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Abstract: In this paper we propose a hybrid approach minimizing the active torque produced by muscles groups at the 
joint level. The proposed approach is hybrid in the sense that it combines the local knowledge of the 
external torque induced by external forces such as gravity and exerted force, and the full knowledge of the 
passive-resistive torque characteristics due to ligaments and connective tissues. The algorithm is exploited 
within a context of posture adjustment when a muscle group reaches a critical fatigue level. It proposes a 
target joint state that can be characterized as active or passive. The active solution, if it exists, can be further 
characterized by a desired degree of active torque amplitude reduction (between 0 and 100%). In any cases 
at least one passive solution exists; it relies on the passive/resistive torque appearing in the neighbourhood 
of the joint limits. 

1 INTRODUCTION 

Postures and motions generated by the human body 
are very difficult to simulate since it has so many 
interrelated muscles that produce movement. 
Muscles contractions are directly influenced by 
physiological factors such as fatigue or 
psychological factors such as the state of mind. 
Biomechanical and biomedical studies have 
modelled some of these factors (Kulig et al., 1984) 
(Kumar, 1986). In Computer Animation, Multon 
proposed a simulation environment where 
biomechanicians could experiment on the motion 
dynamics of a virtual arm (Multon, 1998). Komura 
combined Delp’s musculoskeletal model (Delp, 
1990) and Giat’s fatigue model (Giat et al., 1993) to 
deal with full body character animations (Komura et 
al. 2001). 

The present paper is complementary to prior 
studies in computer animation in the sense that we 
investigate, at the joint level, how to reduce the 
active torque as a function of an active or a passive 
strategy. Indeed, this factor strongly influences the 

postures adopted by individuals leading to reactive 
or relaxed postures as recalled now. Early studies 
showed that people resting with no immediate action 
to do, tended to adopt asymmetrical (left/right body 
side bears body weight) poses such as the pelvic 
slouch (Evans, 1979). An asymmetrical posture is a 
relaxed pose, incompatible with sudden responses. 
For example, people waiting to be collected or 
waiting for the bus. If there is a possibility of having 
to do something, people adopt a symmetrical 
standing (standing people such as police officers, 
waiters, etc.). In an asymmetrical stance, the knee of 
the supporting limb is fully extended and the thigh 
fully adducted, therefore knee and hip joints finish 
up hanging on their ligaments which produce 
passive moment. This is also known as the 
contraposto posture in sculpture (e.g. “David” of 
Michelangelo). 

Our hypothesis is that active torque, produced by 
the muscle activation, can be reduced by means of 
two strategies: either an active strategy searching for 
a solution while staying in the mid-range of the joint 
where the muscle efficiency is the highest, or a 
passive one searching for the always existing 
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passive-resistive solution that compensates the 
external torque in the neighborhood of the joint 
limits. Considering these strategies allows to 
generate a larger space of realistic postural solutions; 
the active strategy achieves reactive poses while the 
passive one produces relaxed poses. 

The paper presents an initial evaluation of a 
general algorithm of hybrid minimization of the 
active torque under the quasi-static hypothesis. It is 
illustrated on a simple case study (i.e. the elbow 
joint) to characterize the various convergence 
configurations arising from its specificity of 
exploiting the local knowledge of the external torque 
and the full knowledge of the passive torque 
behavior.  

2 ACTIVE TORQUE REDUCTION 
SCHEME 

Under the quasi-static hypothesis, the sum of all 
torques is null for all joints. Therefore the joint 
active torque τa can be expressed as follows:  
 

)( epa τττ +−=  (1) 
where, τp and τe represent, respectively, the current 
passive and external joint torques. The external 
torque τe is produced by gravity and any other 
external forces, while the passive torque τp is due to 
the resistance of the joint surrounding tissues 
(ligaments and connective tissues) to be extended or 
compressed. A null active torque is achieved when:  

pe ττ −=  (2) 
This is illustrated on Figure 1 where we have 

three postures (photos) with a null active torque for 
the elbow joint. 

