
Virtual Worlds and Multimedia Edited by Nadia Magnenat Thalmann and Daniel Thalmann
© 1993 John Wiley and Sons Ltd

8
Virtuality Builder II: On the
Topic of 3D Interaction
Jean-Francis Balaguer, Enrico Gobbetti
Computer Graphics Laboratory
Swiss Federal Institute of Technology, Lausanne

8.1. Introduction

Most of today's user interfaces for 3D graphics systems still predominantly use 2D widgets,
even though current graphical hardware should make it possible to create applications in
which the user directly manipulates aspects of three-dimensional synthetic worlds. The
difficulties associated with achieving the key goal of immersion has led the research in
virtual environments to concentrate far more on the development of new input and display
devices than on higher-level techniques for 3D interaction.

It is only recently that interaction with synthetic worlds has tried to go beyond
straightforward interpretation of physical device data (NSF 1992), (Balaguer and Mangili
1992). The design space for 3D interaction tools and techniques remains mostly unexplored,
while being far larger than in standard 2D applications. Moreover, as stated by Myers, "the
only reliable way to generate quality interfaces is to test prototypes with users and modify
the design based on their comments" (Myers 1989, p.15). The creation of complex
interactive applications is an inherently iterative process that requires user interface tools,
such as toolkits or frameworks.

The lack of experience in 3D interfaces makes it extremely difficult to design 3D
interface toolkits or frameworks. We believe that offering the possibility to rapidly prototype
and test novel interaction techniques should be the primary goal of such tools. It is therefore
more important for these tools to provide a wide range of interaction components, than to
enforce a particular interface style.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147926761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Virtuality Builder II: On the Topic of 3D Interaction

In this chapter we present the Virtuality Builder II (VB2) framework developed at the
Swiss Federal Institute of Technology for the construction of 3D interactive applications.
First, we shall give an overview of the design concepts of VB2. Next, we shall concentrate
on how users interact with dynamic models through direct manipulation, gestures, and
virtual tools. More details on the rendering and modeling clusters are found in (Gobbetti et
al. 1993a), and more detailed explanations of the dependency maintenance algorithms, as
well as on their use to implement tools behavior, are found in (Gobbetti et al. 1993b).

8.2. Design Concepts

VB2 is an object-oriented framework designed to allow rapid construction of applications
using a variety of 3D devices and interaction techniques. As shown in Figure 8.1, VB2
applications are composed of a group of processes communicating through inter-process
communication (IPC). A central process manages the model of the virtual world, and
simulates its evolution in response to events in the form of IPC messages coming from the
processes that encapsulate asynchronous input devices. Sensory feedback to the user can be
provided by several output devices. Visual feedback is provided by real-time rendering on
graphics workstations, while audio feedback is provided by MIDIoutput and playback of
prerecorded sounds.

Rendering
Application

DataGlove

Spaceball

Mouse

MIDI
Sound

EyePhone

Rendering

Figure 8.1. Overall structure of VB2

In order to obtain animated and interactive behavior, the system has to update its state in
response to changes initiated by sensors attached to asynchronous input devices such as
timers or trackers. The virtual world can be seen as a network of interrelated objects whose
behavior is specified by the actions taken in response to changes in the objects on which
they depend.

To model this kind of behavior, three different aspects have to be considered:

Virtuality Builder II: On the Topic of 3D Interaction 3

• the state of the system;
• the long-lived relations that have to be maintained between the different components of

the state;
• the sequencing relations between states.

In VB2, each one of these aspects is modeled using different primitive elements: active
variables are used to store the state of the system, reactions to maintain object's properties,
hierarchical constraints to declaratively represent long-lived multi-way relations between
active variables, and daemons to react to variable changes for imperatively changing
between different system states. A central state manager is responsible for adding, removing,
and maintaining all active constraints as well as managing the system time and activating
reactions and daemons. This way, imperative and declarative programming techniques can
be freely mixed to model each aspect of the system with the most appropriate means, much
as in the programming language Kaleidoscope (Freeman-Benson 1990).

8.2.1. Information Modules

All VB2 objects are instances of classes in which dynamically changing information is
defined with active variables related through hierarchical constraints. Grouping active
variables and constraints in classes permits the definition of information modules that
provide levels of abstraction that can be composed to build more sophisticated behavior.

