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Abstract—
We describe the Lutonium, an asynchronous 8051 microcon-

troller designed for low Et2. In 0.18-�m CMOS, at nominal 1.8 V,
we expect a performance of 0.5 nJ per instruction at 200 MIPS.
At 0.5 V, we expect 4 MIPS and 40 pJ/instruction, corresponding
to 25,000 MIPS/Watt. We describe the structure of a fine-grain
pipeline optimized for Et2 efficiency, some of the peripherals im-
plementation, and the advantages of an asynchronous implemen-
tation of a deep-sleep mechanism.

I. INTRODUCTION

The Lutonium is a quasi delay-insensitive (QDI) asyn-
chronous 8051-architecture microcontroller designed for en-
ergy efficiency. It is the demonstration vehicle of a DARPA-
sponsored research project investigating the energy advantages
of asynchronous design. At the moment of writing, the design
is not complete, but all units are described at the transistor level,
and we can already estimate the performance. In TSMC’s 0.18-
�m CMOS process offered via MOSIS, we expect an energy
consumption of 500 pJ per instruction and an instruction rate of
200 MIPS at the nominal 1.8 V. At 0.9 V, we expect 140 pJ and
66 MIPS.

The energy efficiency of the Caltech asynchronous QDI de-
sign approach was already apparent in the performance of the
1989 Caltech Asynchronous Microprocessor [2] and of the
1997 Caltech MiniMIPS [4], an asynchronous MIPS R3000 mi-
croprocessor. In addition to increased energy efficiency at the
nominal operating voltage, experimental data from these chips
revealed that the robustness of QDI circuits to delay variation
allows these circuits to run at very low voltages, even slightly
below the transistor threshold voltage. In designing the Lu-
tonium, we have made full use of our ability to adjust E and
t through voltage scaling: the voltage-independent Et2 is the
metric we are striving to minimize, where E is the average en-
ergy per instruction, and t is the cycle time. The Lutonium is
therefore not, strictly speaking, designed for low power but for
the best trade-off between energy and cycle time. This metric
has been introduced and justified in several papers, and we shall
recapitulate the argument in the next section.

We cannot justify the choice of the 8051 ISA entirely on the
basis of energy efficiency. It is a complex and irregular instruc-
tion set, which is bound to increase the energy cost of fetching
and decoding the instructions. Also the use of registers is highly

irregular, another source of energy consumption. The choice of
the 8051 is justified by the fact that it is the most popular micro-
controller, hence it is often found in applications where energy
efficiency is important.

The paper is organized as follows. We first briefly recapitu-
late the arguments in favor of the Et2 metric. We then describe
the general design style and the design methodology, both very
similar to the ones introduced for the MiniMIPS, and explain
the main changes and refinements introduced for the Lutonium.
We then present the instruction set and the general organization
of the pipeline. We describe several parts of the architecture in
more detail: the fetch loop and the decode, the deep-sleep pro-
tocol, the tree buses, and the interrupt mechanism. Finally, we
discuss the performance of the prototype and compare it with
other implementations of the 8051.

II. THE Et2 METRIC AND ENERGY-EFFICIENT DESIGN

In first approximation, the (dynamic) energy dissipated dur-
ing a transition in a CMOS system is proportional to CV 2, and
the transition delay is inversely proportional to V . Therefore
energy and delay can be traded against each other simply by
changing the supply voltage, and it would be foolish not to take
advantage of this freedom; this means that when we can adjust
the supply voltage, we should not simply optimize one of the
two metrics and ignore the other. The best way to combine en-
ergy and delay in a single figure of merit is to use the product
Et2 since it is independent of the voltage to first approximation.
Given two designsA andB, if theEt2 ofA is lower than that of
B, then A is indeed a better design: for equal cycle time t, the
energy of A is lower than that of B, and for equal energy, the
cycle time of A is lower than that of B. In several papers, we
have given experimental evidence of the range and limits of the
assumptions under which the Et2 metric is valid [8]. SPICE
simulations also show that under normal operating conditions
an Et2-better circuit will give better energy performance and
better cycle-time performance.

More sophisticated formulas than Et2 are possible, but they
do not necessarily work better in practice: the main practical
deviations from our simple theory are the effect of the transis-
tor threshold and the effect of velocity saturation on the speed
of operation. Since these two effects largely counteract each
other, Et2 works very well around the design voltage of most
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modern CMOS technologies. Furthermore, it is a much easier
metric to handle than one that tries to incorporate the threshold
or velocity saturation directly.

We have developed a theory of Et2-optimal designs, the re-
sults of which have influenced the design of the Lutonium, par-
ticularly in the areas of high throughput, slack matching, tran-
sistor sizing, and conditional communication. (However, we do
not claim that the Lutonium design is Et2-optimal, as such a
claim is beyond the current state of the art.)

One of the theoretical results is that an Et2-optimal pipeline
is short. For the Lutonium, we chose the highest throughput
possible given nonspeculative execution, and a minimally spec-
ulative fetch loop. We realized that the common-case critical
path in such a design would be the “fetch loop” (see below),
and we chose our throughput target to be the fastest possible
cycle time of this loop.

Optimizing the throughput of an asynchronous system in-
volves slack-matching it. The simplest way of slack-matching a
system is to treat it like a synchronous retiming problem: have
the same number of pipeline stages on all paths. However, be-
cause the slack-matching buffers are almost always faster than
the elements that perform computations, they can absorb tim-
ing variations, and it is not always necessary for all paths to
go through an absolutely equal number of pipeline stages in
order to optimize throughput. This has repercussions for Et2-
optimal design: whereas a designer who is only interested in
t does not mind adding more buffers than strictly necessary,
the designer that wants to optimize Et2 must take into account
the energy cost of the extra slack-matching buffers. Therefore,
slack-matching has more subtleties for an Et2-optimal system
than for a t-optimal system; the optimized system has fewer
slack-matching buffers in it. The MiniMIPS was over–slack-
matched in this regard.

