be too complex in an ad hoc network.
Another solution, presented by Buttyan and Hubaux [BH00, BH03], is based on a virtual currency, called
a nuglet: If a node wants to send his own packets, he has to pay for it, whereas if the node forwards a
packet for the benefit of another node, he is rewarded. However, some mechanisms of this solution (e.g.,
the generation of nuglets) still need to be investigated. Many researchers have proposed auction- and
pricing-based schemes to encourage routing and packet forwarding in ad hoc networks [AE03, CN04,
ISCM05, MQ05a, YL05, WL06]. Zhong et al. [ZLLY05] present a comprehensive game-theoretic
analysis of strategic behavior in routing and packet forwarding in ad hoc networks. They propose a
VCG-based mechanism extended with cryptographic techniques to encourage truthful behavior.

3.8.2 Cooperation without Incentive Mechanisms

The proposals that we have just described were based on heuristics. There was a need for a formal
description of the cooperation problem in ad hoc networks.

In [SNCR03], the authors propose a game theoretic model that considers cooperation from the energy
efficiency point of view. They consider a maximal battery level and an expected lifetime for each node,
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and they group the nodes into energy classes according to this information. They derive the energy class
for a connection as the minimum of the energy classes of the participants. The energy class is a novel
idea that allows the authors to express the heterogeneity of devices. They define time steps as a unit of
operation for the nodes, as we also do in our framework. However, in contrast to our approach, they
do not take into account the topology of the network and the existing communication flows. Instead,
they assume that a single communication session with random participants is generated in each time
step. Based on the random session generation, they show that cooperation emerges within the network,
because, by the nature of the random participation in the sessions, nodes have a symmetric interaction
pattern. However, in reality, the interactions between nodes are likely to be asymmetric; this is practically
true in the extreme case of a static network. In this chapter, we have shown that spontaneous cooperation
exists only if the interaction between the nodes is balanced and we have also shown that this property does
not hold in general. Our conclusion justifies the need for incentive mechanisms, that should reestablish
the balance between the utilities of nodes, for example by remunerating nodes that contribute more.

The authors of [SNCR03] provide a framework that relies on two mechanisms: the first communi-
cates energy class information while the second enables the relays of a session to communicate their
decision to the source (accept or refuse relaying). These mechanisms are needed to optimize the nodes’
contribution with respect to energy conditions. From the security point of view, however, these mecha-
nisms are vulnerable. This is an important issue, since the whole analysis is about selfish nodes that want
to maximize their utility, even if it means disobeying the network protocols. Cheating can be done as
follows. First, a high energy node could use his own identity when sending his own packets and pretend
to be a low energy node when asked to forward packets. By doing this, he could decrease his load in
terms of packet forwarding. This kind of selfish behavior could be detected using an appropriate authen-
tication scheme, combined with a cheating detection mechanism. Second, in [SNCR03] it is assumed
that once nodes agree to relay packets in a session, they do so. But there is no guarantee that a node really
complies to its promise. Thus, an additional mechanism should be applied to punish nodes whenever it
is necessary. Although far from perfect, our model relies on the real behavior of the nodes (and not on
their declared behavior), and does not require any form of authentication.

A major contribution of [SNCR03] is the investigation of both the existence and emergence of co-
operation in wireless ad hoc networks; in this chapter, we focus only on the existence of cooperative
equilibria. Another important result of [SNCR03] is the proof that the emerging cooperative Nash equi-
librium is Pareto-efficient (thus it is a desired outcome of the packet forwarding game).

3.9 Summary

In this chapter, we presented a game-theoretic model in order to investigate the conditions for cooperation
in wireless ad hoc networks, in the absence of incentive mechanisms. Because of the complexity of the
problem, we restricted ourselves to a static network scenario. We then derived conditions for cooperation
from the topology of the network and the existing communication routes. We introduced the concept of
dependency graph, based on which we were able to prove several theorems. As one of the results, we
proved that cooperation solely based on the self-interest of the nodes can in theory exist. However,
our simulation results showed that in practice, the conditions of such cooperation are virtually never
satisfied. We concluded that with a very high probability, there exist some nodes that have All-D as
their best strategy and therefore, these nodes need an incentive to cooperate. In this chapter, we also
showed that the behavior of these defectors affects only a fraction of the nodes in the network; hence,
local subsets of cooperating nodes were not excluded. It is important to notice that our approach does
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not require a node to keep track of the behavior of other nodes. Thus, our solution does not require any
node authentication.

Our results apply for example to mesh networks, where the mesh access points are operated by home
users. In such networks, the communications flows are likely to be static and unbalanced, because most
of the communication is from a wired access point. Our results show that an incentive mechanism (e.g.,
one of the mechanisms proposed in the literature) is most probably needed if the users want to ensure the
correct functioning of the network.

Publications: [FBH03], [FHB06]



Chapter 4

Packet Forwarding in Wireless Ad Hoc
Networks – the Dynamic Case

4.1 Introduction

Ad hoc networks have the potential to increase the flexibility of wireless communication systems. They,
however, also require novel operating principles. In particular, due to the absence of fixed infrastructure,
most of the functions (routing, mobility management, in some cases even security) must rely on the
cooperation between the nodes.

The most fundamental of these functions is packet forwarding. Cooperation is straightforward if all
the nodes are under the control of a single authority, as is usually the case in military networks or for
rescue operations: in these cases, the interest of the mission by far exceeds the vested interest of each
participant.

However, if each node is his own authority, the situation changes dramatically: The most reasonable
assumption is then to consider that each node will try to maximize the benefit he gets by using the
network, even if this means adopting a selfish behavior. This selfishness can mean not participating in
the unfolding of mechanisms of common interest, notably to spare resources, including battery energy.

Over the last few years, several researchers have proposed incentive techniques to encourage nodes
to collaborate, be it by circumventing misbehaving nodes [MGLB00], by making use of a reputation
system [BB02, MM02], or by relating the right to benefit from the network to the contribution to the
common interest of a node provided thus far [BH03]. These proposals have been based on heuristics,
and are therefore rather difficult to compare with each other.

Very recently, Srinivasan et al. [SNCR03] have proposed a formal framework, based on game theory,
to study cooperation without incentives. They have identified the conditions under which cooperation is
a Nash-equilibrium. In order to do this, their system model is quite simple: For each route to be set up,
they randomly select several nodes to be part of it; as a result, their approach does not take the topology
of the network into account.

Our own approach has essentially the same goal as this seminal work; however, we believe that the
network topology is important, and we therefore include it in our model. In Chapter 3, we have already
studied the static case, meaning that we have assumed that nodes do not move. We have identified
the network topologies under which cooperation can be an equilibrium, and we have shown that the
likelihood for these topologies to exist is extremely small.

In this chapter, we pursue exactly the same ambition, but we now consider that the nodes can move.
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As a consequence, we have to adopt a different model. Due to the complexity of the problem, we
deliberately devote a substantial part of the chapter to a simplified scenario (all nodes are located - and
shuffled - on a ring). In this way, we are able to formulate and to prove several theorems. Then, by means
of simulations, we study the more general (and more realistic) case where the nodes move on a plane;
thus, we can easily assess to what extent the situation differs from the ring scenario.

Our main contribution is to show that cooperative Nash-equilibria are much more likely to happen
with mobile than with static nodes. In addition, we quantify how much “generosity” the nodes should
grant in order to make these equilibria feasible.

4.2 Modeling Packet Forwarding as a Game

4.2.1 System Model

We assume that there exists a set of nodes N who want to communicate via multiple hops. We denote
the number of nodes |N | = N . Each node uses an omnidirectional antenna with the same radio range.
Hence, there is a bidirectional communication link between two nodes if they reside within the radio
range of each other.

We assume that the packets originating from a source node are sent via ` nodes that are expected to
forward the packet. We call a route the communication path defined by the source, the forwarders and
the destination. We assume that each node is the source of one route. We also assume that the routes last
for the duration of the game. The study of routing behavior is out of the scope of this work, so we assume
a shortest routing protocol that establishes a route between a given source and a given destination.

We assume an end-to-end mechanism that enables a source to detect the loss of a packet (e.g., at
the transport layer), hence, we do not require an additional acknowledgement from the forwarders to the
source. This means that the source can observe the fact that a packet is lost, but he cannot tell where,
when and how it happened. We further assume that each packet loss is due to the defective behavior of
the nodes and not due to link errors or congestion.

We introduce the following notation to identify our investigation scenarios:

Scenario-`

where Scenario stands for the given scenario and ` (or ¯̀) stands for the constant (or average) number of
forwarders of each route.

4.2.2 Game-Theoretic Model

In this section, we present a game-theoretic framework to investigate the conditions of cooperation in
packet forwarding. We model packet forwarding as an infinite-horizon game using the technique called
limit of means [OR94]. Similarly to the model in Section 3.3, we assume that each node as a player
interacts with the rest of the network. Hence, we do not require the nodes to use a reliable authentica-
tion mechanism to identify each other. This assumption greatly reduces the complexity of the assumed
underlying mechanisms.

In our model, we assume that the source benefits from the arrival of a packet at the destination. But
the model can be adapted to the case in which the destination benefits if a packet successfully arrives.

We split up the time in discrete steps. At the end of each time step (denoted by t), each node evaluates
the results of his interaction with the network in the following way. Each node maintains two variables,
which are the basis for his strategy function. The benefit bi(t) represents the number of packets until step
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t that were originated at node i and were successfully received by his corresponding destinations. The
cost ci(t) represents the number of packets until step t that node i forwarded for other nodes. We define
the interaction ratio ρi(t) at step t as the ratio of these two values (i.e., ρi(t) = bi(t)

ci(t)
). If ci(t) = 0, we

set ρi(t) = Ω, where Ω is an arbitrarily large number with Ω < ∞.
Each node decides for each packet whether to forward it or not, using his own strategy. The strategy

of node i is defined in the following way:

• The initial move mi(0) of node i (for the value ρi(0)) is to forward (F ) or drop (D) the packets he
is asked to forward

• For each subsequent packet:

– If ρi(t) ≥ κi, then play F ,

– otherwise play D.

The value κi represents the cooperation level of node i.

In Table 4.1, we show that specific values of κi correspond to strategies presented in Section 1.4
(shown in Table 1.5). In particular, TFT is the strategy that imposes the benefit for node i to be equal to
his cost in the network (taking into account the average number of forwarding nodes (¯̀) on his routes).

Strategy Initial move κi

All-D (always defect) D ∞
All-C (always cooperate) F 0
TFT (Tit-for-Tat) F 1

¯̀

Table 4.1: Cooperation levels for three highlighted strategies.

In principle, a node could decide to update his behavior after each packet processing; however, this
would be too fine grained. Therefore, we assume that a node reconsiders his decision only at the end of
each time step. This means that we evaluate simultaneously all packets that the node sends and forwards
in each step.

We define two constants for each node: (i) Bi stands for the benefit from a single packet for node
i, if the packet reaches the destination and (ii) Ci is the forwarding cost at node i for a single packet.
For the sake of simplicity, we assume that Bi = B, ∀i (i.e., each node enjoys the same benefit if a
packet successfully goes through) and Ci = C,∀i (i.e., each node suffers the same cost for each packet
it forwards).

In this chapter, we assume that the overall payoff of the node is linearly dependent of the benefit of
the node. The aim of each node is to maximize his total average payoff ūi.

ūi = lim inf
t→∞ ūi(t) (4.1)

where ūi(t) is the average payoff :

ūi(t) =
B · bi(t)− C · ci(t)

t
(4.2)

Node i could maximize his total average payoff by decreasing his cost. However, this might cause
the defection of other nodes that might be forwarders for node i.
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In our model, each source sends a small amount of information at each step that corresponds to a unit
of information. For better understanding, we refer to this unit of information as a packet.1

4.3 Analysis of Nash-equilibria with a Single Forwarder

To illustrate our approach, we begin with the analysis of a simple and deliberately unrealistic scenario.

4.3.1 Investigation Scenario

We assume that the nodes are organized in a ring (an example network with four nodes is shown in
Figure 4.1). Each node is the source of one route. We also assume that each route has one forwarder
(i.e., ` = 1), which is the next node in clockwise direction from the source (according to our notation
introduced in Section 4.2.1, this scenario is Ring-1). In general, we assume that B > C (meaning that
the node has a “natural” incentive to send packets).

In order to mimic mobility, at the end of each step, we randomly shuffle the nodes on the ring. We
assume that the time for a topology change is much higher than the time to send a packet from the source
to the destination. Thus, the network is considered to be static during the sending of a single packet.

Figure 4.1: A ring network with four nodes and four routes. Each node is a source of one
route and each route has one forwarder.

4.3.2 Equilibrium of TFT Strategies

In the following, we show that nodes playing the TFT strategy constitute a scenario with stable coop-
eration. Let us first assume that each node plays TFT except node i. If node i drops a packet, then he
decreases the payoff of a source node src whose packet does not arrive. Because each node except node i
plays TFT, this means that each node j 6= src will have ρj = 1. Since node src forwards in this step, his
interaction ratio will drop below the strategy constant (ρsrc ≤ κsrc = 1). In the next step node src drops
a packet for another node src

′
and his interaction ratio will be again equal to one (ρsrc = κsrc = 1).

But then the interaction ratio of node src
′

decreases below one. Because every node applies the TFT
strategy, this packet dropping behavior propagates through the network until it gets back to node i.

Lemma 4.1. In Ring-1, if any node i defects once (and otherwise always cooperates) and all other nodes
j 6= i play TFT (κj = 1), then the defection affects node i in expectedly N − 1 steps (meaning his payoff
is reduced because of his own defection).

1Note that our concept of packet is general in the sense that it does not correspond to any specific protocol packet, but it
contains a given number of protocol packets. The number of protocol packets is limited by the fact that the time to send a packet
must be much shorter than the time for topology change.
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Proof. Let us consider the expected number of steps (denoted by t
′
) after which this dropping affects

node i (meaning that another node drops his packet).
Without loss of generality, let us assume that node i drops a packet in step 0 and in step t

′
another

node drops the packet of node i for the first time. As all the other nodes play TFT, this event exists with
very high probability. In other words, in all steps t < t

′
, other nodes forwarded for node i, but in step t

′

it is not the case.
Recall that N stands for the number of nodes in the network. Given the scenario, there exists a node

j at each step that defects. The probability q1 that the defecting node is a forwarder for node i in any step
is given by:

q1 =
1

N − 1
(4.3)

Thus, the probability q2 that the defecting node is a forwarder for node i in step t
′

for the first time
(i.e., no defecting node was a forwarder for node i in the previous steps (0 < t ≤ t

′ − 1) corresponds to
a geometric distribution with respect to t

′
:

q2 = (1− q1)t
′−1 · q1 (4.4)

The expected value of the geometric distribution is (substituting the given q1 value):

E[t
′
] =

1
q1

= N − 1 (4.5)

This means that the defection comes back to node i expectedly in N − 1 steps.

Our aim is to identify the number of defections node i can do without decreasing his payoff. If this
number is equal to 0, it means that node i is better off cooperating in each time step. Let us denote by
x(t) the number of packets dropped by node i until step t. We denote by y(t) the number of packets that
were generated at node i and were dropped by other nodes until step t.

We refer to nodes who play non-reactive strategies (e.g., All-C or All-D) as sinks. These nodes do not
propagate defections. In our approach, we want to define the strategy that results in the highest payoff
for node i, thus we assume that his output is a priori independent of his input. Thus, we consider node i
as a sink.