 

 
Figure 1: Frontal elbow case study highlighting the 
passive torque (blue), the external torque (red), resulting 

active torque (brown) and minus active torque (dotted 
brown) under the quasi-static hypothesis. In this case, only 
the elbow joint is varying. 

2.1 Muscle action strategy 

Our system introduces the muscle action strategy in 
order to determine the influence of passive/resistive 
torque (Hatze, 1997) in the active torque reduction 
process.   

An active strategy strives to find a solution close 
to the mid-range of the joint where the muscle group 
is efficient to produce its active torque, τa. Such a 
region can be also characterized by a quasi-null 
passive resistive torque (τp≈0, see Figure 1).  

The passive strategy only exploits the joint 
passive torque to compensate the action of the 
external torque. Such a solution is always in the 
neighborhood of the joint limits, resulting in less 
reactive/responsive muscles groups because muscles 
forces are small even for a high degree of activation. 

In the scenario from Figure 1, only the elbow 
joint is allowed to move. Three postures with a null 
active torque are highlighted (with a photo below). 
The one in the central joint range is the active 
solution as it maximizes the muscle activation 
efficiency while the other two are purely 
passive/resistive, hence less responsive.  

2.2 Hybrid algorithm 

The proposed approach is hybrid in the sense that it 
combines the local knowledge of the external torque 
τe and the full knowledge of the passive-resistive 
torque characteristics τp.  

Indeed, in the general case, the number of 
considered joints can be arbitrary large leading to 
unknown variation of the external torque at the 
individual joint level. In the quasi-static context we 
can simply evaluate its current value τe, by means of 
the principle of the virtual works (Craig, 1986) and 
its current first derivative, dτe (section 3). As a direct 
consequence, the algorithm we propose exploits only 
a linear extrapolation of the external torque based on 
this information. 

On the other hand, we assume we know the 
passive torque function τp over the full joint range 
from the Biomechanics literature (Esteki and 
Mansour, 1996). 

As a side remark, in the use-cases illustrating the 
paper (Figure 1, Figure 10, Figure 12), the external 
torque is induced by the gravity, and the only joint 
that moves is the elbow. This allows to draw the 
external torque function (i.e. the red curve); however 



only the local knowledge of the external torque is 
exploited in the result section.  

In addition to the specification of the strategy 
type - active vs passive - the active strategy selects 
its solution based on a normalized quantity called 
the active torque decrease ratio R characterizing the 
quality of the optimized active torque. We have:  
 

R = (τa - τa_min) /τa  (3) 
 
where τa represents the current active torque, τa_min is 
the estimated local minimum of the active torque 
amplitude, when it exists, in addition to the null 
global minima achieved with the passive strategy. 

When τa_min is null, a 100% of τa decrease ratio is 
achieved. This is the ideal case. In other less optimal 
cases smaller values of R are achieved. For this 
reason, the active strategy accepts a threshold level 
Rmin on this quantity (potentially user-defined). 
Whenever R is smaller than Rmin then the solution 
provided by the active strategy is not accepted and 
the algorithm switches to the always-existing 
extremal passive solution. For example, a Rmin value 
of 0.9 means that the user agrees to have down to 
only 90% compensation because the remaining 10% 
of active torque is a bearable amplitude. This favors 
solutions lying in the mid joint range characterizing 
a more reactive posture, even if they are not fully 
optimal in terms of amplitude. 

Table 1 details the algorithm providing the angle 
θg with reduced active torque. Its input is the current 
joint state θc, the active strategy boolean, the current 
values of τe, τp and τa, the current first derivative of  
the external torque dτe and of the passive torque dτp 
(tabulated), and the threshold Rmin.   

 

   
Figure 2: Sign of τa with equality tolerance ετ 

The following constants or precomputed 
information are useful for the algorithm too:  

θdτ_p(dτp): given the slope of the external torque 
dτe, this function searches for the angle(s) where 
dτp=-dτe. 

dτp_min: smallest passive torque slope (absolute value). 

θdτ_p_min: joint angle for which dτp= dτp_min. 
θs_min, θs_max: pair of angle values on both sides of   

θdτ_p_min for which dτp=-dτe. 
ετ: equality tolerance for  τe = -τp. 