Transistor sizing for optimal Et2 is achieved when the sum
C of all gate capacitances is approximately 2P where P is the
total parasitic capacitance [8]. Sizing for optimal energy con-
sumption is not minimal sizing! (Optimal energy consumption
is not minimal energy consumption.)

Extensive simulations of the MiniMIPS gave us the opportu-
nity to gather invaluable information about the energy budget of
an asynchronous microprocessor. In particular, it appears that
only 10% of the total energy consumed in the processing of
an instruction goes in the actual execution of the instruction—
for instance the actual energy spent in the ALU during an add

instruction. The remaining 90% of the energy is spent in com-
munication: fetching the instruction and decoding it consumes
45% of the energy (this happens even for a NOP), and the final
45% goes into moving parameters and the result between ex-
ecution units and registers. These results are relevant because
the MiniMIPS design style is similar to the Lutonium design
style.

We concluded that we should reduce communication at the
expense of adding local computation. For example, we used
a Huffman code based on instruction frequencies to control
the main buses, which were segmented according to the cor-
responding Huffman tree.

III. LOGIC FAMILY AND DESIGN METHOD

The logic family of the Lutonium is essentially the same
as that of the MiniMIPS. Why a logic family chosen for high
throughput should be optimal for Et2 has not been established
rigorously, and may not be true! That it would give good Et2

performance compared to other asynchronous logic families
can be argued and is supported by experimental evidence.
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Figure 1. PCHB circuit template.

The basis of the logic family is the buffer described in CHP
as:

�[L?x;R!f(x)]

The buffer may have several inputs and outputs including con-
ditional ones. The above instance is the simplest one in the
family. In traditional QDI design, the standard implementa-
tion consists of separating the control part from the datapath.
This design style is simple and general and was used for the
Caltech Asynchronous Microprocessor. But it puts high lower
bounds on the cycle time, forward latency, and energy per cy-
cle. First, in the control part the four-phase handshake on L and
the four-phase handshake on R are totally ordered, putting all
8 transitions in sequence. Secondly, the completion-tree delay
is included twice in the handshake cycle between two adjacent
buffer stages, and it is proportional to the logarithm of the num-
ber of bits in the datapath. Finally, the explicit storing of the
variable x in a register adds considerable overhead in terms of
both energy and forward latency.

A solution to the problem was proposed for the design of
the MiniMIPS, where we introduced a logic family based on
very fine-grain pipeline stages implemented as “precharge half-
buffers,” or PCHB. First, in order to reduce the completion tree
delay and keep the design QDI, the datapath has to be parti-
tioned into independent portions, each with their own comple-
tion tree. The size of the portions is chosen in such a way that
the completion-tree delays fit within the alloted cycle-time de-
lays. Secondly, each partial buffer processes a portion of data
small enough that control and datapath do not have to be sep-
arated. Thirdly, the explicit storing of the input data in a local
register is eliminated by “reshuffling” the handshake sequence
on L and R in such a way that the data can be processed di-
rectly from the input wires of L to the output wires of R. The
term PCHB refers to the specific reshuffling chosen; another
advantage of this reshuffling is that it has only two transitions
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on the forward latency, i.e., between the data’s being valid on L
and the result’s being valid on R. The basic CMOS implemen-
tation of a PCHB stage is shown in figure 1. Observe that all
computation is done in the pulldown network with L as input.

The choice of such a fine-grain pipeline stage has drastic
consequences on the organization of the whole system. Be-
cause each stage can do only a modest amount of computa-
tion (essentially limited by the size of the pull-down circuitry),
any non-trivial computation must be decomposed into a net-
work of PCHB stages, with important repercussions on latency,
throughput, and energy.

While the small size of a PCHB stage helps keep the cycle
time low, it may also increase the global latency on computa-
tion cycles with feedback, in particular the so-called fetch loop,
which is a critical part of the Lutonium pipeline. The relation-
ship between a stage period p, a stage latency l, and a pipeline
cycle-length n (in terms of the number of stages) is given by the
equation p = n�l. A crucial step in the design process is choos-
ing the individual stages and the length n of a pipeline in such
a way that the equation is satisfied for p and l corresponding to
the optimal cycle time and latency of each stage.

In the design of the Lutonium, we chose p to be equal to 22
elementary transitions (compared to 18 in the MiniMIPS). This
choice was dictated by the complexity of the fetch loop, which
we expected to have a length of 11 stages. Once this choice was
made, all pipeline stages that we required to be able to run at the
full throughput of the processor (i.e., at least all pipeline stages
that have to operate once per instruction, and some others) had
to be designed for a cycle period close to 22 transitions, and all
cycles had to be slack-matched to be approximately 11 stages
long.

IV. THE 8051 ISA

The 8051 microcontroller has 255 variable-length instruc-
tions, from one to three bytes. We have added a 256th instruc-
tion for writing instruction memory during bootstrapping. The
opcode of an instruction is always encoded in the first byte. The
second and third bytes are operands. They might specify a rela-
tive or absolute branch target, an indirect address, or an imme-
diate operand. The 8051 is a Harvard architecture: instruction
memory and data memory are separate.

The instruction set provides six addressing modes: (1) in di-
rect addressing, the operand is specified by an 8-bit address
field in the instruction representing an address in the internal
data RAM or a special-function register (SFR); (2) in indi-
rect addressing, the instruction specifies a register containing
the address of the operand in either internal or external RAM;
(3) in banked addressing, the register banks containing regis-
ters R0 through R7 can be addressed by a 3-bit field in the op-
code; (4) some instructions operate on specific registers; (5) in
immediate-constant mode, the constant operand value is part
of the instruction; (6) the indexed addressing mode is used to
read the program memory (the address is obtained by adding
the accumulator to a base pointer).