Because we assume that every node except node i plays TFT, all the defections in the network are
consequences of the defections of node i (recall from Section 4.2.1 that we assume that there exist no
packet losses due to link errors or congestion). Let us denote the set of defecting nodes by D(t). Then,
the number of propagating defections in the network (in this case |D(t)|) is given by:

|D(t)| = x(t)− y(t) (4.6)

Since there are N nodes in the network, we can state that:

|D(t)| ≤ N − 1 (4.7)

This means that the number of propagating defections is upper bounded by the number of nodes on
the ring excluding node i.

Lemma 4.2. In Ring-1, if node i defects a finite number of times (and otherwise always cooperates) and
all other nodes j 6= i play TFT (κj = 1), then lim inft→∞E[|D(t)|] = 0.
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Proof. Let us assume that the node defects K times, where K < ∞, and cooperates in all the other
steps. For the sake of simplicity, we assume that the node defects in the first K steps and consider the
expected value of |D(t)| in the subsequent steps.

For any step t > K, we can write the expected number of propagating defections:

E[|D(t)|] = (|D(t− 1)| − 1) · |D(t− 1)|
N − 1

+ |D(t− 1)| ·
(

1− |D(t− 1)|
N − 1

)

= |D(t− 1)| − |D(t− 1)|
N − 1

= |D(t− 1)| ·
(

1− 1
N − 1

)
(4.8)

Because 1− 1
N−1 < 1, (4.8) shows us that the expected number of defecting nodes is decreasing (and it

is never increasing after t > K). Hence we obtain the condition of the theorem.

Now let us formulate a theorem for cooperation for a single node.

Theorem 4.3. In Ring-1, if every node j 6= i plays TFT, then the best strategy for node i is a strategy
that results in full cooperation (meaning a strategy with κi ≤ 1).

Proof. We assume that each node wants to maximize his total average payoff per step over an infinite
game as expressed in (4.1). Let us first compute the average payoff until step t:

ūi(t) =
B · bi(t)− C · ci(t)

t

=
B · (t− y(t))− C · (t− x(t))

t

=
(B − C) · t− (B · y(t)− C · x(t))

t

= (B − C)− (B · y(t)− C · x(t))
t

(4.9)

Let us assume that node i cooperates at each step; then y(t) = x(t) = 0 for any step t (because the
other nodes play TFT). In this case, the average payoff for node i is given by:

ūi(t) = B − C (4.10)

To be superior to the always cooperating strategy, an alternative strategy should be such that the
second term in (4.9) is positive (taking also the minus sign into account):

−(B · y(t)− C · x(t))
t

> 0

−B · y(t) + C · x(t) > 0
−B · (x(t)− |D(t)|) + C · x(t) > 0

(C −B) · x(t) + B · |D(t)| > 0
B · |D(t)| > (B − C) · x(t)
B · |D(t)|
B − C

> x(t) (4.11)
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We know that the expected number of propagating defections |D(t)| is finite. Furthermore, according
to Lemma 4.2, if the node defects finite number of times, then the expected number of propagating
defections goes to zero with the number of steps. Using this statement in (4.11), we obtain the following:

lim inf
t→∞ E[|D(t)|] = 0 ⇒ lim inf

t→∞ x(t) = 0 (4.12)

Thus, if the node wants to maximize his total average payoff, his best strategy is to cooperate in every
time step.

Since TFT results in full cooperation in this specific scenario, we can state the following corollary.

Corollary 4.4. In Ring-1, if every node plays TFT, it is a Nash-equilibrium.

4.3.3 Other Nash-Equilibria

Now we focus on the following question: If some of the nodes choose the strategy All-C instead of TFT,
does it undermine the Nash-equilibrium among the nodes?

Theorem 4.5. In Ring-1, if there exists one node j who plays a non-reactive startegy (i.e., he is a sink
for defections) and every node i 6= j plays TFT, it is a Nash-equilibrium, if B

2 > C.

Idea of the proof: In this proof we will show, that if any node i defects in the network, then it
propagates through the network, until it is absorbed by either node i himself or by the sink node j. This
means that half of the defections are sinked by node i. Thus, it is worth to defect, if the cost spared by
defection is greater than the decrease of the benefit.

Proof. Remember that in every step we shuffle the nodes in the network. Assume that node i defects
once and this defection is propagating among the nodes till it is sinked by either node i or j (the two
nodes that do not play TFT). Let us define the following events for a given step t:

• Ei: The node that is affected by the original defection of node i in step t is a forwarder for node i.

• Ej : The node that is affected by the original defection of node i in step t is a forwarder for node j.

Because of random shuffling, we can write:

Pr{Ei} =
1

N − 1

Pr{Ej} =
1

N − 1

The probability that either event happens can be expressed as follows. In the derivation, we use the fact
that it is impossible that the node that defects forwards for both node i and j (Pr{Ei · Ej} = 0).

Pr{Ei + Ej} = Pr{Ei}+ Pr{Ej} − Pr{Ei · Ej} = Pr{Ei}+ Pr{Ej} =
2

N − 1
(4.13)

Because of the symmetric nature of the scenario, the defection is sinked by half of the time by either
nodes (i and j). Thus, we can state that

y(t) =
x(t)
2

(4.14)
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meaning that half of the defection of node i causes a benefit loss for him. The other half of the loss goes
to node j.

Now let us investigate the average payoff of node i. Using (4.14) in (4.9), we obtain:

ūi(t) =
B · bi(t)− C · ci(t)

t
(4.15)

= (B − C)− (B · y(t)− C · x(t))
t

(4.16)

= (B − C)−B · x(t)
2t

+ C · x(t)
t

(4.17)

= (B − C)− x(t)
t
· (B

2
− C) (4.18)

The suggested behavior of node i is determined by the second term in (4.18). Since x(t) and t are
non-negative numbers, we investigate the sign of the expression B

2 − C. There can be three cases:

• If B
2 > C, then (4.15) is maximized for x(t) = 0 (no defection at all).

• If B
2 = C, then both cooperation and defection result in the same payoff. A rational node can

choose both cooperation and defection (however, one would assume defection in this case).

• If B
2 < C, then (4.15) is maximized for x(t) = t (defection in all steps).

We can conclude that an always cooperating strategy (TFT or All-C) is the best strategy for node i
for B

2 > Ceven, if there is node j that plays All-C strategy.

Assume now that there exists a group of players Γ ⊂ N who play a non-reactive strategy. We can
generalize Theorem 4.5 as follows.

Theorem 4.6. In Ring-1, if there exists a set of players Γ who play non-reactive strategies (where i /∈ Γ)
and the other nodes except node i play TFT, then node i should always cooperate if B

|Γ| > C.

The proof of the theorem is the same as before substituting Γ everywhere for 2. Intuitively, we say,
that if the benefit for one step is greater than the decrease in cost, then the node should rather cooperate.

We finally mention the “worst case” situation in the following theorem:

Theorem 4.7. In Ring-1, if every node plays All-D, then it is a Nash-equilibrium.

The proof is trivial: In this case a node does not receive any benefit, no matter what strategy he plays.
Hence, it is beneficial for he to defect as well.

4.4 Cooperation with Multiple Forwarders

Now we extend our analysis for routes with several forwarders, still considering the nodes placed on a
ring. We assume that each node is a source of one route. Each route has exactly ` forwarder nodes (i.e.,
we denote the scenario by Ring-`). We also assume that B > ` · C.

As an example, let us assume that the number of forwarders on each route is two. Thus, each node
i has two forwarder nodes that are the two nodes clockwise from node i (an example is presented in
Figure 4.2).

As in the previous case, at the end of each step, we randomly shuffle the nodes on the ring. We
assume that the number of forwarders (`) is a known parameter for each node.
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i

Figure 4.2: Ring of nodes with an example route from node i (` = 2 in this case)

Theorem 4.8. In Ring-`, if every node except node i plays TFT, then the best strategy for node i is a
strategy that results in full cooperation (play TFT as well, or an even more generous strategy (κi ≤ 1

` )).

Proof. We prove the theorem for ` = 2 which corresponds to the example of Figure 4.2; as we will see,
the proof can be extended to any value of `. As before, let us denote the number of defecting nodes at
step t by D(t).

(a)

step (t):

step (t+1):

step (t):

step (t+1):

(b)

= cooperating node = defecting node = connection

Note that in step (t+1) 
the position of the nodes is

different 

Figure 4.3: Propagation of defections on the ring for ` = 2, D(t) = 2: In (a) the two
defecting nodes are neighbors on the ring in step t; in this case, they cause the defection
of at least two other nodes (note that if node i is among the nodes whose packets were
dropped, then he might sink the defection). In (b) the defecting nodes are not neighbors;
thus, they cause the defection of four other nodes.

Let us assume that node i defects in an arbitrary step T . It causes the defection of the nodes whose
packets are dropped (in this case two nodes, because ` = 2 and the topology is a ring). In the next step,
these two nodes cause the defection of other nodes, and so on. We will show that the number of defecting
nodes is non-decreasing: If we have D(t) defecting nodes in step t (where t > T ), then the number of
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defecting nodes in step t + 1 is D(t + 1) ≥ D(t). An example for D(t) = 2, ` = 2 is presented in
Figure 4.3. If the defecting nodes in step t happen to become neighbors on the ring (Figure 4.3a), then
they drop the packets for three nodes. Since node i is a sink for defection, if node i is among the three
nodes, then D(t + 1) = 2, otherwise, D(t + 1) = 3. If they are not neighbors (Figure 4.3b), then
D(t + 1) = 3 or D(t + 1) = 4 depending on whether node i is among the source nodes or not.

One can see that this propagation of defection continues until it reaches all nodes in the network.
During this procedure, node i’s payoff decreases as more and more nodes defect in the network. Assume
that from T

′
every node defects in the network. Then, the average payoff ui(t) of node i becomes zero

for t ≥ T
′
.

Before node i defects in step T , none of his packets are dropped (y(t) = 0). During the propagation
of his defection (in the steps T < t < T

′
), y

′
packets are dropped that originate from node i. After step

T
′
, all nodes in the network, except node i, defect.

In step t > T
′
, the number of packets that were originating at node i and are dropped by other nodes

is:
y(t) = 0 + y

′
+ (t− T

′
) = t− (T

′ − y
′
) (4.19)

We know that x(t) ≤ ` · t. Then, we can express the average payoff for t > T
′

as follows:

ūi(t) =
B · bi(t)− C · ci(t)

t

=
B · (t− y(t))− C · (` · t− x(t))

t

=
(B − ` · C) · k − (B · y(t)− C · x(t))

t

= (B − ` · C)− (B · y(t)− C · x(t))
t

= (B − ` · C)−B · t− (T
′ − a)
t

+ C · x(t)
t

= (B − ` · C) + C · x(t)
t
−B · (1− (T

′ − y
′
)

t
)

= −` · C + C · x(t)
t

+ B · (T
′ − y

′
)

t
(4.20)

≤ B · (T
′ − y

′
)

t

We can write the total average payoff ūi as:

ūi = lim inf
t→∞ ūi(t) = 0 (4.21)

If node i cooperates then T
′
= t, y

′
= 0 and x(t) = 0. This results in ūi(t) = B − ` · C from (4.20).

Hence, the best strategy for the node is to cooperate in all step. The theorem can be proved for any value
of ` in a similar way.

From this theorem we can conclude on the following corollary.

Corollary 4.9. In Ring-`, if every node plays TFT, it results in a Nash-equilibrium.

If some of the nodes play All-C, then they might be a sink for the defective behavior. We can now
formulate a theorem for sinks in the multi-hop forwarding case.
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Theorem 4.10. In Ring-`, if a set of nodes Γ play All-C and the rest of the nodes except node i play TFT,
then the best strategy for node i (i /∈ Γ) is to always cooperate if |Γ| < `.

Proof. Because of the multi-hop scenario, node i is a forwarder in ` routes. If he defects, he causes the
defection of ` nodes who are sources on these routes. We distinguish two cases:

1. If |Γ| < `− 1 or at any step some of the ` sinks do not forward for node i. In this case, they cause
the defection of more than one node in the first step. This implies that in the subsequent steps,
the defective behavior will reach the whole network. Let us consider step T when all nodes are
defecting except node i and the nodes who are in Γ. Because the number of forwarders ` is greater
than the number of All-C players |Γ|, there is at least one forwarder node on the route originating
from node i that drops the packet. Thus, after step T , no packet of node i reaches the destination.
Hence, the proof for Theorem 4.8 applies for this case. Again, the best strategy for node i is to
cooperate in every step.

2. If |Γ| = `− 1 and the |Γ| sinks are within the ` nodes who defect in each and every step. Clearly,
because of the random shuffling at each step, the probability of this sequence of events is extremely
small. In this case, only one node will change to defection in the next step. In the subsequent steps,
the defective behavior of this one node propagates until it is sunk by node i himself. Hence the
proof in Theorem 4.3 applies (we are back to the case where one defection propagates in the
network, because the other defections are constantly sunk by the All-C players). Thus, in this
case, defection is not beneficial for the node.

We can thus conclude that the best strategy for node i is to always cooperate.

Corollary 4.11. In Ring-`, if a set of nodes Γ play All-C in the network, where |Γ| < ` and the other
nodes play TFT, then it is a Nash-equilibrium.

The corollary expresses that the cooperative equilibrium is resistant to the phenomenon of drift
[Hof01], provided that the number of sinks is below a threshold given by the number of forwarders
on each route.

Note that the above mentioned analysis does not apply for sinks playing All-D. If at least one such
node exists in the network, it might cause the whole network to defect, independently of the behavior of
node i. In this case, the best strategy for node i is to defect in every step.

4.5 Simulation Results

In this section, we present simulation results where we vary the route length: Instead of having a constant
number of forwarders for a route, we choose the number of forwarders between two values. We first
investigate the ring network and then a more realistic network scenario.

Our analysis presented in Sections 4.3 and 4.4 relies on the fact that each route has the same number
of forwarders. This enables the TFT strategy to constitute a Nash-equilibrium. The idea is that each node
contributes as much as he receives from the network. If the number of forwarders varies, this balance
can be undermined. In order to tolerate this possible difference of interaction at each node, we introduce
a new strategy.

Inspired by [Axe84], we call Generous Tit-For-Tat (GTFT) a strategy that overestimates the required
cost of packet forwarding in the network. Thus, a node playing this strategy is generous, because he is
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willing to contribute more to the network than to benefit from it. If a node i plays the GTFT strategy, he
uses the following strategy constant:

κi =
1

¯̀+ gi
(4.22)

where ¯̀stands for the average number of forwarders for all the routes of the network during his whole
lifetime and gi stands for the generosity of the node. For the sake of simplicity, we choose gi = g, ∀i.
Note that we get the usual TFT strategy if g = 0.

4.5.1 Simulations on a Ring Network

We performed simulations on a ring network with the parameters provided in Table 4.2. We performed
each simulation as follows. First, we place nodes with uniform probability on the ring. Then, we generate
a route for every node with the given average number of forwarders. Then, we let every node send a
packet on the route for which he is the source. At the end of the step, we release the routes. We repeated
this procedure for the number of steps.

Parameter Value
Number of nodes 100
Avg. number of forwarder nodes 2
Distribution of the number of forwarders uniform
Mobility random shuffling
Number of simulations 200

Table 4.2: Parameter values for the simulation on the ring

We performed simulations for the average number of forwarders equal to two (we denote the scenario
by Ring-2̄). We observe that the network always converges to one of the two extreme states: either all
nodes cooperate or all nodes defect. Figure 4.4 shows the proportion of simulations that result in full
cooperation as a function of the generosity. We can observe that the generosity must be reasonably
high (compared to the average number of forwarders) to have full cooperation in the network. If the
generosity is above a given threshold (in the example this threshold is equal to 1.6), all simulations result
in full cooperation.