8.2.2. Active Variables

Active variables are the primitive elements used to store the system state. An active variable
maintains its value and keeps track of its state changes. Upon request, an active variable can
also maintain the history of its past values. A variable's history can be accessed using the
variable's local time, which is incremented at each variable's state change, or using the
system's global time, which is incremented at each atomic constraint operation. This simple
model makes it possible to elegantly express time-dependent behavior by creating
constraints or daemons that refer to past values of active variables.

8.2.3. Reactions and Transactions

In VB2, modifying some active variables of an information module requires that a
transaction on this module has been opened. Transactions are used to group changes on
active variables of a same module. Reactions register themselves with a set of active
variables and are activated at the end of a transaction. They are used to enforce object
invariants as well to maintain any kind of relation between a set of active variables. The
reaction code is imperative and may result in the opening of new transactions on other
modules as well as in the invalidation of the value of modified variables. All the operations
performed during a transaction are considered as occurring within the same time slice.

4 Virtuality Builder II: On the Topic of 3D Interaction

8.2.4. Hierarchical Constraints

Multi-way relations between active variables are specified in VB2 through hierarchical
constraints, introduced in ThingLab (Borning et al. 1987) for the construction of two-
dimensional user interfaces.

Constraint objects are composed of a declarative part, which defines the type of relation
that has to be maintained, together with set of concerned active variables, and an imperative
part, which is a list of possible methods that could be used to maintain the constraint.
Constraint variables are located either directly or through symbolic paths. A symbolic path is
an indirect reference to a variable described by the sequence of names of the active variables
that have to be traversed to reach the referenced variable. Constraint methods are general
procedures of any complexity that ensure the satisfaction of the constraint after their
execution by computing certain of the constrained variables as a function of some of the
others. A priority level is associated with each constraint to define the order in which
constraints need to be satisfied in case of conflicts: this way, both required and preferred
constraints can be defined for the same active variable.

A central constraint solver is activated each time a constraint is added to the graph or
removed from it, and each time an active variable changes its value. Its goal is to maintain
symbolic paths, and to decide which constraints should be satisfied, which method should be
used for each constraint, and in what order these methods should be invoked. All the
operations that the constraint manager performs to address these needs are considered as
occurring at the same time and do not modify the system time.

We based our solver on the DeltaBlue algorithm (Freeman-Benson and Maloney 1989),
which we extended to perform lazy evaluation and deal with constraints composed of
methods having multiple outputs. Constraints using symbolic paths are handled by
transforming them to fixed reference constraints that are automatically removed from the
network and reconnected to the correct variables each time a component of a symbolic path
changes, as in the user-interface toolkit Multi-Garnet (Sannella and Borning 1992).

8.2.5. Daemons

Daemons are the imperative portion of VB2. They are the objects which permit definion of
the sequencing between system states. Daemons register themselves with a set of active
variables and are activated each time their value changes. The action taken by a daemon can
be a procedure of any complexity that may create new objects, perform input/output
operations, change active variables' values, manipulate the constraint graph, or activate and
deactivate other daemons. The execution of a daemon's action is sequential and each
manipulation of the constraint graph advances the global system time. A priority level is
associated with each daemon to define the activation order.

8.3. Interaction Techniques

In most typical interactive applications, users spend a large part of their time entering
information, and several types of input devices, such as 3D mice and DataGloves, are used

Virtuality Builder II: On the Topic of 3D Interaction 5

to let them interact with the virtual world. Using these devices, the user has to provide at
high speed a complex flow of information, and a mapping between the information coming
from the device sensors and the actions in the virtual world has to be devised.

The definition of this mapping is crucial for interactive applications, because it defines
the way users communicate with the computer. Ideally, interactive 3D systems should allow
users to interact with synthetic worlds in the same way they interact with the real world, thus
making the interaction task more natural and reducing training.

8.3.1. Direct Manipulation

In most systems, the interaction mapping is hard coded and directly dependent on the
physical structure of the device used (for example, by associating different actions with the
various mouse buttons). This kind of behavior is obtained in VB2 by attaching constraints
directly relating the sensors' active variables to variables in the dynamic model, as in the
example of Figure 8.2. These constraints define the interaction metaphor, and their
activation and deactivation are triggered by daemons.

T1 T3T2 Th

C3hC12 C23

Figure 8.2. Graphical objects grabbed by user with constraints

Such a direct mapping between the device and the dynamic model is straightforward for
tasks where the relations between the user's motions and the desired effect in the virtual
world is mostly physical, as in the example of grabbing an object and moving it, but needs to
be very carefully thought out for tasks where user's motions are intended to carry out a
meaning. In this latter case, hardwiring virtual world actions to specific sensor values forces
commitments that risk reducing device expressiveness and can make applications difficult to
use (Fels and Hinton 1990).