The 8051 peripherals include logic ports, timers and coun-
ters, four I/O ports, and an interrupt controller.

V. THE LUTONIUM DESIGN

Instructions in the 8051 architecture may have implicit
operands as well as explicit operands. An example of an 8051
instruction that involves many implicit operands is ADDC A,

@Ri, or add with carry accumulator to indirect Ri. This instruc-
tion requests that the contents of the memory address pointed to
by register Ri be added to the accumulator, with a carry-in, and
stored in the accumulator. In the 8051 ISA, register Ri is itself
indirect because the “register bank” is under software control.
Therefore, ADDC A, @Ri involves the following actions: read
the carry-in PSW.C out of the processor status word (PSW );
read the register-bank selector PSW.RS out of the PSW; combine
PSW.RS with Ri to make the memory address pointed to by Ri;
read the contents of Ri; read the contents of the memory ad-
dress pointed to by Ri (i.e., @Ri); read the accumulator; add the
accumulator and @Ri; store the eight low-order bits of the result
in the accumulator; store the carry-out in PSW.C; store the over-
flow bit of the add in PSW.OV; and finally store the carry-out of
bit 3 in PSW.AC. (PSW.AC is involved in implementing base-ten
arithmetic.)

The obvious approach to the nightmare of executing such an
instruction is to microcode the instruction set and execute it
on a conceptually simpler machine. Unfortunately, this would
lead to a very slow implementation with many machine cycles
per instruction execution. Therefore, rather than microcoding
instructions with many implicit operands, we decided to have
special-purpose channels for implicit operands. This allows
such an instruction to execute in one cycle, and reduces depen-
dence on general-purpose buses, which have large fanouts and
hence high energy cost.

Most of the design effort in the Lutonium has gone into as-
suring good Et2-efficiency. For instance, the Lutonium imple-
mentation is highly pipelined for speed, but it is still nonspecu-
lative: the instruction-fetch unit only keeps filling the pipeline
as long as it knows that the instructions are definitely going
to be executed, and although branches are executed in one cy-
cle, that cycle is “stretched.” We took great pains to minimize
switching activity: no register or execution unit receives con-
trol unless it will process data for a given instruction (hence it
has no switching circuit nodes unless it is used on a particular
instruction), and interrupts and pins only cause switching when
accessed by software or an input pin switches. We also local-
ize activity as much as possible: special registers (SP, PSW, B,
DPTR) have their own channels and function units (instead of
using the main buses and units) for energy and time savings;
e.g., the 16-bit DPTR can be incremented in one cycle without
using the main buses at all. Also, infrequently used units do not
add to the fanin and fanout of the main buses (see section VIII),
for energy and time savings. The time savings would be lost
if a clock were used, since we have improved the average-case
energy and delay at the expense of somewhat worsening the
worst-case delays.

Now let us consider all communications caused by the one-
byte instruction ADDC A, @Ri. RuptArb first sends 0 to Fetch,
indicating the absence of an interrupt request. Then Fetch

sends the instruction byte to De code. The following actions are
specifically required by the ADDC A, @Ri instruction: De code

sends control messages to PSW , ALU , A, and R egFile. Then
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Fig. 2. Lutonium block diagram.

PSW sends C to ALU and RS to R egFile(on special chan-
nels.) Then R egFileaccesses Ri and @Ri in sequence (with-
out communicating outside of R egFile in the middle of the
sequence). Finally ALU receives its regfile operand through
the general-purpose DRBY bus, and its accumulator operand
through a dedicated accumulator channel, and computes results
for the accumulator and PSW , which are written back through
special-purpose channels.

VI. INSTRUCTION FETCH LOOP

The performance of the Lutonium is limited by that of the in-
struction fetch. We therefore carefully designed the fetch loop
to optimize throughput. In this spirit, while 8051 instructions
have variable length (one to three bytes), our first design deci-
sion was to allow two consecutive bytes of code to be fetched at
a time from program memory, which is aligned along even ad-
dresses. Hence, if the last byte of a basic block happens to fall
on an even address, we introduce some speculation in the fetch-
ing. The speed advantage of doing this more than compensates
for the extra energy of fetching the unwanted odd byte; this
scheme also reduces the average instruction-memory overhead
since only one address need be decoded for each pair of bytes
fetched. (Similarly, the preceding even byte is thrown away
when a basic block starts on an odd address.)

The entire fetch loop is shown in figure 3. Along with the in-
struction memory (IMem), it comprises units that compute the
next program counter (F etch) and route the instruction bytes to
other parts of the microcontroller as needed (SwitchBox ). An-
other unit (Decode) is not on the critical loop but decodes in-
structions to send specialized information to each of the execu-
tion units. The instruction memory is described in section VII.

A. Instruction SwitchBox

SwitchBox , at the outputs of IMem, serves as both filter and
router for the retrieved two bytes of program code. The first
byte of every instruction, its opcode, is not necessarily stored
at an even-byte address. An instruction’s length, as well as
whether it can change the program counter (i.e., whether it is
a branch type of instruction) is encoded here. Often, one of
the two bytes fetched from IMem is an opcode, and it must be
forwarded by SwitchBox for decoding before the second byte

can be either routed or discarded. SwitchBox can either dis-
card instruction bytes or forward them to Fetch, De code(on
three channels, one for each of the possible byte positions in
an 8051 instruction), or A (the accumulator; for code-read in-
structions). TheFetch unit controls Switchbox . Switchbox can
route both bytes simultaneously as long as they go to different
destinations.

B. Fetch Unit

To keep the main fetch loop as short as possible, the informa-
tion from the current instruction required to compute the next
program counter is decoded within the Fetch unit itself; this
information is the length of the instruction and whether or not
it can change the program counter (i.e., whether or not it is a
branch or jump)—it is enough to decode the first byte of the
instruction (the opcode) to find out these facts. Information re-
quired by the execution units (including information encoded
in the second and third bytes of an instruction) is not needed as
quickly and is therefore left to the Decode. There is no feed-
back from the Decode and execution units except on branches
and interrupt guesses (see section XI-A).