4.5.2 Simulations on a Realistic Network

We simulated a realistic network with the parameters provided in Table 4.3. We performed each simula-
tion as follows. First, we place nodes with uniform probability in the simulation area. Then, we generate
a route for every node with the given average number of forwarders (we denote the scenario by Real-¯̀).
Then, we let every node send a packet on the route for which he is the source. We repeat this procedure
for the number of steps. In order to improve our simulation scenario further, we introduce a more realis-
tic route generation model. Instead of generating a route for each node at each step, we generate a new
route only if the old one breaks because of mobility.

We used the random waypoint model with the parameters presented in Table 4.4. In our first sim-
ulation, we set the duration of a step to 1024 seconds. In this case, the expected time a node travels to
a destination (given the average speed and pause time presented in Table 4.4) is much shorter than the
duration of one step. Thus, with this setting, we approximate the random shuffling of nodes (between
two steps the network topology changes completely).
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Figure 4.4: The proportion of simulations on the ring that end with full cooperation
between the nodes (in Ring-2̄)

Parameter Value
Number of nodes 100
Number of steps per simulation 500
Duration of one step variable (1-1024 s)
Area type Toroid plane
Area size 1500 m x 1500 m
Avg. number of forwarder nodes 2
Distribution of the number of forwarders uniform
Number of simulations 200
Radio range 250 m

Table 4.3: Parameter values for the simulation on the realistic network

Figure 4.5 shows the proportion of simulations that result in full cooperation as a function of the
generosity. We can see that the realistic route generation introduces an additional difference of the
required cost of packet forwarding for the nodes, thus a much higher generosity is needed to ensure full
cooperation. The reason for this is that generosity is required to cope with the worst case situation, where
a node is a forwarder in a number of routes that is higher than the average number of forwarders on a
route (¯̀). Regarding the worst case, some nodes might forward on more routes in the realistic scenario
than on the ring. Hence, more generosity is required to ensure full cooperation.

In the same model, we investigate the effect of mobility on cooperation. We increase the step duration
exponentially (2 to the power of x seconds, where x = 0, 1, . . . ), and we observe the required generosity

Parameter Value
Mobility model Random waypoint
Speed 1-19 m/s
Distribution of speed uniform
Average pause time 10 s

Table 4.4: Parameter values for the Random Waypoint mobility model
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Figure 4.5: The proportion of simulations on a realistic scenario that end with full coop-
eration between the nodes (with Plane-¯̀); step duration is 1024 seconds

level that ensures that 95 % of the simulations result in full cooperation (we call this value the generosity
threshold). Figure 4.6 presents the generosity threshold as a function of the duration of a step (which
represents the effect of mobility). We see that if the length of one step is small (meaning that mobility is
small), then a higher generosity threshold is required. The higher the mobility, the lower the generosity
threshold. This result is fully consistent with our previous results in Chapter 3: The absence of mobility
is a major hurdle for “spontaneous” cooperation.

As explained before, generosity is needed for nodes that are forwarders in a high number of routes
compared to the average number of forwarders in a route. This situation represents the worst case for a
node. If the duration of the step is small, then this worst case situation is valid for several steps and the
node has to be more generous to cope with the cumulative effect of the situation. If mobility increases
(meaning that the topology of the network changes more between the steps), then the duration of a worst
case situation is shorter and less generosity is required to cope with its cumulative effect. For a detailed
investigation of the effect of mobility on the duration of paths, the reader is referred to [SBKH03].
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Figure 4.6: Generosity threshold ensuring full cooperation as a function of the duration
of one step (i.e., the effect of mobility)
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4.6 Summary

In this chapter, we studied the effect of mobility on the level of cooperation in selfish packet forwarding.
We adopted a game-theoretic approach, in which a node considers that he plays against the rest of the
network. In this model, the node does not need to distinguish between the behavior of the other nodes,
which has the benefit of avoiding the intricacies of node authentication or the burden of complex schemes
based on reputation. With this new model, we stated and proved several theorems, expressing the condi-
tions for the existence of cooperation; we quantified the tolerance to the phenomenon of drift, as well as
the level of generosity required, in the case the routes have varying lengths. We then considered a more
realistic model, where the nodes are on the plane and move according to the random waypoint mobility
pattern. We showed that the generosity required to reach cooperation is much higher in this case, and we
quantified the relationship between mobility and cooperation. We concluded that cooperation is easier to
reach when mobility is higher.

Our results extend our previous results in Chapter 3. In this chapter, we showed that mobility in-
creases cooperation in mobile ad hoc networks, such as personal wireless networks formed by pedestri-
ans in a city area. We have seen that some degree of generosity is nevertheless needed to bootstrap the
network operation.

Publication: [FHB03, FBH04]
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Chapter 5

Packet Forwarding in Multi-Domain
Sensor Networks

5.1 Introduction

Multi-hop wireless networks provide both new networking environments and extensions of existing net-
work infrastructures. Sensor networks, in particular, emerge as a new paradigm of a large scale wireless
network for data gathering purposes. Sensor networks have the potential to extend the current solutions
and to open the possibility for more precise environmental monitoring.

In the literature of sensor networks, it is generally assumed that the sensors are under the control
of a single operator. In real deployments of sensor networks, it is reasonable to assume, however, that
different sensor networks are going to be deployed independently of each other in the same area. Typical
examples of future co-located deployments will be found in freight transport (e.g., vehicle, container,
and material tracking sensors co-located with control sensors in the warehouse, airport, harbor, or train
station), in environmental monitoring (e.g., forest fire, earthquake and flood detection sensors), in intel-
ligent buildings (e.g., material tracking, environmental control, and building state monitoring networks),
and in animal monitoring (e.g., where each subset of a herd belongs to a different owner).1 Even if the
sensors perform different tasks, the communication interface between them is likely to be standardized,
making them able to cooperate with each other.

In this chapter, we consider sensor networks that are deployed in the same area, but are controlled
by different operators. In such a situation, sensors may reduce transmission energy if their packets
are forwarded by sensors that belong to another operator. There is the risk, however, that the sensors
belonging to another operator drop the packets. The reason can be denial of service attack, lack of
agreement on the common goal, etc.

Our goal is to determine the best strategy for the operators who control the sensor networks; for this
purpose, we make use of game theory. We do not rely on any cooperation enforcement mechanism, but
rather we want to see whether cooperation can exist based solely on the self-interest of the operators.
Our simulation results show that cooperation of co-located sensor networks extends their lifetime, thus
operators are better off if they cooperate with each other.

1For a survey on sensor network applications see [ASSC02].
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5.2 Game-Theoretic Model

In this section, we present our system model and the non-cooperative game that enables us to investigate
selfish packet forwarding in co-located sensor networks.

5.2.1 System Model

We assume a set of small, battery-powered devices called sensors. For simplicity, we assume that each
battery has the same maximum energy it can store, which we denote by B. We assume that two sensors
are able to communicate with each other if they reside within each other’s transmission range, even
if they belong to different sensor networks; in other words, inter-operability is ensured by the device
manufacturers. We assume an ideal channel without packet losses; in other words, we assume that each
packet loss is due to the strategic behavior of the sensors.

We also assume that the sensors perform a given task and that they periodically report their measure-
ments to one or several base station nodes in the network. We refer to the base stations as sinks. We
further assume that the measurement data can be included in a single message that we call a packet. We
assume that packets have the same size. Hence, we express the transmission cost Ctr for a single packet
as a function of the transmission distance, in particular we assume Ctr = Ctr

unit · dα, where Ctr
unit is a

constant that includes antennae characteristics, d is the distance of the transmission and 2 ≤ α ≤ 5 is
the path loss exponent [Rap02]. Without loss of generality, we assume that Ctr

unit = 1. We assume that a
fixed energy for computation is included in the transmission cost. We introduce the unit of energy as the
transmission cost to the distance of one meter. We also assume that the energy consumed by receiving
and processing a packet is fixed and we denote the reception cost by Crx.

We assume that two sensor networks, each controlled by a different operator, are co-located on the
same area. We investigate two scenarios:

• Separate sinks: The sinks belong to different operators (e.g., each sensor network has its own
sinks).

• Common sinks: The sinks are common resources used by all operators.

We call the set of networking elements controlled by operator i, a domainDi. In the case of the common
sink scenario only the sensors belong to Di, whereas in the case of the separate sink scenario the sinks
controlled by i are also part of Di. We define the a domain to be inactive as the time when the battery of
the first sensor in the domain is depleted.

We assume that there exists an energy efficient routing algorithm that enables sensors to send packets
to the sinks via several hops. The design of energy efficient routing algorithms is a focus of on-going
research efforts. Throughout this chapter, we assume that the routing protocol establishes a minimum
energy path from each sensor to the sink, as it is presented by Ye et al. in [YCLZ01]. Note that we
assume that routing is performed properly; we postpone the investigation of selfish behavior in routing
as a separate problem to our future work. In our model, two routes are established for each sensor:
one route in the own network (non-cooperative routing) and one route in the common network of all
operators (cooperative routing). If a sensor runs out of battery, then its domain is excluded from the
game and routes are recalculated. We also assume that the communication from the sinks to the sensors
is performed via a single-hop, (i.e., the sinks have sufficient energy to reach their sensors directly).



5.2. GAME-THEORETIC MODEL 103

5.2.2 Game

Game theory [FT91] provides an appropriate tool to model strategic decision situations. In our system,
the operators have to decide, whether they help each other to increase the lifetime of their network or they
ignore the possible help from other sensor networks and rely on their own network to achieve their goal.
We model this cooperative packet forwarding situation, as a multi-stage game G = (N ,S,U), whereN
denotes the set of players, S the set of strategies and U is the set of payoff functions. We assume that if
a domain becomes inactive (as defined in Section 5.2.1), it is excluded from the game. The game ends
when both domains become inactive. Note that in the last phase of the game there is only one domain.

We assume that the time is divided into time units called time steps. Once per time step t the sensors
of each domain send measurement packets towards the sinks. The length of a time step is defined by the
frequency of the packet sending and it has no effect on the game. We assume that the time step is long
enough to deliver all packets to the sink. Correspondingly, we assume that the sensors wake up almost
synchronously to report to the sinks. We will consider the effect of asynchronous wake-up in our future
work.

In each time step, each of the players i has to define two actions for his domain (a) whether his
sensors and sinks should forward the packets of sensors in domain Dj , where j 6= i, or not (in case they
are asked to forward), and (b) whether to request the sensors and sinks belonging to other domains to
forward the packets of sensors in Di or to send the packets only within Di.2 We refer to the decision of
any player i in time step t as a move mi(t). Note that the players apply the same move for each packet
of each other domain in a given time step t. We use the following short notation for the possible moves
of the players:

• DD (don’t ask/drop): do not ask others to forward and drop all packets from others if asked for
help

• DF (don’t ask/forward): do not ask others to forward and forward all packets from others if asked
for help

• AD (ask/drop): ask others to forward and drop all packets from others if asked for help

• AF (ask/forward): ask others to forward and forward all packets from others if asked for help

We further assume that each player has to perform a move exactly once in each time step. We denote
the vector of the moves of all players in time step t by m̄(t). Note that the decision does not affect the
reception. We assume that if a sensor is active, it will always receive packets.

We assume that the operation of a sensor domain i is successful in time step t if ρi(t), the proportion
of his sensors from which it has received measurement data is above a given success threshold ξi. In this
case, player i obtains a fixed benefit (bi(t) = B). If the measurement is not successful (meaning that
ρi(t) < ξi), then the player receives no benefit in time step t (bi(t) = 0).

Player i also has a cost in time step t denoted by ci(t) that represents the total transmission and
reception cost of all sensors that belong to i for all packets (both for own packets and packets for the
opponents). In general, we can assume that B >> ci(t) in any time step t, meaning that the potential
benefit received from successful information sending is higher than the value of the total cost (i.e., it is
worth to send packets towards the sinks). We assign a payoff ui(t) = gi(t) − ci(t) to each player i for
each time step of the game.

2Note that in the separate sink scenario, the decision of player i applies also to the sinks in Di.
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A strategy si ∈ S is a function that defines the move of player i for a time step t + 1 given the
success of player i in the previous time step. In order to reduce the complexity of the sensors, it is
reasonable to assume that there is a pre-programmed packet forwarding strategy stored at each sensor.
Each sink informs his own sensors about the success of gathering the last measurement, as an input of
this strategy3 [IK03], hence the feedback can be included in a single bit. Our solution is beneficial,
because it minimizes the reception energy of the feedback.

In our analysis, we define the total payoff as ui =
∑T

t=0 ui(t), where T denotes the lifetime of
the domain controlled by player i. The goal of the players is to maximize their total payoff in the
game. Intuitively, this goal means to report measurement successfully as many times as possible, while
minimizing their energy consumption (maximizing their lifetime).

We assume that players are rational and that rationality is a common knowledge (meaning that they
know that the others are rational as well). We also assume that the game is of complete information, i.e.,
each player knows each element in G and thus he is able to analyze it and act according to the analysis.

5.3 Simulation Results

In this section, we present our simulation results in which we have identified the best packet transmis-
sion strategies in randomly generated scenarios. We also quantify the difference between equilibrium
strategies.

We assume two operators that deploy their sensor network in the same area, in such a way that they
are initially connected. In our simulations, we investigate both the separate sink and the common sink
scenario: In the separate sink scenario, we put one sink per domain in two different positions; and in the
common sink scenario, we put a single sink in the middle of the simulation area.

Table 5.1 presents our simulation parameters.4

Parameter Value
Number of sensors per domain 10–50 (25)
Distribution of the sensors uniformly random
Area size 40x20m
Battery of sensors (B) 100000 units
Benefit constant (B) 100000
Reception energy (Crx) 100 units
Path loss exponent 2–5 (4)
Success requirement (ξi) 1.0
Positions of the sinks (separate sinks) [10,10] and [30,10]
Positions of the sink (common sink) [20,10]
Route selection minimum energy path

Table 5.1: Parameter values of the simulations

For a given set of parameters, we performed 100 simulation runs, each corresponding to a different
topology of the sensors. For each simulation run, we performed an exhaustive search on the available
strategy space to identify possible Nash equilibria. For each player, we determined the Nash equilibrium

3In the common sink scenario, the common sinks inform the sensors in each domain.
4We present the default values of variables in parenthesis.



5.3. SIMULATION RESULTS 105

(or several Nash equilibria) that result(s) in the highest payoff. We observed that in each of the selected
Nash equilibria, the game stabilizes in the following pair (or pairs) of moves:

• Defective equilibrium: The players end up in playing the moves DD-DD.

• Cooperative equilibrium: The players end up in playing the moves AF-AF.

• Other equilibria: The equilibrium is different from the ones above.

Defective equilibria always exist in the network, which is not always true for cooperative and other
equilibria. Consequently, if several types of equilibria exist in the network (typically both defective and
cooperative equilibria), we define the efficiency Φ as the ratio of the payoff achieved by defection with
respect to the payoff achieved by cooperation:

Φ =
∑

i∈N

udefective
i

ucooperative
i

(5.1)

Figure 5.1 presents the number of different equilibria in the separate sink scenario as a function of
the network size. We can observe that the number of cooperative equilibria is much higher than the
number of other types of equilibria. Furthermore, as we increase the number of sensors in the domains,
the number of simulation runs with cooperation as the best equilibrium decreases.
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Figure 5.1: The effect of network size on cooperation in the separate sink scenario.