In order to overcome these problems, mediator objects can be interposed between sensors
and models to transform the information accordingly to interaction metaphors. Two major
types of mediators are used in VB2:

• adaptive pattern recognizers, to enhance sensor data with classification information,
hence increasing the expressive power of the input devices;

• virtual tools, encapsulations of visual appearance and behavior, to present selective views
of models' information and offer the interaction metaphors to control it.

6 Virtuality Builder II: On the Topic of 3D Interaction

Information transformation is obtained by propagation through the mediators' internal
constraint networks. Multiple mediators can be simultaneously active to allow manipulation
of several models at the same time or of a single model with different interaction metaphors.

8.3.2. Hand Gestures

VB2 uses a gesture recognition system linked to the DataGlove. The gesture recognition
system has to classify, on the basis of previously seen examples, movements and
configurations of the hand in different categories. Once the gesture is classified, parametric
information for that gesture can be extracted from the way it was performed, and an action
in the virtual world can be executed. This way, with a single gesture, both categorical and
parametric information can be provided at the same time in a natural way (Rubine 1991). A
visual and an audio feedback on the type of gesture recognized and on the actions executed
are usually provided in VB2 applications to help the user understand the system's behavior.

VB2's gesture recognition is subdivided into two main portions: posture recognition, and
path recognition (e.g. Fig.8.3). The type of gesture chosen is compatible with Buxton's
suggestion (Buxton 1986, 1990) of using physical tension as a natural criterion for
segmenting primitive interactions: the user, starting from a relaxed state, begins a primitive
interaction by tensing some muscles and raising the state of attentiveness, performs the
interaction, and then relaxes the muscles. In our case, the beginning of an interaction is
indicated by positioning the hand in a recognizable posture, and the end of the interaction by
relaxing the fingers.

The posture recognition subsystem is continuously running and is responsible for
classifying the user's hand finger configurations. Once a configuration has been recognized,
the hand data is accumulated as long as the hand remains in the same posture. This data is
then passed to the path recognition subsystem to classify the path. A gesture is therefore
defined as the path of the hand while the hand fingers remain stable in a recognized posture.

The gesture recognition system is a way to enhance the data coming from the sensors
with classification information and thus provides an augmented interface to the device. The
ability to specify the mapping through examples makes applications easier to adapt to the
preferences of new users, and therefore makes them simpler to use.

(a) (b) (c)

Figure 8.3. a,b. Creating a cylinder by gestural input; c. Grabbing the cylinder through posture
recognition

Virtuality Builder II: On the Topic of 3D Interaction 7

8.3.3. Virtual Tools

The amount of information that can be controlled on a three-dimensional object and the
ways that could be used to control it are enormous. Gestural input techniques and direct
manipulation on the objects themselves offer only partial solutions to the interaction
problem, because these techniques imply that the user knows what can be manipulated on an
object and how to do it. The system can guide the user to understand a model's behavior and
interaction metaphors by using mediator objects that present a selective view of the model's
information and offer the interaction metaphor to control this information. We call these
objects virtual tools (see examples in Figure 8.4).

Figure 8.4. Examples of simple virtual tools

VB2's virtual tools are first class objects, like the widgets of UGA (Unified Graphics
Architecture) (Conner et al. 1992), that encapsulate a visual appearance and a behavior to
control and display information about application objects.

The visual appearance of a tool must provide information about its behavior and offer
semantic feedback to the user during manipulation. In VB2, the visual appearance of a tool is
described using a modeling hierarchy. In fact, most of our tools are defined as articulated
structures that can be manipulated using inverse kinematic techniques, as tools can often be
associated with mechanical systems.

The tool's behavior must ensure the consistency between its visual appearance and the
information about the model being manipulated, as well as allow information editing
through a physical metaphor. In VB2, the tool's behavior is defined as an internal constraint
network, while the information required to perform the manipulation is represented by a set
of active variables (Figure 8.5).

In VB2, virtual tools are fully part of the synthetic environment. As in the real world, the
user configures its workspace by selecting tools, positioning and orienting them in space,
and binding them to the models he/she intends to manipulate (Figure 8.6). Multiple tools
may be attached to a single model in order to simultaneously manipulate different parts of
the model's information, or the same parts using multiple interaction metaphors.