The 16-bit program counter is incremented by two during
every cycle of the F etch; this incrementing takes place specu-
latively, whether or not the next sequential address is needed.
It turns out that the Et2 of the processor is thus improved over
a design which would wait to check whether an interrupt or
branch is disturbing the sequential program flow before starting
the increment.
Fetch also checks for interrupts after every instruction. If an

interrupt occurs, the program counter pointing to the next se-
quential instruction is sent off for storage on the stack, and then
Fetch reads in the address of the interrupt handler and starts
fetching instructions from there. There is no branch prediction
in the Lutonium.

C. Decode Unit

The instruction decoder of the Lutonium (Decode) is much
more complicated than that of the MiniMIPS. Part of the rea-
son for this is that the 8051 instruction set is quirkier and more
complicated. Also, early in the design process, we made the
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conscious decision to centralize all of the microcontroller’s in-
struction decoding in one unit so as to reduce the size and num-
ber of communication channels traversing the chip. The only
exception to this centralization is the above-mentioned special
decoding that occurs in the F etch.

De code is decomposed into many processes, most of which
only consume dynamic energy when their computations (de-
codings) are required. At a high level, one large process
(Control0) decodes the opcode (the first byte) of every instruc-
tion while another large process (Control1) performs most of
its computations only when the second and third bytes of an
instruction are available (if they exist). Control1 receives its
inputs significantly later (about one cycle later) than Control0,
and the design of Decode takes advantage of this fact to dis-
tribute computations and optimize performance.

For energy efficiency, nothing is computed or routed unless
necessary. Applying this principle to Decode, we obtain the
following property: not only does a NOP take less energy to
decode than, for example, an ADD or an interrupt-register access,
but an ADD also takes less energy to decode than an interrupt-
register access.

D. Instruction Flow

As we have seen, when an instruction is fetched from pro-
gram memory, one cycle is taken to decode the opcode be-
fore the rest of the instruction can be handled. This can cause
hiccoughs in the instruction flow when two bytes have been
fetched from memory but only one can be handled per cycle.
The second byte is not thrown away and does not need to be
re-fetched: as this is an asynchronous microcontroller, the data
is simply not acknowledged and thus not allowed to disappear
from the wires until the next cycle. (Of course, in the case
of a branch or interrupt, it may be acknowledged only to be
discarded.) As an example, table 4 illustrates fetching of two
consecutive three-byte instructions, I0 and I1, where Ix:y is
the yth byte of instruction Ix. The columns cycle0, cycle1,
etc., indicate the cycle in which the byte is finally used and ac-
knowledged.

cycle0 cycle1 cycle2 cycle3
IMemByte0 ... I0.2 I1.1 I1.3
IMemByte1 I0.1 I0.3 — I1.2
Table 4. Lutonium fetch loop: Fetching two three-byte
instructions in a row.

In summary, the instruction fetch loop of the Lutonium can
fetch sequential instructions with the following throughputs:

� a sequence of one-byte instructions at 1 byte/cycle
� a sequence of two-byte instructions at 2 bytes/cycle
� a sequence of three-byte instructions at 1.5 bytes/cycle

The average throughput on a program consisting of random in-
structions, including branches, is 1.37 bytes/cycle.

VII. MEMORIES

The Lutonium program memory holds a maximum of 8 kB of
code and comprises 64 banks of 128 bytes each. The banks are
arranged in a two-level tree with eight ways of branching per
level. The leaves of the tree are 2 bytes (16 bits) by 64 rows.
The memory is interleaved by using the three least significant
bits of the address to control the highest level of branching and
the three next least significant bits to control the second level
of branching. This means that consecutive two-byte blocks of
memory are stored in different banks, in order to maximize
throughput when executing straightline code. The banks them-
selves can thus be optimized for forward latency, with little re-
gard to cycle time: the slow cycle time of the banks will only
matter when the two-byte blocks are accessed with a 128-byte
stride. This design is similar to (but larger than) the I- and D-
cache designs used in the MiniMIPS [7].

We used SPICE simulations to select dimensions for the dis-
tribution trees (whose leaves are the 64 banks) that result in the
lowest possible forward latency for IMem: 1.8 ns. Meanwhile,
the energy consumption of IMem is 80 pJ for every two bytes
of code retrieved. (All figures are at 1.8 V in the TSMC 0.18-
�m technology.)

VIII. SEGMENTED BUSES

The Lutonium buses must select and distribute data from and
to many sources and destinations. For instance, DRBY , the
main bus that sends direct (non-implicit) operands to execution
units, must select from nine inputs. A circuit that selects one
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of nine inputs will be slower than one that selects one of two
inputs. Now suppose that inputs 0..7 are selected with prob-
ability 1/16 each, but input 8 is selected with probability 1/2.
One could make a circuit that selects input 8 faster than the oth-
ers, but the speed advantage will be lost in a clocked circuit.
This is because if one is using a clock, the difference in speed
of the two types of inputs will typically be less than one quarter
of the cycle time, so one is forced to make the decision of either
ignoring the difference altogether, or adding an entire clock cy-
cle’s worth of latency for inputs 0..7 that only does 1/4 of its
potential work, just so that the clock can run a little faster for
input 8.