It is important to emphasize that in the separate sink scenario, the players control their sinks as
well. Thus, the dominance of cooperation might be the result of the presence of the sink of the other
domain (which enables shorter routes) and not the result of cooperation between the sensor networks.
To investigate the effect of cooperation in the sensor networks, we present results in the common sink
scenario. Our results show that this effect decreases as network size increases.

Figure 5.2 presents the number of different equilibria in the common sink scenario as a function of
the network size. We can see that the number of defective equilibria is approximately the same than the
number of cooperative equilibria. As we increase the network size, however, the number of defective
equilibria increases and the number of cooperative equilibria decreases. The reason is that with the
increasing density of sensors, the reception power dominates the energy consumption.

Figure 5.3 presents Φ as a function of the network size. We see that in the separate sink scenario, Φ
is much less than in the common sink scenario, thus choosing cooperation is more beneficial with respect
to defection. In both scenarios, Φ increases with the network size.
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Figure 5.2: The effect of network size on cooperation in the common sink scenario.
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Figure 5.3: Ratio of the payoff achieved by defection with respect to the payoff achieved
by cooperation as a function of the network size.

Figure 5.4 presents the number of different equilibria in the common sink scenario as a function of α.
The figure shows that as the path loss exponent increases (which represents a more hostile environment)
the number of defective equilibria drops significantly; at the same time the number of cooperative equi-
libria increases significantly. This shows that the more hostile the environment is, the more beneficial the
cooperation is.

Figure 5.5 presents Φ as a function of the path loss exponent. As no cooperative equilibria exist for
α = 2, we can present the results only for α > 2. We can observe that the more hostile the environment
is, the better cooperation is with respect to defection.

5.4 Summary

In this chapter, we presented a game-theoretic model to study cooperation in multi-domain sensor net-
works. Multi-domain sensor networks present a likely scenario in civilian applications, where various
authorities deploy their sensor networks to perform different tasks. Nonetheless, sensor technology and
protocols might be standardized enough to enable the sensors to cooperate.

In our study, based on the assumption that the sensors have limited computation and energy resources,
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Figure 5.4: The effect of α on cooperation in the common sink scenario.
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Figure 5.5: Ratio of the payoff achieved by defection with respect to the payoff achieved
by cooperation Φ as a function of α.

we investigated cooperation in the absence of incentive mechanisms. Our results showed that saving
energy by cooperation provides a “natural incentive” for the operators. The advantage of cooperation
is twofold: (a) the operators can largely benefit by providing service of their sinks for other’s sensor
networks and (b) if sinks are common resources, then cooperative packet forwarding is beneficial for
sparse networks or if the environment is hostile. These results show viable methods for improving the
performance of sensor networks using cooperation.

Publication: [FBH05]
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Chapter 6

Wireless Operators in a Shared Spectrum

6.1 Introduction

Cellular networks are notoriously difficult to design and operate; in particular, defining the optimal lo-
cation of the base stations and fine tuning their configuration parameters is very challenging. For this
reason, government agencies (such as the FCC in the US) have sold or rented, for example by auc-
tion, each operator a frequency band for its exclusive usage in a given country or region. Only a small
part of the whole spectrum is allocated as a shared spectrum, in which networks function in the same
(unlicensed) frequency band.

With the progress of technology and the fast growing demand for ubiquitous high-speed wireless
services, it is clear that the pressure towards more flexibility of the usage of the spectrum will only
increase. Therefore, the government agencies are likely to adapt the current regulations in order to
increase the proportion of the unlicensed spectrum as discussed in [Ben04, FF03].

The evolution towards unlicensed frequency bands can lead to a better usage of the spectrum. Yet,
it would also create a novel situation, in which the base stations of different operators would interfere
with each other. An operator may be tempted to let its base stations transmit at the maximum authorized
level. But by doing this, it would maximize interference not only to its own base stations, but also to the
base stations of the other operators, and to all mobile devices in the power range of its base stations; in
addition, it would face the danger that the other operators retaliate by behaving in the same way.

In our work, we assume that mobile users can freely roam across the base stations located in their
neighborhood, attaching to the one offering the most favorable signal quality (i.e., the base station with
the strongest pilot signal) and bandwidth, irrespectively of the operator to which the base station be-
longs.1 From the interference perspective, this operating principle is much more efficient than the current
practice, because it enables mobile devices to find the “closest” base station in the area and hence mobile
devices and base stations can significantly decrease their transmission power. This free roaming could
be beneficial for both operators and users, because the former could serve an increased set of users, and
the latter could enjoy various services across several operators.

We also assume that each operator wants to cover the largest possible area by increasing the trans-
mission range of its base stations. At the same time, it wants to minimize interference. These two
contradictory goals correspond to the willingness to maximize the number of users who can attach to its
base stations. We model this situation as a game between operators in terms of power control of the base

1The users might have other attachment preferences based on subscription type, past experience, etc. We will consider the
extension of user attachment behavior in our future work.
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stations. We believe our contribution to be one of the first steps towards a deeper understanding of the
trade-offs of operating cellular networks in shared spectrum.

Note that the general problem of power control of base stations is hard to solve (i.e., NP-complete);
it is characterized by the following dimensions: (i) the size of the base station sets, (ii) the geographic
locations of the base stations and (iii) their possible radio ranges.

6.2 Model

6.2.1 System Model

We make the following assumptions with respect to the communication network. We assume two wire-
less communication networks, each operated by an operator and we call the operators A and B. Operator
o ∈ {A, B} controls a set of base stations denoted by Bo. We denote the union of all base stations by B.
There exist no base stations that are located at the same place and belong to different operators.2 We also
assume several users equipped with mobile devices to access the communication network. The networks
reside in a given service area, where the operators want to provide wireless access for the users. We
restrict ourselves to two operators in order to provide an insight in the basic principles of cooperation
in a multi-operator context. Note that the problem is hard to solve for a general network topology as
presented in Sections 6.5.

We assume that the radios of the base stations and the mobile devices are compatible, meaning that
any user is able to access the network via any of the base stations. Base stations and mobiles operate
on the same unlicensed band of the frequency spectrum. Each of these devices might perform power
control to optimize its transmission power and reduce interference. This optimization can be realized in
three ways: the power control of the pilot signal of the base stations, of the downlink (base station to
mobile) and of the uplink (mobile to base station). In this chapter, we focus on the first technique and we
postpone the investigation of the other two techniques to our future work. To mitigate interference, the
shared frequency band is usually split up into channels (i.e., separated frequency sub-bands), but the pilot
signal is typically emitted on a single shared channel for all the base stations, which results in mutual
interference of the pilot signals.

According to the physical model of signal propagation [Rap02], the pilot signal of a base station
i ∈ B can be received by a user device v if its signal-to-interference-plus-noise ratio (SINR) exceeds a
reception threshold SINRmin:

SINRiv =
Pi · d−α

iv

N0 +
∑

j∈B,j 6=i Pj · d−α
jv

≥ SINRmin (6.1)

where Pi is the transmission power of base station i and N0 is the Gaussian thermal noise. We normalize
the effect of the antenna characteristics and correspondingly we assume that the channel gain depends
only on the distance div of the transmitter and the receiver and the path loss exponent 2 ≤ α ≤ 5. The
path loss exponent characterizes the radio signal propagation properties of the environment. Hence, (6.1)
corresponds to the Friis free space radio signal propagation equation (see [Rap02] Equation (4.1)). It
captures how the reception power depends on the most important factors, namely on the transmission
power and the distance between transmitter and receiver. Note that we consider the local average of the
received pilot signal as described in [Rap02]. In reality, on a small time scale, the pilot power signals

2To reduce operating costs, operators of current cellular networks often share the same site. However, if users can freely
roam, then this site sharing does not make sense anymore.
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have a time-varying property due to fading. In our future work, we will consider a more realistic radio
signal modeling that incorporates fading and more realistic path loss models. We assume that (6.1) holds
for every point in the service area for at least one base station (i.e., there is full coverage) and that the
user device v attaches to the base station i with the best SINR.

We abstract away the mobiles and assume that their expected position is uniformly distributed over
the service area. Note that this also means a balanced load on the base stations (i.e., no users have to
switch base stations due to the lack of available capacities). We leave the topic of other user distributions
for future work.

Let us assume that the pilot signals propagate in an open area, meaning α = 2. Then the distribu-
tion of user devices defines a Multiplicatively Weighted Voronoi power diagram (MW power diagram)
[OBSC00], which determines the set of points in the service area (potential places of user devices) that
are attached to a given base station. In the MW power diagram, a point belongs to a base station if it is
“closer” to it than to any other base station, where the distance is defined as follows:

Definition 6.1. The multiplicatively weighted power distance between the points v and i is defined as:

dmpw(v, i; wi) =
d2

iv

wi
(6.2)

where div is the Euclidian distance between the points v and i and wi is a weight assigned to point i.

We can define the Voronoi region V (i) around a base station i ∈ B as the set of points v that are
“closer” to point i than to any other point j. Hence, we can write V (i) as:

V (i) = {v|dmpw(v, i; wi) ≤ dmpw(v, j;wj), ∀i 6= j} (6.3)

We can write the Voronoi diagram V (B) of all base stations B as:

V (B) =
⋃

V (i) (6.4)

where i ∈ B.
Due to the complex shape of the Voronoi diagram with multiplicatively weighted distances, it is

difficult to derive analytical solutions for the pilot power control problem. Hence, we apply a radio
range model that is widely used in the literature. We will show in Section 6.3.4 that the principles
derived from the range model hold for the physical model as well.

Let us derive from (6.1) the radio range (Ri) of the pilot signal of the base station i as the Euclidian
distance within which the users are able to attach to this base station if there is no interference from other
devices:

Ri = α

√
Pi

SINRmin ·N0
(6.5)

According to the radio range model, we can define the Additively Weighted Voronoi power diagram (AW
power diagram) [OBSC00]. In the AW power diagram, the distance is defined as follows:

Definition 6.2. The additively weighted power distance between the points v and i is defined as:

dapw(v, i; wi) = d2
iv − wi (6.6)

where div is the Euclidian distance between the points v and i and wi is a weight assigned to point i.
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In this chapter, we substitute wi = R2
i and hence we obtain a Voronoi diagram in the Laguerre

geometry [OBSC00]. This model corresponds to a Voronoi diagram, where the distance is defined as a
tangential Euclidean distance to circles centered at the base stations’ locations and radii corresponding
to their radio ranges.

We assume that the base stations are placed on the vertices of a two-dimensional lattice in an alter-
nating way such that any base station that belongs to operator A has four neighboring base stations that
belong to operator B (a small part of the network is shown in Figure 6.1). Let us call d the smallest
Euclidian distance between base stations. In Section 6.4 and 6.5, we will extend our model to general
network topologies.

A

AB

B

d

Figure 6.1: Base stations on the vertices of a two-dimensional lattice. Here A is the
operator with a larger radio range.

To further specify our model, we assume that:

• A1: Operators want to provide wireless access service everywhere. Thus, no place remains un-
covered in the service area.

• A2: Operators can estimate or measure their coverage including the action of other operators.

• A3: Each base station belonging to the same operator has the same radio range. We show in
Section 6.5 that relaxing this assumption makes the power control problem NP-complete.

• A4: There exists a limitation PMAX on the transmission power of any base station, which is defined
by the regulator of the wireless spectrum. Then, the maximum radio range RMAX can be derived
from (6.5) by substituting Pi = PMAX. Furthermore, if the radio ranges of all base stations i ∈ B
are equal, we denote the minimum radio range for which A1 holds by RMIN =

√
2

2 d.

• A5: The users can freely roam between any of the base stations (i.e., the operators do not forbid
roaming between their networks).

• A6: Users are uniformly distributed over the area and hence, the expected load is the same on
every base station.

• A7: The base stations and the mobile devices have omnidirectional antennae. The investigation of
the effect of directional antennas is part of our future work.



6.2. MODEL 113

These assumptions ensure an open spectrum environment, in which users enjoy ubiquitous wireless
connectivity. In particular, we make Assumption A3, as well as the assumption that the base stations are
placed on the vertices of a grid, to make the model tractable. This special scenario is reasonable for a
small number of base stations, such as for a small city network. We will show stability points for this
special model. We study this special model, because we want to provide some quantitative insights into
the power control problem. The general problem is very involved: We show that if operators can set an
arbitrary radio range for their base stations (i.e., A3 does not hold), then the power control problem is
hard to solve.

6.2.2 Power Control Game

We model the power control problem with two operators as a two-player, nonzero-sum game. We refer
to the two operators as players A and B, respectively. Due to A3, we designate the radio ranges of the
pilot signal of the players by RA and RB . The strategy of the players defines their best radio range.
In this work, we consider only pure strategies, because mixed strategies might not be feasible for pilot
power adjustment due to their incurred overhead. The goal of the players is to maximize the area they
cover with their pilot signal as expressed by their payoff function. To express the payoff of the players
formally, let us introduce the following concepts.

Assume that the two players choose a different radio range. Let us call the player with the larger
radio range heavy and the player with the smaller range light. Let us denote the radio range of the heavy
player by RH and the one of the light player by RL (recall from A3 that a player has the same range for
all of its base stations). In this section, we assume that A is the heavy player and B is the light player
(i.e., RA = RH and RB = RL); note, however, that it can be the opposite due to the symmetric situation.
Since the placement of the base stations is symmetric and the players apply the same radio range to all
of their base stations, we can analyze the game considering two neighboring base stations, as shown in
Figure 6.2. Consequently, we designate both the players and their respective BSs by the same letter.

We define the useful coverage area (Oi) for any base station i as its Voronoi region V (i) in the radio
range model (i.e., in the Voronoi diagram in the Laguerre geometry). We define the interference area
(Yi) for a base station i as the covered area where the signal of i is not the strongest (i.e., the difference
between total covered area and the useful coverage area).

Yi = R2
i · π −Oi (6.7)

Note that the useful coverage area of a player depends on the radio range of the other player. Ac-
cordingly, we can distinguish two cases as follows.

If both players have a non-empty useful coverage area, as presented in Figure 6.2a, then the following
condition holds:

RH <
√

R2
L + d2 (C1)

We can express the useful coverage area of the heavy player by calculating the area of the octagon. As
shown in Figure 6.2, this area can be calculated based on the distance d of the two base stations, the
distances AM and BM between the base stations and the middle point M as well as the ranges RH and
RL. Thus, we can write the useful coverage area as follows:

OH =
d4 + 2d2(R2

H −R2
L)− (R2

H −R2
L)2

d2
(6.8)
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RA RB

A B

OB = coverage area of player B

YB = interference area of player B

OA = coverage area of player A

d

YA = interference area of player A

M

RA RB

A B

OB = coverage area of player B (is empty)

YB = interference area of player B

OA = coverage area of player A

d

YA = interference area of player A

(a) (b)

Figure 6.2: Coverage and interference area of a base station, illustrated with two base
stations: (a) both base stations have a coverage area; (b) the base stations of the light
player are overwhelmed by the base stations of the heavy player and thus the light player
has no coverage area at all.

The useful coverage area of the light player is as follows:

OL =
(d2 −R2

H + R2
L)2

d2
(6.9)

If Condition C1 does not hold, then the light player is overwhelmed by the heavy player, meaning
that the pilot signal of the heavy player is the strongest everywhere (as presented in Figure 6.2b). If the
heavy player overwhelms the light player, the useful coverage area functions are as follows:

OH = (
√

2d)2 = 2d2 (6.10)

OL = 0 (6.11)

In addition to C1, we can derive a condition for the radio ranges of the two players from A1 from the
geometry presented in Figure 6.1 as follows:

R2
H ≥ (

√
2

2
d−RL)2 + (

√
2

2
d)2 = d2 −

√
2dRL + R2

L (C2)

In the limit case, in which the equality holds in (C2), they just cover the service area (as shown in
Figure 6.1).