8 Virtuality Builder II: On the Topic of 3D Interaction

out_variable

in_variable

Constraint

in_out_variable

MODEL

Instances Constraints and active variables

Figure 8.5. Notation

Information display

Information control

MODEL

variable_1

variable_2

TOOL

variable_1

variable_2

c_1

c_2

Figure 8.6. Model and virtual tool

8.3.3.1. Virtual Tool Protocol

The user declares the desire to manipulate an object with a tool by binding a model to a tool.
When a tool is bound, the user can manipulate the model using it, until he/she decides to
unbind it.

bind

unbind

ManipulateIdle

Figure 8.7. Tool's state transitions

When a bind message is sent to a tool, the tool must first determine if it can manipulate
the given model, identifying on the model the set of public active variables requested to
activate its binding constraints. Once the binding constraints are activated, the model is

Virtuality Builder II: On the Topic of 3D Interaction 9

ready to be manipulated. The binding constraints being generally bidirectional, the tool is
always forced to reflect the information present in the model even if it is modified by other
objects.

When a tool is bound to a model, the user can manipulate the model's information
through a physical metaphor. This iterative process composed of elementary manipulations
is started by the selection of some part of the tool by the user, resulting in the activation of
some constraint like, for example, a motion control constraint between the 3D cursor and the
selected part. User input motion results in changes to the model's information through
propagation of device sensor values through the tool's constraint network, and so until the
user completes the manipulation, deselecting the tool's part. Gestural input techniques can
be used to initiate and control a tool's manipulations, for example by associating selection
and deselection operations to specific hand postures.

The unbind message is sent to a tool to detach it from the object it controls (Figure 8.7).
The effect is to deactivate the binding constraints in order to suppress dependencies between
the active variables of the tool and model. Once the model is unbound, further manipulation
of the tool will have no effect on the model. Figure 8.8 shows an example.

(a) (b) (c) (d)

Figure 8.8 a. Model before manipulation; b. A scale tool is made visible and bound to the model; c.
The model is manipulated via the scale tool; d. The scale tool is unbound and made invisible

8.3.3.2. Composition of Virtual Tools

Since virtual tools are first class dynamic objects in VB2, they can be assembled into more
complex tools much in the same way as simple tools are built on top of a modeling
hierarchy. The reuse of abstractions provided by this solution is far more important than the
more obvious reuse of code.

An example of a composite tool is Dr. Map, which is a virtual tool used to edit the texture
mapping function of a model by controlling the parallel projection of an image on the
surface of the manipulated model. The tool is defined as a plane on top of which is mapped
the texture and a small arrow icon displays the direction of projection (Figure 8.9). In order
to compute the mapping function to be applied to the model, the tool needs to know the

10 Virtuality Builder II: On the Topic of 3D Interaction

texture to be used, the position and orientation of the model in space, and the position and
orientation of the tool in space. The textured plane represents the image being mapped, and a
Dr. Plane tool allows manipulation of the plane in order to change the aspect ratio of the
texture's image. Pressing the grabber button allows the user to position and orient the tool in
the 3D space, hence specifying the direction and origin of the texture projection. Figure 8.10
shows views of Dr. Plane and Dr. Map.

SHAPE_3D

global_transf

mapping

texture

Dr MAP

mapping

c_mapping

texture

=

shape_transf

PLANE_G.

height

width

SHAPE_3D

global_transf

texture

parent

geometry

Dr PLANE

global_transf

width

height

stay

=

=

Figure 8.9. Dr. Map's simplified constraint network

(a) (b)

Figure 8.10. a. View of Dr. Plane; b. View of Dr. Map

Similarly, the material editing tool is built out of color tools and the light tool is built out
of a cone tool. By reusing other tools we enforce consistency of the interface over all the

Virtuality Builder II: On the Topic of 3D Interaction 11

system, allowing users to perceive rapidly the actions they can perform. Building tools by
composing the behavior and appearance of simpler objects is relatively easy in VB2: for
example, Dr. Map tool was built and tested by one person in about a couple of hours. The
fast prototyping abilities of the system are very important for a framework aimed at
experimenting with 3D interaction.