We are not using clocks, so the total delay for a tree of fixed-
fanin selection stages is proportional to the number of stages. If
each selection stage is binary, then each input can be associated
with a binary string corresponding to the sequence of control
signals needed to select it. Notice that the length of this string
is proportional to the delay. To minimize expected delay, there-
fore, one minimizes expected string length. This problem has
been studied extensively, and its solution is known as Huffman
coding. The solution to our introductory example is that in-
puts 0..7 have binary strings 0000..0111 and input 8 has binary
string 1. To select input 8, one sends just one control bit (1) to
the main selection stage. To select inputs 0..7, one sends one
bit (0) to the main selection stage, and three bits to subsequent
stages. We can call this type of protocol a segmented-bus con-
trol protocol. Notice that only the control bit to the main stage
is sent unconditionally.

In practice, we make two modifications to Huffman coding.
First, there is no reason to impose the restriction of fixed fanin.
Rather, we typically can have fanin between two and ten, with
a different cost for each fanin. Secondly, we sometimes want
to follow selection by immediate distribution, and we wish to
combine the last selection stage with the first distribution stage.

For example, DRBY is a process with multiple inputs and
outputs. It sends an operand from a selected register to a se-
lected execution unit. Control input DRBY :I receives the in-
struction. An array DRB :In[] (“Direct Read Bus”, DRB ) of
input channels is needed to select the source register, and an ar-
ray Unit []:Y is needed to select the destination execution unit:

DRBY �
*[DRBY :I ?i ;DRB :In[yBank(i)]?y ;Unit [where(i)]:Y !y]

yBank(i)2 f“RegFile”; “A”; “B”; “PSW”;

“DPL”; “DPH”; “SP”; “RuptRegs”; “PRDM”g
where(i) 2 f“Exchange”; “FBlock”; “ALU”; “BitUnit”;

“PCL”; “PCH”; “DMem”g

In the DRBY bus described above, the frequencies of the
various inputs and outputs depend on which program the Lu-
tonium is running; we used benchmarks (8051 programs found
on the World Wide Web) to obtain these frequencies. DRBY is
decomposed into a tree of processes as shown in figure 5. Each
of these processes requires at least one control channel. These
control channels together implement DRBY :I . (A segmented-
bus control protocol is used for DRBY :I .)

Since R egFile is the most frequently used input and
Exchange is the most frequently used output, process Main

has been placed in the tree such that sending from R egFileto

Exchange takes one stage. Main is implementable as a simple
stage of logic, and has the following specification:

Main �
*[DRBY :I :DRBMain?src;DRBY :I :YMain?dest ;
[src = “RegFile” �! DRB :R egFile?y
[]src = “Other” �! Main:R egMerge?y
];
[dest = “Exchange” �! Exchange:Y !y
[]dest = “Other” �! ExecSplit :Y !y
]]

This gives us only one unconditionally required stage of la-
tency; an additional stage is needed only if the input is uncom-
mon or if the output is uncommon. Extremely uncommon in-
puts need yet another stage:

AltMerge

PRDM

DPH
SP

Main

RegFile

BitUnit
PCH
PCL
FBlock
ALU

Exchange

DPL
PSW

B
A

ExecSplitRegMerge

RuptRegs

Figure 5. DRBY bus decomposition, block diagram
(data channels only).

Most of the time, only one or two stages are used, even
though the worst case is four. Thus in the common case there
are fewer data stages (and fewer control messages) than in any
other case, leading to time and energy savings (compared to a
traditional design, which would require all cases to finish in the
same amount of time).

IX. DECODE DESIGN

The high-level behavior of De code is simple: it sends each
instruction to each unit that needs it. However, for efficiency, it
is not necessary to send the complete instruction (which may be
many bytes) to every unit. Rather, there is a different protocol
for sending the instruction to each unit. Each of these protocols
was designed after designing the corresponding unit; this leads
to energy efficiency because the resulting protocols do not re-
quire additional recoding or eventual discarding of information.

For each datapath process (such as DRBY ), we determined a
protocol (such as the segmented bus control protocols described
above) for sending it an instruction and implement the protocol
as outputs of whichever Decode subprocesses have the neces-
sary information.

DRBY.I.YMain

Sequencer

Control0

:

:

Control1
DirY

:

:

:

RegFile.I.N

DirZ.C

Control1.C

I[0] I[1] I[2]

ALU.I.Imm

:

Control1.YBank

PRDM.I

RuptRegs.I

DPtr.I

MultDiv.I

SP.I

PSW.I

RegFile.I.RC

DirZ
RegFile.I.ZAddr

DirY.C

:
ALU.I.S

DRBY.I.YSplit
DRBY.I.DRBMerge
DRBY.I.DRBAltMerge

OpRoute

DRBY.I.DRBMain

Figure 6. Decode Block Diagram.

De code comprises Sequencer , Control0, Control1, and
OpRoute. Only the operand router (OpRoute) has byte-wide
data; the other units operate on smaller data (typically single-
digit control information). Separating the large-data operations
into OpRoute in this way is energy efficient, because OpRoute
is very simple.
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A. Sequencer

Our original idea was that all instructions would run in one
cycle; however, the CALL and RETURN instructions both use the
main buses, stack pointer, and the register file twice. Rather
than adding special sequencing hardware, which would be used
rarely, in all these units, we chose to centralize this sequenc-
ing in the De code’s Sequencer unit. Sequencer also inserts
interrupt pseudo-calls and the interrupt guesses (see section XI-
A) into the instruction stream. Se quencer consumes very little
energy and adds minimal delay in the common case, which is
when it simply passes along byte 0 of the instruction.

B. Decode.Control0

Opcode fields (i.e., information available from instruction
byte 0 alone) are unconditionally computed (i.e., extracted,
but not necessarily trivially) and sent to other units in a cir-
cuit called MegaROM , which has 18 single-digit output chan-
nels. The next stage consists of processes (Filter , ExecSplit ,
BusSplit , Control1) that forward a message to an execution-
unit controller when and only when that unit is involved in
executing an instruction. Each execution-unit controller (e.g.,
ALU 0) does unit-specific decoding only in the case when it
receives a message. Note that only certain units (those whose
operations can be determined from instruction byte 0 alone) can
be controlled directly from Control0.