From (C2) and A4, we can derive the definition interval for RH :
√

d2 −
√

2dRL + R2
L ≤ RH ≤ RMAX (6.12)

Similarly, from (C2) we get the bounds on RL knowing that it is positive and smaller than RH :

max{0,

√
2

2
(d−

√
−d2 + 2R2

H)} ≤ RL ≤ RH (6.13)
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The upper bound comes from the fact that RH ≤
√

2
2 (d +

√
−d2 + 2R2

H) for all values of RH . Note
that the expressions in (6.12) and (6.13) always take real values.

We assume that the goal of the players is to maximize their payoff, in other words to maximize their
useful coverage area while minimizing their interference area (i.e., the area, which is in their radio range,
but they do not cover eventually). We define the payoff per base station for player i playing Ri given that
the other player j plays Rj at its base stations as follows:3

ui(Ri, Rj) = Oi − γi · Yi = (1 + γi) ·Oi − γi ·R2
i · π (6.14)

where γi ≥ 0 is a cooperation parameter that defines how much player i cares about the size of his
interference area. Note that the cooperation parameter provides a general method to model both internal
considerations of the operator such as cooperativeness, as well as external cooperation enforcement
mechanisms such as an agreement between operators or a power price induced by the regulator of the
spectrum.

Let us graphically present the payoffs of the players based on expression (6.14). Figure 6.3a presents
an example for the payoff of the heavy player for a fixed value of RL and Figure 6.3b presents the payoff
of the light player for a fixed value of RH . In the next section, we derive stability points in the game
using these payoff functions.
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Figure 6.3: Payoff function (a) of the heavy player for d = 1km, γH = 0.1, RL = 0.6km
and RMAX = 1.5km (defined by the regulator); and (b) of the light player for d = 1km,
γL = 0.1 and RH = 1.5km.

6.3 Single-Stage Game

In this section, we consider a single-stage game, where both players simultaneously choose their radio
range once and for all. This corresponds to the case in which the base stations are not able to perform
power control during the operation of the network, thus the radio power has to be set manually at the
installation of the base stations. We use this basic scenario to study the basic equilibria of the power

3Note that due to the specific scenario, the payoff of player i can be calculated by multiplying ui with the number of its base
stations. In this scenario, we refer to the payoff per base station as the payoff of the player.
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control game. We extend our investigation to more complex scenarios in the following sections. We
make use of the concept of Nash equilibrium and best response introduced in Section 1.2.3.

6.3.1 Best Response Function

We derive the best response function for the heavy player from the payoff functions presented in Fig-
ures 6.3a. For the heavy player, its payoff is a concave function with a maximum point RH,top as shown
in Figure 6.3a. We can derive RH,top by maximizing (6.14) with the coverage area defined in (6.8).

RH,top =

√
2(1 + γH)(d2 + R2

L)− d2γHπ
√

2
√

1 + γH

(6.15)

We can identify different best response strategies for this case, corresponding to the definition interval of
the payoff function, as follows.

1. If RH,top <
√

d2 −√2dRL + R2
L, then the best response of the heavy player is the lower bound

in (6.12), because the payoff function is strictly decreasing:

brH(RL) =
√

d2 −
√

2dRL + R2
L (6.16)

2. If
√

d2 −√2dRL + R2
L < RH,top < RMAX, then the best response is (this corresponds to Fig-

ure 6.3a).
brH(RL) = RH,top (6.17)

3. Finally, if RH,top > RMAX, then the best response of the heavy player is:

brH(RL) = RMAX (6.18)

For the light player, the best response strategy should be one of the bounds as defined in (6.13) as
shown in Figure 6.3b. If the upper bound in (6.13) applied, then the light player would have reason to
become a heavy player (i.e., apply a radio range larger than the upper bound in (6.13)). Hence, it is
enough to compare only the lower bound with the best response solutions derived in (6.16), (6.17) and
(6.18). The lower bound has two cases as expressed in (6.13).

Let us now define the critical range of player j as the range Rj for which the payoff of player i,
whether the heavy or the light player, is equal. We denote the critical radio range by R∗

j . If player j plays
a radio range larger than the critical range of player i, then player i should be the light player.

We can now derive the best response function of the players by substituting (6.16) through (6.18)
in the payoff function and compare them with the payoff playing Ri = 0. The result is shown in Fig-
ure 6.4. We can notice that the critical range (identified by the vertical lines) decreases as the cooperation
parameter γi increases.

Table 6.1 presents the critical ranges for player i as a function of γi, and we show the numerical
values of the limits in Table 6.2. If γi < d2

π·R2
MAX−d2 , then the critical range is larger than the maximum

range RMAX and hence, the best response is never Ri = 0. Note that γLIM1 = d2

π·R2
MAX−d2 ≤ 1

π−1 for any
RMAX > d. If γi ≥ γLIM3, then the critical range R∗

j ≤ RMIN and the player necessarily plays RMIN.



6.3. SINGLE-STAGE GAME 117

0 500 1000 1500
0

500

1000

1500

R
j
 [m]

br
 i [

m
]

 

 

γ
i
 < γ

LIM1

γ
LIM1

 < γ
i
 < γ

LIM2

γ
LIM2

 < γ
i
 < γ

LIM3

γ
LIM3

 < γ
i

Figure 6.4: Best response function of player i for various γi values for d = 1km and
RMAX = 1.5km

Value of γi Critical range: R∗
j

γi < γLIM1 R∗
j > RMAX, no critical range exists

γLIM1 ≤ γi < γLIM2 d < R∗
j < RMAX

γLIM2 ≤ γi < γLIM3 RMIN < R∗
j < d

γi ≥ γLIM3 R∗
j ≤ RMIN, no critical range exists

Table 6.1: Critical radio ranges depending on the value of γi

6.3.2 Nash Equilibria in the Single Stage Game

Let us designate the stability points in the game as follows. NEMIN denotes a pure-strategy Nash equilib-
rium in which the players play the radio ranges (RMIN, RMIN). Similarly, we define the Nash equilibrium
NEMAX for the joint action (RMAX, RMAX). We write NEMIN,i,j if the players just cover the service area,
but they have a different radio range (i.e., their radio ranges define the limit case in (C2) as shown in
Figure 6.1). In the subscript, i refers to the player with the larger radio range (i.e., i is the heavy player).

We can identify pure-strategy Nash equilibria in the single stage game based on Definition 1.4 by
searching for the intersections of the possible best response functions shown in Figure 6.4 using the
corresponding equations (6.13), (6.16), (6.17) and (6.18).

1. The radio ranges of the players just cover the service area. They play one of the minimum Nash
equilibria (meaning NEMIN or NEMIN,i,j). This case holds for γA > γLIM2 or γB > γLIM2.

2. There is a unique Nash equilibrium NEMAX if
γA < γLIM1 and γB < γLIM1;

3. No Nash equilibrium exists if
γLIM1 < γA < γLIM2 and γB < γLIM1 or vice versa.

Table 6.3 shows the types of different Nash equilibria as a function of the cooperation values of the
players.
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γLIM1
d2

π·R2
MAX−d2 < 1

π−1 ≈ 0.46

γLIM2
2(−4+2π−√2π)

8−8π+π2 ≈ 0.59
γLIM3

2
π−2 ≈ 1.75

Table 6.2: Numerical values of the limits of γi

γB < γLIM1 γLIM1 < γB < γLIM2 γLIM2 ≤ γB < γLIM3 γB ≥ γLIM3

γA < γLIM1 NEMAX no NE NEMIN,A,B NEMIN,A,B

γLIM1 < γA < γLIM2 no NE no NE NEMIN,A,B NEMIN,A,B

γLIM2 ≤ γA < γLIM3 NEMIN,B,A NEMIN,B,A NEMIN,A,B NEMIN,A,B

NEMIN,B,A NEMIN,B,A

γA ≥ γLIM3 NEMIN,B,A NEMIN,B,A NEMIN,A,B NEMIN,A,B

NEMIN,B,A NEMIN,B,A

NEMIN

Table 6.3: Nash equilibria (NE) in the single stage game as a function of the cooperation
values.

6.3.3 Equilibrium Selection

From Table 6.3, we can observe that there exist a variety of Nash equilibria depending on the parameters
(i.e., cooperation, maximum radio range) in the power control game. In order to assess the success of the
players in these Nash equilibria, we use the concept of Pareto-superiority as defined in Definition 1.7.

In order to assess the feasible region (all possible values of the payoffs) of the radio ranges, we show
the payoffs for each possible values of RA and RB for γA = γB = 0.1 in Figure 6.5.4 Furthermore,
let us distinguish the NEMIN,i,j0 state in which the heavy player plays Ri = d and the light player plays
Rj = 0.
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Figure 6.5: The payoffs for the possible values of RA and RB if d = 1km and γA =
γB = 0.1.

The following theorem shows that, depending on the parameter values, the minimum Nash equilibria
can be socially optimal.

4The parallel lines are the result of the precision of the simulations.
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γB < γLIM1 γLIM1 < γB < γLIM2 γLIM2 ≤ γB < γLIM3 γB ≥ γLIM3

γA < γLIM1 NEMAX no NE NEMIN,A,B NEMIN,A,B0

γLIM1 < γA < γLIM2 no NE no NE NEMIN,A,B NEMIN,A,B0

γLIM2 ≤ γA < γLIM3 NEMIN,B,A NEMIN,B,A NEMIN,A,B NEMIN,A,B0

NEMIN,B,A

γA ≥ γLIM3 NEMIN,B,A0 NEMIN,B,A0 NEMIN,B,A0 NEMIN,A,B

NEMIN,B,A

NEMIN

Table 6.4: The best (Pareto-superior) Nash equilibria in the single stage game as a func-
tion of the cooperation values.

Theorem 6.1. If several NEMIN,i,j Nash-equilibria exist in the grid scenario, then

1. If γA > γLIM3 and γB < γLIM3, then only NEMIN,B,A0 is Pareto-superior.

2. If γA < γLIM3 and γB > γLIM3, then only NEMIN,A,B0 is Pareto-superior.

3. Otherwise none of them is Pareto-superior to the others.

Proof. Suppose that in any state of the game player i increases its radio range. It is easy to see that the
payoff of player increases if γi < 2

π−2 . Similarly, the payoff of the other player increases if its range
increases and we have γj < 2

π−2 . Hence, if both γi < 2
π−2 and γj < 2

π−2 , then the increase of the payoff
of one of the players results in the decrease of the payoff of the other player. Hence, any NEMIN,i,j state
is Pareto-optimal. However, if player j has γj > 2

π−2 , then decreasing its range increases its payoff and
hence the only Pareto-optimal state is NEMIN,i,j0.

Based on Theorem 6.1, we can identify the most beneficial Nash equilibria from Table 6.3. We
express this modified solution in Table 6.4.

Table 6.4 shows that if the operators are cooperative, then they should play the minimum radio range
with which they are able to cover the service area. Furthermore in a fair solution, they should both play
RMIN. However, if one of the players does not cooperate and the other does, then the non-cooperative
player can increase its radio range to force the cooperative player out of the game. If none of the players
cooperate, then they will end up in both playing the maximum radio range RMAX.

6.3.4 Discussion

Our model based on the Voronoi diagram in the Laguerre geometry results in useful coverage areas with
straight separation lines. We adopted this model, because if we applied the physical radio model based
on (6.1), it would be difficult to derive a closed-form expression for the coverage and hence for the payoff
of the players. We now use a numerical method to compare the radio range model to the physical model
and to show that the principles derived in our model hold for the physical model as well.

We compare the useful coverage areas in both models as follows. We transform the continuous area
into a discrete area by substituting it with a grid of interval ε as shown in Figure 6.6. In our numerical
study we use a grid of 100x100 points.

For a given set of radio ranges, we determine the number of points that belong to the base station in
the middle of the considered area in each of the radio models. This results in an empirical value of the
useful coverage area. We substitute this useful coverage area value into (6.14) to obtain the payoff of the
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Figure 6.6: Discrete area model with points in ε distance.

players in both cases and then we calculate the best responses from the payoff function. Figure 6.7 shows
an example of the best response of player i who controls the base station in the middle of Figure 6.6 for
each of the radio models.
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Figure 6.7: Best response function of player i for γi = γj = 0.1, d = 500m and
RMAX = 700m.

We can observe that the best response functions are very similar for the two models. We performed
our numerical analysis for various values of γi and γj and it resulted in the same conclusion. Hence, the
conclusions about the Nash equilibria in the radio range model hold for the physical model as well. How-
ever, the derivation of the precise values of γi and γj requires an extensive set of numerical calculations.
This complexity justifies our study based on the radio range model.
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6.4 Repeated Game

In the previous section, we assumed that the radio range of the base stations has to be set in advance
and no power adjustment is possible. In this section, we consider the possibility of an iterative power
control in a repeated game. We assume that the operators do not know the end of the game, hence we
study the problem in an infinite repeated game model with discounting [Axe84, FT91]. We will show
that cooperation (i.e., both players playing RMIN) can be enforced in the cases in which no cooperative
equilibrium exists.

In the repeated game, we assume that the game is split up into steps denoted by t. In each step, player
i ∈ {A,B} adjusts the radio range of his base stations according to his strategy si.

Furthermore, let us define the discounted total payoff in T time steps as:

ui(t) =
T∑

t=0

ui(t) · δt (6.19)

where 0 < δ < 1 is the discounting factor, which expresses the value of future payoffs for the players.
Here, we interpret he discounting factor as a value related to the probability that the game ends in the
subsequent time step. Based on this interpretation, we assume that the discounting factor is the same for
both players.

We now prove a theorem to show that non-cooperation based on RMAX is a Nash equilibrium.

Theorem 6.2. Both players playing RMAX in all time steps is a Nash equilibrium if γi < γLIM1 and
γj < γLIM1 holds.

Proof. Let us assume that player i plays RMAX all the time. Since the decision of the other player does
not affect player i’s radio range, we can analyze the game by time steps. In any time step, player i
necessarily becomes the heavy player (or they are of equal weight). If γi < γLIM1 and γj < γLIM1, then
the best strategy of the other player is Rj = Ri = RMAX in every time step.

In this case, the players are in a socially non-optimal equilibrium. We have seen in Theorem 6.1 that
for high γA and γB values, cooperation does not need to be enforced. We will now prove conditions that
enable the players to enforce cooperation for other cooperation values. We prove in this section that they
can do better, by applying a strategy called Punisher.

Definition 6.3. If player i plays the Punisher strategy, he plays RMIN in the first time step. For any further
time steps, he plays:

• RMIN in time step t if player j played RMIN in time step t− 1, or

• RMAX for the next Υp
i time steps, if player j played anything else.

The parameter Υp
i , called the punishment interval, defines the number of time steps for which player

i punishes the other player. Note that the Punisher strategy is similar to the Tit-For-Tat (TFT) strategy
introduced in Section 1.4.2.5 The major difference is that it retaliates any defection by playing RMAX

instead of copying the same behavior. Furthermore, the Punisher strategy is different from the Trigger
strategy defined in [MCWG95], because the Punisher strategy imposes a punishment that is comparable
to the amount of misbehavior and thus it is able to recover from erroneous defections.