Two useful temporary variables are: 
τa_min: value of the estimated τa minima. 
θτ_a_min: if (τa>0)θτ_a_min=θs_maxelse θτ_a_min=θs_min. 
In addition, the Dichotomy function allows to 

find the goal angle where the extrapolated external 
torque line intersects with the opposite of the passive 
torque function (dotted curve in Figure 2). Two 
variants of searching DSS and DOS are detailed in 
table2. 

   
Search slopes for θdτ_p (−dτe ) 
if no or only one slope  

{ if(|τa| < ετ) θg := θc                                              // CASE 1.1  

  else if(τa > ετ) 

    θg := Dichotomy(θmin, θc, θg) // CASE 1.2  

  else    

    θg := Dichotomy(θc, θmax , θg) // CASE 1.3 

}  

else // two slopes  

{ if(|τa| < ετ) 

  { if( (θs_min < θc  < θs_max) or  

       [(θc <θs_min  OR θc>θs_max) 

       and(sign(τa(θs_min)=sign(τa(θs_max))]) 

             θg  := θc                   // CASE 2.1 

    else  

    { if(active) )           // CASE 2.2 

         Dichotomy(θs_min ,θs_max    ,θg ) 

      else θg  := θc            // CASE 2.3    

    } 

  }else // |τa| > ετ        

  { if(    sign(τa) = sign(τa(θs_min)) 

       and sign(τa) = sign(τa(θs_max)) ) 

    {if(active AND((τa -τa(θτ_a_min))/τa> Rmin) 

                θg  := θτ_a_min                                              // CASE 3.1 

     else                   // CASE 3.2            

       θg := DSS(τa,θmin,θmax, θs_min,θs_max)   

    } 

    else  

    {if(active) )           // CASE 3.3 

         θg := Dichotomy(θs_min ,θs_max) 
   else                  // CASE 3.4 

       θg := DOS(τa,θc,θmin,θmax, θs_min,θs_max) 

          }  } } 

Table 1. Minimum active torque search 



DSS(τa,θmin,θmax, θs_min,θs_max) := Dichotomy( SameSignMinandMax(τa,θmin,θmax, θs_min,θs_max), θg ) 
SameSignMinandMax(input: τa, θmin, θmax, θs_min , θs_max ,output:SameSignMin,SameSignMax) { 
   if(τa > ετ)  //τe is below the curve -τp(θ) 
    {   SameSignMin := θmin, SameSignMax := θs_min  } 
    else      //τe  is above the curve -τp(θ) 
    {   SameSignMin := θs_max, SameSignMax := θmax  } 
} 
DOS(τa,θc,θmin,θmax, θs_min,θs_max):= Dichotomy( OppoSignMinandMax(τa,θc,θmin,θmax, θs_min,θs_max), θg ) 
OppoSignMinandMax (input : τa, θc , θmin, θmax, θs_min , θs_max  output:OppoSignMin,OppoSignMax){ 
    if(τa > ετ) // τe  is below the curve -τp(θ)        
     
      if( θc < θs_max) { OppoSignMin :=θmin,  OppoSignMax :=θs_min  }            
      else          { OppoSignMin :=θs_max, OppoSignMax :=θmax    } 
    } 
    else  // τe  is above the curve -τp(θ)    
    {    
        if( θc > θs_min) { OppoSignMin :=θs_max,OppoSignMax :=θmax  }               
        else          { OppoSignMin :=θmin, OppoSignMax :=θs_min  } 
    } } 

Table 2. Functions defining intervals of dichotomic search (general algorithm-cases 3.2 and 3.4)  

The following figures illustrate the different cases 
of the hybrid minimization. Figure 3a is a case where 
no active solution can be found as no slope in the 
function -τp matches dτe. A passive solution is found 
by dichotomy (intersection of the external torque line 
with the opposite of the passive torque function). In 
Figure 3b the current state is already optimal.  