Exch0

I[0]

FBlock0 Rotate0 BitUnit0PtrUnit0

Where

:

:Filter

:

Control1.C.WrOv

Where DRBY.I.YSplit
Control1.C.AWhere

BusSplit
DRBY.I.YMainEx

MegaROM
OpRoute.C

ExecSplit RegFile.I.N

Copy

ALU.I.SALU0

Figure 7. Decode.Control0 Block Diagram.

C. Decode.Control1

The decoding problem is complicated by the fact that the
registers must receive instructions (not just addresses) because
special instructions implicitly access registers, and we do not
wish to use general-purpose buses to handle these types of ac-
cesses. Since some special registers (like PSW ) are used on
every cycle in some kinds of code (in, e.g., a sequence of ADD
instructions), it is important to make sure that they can be read
concurrently with the reads of other instruction operands. Each
special-register–control function of Control1 can be activated
in one of three ways:

1) direct y access
2) direct z access
3) special operation

Information about the direct accesses is received on the chan-
nels Control1:YBank and Control1:ZBank , from the pro-
cessesDe code:DirY andDe code:DirZ . Ideally, we would like
a “magic process” with 12 inputs that determines which special
units to activate and only activates those units. Unfortunately,

this is too large for a single PCHB stage. Therefore we must
decompose De code:Control1. We can only reduce the number
of inputs per decoding process by having a process dedicated
to each special function. These processes must receive all their
inputs unconditionally: making these inputs conditional is dif-
ficult because the bit determining whether PSW (for example)
is used by an instruction cannot be computed from just part of
the instruction; it depends on y , z , and opcode fields.

Thus the y and z register identifiers must be copied to all
control blocks. For instance, PSWCon1, the control block for
PSW , must be told whether or not every instruction has a direct
PSW access. When PSW is not used, PSWCon1 must still be
sent NOPs as placeholders; this is unfortunate from the point
of view of energy efficiency, but the other solution would be to
un-pipeline the design, which would cost even more because of
the loss in throughput.

Fortunately,R egFile, PSW , and A are the only registers and
special function units that are used with considerable frequency
in compiled code. Hence we can make the common case more
efficient by making only three copies of the y/z operand iden-
tifiers, and a fourth “special” reserve copy. R egFileCon1,
PSWCon1, and ACon1 generate control for their respective
units if necessary, while Special forwards the control on to fur-
ther stages if necessary (which it rarely is). Thus we keep the
number of copies small in the common case. SP is much more
commonly used than other registers controlled by Sp ecial;
hence the commands for these other registers are further filtered
by the process R eallySpecial . Figure 8 illustrates the Control1
decomposition.

YZCopy

PSW1 SP1

Y,Z,Op

Mul1 DPtr1 PRDM1
Rupt1

Y,Z,Op

ReallySpecialSpecial

Y,Z

Control1.C.WrOv

Control1.ZBank
Control1.YBank

A1 RF1

Control1.C.SpecialOp

Figure 8. Decode.Control1 Block Diagram.

X. PERIPHERALS

The 8051 architecture specifies mechanisms that permit the
programmer to set and examine individual pins; this allows a
wide variety of protocols to be implemented in software. The
architecture also allows pins to be hardware-configured to be
used in an external memory interface, to be used for gathering
interrupts from external sources, to be used as counter inputs,
or to be used as a serial interface. We implemented all of these
except the serial interface, since that can be straightforwardly
implemented in software.

There is a special counter input “CLOCK” that cripples a
standard 8051, in the sense that “CLOCK” cannot be stopped
or slowed down without seriously affecting the performance of
the CPU core. Our design does not have this problem. In fact
the peripheral interface is decoupled from the CPU to the extent
that we obtain a list of desirable properties that would be very
hard to achieve in a clocked system.

Our handling of the CLOCK input has repercussions in two
areas: first, the “deep sleep” mode of the Lutonium is much im-
proved over that of clocked 8051s; and secondly, the switching
activity in the chip is much less dependent on the CLOCK rate.
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The Lutonium has a deep sleep mode in which almost all
switching activity ceases. The important benefit of the asyn-
chronous implementation is that the Lutonium can wake up out
of the deep sleep mode instantly—there is no wakeup time dur-
ing which crystal oscillators must be started, etc.1 The only part
of the processor that can operate during deep sleep is the coun-
ters; the counters can continue to count even while the CPU
is sleeping; the CPU only wakes up if the counter overflows
and the interrupt checking for such an overflow is enabled. The
software SLEEP sequence (see section XI-B), by which the pro-
cessor enters deep sleep, is the only way that peripheral activity
can delay the CPU for an arbitrary amount of time.

The weaker synchronization between the CPU core and the
pins has further advantages: the peripheral interface never has
switching activity if pins are not switching and the CPU is not
accessing it; CPU execution speed is affected by the peripheral
interface only when peripheral functions are executed by the
CPU; and if a single counter is enabled and it does not overflow,
the CLOCK input does not cause any switching activity besides
the incrementing of that counter.

In addition, we made several improvements to the peripheral
interface that would benefit either synchronous or asyncronous
designs. Had we not improved these interfaces, their bad ef-
fects in practical applications might have dwarfed the improve-
ments enabled by our asynchronous design. For example, pas-
sive pullups can burn enough power to make all other power
optimization pointless; therefore we added direction registers,
so that the external-memory–and–pin interface does not require
passive pullups. We also made several changes to the SRAM
interface: we added a demultiplexed SRAM mode, so that an
external SRAM can be added without also adding an external
register chip, and we added a Fast Read mode, so that an ex-
ternal SRAM read does not require three cycles. Finally, we
added some miscellaneous features: we exposed internal timer
registers and interrupt priority registers to help with debugging,
and we added an internal oscillator (some commercial 8051s
have this). The extra features are disabled by default, so that
the programmer that does not expect them gets standard 8051
behavior.