5TFT defines the choice of a given player in the next time step, whereas the Punisher strategy defines the punishment interval
as a set of subsequent time steps.
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Assume now that player j plays the Punisher strategy. If player i cooperates as well, they both play
RMIN. In this case they both have the cooperative payoff ucoop

i = uH(RMIN, RMIN).6 If player i defects,
then he obtains a cheating gain ucheat

i = uH(bri(RMIN), RMIN). Substituting γi for γH , we can obtain
the best response value bri(RMIN) from (6.15):

bri(RMIN) =
d2(3− (π − 3)γi))

2(1 + γi)
(6.20)

If we substitute Rj = RL = RMIN into (6.14), we get a cheating gain ucheat
i = uH(bri(RMIN), RMIN):

ucheat
i =

d2(8 + (16− 6π)γj + (8− 6π + π2)γ2
j )

4(1 + γj)
(6.21)

After the defection, player j retaliates by playing RMAX and player i plays his best response to this
radio range. In this case player i has the defection payoff udef

i = uH(bri(RMAX), RMAX). If bri(RMAX) =
RMAX, then i’s payoff for each time step in the next Υp

i time steps is the defection payoff udef,max
i :

udef,max
i = (1 + γi)d2 − γiR

2
MAXπ (6.22)

If bri(RMAX) = 0, then i’s payoff for each time step in the next Υp
i time steps is the defection payoff

udef,0
i :

udef,0
i = 0 (6.23)

Otherwise, if player i played RMIN, he obtained a cooperation payoff ucoop
i for all the Υp

i time steps:

ucoop
i =

d2(2− (π − 2)γi)
2

(6.24)

Cooperation can be enforced using the Punisher strategy as proven in the following theorem.

Theorem 6.3. A Nash equilibrium NEMIN based on RMIN is enforceable with the Punisher strategy (i.e.,
player j is able to punish the defection of player i) if

1. γi < 2
π−2 and

2.
ucheat

i − udef
i

ucoop
i − udef

i

· (1− δ) < 1 (6.25)

where δ ≤ 1 and γi, γj 6= 0.

If the above condition holds, the punishment interval is defined by:

Υp
j ≥ logδ

(
1− ucheat

i − udef
i

ucoop
i − udef

i

· (1− δ)

)
− 1 (6.26)

6Note that for RA = RB , uH(RA, RB) = uL(RA, RB). Hence we can apply any of the two payoff functions.
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Proof. Let us assume that player i deviates in time step t0. Let us assume that he applies the best option,
hence he plays bri(RMIN). The Punisher strategy played by player j reduces the discounted total payoff
of player i for the time interval from t0 to t0 + Υp

j if:

ucheat
i + udef

i ·
Υp

j∑

t=1

δt ≤ ucoop
i ·

Υp
j∑

t=0

δt (6.27)

If δ = 1, we can write (6.27) as follows:

ucheat
i + udef

i ·Υp
j ≤ ucoop

i · (Υp
j + 1) (6.28)

Hence, we obtain the following bound on the punishment interval:

Υp
j ≥

ucheat
i − ucoop

i

ucoop
i − udef

i

(6.29)

Note that if δ = 1, then cooperation is always enforceable.
If δ < 1, we can transform the sums in (6.27) to the same intervals:

ucheat
i − udef

i + udef
i ·

Υp
j∑

t=0

δt ≤ ucoop
i ·

Υp
j∑

t=0

δt (6.30)

Since the sums are geometric sequences, we can write that:

ucheat
i − udef

i ≤ (ucoop
i − udef

i ) · 1− δΥp
j +1

1− δ
(6.31)

If γi < 2
π−2 , then ucoop

i − udef
i > 0. Furthermore, we have 1− δ > 0, and we can rewrite the inequality:

ucheat
i − udef

i

ucoop
i − udef

i

· (1− δ) ≤ 1− δΥp
j +1 (6.32)

Reordering the inequality gives us:

δΥp
j +1 ≤ 1− ucheat

i − udef
i

ucoop
i − udef

i

· (1− δ) (6.33)

This gives the condition on Υp
j , because the left side of (6.33) is strictly positive. Thus the inequality

cannot be fulfilled if the right side of (6.33) is non-positive, meaning that:

ucheat
i − udef

i

ucoop
i − udef

i

· (1− δ) ≤ 1 (6.34)

If the condition in (6.34) holds, we can take the logarithm of both sides in (6.33). Since δ < 1, the
logarithm function is strictly decreasing and hence the direction of the inequality changes.

Υp
j ≥ logδ

(
1− ucheat

i − udef
i

ucoop
i − udef

i

· (1− δ)

)
− 1 (6.35)

Due to the symmetric situation, the same arguments apply for the opposite case that defines the
punishment interval for player j.
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Note that for δ = 1, cooperation can always be enforced using the Punisher strategy. This principle
is expressed in general by the Nash folk theorem 1.4.4.

The typical value of Υp
j is small (for d = 1km, γi = 0.1, RMAX = 1.5km and δ = 0.1, the value is

Υp
j = d1.23e = 2). For higher values of γi, RMAX and δ, the punishment interval is one time step (i.e.,

there is an immediate punishment). Figure 6.8 illustrates the average per time step payoff of a player for
both cooperation and defection. One can observe that cooperation is more beneficial, because defection
is quickly retaliated by the other player.
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Figure 6.8: Average payoff of player i for d = 1km, γi = 0.1, RMAX = 1.5km and δ =
0.1 if player j applies a punishment. One-time defection is quickly retaliated and hence
cooperation is the best choice. The Trigger strategy stabilizes in infinite punishment, and
the Punisher strategy returns to the cooperative state.

Based on Theorem 6.3, we state the following result.

Corollary 6.4. If both players play the Punisher strategy and the conditions of Theorem 6.3 hold, then it
results in a Nash equilibrium.

6.5 NP-Completeness of the General Problem

In this section, we analyze the power control problem for general network topologies and for general
values of radio ranges in the single stage game.

The goal of player i is to allocate the radio ranges such that their overall payoff ui =
∑|Bi|

k=1 uk is
maximized, where |Bi| is the number of bases stations that belong to player i and the payoff per base
station uk is as follows (derived from (6.14)).

ui =
|Bi|∑

k=1

[
(1 + γi) ·Ok − γ ·R2

k · π
]

(6.36)

where Ok is the useful coverage area and Rk is the radio range of base station k.
We can now formulate the following theorem.

Theorem 6.5. Finding the maximum payoff of player i for general values of radio ranges is NP-complete.
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Proof. To prove the theorem, let us consider the special case of finding the optimal radio range allocation
in the presence of a single operator. In this case, operator i has the payoff:

ui =
|Bi|∑

k=1

[
(1 + γi) ·Ok − γ ·R2

k · π
]

(6.37)

Let us denote the whole service area by Oi =
∑|Bi|

k=1 Ok. Since the γi values are the same for all base
stations, we can reformulate the payoff as:

ui = (1 + γi) ·Oi − γi · π
|Bi|∑

k=1

R2
k (6.38)

Under the assumption that α = 2, the power is proportional to the square of the radio range.
Chamaret et al. [CJK+97] as well as Värbrand and Yuan [VY03] have proven that finding the min-
imum power allocation in the network of a cellular operator while maintaining the total coverage is
NP-complete. Hence, the minimum value of ui cannot be determined in polynomial time. Because the
problem is NP-complete for the special case of one operator, we conclude that it is NP-complete in the
general game as well.

Since finding the maximum payoff for an operator is NP-complete in general, it is impossible to
calculate the best responses for a given player in polynomial time. Thus, we can state the following
result.

Corollary 6.6. Finding Nash equilibria in the power control game for general values of radio ranges is
NP-complete.

6.6 Related Work

Game theory is used to study the power control of user devices in wireless networks, notably in cellular
systems as studied in [ABSA02, GM01, HBH06, JH98, MW01, MCPS05, XSC03] and [ZZHJ04]. Game
theory is also used to study cooperation in wireless ad hoc networks, for example in [CGKO03, MQ05a]
and [SNCR03], in particular for cooperative power control [MK05]. A general framework for resource
allocation in wireless network is addressed in [DCS03].

Recently, the coexistence of multiple Internet Service Providers (ISPs) was studied by Shakkottai
and Srikant in [SS05]. They consider both transit and customer prices for the ISPs. They show that if the
number of ISPs competing for the same customers is large, then it can lead to price wars. In addition to
this work in wired networks, the coexistence of wireless operators in a non-shared spectrum is addressed
in two contributions. In [HHLM04], Halldórsson et al. study channel assignment strategies for Wi-Fi
operators. They use the maximum graph coloring problem to identify Nash equilibria and they also
provide a bound on the price of anarchy of these equilibria. In another paper [ZdV05], Zemlianov and de
Veciana consider the scenario, in which users are able to choose between a cellular network and a Wi-Fi
network. They show that congestion sensitive strategies are better than proximity-based strategies. None
of these works considers the power control of the base stations.

Our work addresses the problem of pilot signal power control in shared spectrum networks. Haykin
provides a comprehensive overview [Hay05] of the current tendencies and research challenges in shared
spectrum communications in general. One of the challenges, namely opportunistic spectrum access, is
addressed in the paper of Wang et al. [WLX03].
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6.7 Summary

In this chapter, we investigated the problem of co-existing wireless operators in a shared spectrum.
This scenario becomes more and more important with the expansion of wireless networks in a shared
spectrum. Although we focused on a cellular network model, our study can be adapted to investigate
spectrum sharing in networks using the WiFi or WiMax technologies as well. Our study highlighted
a crucial problem in the coexistence of networks, specifically that operators have to compete for the
common set of users. As a result of this competition, the network performance might change in an
undesired way.

In our study, we assumed that the operators apply power control at the base stations to mitigate inter-
ference, while providing a permanent service to the users. Our contribution in this chapter is threefold.
First, we showed that Nash equilibria exist if the operators set the power of their base stations at the
beginning of the operation of the network. We identified different equilibrium situations that depend on
the cooperativeness of the operators. Second, we proved a condition for which a socially optimal Nash
equilibrium exists and that it can be enforced using punishments. Third, we showed that the solution of
the power control problem is NP-complete for a general topology of base stations.

In general, our results showed which operation points are beneficial for the players and how these
should be achieved. We demonstrated that reactive behavior based on repeated games could be applied
to enforce a desirably low transmission power in future wireless scenarios where operators compete for
users.

Publication: [FH06b]



Chapter 7

Border Games in Cellular Networks

7.1 Introduction

Today’s cellular networks operate on separate frequency bands to avoid interference between them. The
operators of these networks obtain an exclusive right to use a given frequency band in their respective
country. However, the division based on frequency bands does not apply across national borders. The
operators have to resolve their conflicts across the borders themselves. One of the issues is when mobile
users of one operator attach to the network of the operator of the other country while still being in their
own country. This problem is referred to as accidental roaming [INT06, Lee06]. Often, the operators
make make mutual agreements to resolve these conflicts, but these agreements are difficult to enforce,
because they require the mutual cooperation of the operators. The proper understanding of this special
case is important for the future studies of the coexistence of cellular networks, because there exist many
examples where cities reside close to a national border. One can find examples for the border scenario on
each of the continents such as Geneva, Basel or Aachen in Europe; San Diego and Detroit in the USA;
or Hongkong and Singapore in Asia.

In this chapter, we consider the problem of strategic behavior of operators on the border of their
cellular networks. We consider the operators of 3G cellular networks, such as the Universal Mobile
Telecommunication System (UMTS) for example, that are based on the Code Division Multiple Access
(CDMA) technology [HT02, Rap02, Sch05]. Note however, that the problem we highlight in this chapter
applies to any CDMA network. In these networks, the base stations emit pilot signals to help users to
assess the available channel quality and to attach to the base station with the best offered quality. Accord-
ing to the current definition in the UMTS standard, the pilot power for the base stations is determined at
the network dimensioning phase and remains fixed afterward. However, as the number of users changes,
the operators may adjust the network parameters. This slow adaptation of the pilot signal power is part
of the network re-dimensioning process and hence it exists on a large time scale. On the other hand, the
technology enables the base stations to quickly adapt their pilot signals to the actual usage. This fast
adaptation technique is commonly referred to as cell breathing [HT02, Rap02, Sch05].

In this work, we assume that the operators control the power of the pilot signal of their base stations to
attract more users over time. Several methods (e.g., cell-breathing [Rap02, Sch05]) have been proposed
to implement fast adaptation in CDMA networks. We survey them in Section 7.6. In our work, however,
we focus on the slow adaptation problem. We study how the network operators can fine-tune their pilot
power in the presence of other operators given a certain user distribution. We investigate whether this
situation leads to a game and we study the properties of the equilibria of power control strategies.
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Figure 7.1: Network scenario with two base stations.

7.2 Model

7.2.1 System Model

We consider a scenario with two cellular network operators A and B. We assume that their networks
are separated by a national border. The operators operate their network based on the principles of the
CDMA method. We assume that the two operators acquired the same frequency band for their networks
in their respective country. This means that their networks interfere along the border. We assume that
each operator controls a set of base stations (BS) Bi, where i ∈ {A,B}. We refer to the set of all base
stations as B =

⋃
i Bi. We also assume a set of users M equipped with wireless devices who access

the communication network. For the sake of convenience, we assimilate the operators with their base
stations and the users with their devices. In order to get an insight, we study the case in which each
operator has one BS and we refer to the BSs by the letters of their operators (i.e., base station A and B).
This single-cell model is often considered in the literature [Jak94, LZJH04]. The network scenario is
shown in Figure 7.1.

We assume that the radios of the base stations and the mobile devices are compatible, meaning that
any user is able to access the network via any of the base stations. We further assume that the antennas
of the BSs and wireless devices are omnidirectional. Note that the results derived in this chapter are still
valid if the operators use sectorized antennas that point towards the national border. Sectorized antennas
have more impact in the general scenario, where the operators have several base stations each. The study
of this general scenario is the main focus of our ongoing work.

Throughout this chapter, we assume that the users are not associated with any of the operators (i.e.,
they are roaming users) and thus they attach to the base station with the best signal quality.

In CDMA networks, power control is used to mitigate the near-far effect [Rap02], to optimize the
transmission power of the devices and to reduce interference. In this chapter, we focus on the downlink
(or forward link) power control of the pilot signals emitted by the base stations. The pilot signal helps
the wireless devices to perform the following tasks:

• detection of the available base stations,

• synchronization with them and
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• estimation of the channel quality and handover decision based on this estimation.

In particular, we focus on the problem of how the network operators can determine the pilot signal power
that will potentially attract the highest number of users. We leave the study of the competitive fast
adaptation problem as a future work.

In the remainder of this chapter, we present the physical model of CDMA. As mentioned earlier, the
pilot signal is used to attract users. If several users attach to a given base station, their transmissions are
performed on different channels. In CDMA-based cellular networks, unlike GSM networks, channels
are not separated in different frequencies, but use different codes. Hence each transmission uses the same
frequency band. In theory, the codes from one base station are orthogonal, meaning that the transmissions
to different receivers do not interfere with each other. In practice, there exists some interference between
concurrent transmissions from a given base station because of multipath propagation. This interference
is called the own-cell interference. In addition, there is an interference caused by the transmissions of
other base stations, called the other-cell interference.