  

Figure 3: (a) CASE 1.2: no slope in -τp matching dτe, 
(b) CASE 2.1: τετ <|| a  and (θs_min <θc <θs_max) 

  

Figure 4: (a) CASE 2.1: τετ <|| a   and (θc <θs_min  or 
θc >θs_max  )and (sign(τa(θs_min) = sign(τa(θs_max)), 
(b) CASE 2.2,CASE 2.3: τετ <|| a   and (θc <θs_min  

or θc >θs_max)  and( sign(τa(θs_min)) ! = sign(τa(θs_max)) , 

In Figure 4 the current state belongs to the 
equality approximation but this time the joint angle is 
smaller than θs_min, hence one more sign test is  
required to determine whether another joint angle, 
closer to the mid-range, exists. One is found only in 

Figure 4b because the active torque changes sign 
between θs_min and θs_max, while this is not the case 
for Figure 4a. 

 

 

Figure 5: (a) CASE 3.1,CASE 3.2: |τa| > ε 
and(sign(τa)=sign(τa(θs_min))and(sign(τa)=sign(τa(θs

_max))), (b) CASE 3.3 or 3.4: |τa| > ε and 
(sign(τa)!=sign(τa(θs_min))or(sign(τa)!=sign(τa(θs_m

ax)))   

Figure 5 illustrates cases where the current active 
torque is not null (e.g. a downward black arrow 
indicates a negative value). In Figure 5a the two 
angles θs_min and θs_max , with the same slope as dτe 
indicate extrema of the active torque variation (with 
constant sign), the minimum amplitude being 
obtained for θs_min. In Figure 5b the active torque 
changes sign between θs_min and θs_max. If the strategy 
is active a search is conducted within this interval, 
otherwise the closest solution is found. 

a b

a b

a

b



3 ALGORITHM EXPLOITATION  

The reduced active torque algorithm is exploited, 
within a context of posture adjustment, by means of 
an Inverse Kinematics engine (Baerlocher et al., 
2004). When a muscle group reaches critical fatigue 
levels (Rodríguez, 2004), the active torque reduction 
algorithm proposes a target joint angle reducing the 
active torque, hence the fatigue too.  

In our fatigue reduction scheme we enforce a 
hard linear inequality constraint whenever the active 
torque amplitude of a fatigued joint i has to be 
reduced: 
 

i
T
i ba <=θ  (4) 

 
where θ represents the n-dimensional vector of joint 
coordinates, ai is the n-dimensional gradient vector 
of the inequality constraint hyperplane and bi is a 
scalar. Figure 6 illustrates the construction of one 
inequality constraint in 2D, the current configuration 
θ is out of the feasible region, requesting a ∆θ to 
drive it to the feasible region. This variation vector 
has an opposite direction to the constraint gradient 
vector aT: 

 
)(ΔθnormalizedaT −=  (5) 

The scalar product of  aT with any θΗ  lying on 
the hyperplane, such as θ + Δθ, gives the scalar b: 

 
Hθ

Tab =  (6) 
 
We have all the elements, as shown in formula  

(4), that define a fatigue reduction inequality 
constraint for guiding a posture from an unfeasible 
region to a feasible one.   

In the following we describe how the joint 
variation Δθ has to be computed in order to adjust 
the posture leading to a minimization of active torque 
and therefore to a less fatigued posture.  

The vector Jτel gathers the partial derivatives of 
its external torque τel with respect to all joints: 
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(7) 

Its scalar component δτel/δθl for the fatigued joint 
l is the constant external torque derivative dτe used in 
the general algorithm from Table 1.   

To compute Jτel, we need the Jacobians JTi 
associated with the external forces fi  and the gravity 

Jacobian JG associated with the weight w. This is the 
expression of the partial derivative corresponding to 

joint j:  

).().( __ jlG

ne

i
jilTi

j

le rwJrfJ ×+×=∑δθ

δτ
 (8) 

where ne is the number of external forces, JTi_l  is the 
column l of JTi , JG_l  is the column l of JG  associated 
with the weight w, and rj represents the unit axis of 
rotation of joint j. 