Each peripheral feature is specified (in the 8051 architecture)
as a sequence of actions on pins. Pins are wires, and our cir-
cuit design style is glitch free; hence it does not allow arbitrary
actions on wires. Hence we separate the “special” circuits that
must connect to wires, and require nondeterministic synchro-
nizer circuits; it turns out we need several instances of only a
small number of such circuits:

1) pulse synchronizers (send “0” for each detected pulse)
2) port modules (read and write current wire value)

These circuits are specially designed so that they are able to
handle arbitrary input waveforms safely.

The CPU interface with each of the above circuits consists of
standard four-phase channels; therefore each peripheral func-
tion can be implemented as a sequence of commands, using our

1At least one other 8051 implementation, the Dallas DS89C420 “ultra high-
speed microcontroller,” has a special wakeup system with two “clock gears”:
the DS89C420 wakes up out of deep sleep by using a “low gear” ring oscil-
lator with a speed nominally about one third the normal clock speed for some
microseconds; after that, it switches to the off-chip–clock “high gear” [9].

standard design style. The modules in the CPU that communi-
cate with the peripheral interface are RuptRegs (interrupts) and
PRDM (PortRegs/DMem).

derived from

Pulse SynchronizersPort Modules

PRDM

Timer/Interrupt Modules

RuptRegs RuptArb

I.CT.C IRupt

Tick

Arrows represent channels
Arrows represent wires

P3.4 (pin)

P.C

Instructions

by peripheral
activity alone

Messages
can be caused

All messages

Figure 9. Lutonium Peripherals Block Diagram.

XI. SLEEP MODE AND INTERRUPT MECHANISMS

A. Independence of Execution from Interrupts

The 8051 architecture suggests that registers holding the in-
terrupt request condition be evaluated after every instruction. In
fact the result of the evaluation is almost always that there is no
active interrupt.

The Lutonium uses a distributed interrupt mechanism. It
would be too expensive to check all the interrupt-enable reg-
isters on every cycle. Therefore, we implement part of the
interrupt mechanism in the R uptArb, which is part of the
instruction-fetch unit and fetch loop. The RuptArb generates
an “interrupt guess” (IG), which is an approximation (see be-
low) to the true interrupt-request status. If IG is true, the
interrupt-control registers in RuptRegs will be queried as to
whether the interrupt should be taken or not.
IG can be true only in response to a message on the IR UPT

channel, which is only generated by an interrupt module if the
corresponding interrupt is enabled. All we need to do on every
instruction cycle is to probe the IR UPTchannel so that IMem
knows whether to compute an ordinary PC or an interrupt PC.
The process accomplishing this is as follows in CHP:

RuptArb � *[[ IRUPT ! IRUPT ; IMem:IG !true

|:IRUPT ! IMem:IG !false

]]

Thus we avoid evaluating complicated interrupt conditions on
every instruction cycle and reduce overall power consumption.

There are hazards when interrupts are enabled or disabled.
The former hazard (which is the need to take an interrupt right
after it is enabled, even if the request happened a long time ago
and was discarded) is solved by regenerating IRUPT messages
when interrupts are enabled. The latter hazard is that interrupt
requests that were generated before an interrupt-disable instruc-
tion may not be discovered in the IRUPT channel until after an
interrupt-disable instruction was already executed; hence they
must semantically follow after the interrupt-disable instruction
(i.e. there should be no interrupt request). Extra IRUPT mes-
sages caused by the solution to the first hazard, and by the lat-
ter hazard, are masked by the fact that IG is, after all, only
a guess: interrupt-disable actions and taken interrupts are se-
quenced at the RuptRegs , which leads to an implementation
with the proper sequential semantics.
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B. Deep Sleep

If one uses a clock, the time required to start the clock gen-
erator on wake-up from deep sleep (a mode with no switch-
ing nodes) is often so large that the deep sleep mode cannot
be used, or programmers resort to using a pseudo-sleep mode
which does not halt all switching activity (e.g., an oscillator and
a few gates continue to run).

The lack of a usable deep sleep means that there are long idle
periods during which the clock (and everything driven by it)
are consuming power. Even if this is a small amount of power
it could dominate the overall energy use, owing to its duration.
To solve this problem, we present the design of deep sleep with
instant wakeup for our asynchronous 8051.

First, we observe that if the R uptArb process goes to sleep,
instruction fetching stops, and hence execution stops. This is
what sleep mode should do. Counters, if enabled, can con-
tinue to run without instruction execution, and this is desired—
it should be possible to exit sleep mode through counter over-
flow. Other than the desired enabled counters, there will be
no switching activity if instruction execution is stopped. We
can easily add a message to the IR UPT channel that makes
RuptArb go to sleep:

R uptArb �

*[[IR UPT�!

[IRUPT = “sleep” �!IRUPT ; [IRUPT]

[]IRUPT = “other” �!IRUPT ; IMem:IG !true

]

|:IRUPT �!IMem:IG ! false

]]

We expose to the programmer a “sleep” instruction which en-
ters sleep mode, and a SLEEP sequence, which atomically en-
ables interrupts on entering sleep and disabling them on exiting
sleep. This allows the proper implementation of condition vari-
ables (which is hard to do on many microcontrolllers).

To design the SLEEP sequence properly, we must deal with
a problem that results from the CPU’s being pipelined. Since
we do not have a mechanism for discarding speculative instruc-
tions, we do not know how many instructions after a “sleep”-
generating instruction will have executed when the CPU goes
to sleep. This is a problem, because a test-and-set loop (e.g.,
to implement mutex locking) might evaluate its exit condition
prematurely, before actually going to sleep, and then incorrectly
return to sleep (possibly forever) as soon as it is awakened.