Let us consider the scenario shown in Figure 7.1. According to the physical model of signal prop-
agation in a CDMA system [TV05], we can write the signal-to-interference-plus-noise ratio (SINR) of
the pilot signal of base station i ∈ B to user v ∈M as:

SINRpilot
iv =

Gpilot
p · Pi · d−α

iv

N0 ·W+ Ipilot
own + Ipilot

other

(7.1)

where Gpilot
p = W

Rpilot is the processing gain for the pilot signal, W is the available bandwidth, Rpilot is
the data rate of the pilot signal, Pi is the power of the transmitted pilot signal of BS i, div is the distance
between BS i and user v, α is the path loss exponent, N0 is the noise spectral density, and Ipilot

own as well
as Ipilot

other are the own-cell and the other-cell interferences that affect the pilot signal of BS i.
Let us first express the own-cell interference Ipilot

own :

Ipilot
own = ζ · d−α

iv (
∑

w∈Mi

Tiw) (7.2)

where ζ is the orthogonality factor (also called the own-cell interference factor) that expresses the non-
orthogonality between the different transmissions from BS i. Furthermore, Mi is the set of users at BS
i and Tiw is the traffic power assigned to user w ∈Mi by BS i.

Similarly, we can write the interference Ipilot
other:

Ipilot
other = η ·

∑

j 6=i

d−α
jv (Pj +

∑

w∈Mj

Tjw) (7.3)

where η is the other-to-own-cell interference factor, djv is the distance between BS j and user v. Fur-
thermore Pj is the pilot signal power of BS j, whereas Mj is the set of users at BS j and Tjw is the
traffic power assigned to user w ∈Mj by BS j.

Similarly to (7.1), we can express the SINR for the traffic signal Tiv:

SINRtr
iv =

Gtr
p · Tiv · d−α

iv

N0 ·W+ Itr
own + Itr

other

(7.4)

where Gtr
p = W

Rtr is the processing gain for the traffic signal, W is the available bandwidth, Rtr is
the data rate of the specific traffic signal, and Itr

own as well as Itr
other are the own-cell and the other-cell

interferences that affect the traffic signal of BS i to user v.
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Let us write the own-cell interference Itr
own for the traffic signal as:

Itr
own = ζ · d−α

iv (Pi +
∑

w 6=v,w∈Mi

Tiw) (7.5)

and the interference from other BSs j as:

Itr
other = Ipilot

other = η ·
∑

j 6=i

d−α
jv (Pj +

∑

w∈Mj

Tjw) (7.6)

Furthermore, we can express the carrier-to-interference ratio (CIR) as a function of SINR:

CIRpilot
iu =

SINRpilot
iv

Gpilot
p

(7.7)

Similarly, we can write the CIR of the traffic signal:

CIRtr
iv =

SINRtr
iv

Gtr
p

(7.8)

where Gtr
p is the processing gain for the traffic signal from BS i to user v.

In UMTS systems [HT02], the processing gain for the pilot signal is Gpilot
p = 256 ≈ 14.3 dB and

the available bandwidth (for the spread signal) is W = 3.84 MHz. The processing gain of the traffic
signal Gtr

p depends on the bitrate of the application running on the user device. In this work, we refer to
different types of communication as the traffic type, namely audio (Rtr = 12.2 kbps), video (Rtr = 144
kbps) and data (Rtr = 384 kbps) flows.1 Accordingly, we distinguish different requirements for different
traffic types as presented in [HT02]. We summarize these parameters in Table 7.1.

traffic type required SINR processing gain required CIR
pilot ≈ -6 dB 14.3 dB -20 dB

audio, Rtr = 12.2 kbps 5 dB 25 dB -20 dB
video, Rtr = 144 kbps 1.5 dB 14.3 dB -12.8 dB
data, Rtr = 384 kbps 1 dB 10 dB -9 dB

Table 7.1: UMTS parameters [HT02].

In wireless networks, the authorities impose a transmission power limit to the devices. In UMTS
networks, the base stations must emit their signal below 43 dBm = 20 W [HT02]. This limit is called
the downlink power budget. In addition, this power budget must be split between the control channel
signals, such as the pilot signal, and the traffic channel transmissions. The actual utilization of the power
budget is called the load of the base station. As the load increases, the bit-error-rate (BER) at the user
devices increases exponentially [HT02]. Hence, the BS load is typically kept such that the BER does not
exceed a certain threshold, for example 10−3. Here, we assume that the BS load is kept below 10 W.

In order to determine the average usage of the two networks, we developed a numerical simulator
in MATLAB. We summarize the parameters of our simulation in Table 7.2. In each simulation run, we
distribute the users according to the uniform distribution2 and calculate the number of users that attach to
each of the BSs based on the physical model developed in this section (i.e., using Equations (7.1)–(7.8)
and the requirements shown in Table 7.1). We repeat this experiment several times for each power setting
and we obtain the average number of users at each BS.

1For simplicity, we consider only constant bitrate traffic.
2Note that we use a random uniform user distribution in our study, but our qualitative results hold for any user distribution.
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Parameter Value
simulation area size 1 km2

BS positions (250 m, 500 m) and
(750 m, 500 m)

default distance between BSs, d 500 m
user distribution random uniform
number of simulations 500
default path loss exponent, α 4
BS max power 43 dBm = 20 W
BS max load 40 dBm = 10 W
BS standard power, P s 33 dBm = 2 W
BS min power 20 dBm = 0.1 W
power control step size, Pstep 0.1 W
orthogonality factor, ζ 0.4
other-to-own-cell interference factor, η 0.4
user traffic types: audio, Rtr = 12.2 kbps

video, Rtr = 144 kbps
data, Rtr = 384 kbps

required CIR (audio, video, data): -20 dB, -12.8 dB, -9 dB
expected incomes (θaudio, θvideo, θdata): 10, 20, 50 CHF/month

Table 7.2: Simulation parameters (based on [HT02]).

7.2.2 Power Control Game

We model competitive power control using game theory [FH06a, FT91, Gib92, OR94]. We define a two-
player non-cooperative power control game G with the operators as players. In this game, the strategies
of the operators determine the pilot transmission power of their base stations. Formally, we can write the
strategy of operator i as the pilot signal power value of his BS:

si = Pi (7.9)

where 0 W < Pi < 10 W is the pilot signal power of BS i. According to the UMTS standard, the BSs
transmit their pilot signal with approximately 33 dBm = 2 W. We denote this standard pilot power by
P s. We call the set of strategies of all players a strategy profile s = {s1, s2}.3 In our game, the players
have the same strategy set S.

The operators define their strategies in order to maximize their expected payoff ui:

ui =
∑

v∈Mi

θv (7.10)

where θv is the expected income obtained by serving user v of a certain traffic type. Suppose that each
user has the same traffic type, for example audio. Then the expected payoff obtained at BS i is:

ui = |Mi| · θaudio (7.11)

3Note that one can easily extend the definitions in the power control game to several BSs and operators.
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We further assume that the income4 per user increases according to the data rate of the given service,
thus θaudio < θvideo < θdata. We obtain the expected income by performing several simulation runs with
various pilot power settings as described in the previous section. This results in an expected payoff matrix
for the two players. We apply the classic game-theoretic concepts on this payoff matrix. We express the
payoffs of the players in Swiss francs (CHF) to emphasize the monetary advantage.

In order to get an insight into the strategic behavior of the operators, we apply the game-theoretic
concepts of best response, Nash equilibrium and Pareto-optimality introduced in Sections 1.2.3 and 1.2.6.

We present our results using a symmetric scenario of the base stations and assuming that the users
are uniformly distributed in the simulation area. Note that the result qualitatively hold for and base
station placement and any user distribution. Naturally, in these cases, the Nash equilibrium strategies
and payoffs are going to by asymmetric.

7.3 Is There a Power Control Game?

In this section, we study the behavior of the operators in a single-stage game. We first assume that one
of the operators does not play and show that the other operator has an incentive to be strategic.5 Second,
we consider the case in which both operators have the possibility to adjust their pilot power and show
that they are better off by doing so. We obtain our simulation results using the simulation environment
described in Section 7.2.1.

7.3.1 Only Operator A is Strategic

First, we consider the case where only operator A is strategic and adjusts the pilot power of his BS
to attract more users, whereas operator B operates his BS according to the standard pilot power of
P s = 2 W. To quantify the advantage of the strategic player, we define the concept of normalized payoff
difference ∆i.

Definition 7.1. The normalized payoff difference ∆i is the normalized difference between the maximum
payoff of player i and his payoff using the standard power P s assuming that the other player j uses P s.

∆i =
maxsi (ui(si, P

s))− ui(P s, P s)
ui(P s, P s)

(7.12)

Suppose that there are on average 10 users of the data traffic type in the simulation area. We show the
payoffs of players A and B as a function of the pilot signal power PA as well as the sum of their payoffs
in Figure 7.2. Figure 7.2a shows these payoffs for α = 2, whereas Figure 7.2b presents the same results
for α = 4. We observe that in both cases the operators are able to serve all users in the area using certain
power values. If all users are served, then the game is a zero-sum game. In the zero-sum game, if player
A adjusts his pilot power and obtains the increase of ∆A, he causes the decrease of ∆A in the payoff
of the non-strategic player B. Furthermore, the payoff function of operator A has a unique maximum
point. It is interesting to observe that the maximum payoff point requires a higher pilot power than P s =
2 W. Because the two operators serve all the users in this case, the normalized payoff difference ∆A of
player A means the decrease of ∆B in the payoff of the non-strategic player B. Hence, we conclude that
operator A should be strategic and adjust his pilot signal. Note that we get qualitatively the same result
for different user traffic types.

4Note that the income is defined by the total amount of downloaded data, which can vary according to the length of com-
munication sessions. If we change these income values, our results only change quantitatively, but not qualitatively.

5Due to symmetry, we only show the results for player A.
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Figure 7.2: Payoffs of the players as a function of the pilot power of player A for 10 data
users: (a) for α = 2 and (b) for α = 4. We also show the normalized payoff difference
∆A as a function of (c) the path loss exponent α and (d) the distance d between the two
BSs.

Figures 7.2a and Figure 7.2b show that the value of the normalized payoff difference ∆A depends
on the parameter α. We show this dependency in Figure 7.2c. One can observe that ∆A increase as α
decreases. The reason is that by low α values the pilot signals propagate easier giving a higher benefit
to A if he uses higher pilot power. The value of ∆A also depends on the distance d between the two
BSs as shown in Figure 7.2d. As the distance decreases, ∆A increases exponentially. The reason for this
increase is the same as discussed before. In the remainder of the chapter, we choose the conservative
default values α = 4 and d = 500 m for the simulations. We will show that even with these conservative
values, the players have an incentive to fine-tune their pilot powers.

7.3.2 Both Operators are Strategic

In the second set of simulations, we assume that both operators adjust their pilot power. We still consider
10 data users in the simulation area. We provide the payoff of player A as a function of his pilot power
PA in Figure 7.3a. We obtain different payoff curves as the pilot power of the other BS PB increases.
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Figure 7.3: Payoff of player A as a function of his pilot power if there exist 10 data users.
Both operators are strategic, hence we present this payoff for various values of PB in (a).
We show the complete payoff surface in (b).

We can observe that each of the payoff functions has a unique maximum point for PA. Moreover, this
maximum point depends on the pilot power of the other BS, PB . For low values of PB , the maximum
payoff value decreases as PB increases. In Figure 7.3b, we show the payoff surface for operator A as a
function of the pilot power values of the two BSs.
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Figure 7.4: Best response functions for the two players with (a) 10 data users, (b) 100
data users.

Using the two payoff surfaces, we derive the best response functions (i.e., the set of maximum payoff
points) for the operators as shown in Figure 7.4 for various user densities. Based on the concept of best
responses introduced in Section 7.2.2, we can identify the Nash equilibria in the power control game as
shown in Figures 7.4a for 10 data users and Figures 7.4b for 100 data users. We see that there exists a
unique Nash equilibrium point defined as the crossing point of the two best response functions. Note that
for 10 data users the Nash equilibrium strategy profile defines PA = PB = 6 W, which are higher than
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Figure 7.5: Nash equilibrium pilot power values as a function of the user density.

the standard pilot powers. For 100 data users the Nash equilibrium strategy profile defines PA = PB =
0.5 W. The reason is that the capacities of BSs saturate by using a relatively small power and hence there
is no reason for them to go above these pilot power values.

Next, we study the pilot power values in the Nash equilibrium as a function of the number of users.
We show the results in Figure 7.5. Due to symmetry in the user distributions, the Nash equilibrium pilot
power is the same for both players. We observe that the Nash equilibrium pilot powers decreases as the
number of users increases. For high user densities, the Nash equilibrium pilot powers stabilize at the
value of 0.5 W.

In the following set of experiments, we study the efficiency of the system in a Nash equilibrium with
respect to the case in which the players both use the standard power P s. To this end, we investigate the
payoff region, i.e. the payoff values for various pilot power levels. We identify the payoffs corresponding
to the Nash equilibrium, the standard pilot power setting using P s and the payoffs that correspond to
Pareto-optimal strategy profiles. In particular, we can define the Pareto frontier as the set of Pareto-
optimal payoff points. In our case, the Pareto-optimal payoff points characterize the system-efficient
solutions.

Figure 7.6a shows the achieved payoffs as a function of the pilot power values PA and PB for 10
data users. We observe that in this case the Pareto frontier defines a straight line, because in a Pareto-
optimal strategy profile each user in the system is attached to one of the BSs. Furthermore, the standard
pilot powers and the Nash equilibrium strategy profile result in the same payoffs for the players and in
addition they both lie on the Pareto frontier. This means that the players achieve a desirable state from
the system point of view. Recall, however, that in this case the Nash equilibrium strategy profile requires
higher pilot powers than the standard setting.

We present the payoffs for 100 data users in Figure 7.6b. In this case the Pareto-optimal points do
not form a straight line anymore, because some users cannot be served. Another observation is that the
Nash equilibrium is still close to Pareto-optimality, but the standard solution becomes very inefficient.

Following the previous experiment, we formally express the efficiency of the standard and the Nash
equilibrium solutions compared to the best Pareto-optimal point (i.e., the Pareto-optimal strategy profile
in which the sum of the payoffs for the two players is maximized). To this end, let us define the following
two concepts:

Definition 7.2. The price of anarchy [KP99] is the ratio between the total payoff achieved by the two
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Figure 7.6: The payoff region with all possible payoffs for (a) 10 data users and (b) 100
data users. We highlight the Nash equilibrium, the payoff of the standard powers and all
Pareto-optimal points.

players in the best Pareto-optimal point and in the Nash equilibrium.

Definition 7.3. The price of conformance is the ratio between the total payoff achieved by the two players
in the best Pareto-optimal point and when using the standard pilot powers P s (i.e., being non-strategic).

We perform a set of experiments to measure these values for increasing user densities. Figure 7.7
presents the price of anarchy and the price of conformance as a function of the user density assuming they
have data traffic. We see that both prices increase as the number of users increases. As we have seen in
Figure 7.6a, both the standard payoff point and the Nash equilibrium achieves Pareto-optimality if there
is a small number of users. Hence, the two prices are very close to one. As the user density increases, we
observe that both prices increase and then stabilize around a constant value. Note, however, that the price
of anarchy stabilizes close to one, whereas the price of conformance stabilizes around 1.4. This shows
that for a high number of users, the players can achieve a higher payoff if both of them are strategic.

7.4 Convergence to a Nash Equilibrium

We have seen in the previous section that the expected payoff function for a certain player is continuous
and has a unique maximum point. In this section, we propose a distributed algorithm to achieve the Nash
equilibrium in a given scenario.