 

 
Figure 6. Example of hyperplane in 2D 

The general algorithm presented in Table 1 
exploits the scalar component dτe corresponding to 
δτel/δθl. It proposes a target joint angle θg used to 
build the component l of the posture variation Δθ 
associated to the inequality constraint bringing the 
posture in the fatigue recovery region: 

 
Δθl = min( β (θg - θc), Δθmax) (9) 

 
where θc is the current joint angle, β is a positive 
number smaller than 1 for stability and Δθmax is a 
small amplitude compatible with the small variation 
hypothesis.  

The fatigue reduction constraints are managed by 
hysteresis thresholding which forces a minimal 
duration for the recovery by setting a lower threshold 
for de-activating the constraints. The process is 
iterated to converge toward a fatigue-reducing 
posture that achieves other user-defined tasks (e.g. 
reach, balance, etc…).  

The fatigue reducing constraint is updated and 
maintained until a recovery level is achieved. At that 
point the constraint is deactivated, hence enlarging 
the solution space for achieving the user-defined 
tasks.  

θ1

θ2

a 

b  

feasible region      θ  
Δθ  

baT =θ

baT <θ

unfeasible region  

baT >θ



4 RESULTS 

In this section we focus on three case of elbow 
flexion/extension in various body postures: frontal, 
oblique and lateral upper arm. In all cases, the initial 
posture is due to a position task achieved by Inverse 
Kinematics. This task leads to the emergence of 
fatigue until a critical level that triggers the fatigue 
reduction constraint (Rodríguez, 2004). We 
especially examine the convergence behaviour 
resulting from the iterative hybrid active torque 
minimization until the active torque is effectively 
reduced. This behaviour depends on the strategy type 
active vs passive (see section 2.1) and the user-given 
decreased ratio Rmin (see section 2.2). The active 
torque (yellow curve) is iteratively minimized from 
an initial posture (black point) towards a final one 
where a goal with reduced active torque (green 
point) is achieved. 

It is important to recall that in the three studied 
cases the external torque is induced by the gravity, 
and the only joint that moves is the elbow. This 
allows to draw the external torque function (i.e. the 
red curve on Figure 1, Figure 10 and Figure 12), 
however only the local knowledge of the external 
torque is exploited in the following results. 

4.1 Horizontal upper arm 

The algorithm case 3.2 is first iteratively executed in 
Figure 7 for an active strategy with Rmin=1. The 
resulting choice provided by the algorithm is 
however a passive solution for the elbow because the 
desired 100% reduction of the active torque cannot 
be achieved in the mid-range of the joint from the 
extrapolation of the rather flat external torque slope 
(see Figure 1). As the active torque is positive (τe is 
below the –τp(θ) curve), a dichotomic search is done 
between θmin and θs_min. After some iterations 
executing case 3.2, the case 2.1 is executed as the 
joint active torque is becoming smaller than ετ (i.e. 
the current external torque is between the two small 
dotted curves shown in Figure 2). As the current state 
is close to the limit region and the active torque does 
not change sign between θs_min and θs_max, the 
algorithm keeps the current state as goal state (see 
Figure 4a). In addition, the convergence illustrated in 
Figure 7 is also obtained for a passive strategy.  

In Figure 7 and Figure 9 there is a discontinuity 
at the end of the convergence towards the goal; this 
is due to the use of a reshaped passive torque 
function. It is done via the inclusion of two linear 
terms close to both joint extremes. It ensures that, for 

extreme passive solutions, passive torque value is big 
enough to compensate external torque. 

 
Figure 7. 1) Rmin=1 and active strategy  2) passive strategy. 
Algorithm’s cases 3.2 and 2.1 are successively executed 

In Figure 8 the strategy is also active but the 
given minimal reduction ratio, Rmin, is much smaller 
with a value of 0.2. So it is possible to find a mid-
range solution where at least a 20% of active torque 
reduction is achieved. The case 3.1 is first executed, 
the goal angle being defined by θτ_a_min which value 
for a positive active torque is θs_max (i.e. τe is below 
the –τp(θ) curve). After some iterations, the case 3.3 
is executed owing to the large derivative of the 
external torque (i.e. the line τe(θ) crosses the –τp (θ) 
curve). The continuity of the provided solution is 
preserved by the algorithm as the solution returned 
by the dichotomic search between θs_min and θs_max is 
close to θs_max given by the previous searches. 
Finally, case 2.1 is executed when τa becomes 
smaller than ετ. 