We solve the problem of post-“sleep” instruction execution
by requiring the instructions containing the sleep instruction to
make up an infinite loop. The loop is exited only after an in-
terrupt request executes and returns. In summary, the “sleep”
instruction must perform the following actions atomically:

1) enable interrupts (because they must be disabled before
“sleep,” to avoid falling asleep immediately after return-
ing from the interrupt handler that handles the interrupt
that is supposed to wake up the processor).

2) notify the interrupt-return-address-saving-unit that it
should modify the saved PC so that the return from the
interrupt handler that executes when the processor wakes
up jumps past the infinite loop.

3) send “sleep” message to RuptArb.

We chose MOV SLP,A (with SLP=CFH) as the “sleep” instruc-
tion. We give the following sequence the mnemonic SLEEP:

fprecondition: interrupts disabled hereg
MOV SLP,A

loop: SJMP loop

CLR IE.EA

fpostcondition: interrupts disabled hereg

The SLEEP sequence results in the following sequence of ac-
tions: (1) atomically enable interrupts and go to sleep; (2) wake
up as soon as at least one interrupt has been handled; and
(3) disable interrupts. In fact our design guarantees that the
instruction after an interrupt return is executed (as demanded
by the 8051 architecture), so SLEEP will catch exactly one in-
terrupt (assuming only one level of interrupts is enabled).

C. Spinning on a variable efficiently using Deep Sleep

Suppose an interrupt routine sets a bit myFlag on success.
The following code waits for the interrupt routine to run suc-
cessfully, while consuming zero dynamic power in the mean-
time:

CLR IE.EA

SJMP test

sleep: SLEEP

test: JNB myFlag, sleep

SETB IE.EA

XII. PERFORMANCE ESTIMATES AND COMPARISONS

The performances are for the Lutonium-18 (0.18-�m) proto-
type implementation. This implementation will use the TSMC
SCN018 process offered by MOSIS. It is a 0.18-�m CMOS
process with a nominal voltage of 1.8 V and threshold volt-
ages of 0.4 V and 0.5 V. The performance estimates given here
have been obtained by two methods. First, we simulated sev-
eral standard instructions (both electrical simulation in SPICE
for the memories and digital simulations augmented with es-
timates of energy and delay per transition). Secondly, we ex-
trapolated the MIPS performance to the Lutonium taking into
account (1) the architecture differences (22 transitions/cycle
vs. 18 transitions/cycle, fetch-loop differences), (2) technology
scaling, (3) transistor-sizing differences, (4) the datapath width
difference (32 vs. 8 bits), (5) the cache/memory difference (32
vs. 16 bits). The results of the two approaches agree closely.

The performances are summarized in figure 11. Energy
breakdowns for an ADD and a NOP are shown in figure 10. NOP is
interesting because it exercises the most energy-intensive func-
tions (fetching and operand decoding) that are required of any
instruction. (There are no special optimizations for NOP, since
it is not used in ordinary programs.) Most noticeable is the high
energy consumption of instruction decoding compared to the
MIPS. As in the MIPS, we observe that the execution of the in-
struction proper accounts for only a small fraction of the total
energy consumption.

In order to compare our design to three existing implemen-
tations of the 8051 which were all three fabricated in 0.5-�m
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CMOS technology, we estimated the performance of the Luto-
nium for a hypothetical Lutonium-50 implementation in a 0.5-
�m CMOS process. At the nominal 3.3 V, the Lutonium-50
would run at 100 MIPS and would consume energy correspond-
ing to 600 MIPS/W.

In a comparable technology, a synchronous implementation
by Philips runs at 4 MIPS and 100 MIPS/W. An asynchronous
implementation by Philips runs at 4 MIPS and 444 MIPS/W.
The synchronous Dallas DS89C420, called “ultra-high-speed,”
runs at 33–50 MIPS and 100 MIPS/W.

In terms of Et2, let us rank the four designs according
to increasing Et2 figures. The Lutonium-50 ranks first with
1:7 � 10

�25 Js2, followed by the Dallas at 4:0 � 10
�24 Js2, the

Philips asynchronous 8051 at 1:4 � 10
�22 Js2, and finally the

Philips synchronous 8051 at 6:3 � 10
�22 Js2. Hence, the Luto-

nium outperforms its best competitor by almost a factor of 30
in Et2.
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Figure 10. Energy breakdowns for instructions.

1.8 V 200 MIPS 100.0 mW 500 pJ/in 1800 MIPS/W

1.1 V 100 MIPS 20.7 mW 207 pJ/in 4830 MIPS/W

0.9 V 66 MIPS 9.2 mW 139 pJ/in 7200 MIPS/W

0.8 V 48 MIPS 4.4 mW 92 pJ/in 10900 MIPS/W

0.5 V 4 MIPS 170 �W 43 pJ/in 23000 MIPS/W

Table 11. P erformance from low-level simulation (con-
servative!).

XIII. CONCLUSION

Our past experience in designing complex asynchronous mi-
croprocessors gives us confidence that the performance figures
of the fabricated prototype will be close to our estimate, if not
better.

If such is the case, this experiment will demonstrate that
the Caltech fine-grain–pipeline design-style can indeed produce
energy-efficient systems, provided that a number of parame-
ters are adjusted carefully: transistor sizing, slack-matching
buffers, and process decomposition. In particular, the decompo-
sition of an initial sequential process into a network of PCHB-
implementable modules is still a trial-and-error procedure lead-
ing to vastly different results in the hands of different design-
ers. We are developing systematic algorithms to improve the
method [11].

As the supply voltage keeps decreasing with feature size,
the designer’s freedom to exchange throughput against energy,
which is at the core of the Et2 approach, is reduced. Soon, the
designer may end up with an excess throughput that cannot be
converted into needed energy savings. Nevertheless, the Luto-
nium experiment confirmed our conviction that the Et2 metric
currently provides the best approach to energy-efficient designs.
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