The algorithm is similar to the better-response dynamics [FM01], i.e., where each player tries to
improve his payoff in each step. They continue to increase their pilot powers, until they pass over the
maximum payoff point and then they change to pilot power decrease. The players stop the optimization
if they reach their maximum payoff again. Since the two players might change their pilot powers in the
same optimization step, they define the payoff curve for the other player (i.e., as presented in Figure 7.3a).
Thus, the payoff of player i that stopped optimizing might change due to the strategic behavior of the
other player j. If this is the case, player i continue the optimization procedure. Due to the above
properties, the convergence algorithm might oscillate around the maximum payoff points. To resolve
this potential instability, we include a probability with which the players update their pilot powers in
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Figure 7.7: The price of anarchy and the price of conformance as a function of the user
density.

each step and denote it by q. This probability ensures that sequential moves appear in the distributed
optimization. We provide the pseudo-code for this procedure as shown in Algorithm 7.1.

Algorithm 7.1 Distributed convergence algorithm to achieve the NE
1: for all player i do
2: set pilot power Pi = 0.1W
3: set the direction of optimization diri = +1
4: end for
5: set power control step size Pstep = 0.1W
6: while ∃ BS that optimizes do
7: for all player i do
8: if ui changed compared to previous step then
9: CONTINUE the optimization for player i

10: end if
11: update Pi with a probability 0 < q < 1
12: Pi = Pi + diri · Pstep

13: if ui decreased then
14: {the optimization passed the maximum payoff value}
15: diri = −diri
16: end if
17: if reached the previously passed maximum payoff point again then
18: STOP optimization
19: end if
20: end for
21: end while

Figure 7.8 shows the evolution of the pilot power values applying Algorithm 7.1. We observe that
the pilot power values follow the linear increase defined in the algorithm. After reaching the Nash
equilibrium pilot power values, the algorithm stabilizes after certain steps.

Figure 7.9 shows the evolution of the payoffs during the convergence process. We see that the
algorithm deviates from the Nash equilibrium payoffs while the pilot powers increase. As soon as the
pilot powers reach the Nash equilibrium strategies, the payoffs remain close to the Nash equilibrium
payoffs as well.

Figure 7.10 shows the convergence path to reach a Nash equilibrium. Because the Nash equilibrium
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Figure 7.8: The evolution of the pilot power values using Algorithm 7.1.
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Figure 7.9: The evolution of the payoffs using Algorithm 7.1.

payoffs are almost equivalent to the starting payoffs, one might ask why the players start the optimization
at all. We can observe from Figure 7.10, however, that the players reach higher payoffs during the
optimization procedure. Since for low user densities, the game is a zero-sum game, the increase of ui

means the decrease of uj . Player j adjusts his pilot powers as soon as he becomes aware of this loss.
Hence, the payoffs equalize again.

7.5 Power Control Game with Power Cost

We have seen that the operators are able to serve all users in the area if the user density is low. We
observe, however, that the Nash equilibrium pilot powers are higher than the standard value. Recall that
the payoff function defined in (7.10) does not include the possible cost due to the operation with high
pilot power. Let us now extend the expected payoff function defined in (7.10) to capture this important
aspect of the power control game. We introduce two cost values for each player. The first cost denoted
by Cop

i shows the operating cost of a BS i. This includes the aging of devices and hence the maintenance
costs. The other cost, Csubj

i , expresses the subjective cost of player i. This covers every other aspect such
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Figure 7.10: Convergence path of an example simulation run using Algorithm 7.1.

as the risk of lawsuits or potential bad reputation due to high emission power. Without loss of generality,
we assume that these cost are an increasing function of the downlink transmission power of the base
stations.

According to the above description, we can extend the notion of expected payoff as:

ui = (
∑

v∈Mi

θv)− Cop
i − Csubj

i (7.13)

We define a non-cooperative power control game with the new expected payoff function introduced
in (7.13) and denote it by Ĝ. We assume that the players are able to calculate the Nash equilibrium of
the original game G with no power cost. Hence we define the strategy in the extended game Ĝ as the
choice between the standard and the Nash equilibrium strategies. Formally, we can write the strategies
in Ĝ as:

si = {P ∗
i , P s} (7.14)

Let us call U the expected payoff that the players obtain by serving half of the total number of users. As
we have seen in Section 7.3.2, if they play the Nash equilibrium strategy profile by low user densities,
then it requires a higher pilot power from each operator. Without loss of generality, we denote by C∗

the additional cost imposed by the Nash equilibrium compared to the standard pilot power setting P s.
The cost C∗ includes both the operating and the subjective costs. Recall that we defined the normalized
payoff difference ∆A in Section 7.3.1. Due to symmetry ∆A = ∆B and we denote it by ∆. In the
extended game Ĝ, we assume that the normalized payoff difference is higher than the corresponding
cost of using higher pilot power, thus ∆ > C∗.

We present the payoff matrix of the game Ĝ in Table 7.3. In each payoff pair, the first payoff belongs
to player A, whereas the second to player B.

To emphasize the structure of the payoff matrix, let us substitute the values U = 3, ∆ = 2 and C∗ =
1. Substituting these values in Table 7.3, we obtain Table 7.4. From the payoff matrix, one can realize that
the game Ĝ is equivalent to the well-known Prisoner’s Dilemma [FT91, Gib92, OR94]. Analogously, the
strategy P s corresponds to cooperation, whereas the strategy P ∗

i corresponds to defection. This means
that in the Nash equilibrium, each player uses high power and the resulting payoffs are lower than if both
had complied.
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Player B
P s P ∗

B

Player A
P s U ,U U −∆,U + ∆− C∗

P ∗
A U + ∆− C∗,U −∆ U − C∗,U − C∗

Table 7.3: Payoff matrix of the game Ĝ.

Player B
P s P ∗

B

Player A
P s 3,3 1,4
P ∗

A 4,1 2,2

Table 7.4: The extended power control game Ĝ corresponds to the Prisoner’s Dilemma.

7.6 Related Work

Power control has been extensively studied in the context of cellular networking. Baccelli et al. [BBT03]
consider downlink power allocation and admission control in CDMA networks relying on stochastic
geometry. Hanly and Tse [HT99] as well as Catrein et al. [CIM04] consider power control and capacity
in CDMA networks. There is a very little literature about pilot power optimization, though [KCL99,
VY03].

Game theory is used to study the power control of user devices in wireless networks, notably in
cellular systems as studied in [ABSA02, AFB+05, GM01, HBH06, JH98, MW01, MCPS05, LMS02,
XSC03] and [ZZHJ04]. A general framework for resource allocation in wireless network is addressed in
[DCS03].

Recently, the coexistence of multiple Internet Service Providers (ISPs) was studied by Shakkottai
and Srikant in [SS05]. They consider both transit and customer prices for the ISPs. They show that if
the number of ISPs competing for the same customers is large, then it can lead to price wars. In another
paper [SAK06], Shakkottai et al. consider the problem of non-cooperative multi-homing in WLANs.
Zemlianov and de Veciana study a scenario in [ZdV05], in which users are able to choose between a
cellular network and a Wi-Fi network. They show that congestion sensitive strategies are better than
proximity-based strategies. Félegyházi and Hubaux [FH06b] consider the competition between different
operators in terms of pilot power control of their base stations. They show that in the pilot power control
game a socially desirable Nash equilibrium exists and that it can be enforced by punishments.

7.7 Summary

In this chapter, we studied the problem of competitive pilot power control in two CDMA networks that
reside on two sides of a national border. We were motivated by many real-life complaints from cellular
network users. This problem is especially significant in cities such as Geneva, where the French network
attracts users on the Swiss territory.

We investigated whether the operators of these networks have an incentive to adjust their pilot signal
powers. To get an insight into the problem, we considered the single-cell case with two base stations.
Initially, we assumed that only one operator can adjust the pilot signal power of his base station. We
showed that he has an incentive to behave strategically and quantified the effect of various parameters
on the increase of his payoff. We further showed that when the user density is low and if both operators
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behave strategically, then their payoffs are similar whether they adjust their pilot powers or not. We
recognized that the two solutions require different pilot powers. If the user density is high, then the Nash
equilibrium is more efficient than using the standard pilot powers, which suggests that the operators again
have an incentive to be strategic. Finally, we extended the payoff function to include the cost of using
high pilot powers. The game with power costs corresponds to the well-known Prisoner’s Dilemma:
The players still have an incentive to adjust their pilot powers, but their strategic behavior leads to a
sub-optimal Nash equilibrium.

Border games represent an interesting and rarely advertised problem in cellular networks. Several
real-life examples show that this problem is a real burden to users who live near national borders. From
our private communication with cellular operators, our impression is that they do not pay enough at-
tention to the problem, mostly for financial reasons or because they indeed benefit from the accidental
roaming of the users. In this chapter, we uncovered the fundamental mechanisms that drive the operators
towards this behavior. The goal of our work is twofold: we want to raise the awareness of the users and
to help the operators to counter this problem by showing them the appropriate game-theoretic tools.

Publication: [FCDH07]
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Conclusion

Wireless networks provide services that have become crucial to our everyday life. The recent evolution of
wireless networks points towards decentralized wireless access: On the users’ side, devices have become
more sophisticated and programmable than before; on the operators’ side, wireless infrastructure devices
(such as access points) have become affordable and easily manageable. This ease of programming for
both users and operators opens the door to selfish behavior: (i) the users can selfishly modify the original
programs of their devices in order to exploit the available network services and (ii) prospective wireless
operators can easily deploy their networks and compete with existing large operators.

In this thesis, our objective is to assess the effect of selfish behavior on the efficiency of wireless net-
works. We studied this effect in a wide range of wireless networks and for a set of important problems.
In our study, we relied on the framework of non-cooperative game theory. Our analysis characterized
the vulnerability of wireless networks to selfish behavior and enabled us to suggest game-theoretic tech-
niques to counteract.

In the first part of the thesis, we introduced game theory with examples tailored to wireless network
engineers. This comprehensive summary is important, because, at the time of this writing, virtually all
of the available textbooks about game theory are written for the practitioners of other disciplines, e.g.
for economists or political scientists. Our game theory tutorial enables wireless engineers to get a flavor
of incentive design and hence educates them to take this important aspect into account at the design of
wireless communication protocols.

In the second part of the thesis, we made several contributions studying the efficiency of wireless
networks with selfish users. First, we formalized the channel allocation problem in competitive wire-
less networks using a non-cooperative, single-stage game. Based on this model, we showed that a Nash
equilibrium channel allocation achieves load balancing over the set of available channels. Another con-
tribution was the detailed study of the efficiency and fairness properties of the Nash equilibria relying
on the widely-known concept of the price-of-anarchy and max-min fairness, respectively. We pursued
our analysis to identify a subset of Nash equilibria that are also resistant against a coalition of selfish
users. Finally, we designed two convergence algorithms to achieve the load-balancing Nash equilibria
and proved their convergence theoretically or by simulations. The results show that efficient channel
allocation can be reached even if the devices are selfish. This is particulary encouraging because the
channel allocation model can be easily extended to model upcoming mesh and cognitive radio networks.

Second, we studied whether incentives in packet forwarding are needed to encourage participants in
an ad hoc networks. Unlike existing work, we provided a formal model for static networks that takes the
topology into account. We derived a cooperative solution from this model, but our results showed that the
likelihood that spontaneous cooperation exists in general is very small. Thus, we concluded that external
incentives are required to maintain cooperative packet forwarding in ad hoc networks. Extending our
previous results, we studied the effect of mobility on cooperation. We concluded that mobility promotes
cooperation, although some generosity of the participants is always required to bootstrap the network
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operation.

The recent evolution of social networks on the Internet are driven by the users. We believe that a
similar evolution might happen in the wireless domain. In fact, social community networks based on
WiFi are already extending to provide wireless access. Our results show that selfish users degrade the
performance of such social wireless networks, but this undesired effect can be countered by appropriate
behavior of the other users in repeated interactions. Our results apply to user operated networks such as
community mesh networks or mobile personal area networks.

In the third part of the thesis, we contributed to ongoing research in wireless sensor networks and
shared spectrum communication. In this part, we focused on wireless networks run by non-cooperative
operators. First, we proposed a game-theoretic model to investigate the potential of cooperation in a
joint packet forwarding and power control problem. Our results showed that the benefits of energy
saving encourages the sensor network operators to cooperate. The advantage of cooperation is twofold:
(a) the authorities can largely benefit by providing service of their sinks for other’s sensor networks and
(b) if sinks are common resources, then cooperative packet forwarding is beneficial for sparse networks
or in hostile environments. These results show viable methods to improve the performance of sensor
networks using cooperation.

Second, we envisioned a scenario where users can freely roam across cellular networks operated
in a shared spectrum and considered the competitive power control of these networks. We provided a
formal model of a single-stage game for this scenario and identified the Nash equilibria depending on the
sensitivity of networks operators to interference. In a repeated game, we showed that a socially desirable
Nash equilibrium (i.e., the one that produces the least interference) can be enforced and we presented a
strategy to achieve it. Although we focus on cellular networks in our model, our results show guidelines
for the coexistence of other wireless networks, such as WiFi networks.

Finally, we turned our attention to existing 3G cellular networks and highlighted an important short-
coming, namely the existence of cross-border interference. We were motivated by many real-life com-
plaints of the cellular network users. We developed a game-theoretic model of pilot power control and
showed that the operators have an incentive to behave strategically at their borders, i.e., to adjust the
transmit power of their pilot signals. We studied the existence and properties of Nash equilibria in an
empirical model and showed their efficiency for different user densities. We provided a distributed con-
vergence algorithm to achieve the identified Nash equilibria and characterized its convergence properties.
We also extended the payoff function to include the cost of using high pilot powers. The game with power
costs corresponds to the well-known Prisoner’s Dilemma: The players still have an incentive to adjust
their pilot powers, but their strategic behavior leads to a sub-optimal Nash equilibrium. This implies that
cellular operators should carefully agree about their pilot power control on national borders.

Competition between wireless operators increases with the emergence of new wireless networks. We
studied the coexistence of wireless operators in existing and prospective wireless networks. Our results
demonstrate that the strategic behavior of wireless operators can result in a in undesired operation of
their networks (e.g., by using high transmission powers). But, we have shown appropriate coordination
techniques that can mitigate the effect of selfish behavior. We have shown that by using distributed
coordination relying on game theory, the wireless operators can avoid the undesired network operation.
These results give guidelines on how to design incentive-aware protocols in future wireless networks
with heterogeneous technologies and operators.
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Future Research Directions

In this thesis, our main focus was to study incentives for cooperative behavior in wireless networks. In
existing works, various incentive mechanisms were proposed to promote cooperation, for example in
packet forwarding in ad hoc networks, but their need was never formally justified. Based on the second
part of the thesis, in the future we will focus on designing incentives in prospective wireless networking
technologies, notably in cognitive radio. We believe that incentives for cooperation in cognitive radio
networks are essential, because cognitive radio devices are strategic by definition.

Pervasive wireless networking is a vision shared by many researchers. To achieve this goal, wireless
networks have to coexist such that users can use their services regardless of time and location. Based
on the third part of the thesis, we will further study the coexistence of wireless networks, notably in
unlicensed spectrum. We will pay particular attention to the competition between unlicensed network
operators providing best-effort services (e.g., WiFi networks) and licensed network operators with guar-
anteed quality-of-service (e.g., cellular networks). We believe that competition between various network
operators will further increase as more and more networking services based on pervasive data access are
available.

We are also interested in incentive problems in the area of security and privacy. Existing examples
show that current security protocols to protect systems and the privacy of users do not work properly.
Most of the time, the basic security protocols are correct, but there are inappropriate or there are not any
incentives to apply them correctly. Hence, a promising research area is the design of incentive schemes
that facilitate the appropriate deployment of security and privacy protocols.
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major in telecommunication, minor in mobile communication
Hungarian and German certificate (from UNIVERSITÄT KARLSRUHE (TH), GERMANY)
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