  

Figure 8. Rmin=0.2 and active strategy. Algorithm’s cases 
3.1, 3.3 and 2.1 are successively executed 

The passive strategy adopted in Figure 9 and the 
active torque sign change between θs_min and θs_max 
(see Figure 5b), lead to execute case 3.4 which 
returns the first passive solution in the direction of 
torque active decreasing amplitude, i.e. close to the 
upper limit. During the last iterations the case 2.3 is 
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executed when τa becomes smaller than ετ, which 
maintains the current extremal/passive solution. 

 

Figure 9. Passive strategy. Algorithm’s cases 3.4, and 2.3 
are successively executed 

4.2 Oblique upper arm 

Figure 11 shows the only solution obtained by 
simulations for different combinations of parameters 
(strategy active or passive, Rmin=1 or Rmin=0.2). Note 
how it coincides with the solution given by the 
particular study depicted in Figure 10. 

During the first iterations, the small positive 
external torque slope leads to execute the case 3.2 
because the active torque does not change sign and it 
is positive. Then the solution is given by dichotomic 
search between θmin and θs_min. During the last 
iteration, when the active torque has been reduced 
under ετ, the case 1.1 is executed, returning as 
solution the current angle, due to the negative values 
of external torque slope and, in consequence, the 
failure in the search slope (no angle where dτp=-
dτe). 

4.3 Lateral with oblique upper arm 

This case study is shown in Figure 12. A simulation 
using Rmin=1 and active, or passive strategies (see 
Figure 13), returns a passive solution as depicted in 
the previously described oblique upper arm case 
study (firstly case 3.2 is executed, and finally case 
1.1). 

Using Rmin=1 and active strategy is illustrated 
on Figure 14 in the other side of the joint range. The 
external torque slope is large and case 3.3 is executed 
because τe crosses the –τp(θ) curve, then an active 
solution is found when a dichotomy search between 
θs_min and θs_max is performed. Finally, case 2.1 is 
executed. 

 
 

 

Figure 10. Oblique upper arm case study 

 

Figure 11. Rmin=1 or 0.2 and active or passive strategies. 
Algorithm’s cases 3.2 and 1.1 are successively executed 

 
Figure 12. Lateral with oblique upper arm case study 

 

Figure 13. Rmin=1 and active or passive strategies. 
Algorithm’s cases 3.2 and 1.1 are successively executed 
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Figure 14. Rmin=1 and active. Algorithm’s cases 3.3 and 
2.1 are successively executed 

5 DISCUSSION 
The main contribution of this paper is a general and 
hybrid algorithm that clearly delineates all the cases 
where a solution can be found in the direction 
reducing the active torque amplitude (active strategy) 
or in the direction of the always existing passive-
resistive solution. We don’t use a minimization 
technique like gradient descent as it exploits local 
knowledge of external and passive torque and cases 
where the derivative is null provide no solution. Our 
approach can infer from the current state whether it 
is possible or not to find an active solution. In case it 
is not possible the passive solution is provided. 

The algorithm only makes the small assumption 
that the passive-resistive torque function is a 
monotonously decreasing function over the joint 
range. We have also introduced a user-given 
parameter named the minimal active torque decrease 
ratio Rmin that leads to accept a partial decrease in the 
active torque amplitude compatible with the fatigue 
recovery.  

The active torque reduction scheme is exploited 
in a constrained Inverse Kinematics framework that 
adjusts automatically fatigued postures while trying 
to achieve a set of constraints representing a task 
(Rodriguez, 2004). The exploited fatigue model has 
been described in (Rodriguez et al., 2002).  

Our future work includes the extension of the 
case studies to those involving several joints, 
possibly fatigued. For example, this will allow to 
generate a wide range of standing poses, including 
the pelvic slouch or contraposto. In addition we plan 
to take advantage of the environment to have rest. 
For example, when arm joints are too fatigued, a 
postural change could employ objects in the scene (a 
chair, a table) to find rest. 
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