Figure 8.11. View of some other tools

Figure 8.12 . Synthetic environment

12 Virtuality Builder II: On the Topic of 3D Interaction

8.4. Conclusions and Further Work

We have presented the VB2 framework for the construction of three-dimensional interactive
applications. In VB2, multiple devices can be used to interact with the synthetic world
through various interaction paradigms. VB2 is implemented in the object oriented language
Eiffel (Meyer 1992) on Silicon Graphics workstations, and is currently composed of over
300 classes.

Interaction techniques range from direct manipulation to gestural input and three-
dimensional virtual tools. Adaptive pattern recognition is used to increase input device
expressiveness by enhancing sensor data with classification information. Tools, which are
encapsulations of visual appearance and behavior, present a selective view of the
manipulated model's information and offer the interaction metaphor to control it. Since tools
are first class objects, they can be assembled into more complex tools, much in the same
way simple tools are built on top of a modeling hierarchy. New three-dimensional tools are
easily added to the system, and their number is rapidly growing.

Hierarchical constraints, active variables, reactions and daemons are used to uniformly
represent system state and behavior. The use of an incremental constraint solver based on an
enhancement of DeltaBlue makes it possible to run, at interactive speeds, complex
applications composed of thousands of variables and constraints. The redraw time of the
hardware is still the limiting factor on interaction speed.

We believe that VB2 provides a good platform for prototyping and integrating a large
variety of three-dimensional interaction metaphors to control all the different aspects of
synthetic environments. We are currently extending the framework with time-varying
constraints and tools for animation control in order to build a virtual reality animation
system.

Acknowledgments

We would like to thank Michel Gangnet, Geoff Wyvill and Russell Turner for reviewing this
chapter, and Angelo Mangili for his participation to the implementation and design of an
early version of VB2.

References

Balaguer JF, Mangili A (1992) Virtual Environments. In Thalmann D, Magnenat-Thalmann
N (Editors) New Trends in Animation and Visualization, John Wiley and Sons, pp.91-
105.

Borning A, Duisberg R, Freeman-Benson B, Kramer A, Woolf M (1987) Constraint
Hierarchies, Proc. OOPSLA, pp.48-60.

Virtuality Builder II: On the Topic of 3D Interaction 13

Buxton WAS (1986) Chunking and Phrasing and the Design of Human-Computer
Dialogues. In Information Processing. North-Holland. Elsevier Science Publishers,
pp.475-480.

Buxton WAS (1990) A Three-state model of Graphical Input. In Diaper D, Gilmore D,
Cockton G, Shackel B (Editors) Human-Computer Interaction: Interact, Proceedings of
the IFIP Third International Conference on Human-Computer Interaction, North-
Holland, Oxford.

Conner DB, Snibbe SS, Herndon KP, Robbins DC, Zeleznik RC, Van Dam A (1992) Three-
Dimensional Widgets. SIGGRAPH Symposium on Interactive Graphics, pp.183-188.

Fels SS, Hinton GE (1990) Building Adaptive Interfaces with Neural Networks: The Glove-
Talk Pilot Study. In Diaper D, Gilmore D, Cockton G, Shackel B (Editors) Human-
Computer Interaction: Interact, Proceedings of the IFIP Third International Conference
on Human-Computer Interaction, North-Holland, Oxford, pp.683-687.

Freeman-Benson BM (1990) Kaleidoscope: Mixing Objects, Constraints, and Imperative
Programming, Proc. ECOOP/OOPSLA, pp.77-87.

Freeman-Benson BM, Maloney A (1989) The DeltaBlue Algorithm: An Incremental
Constraint Hierarchy Solver. In Proceedings of the Eighth Annual IEEE International
Phoenix Conference on Computers and Communications, March, pp.561-568.

Gobbetti E, Balaguer JF, Thalmann D (1993a) VB2: A Framework for Interaction in
Synthetic Worlds. Submitted for publication.

Gobbetti E, Balaguer JF, Mangili A, Turner R (1993b) Building an Interactive 3D
Animation System. In Meyer B, Nerson JM (Editors) Object-Oriented Applications ,
Prentice-Hall (to be published).

Meyer B (1992) Eiffel: The Language. Prentice-Hall.
Myers BA (1989) User-Interface Tools: Introduction and Survey. IEEE Software, Vol.6,

No.1, pp.15-23.
NSF (1992), Research Directions in Virtual Environments, NSF Invitational Workshop,

UNC at Chapel Hill, pp.154-177.
Rubine DH (1991), The Automatic Recognition of Gestures, PhD Thesis, CMU-CS-91-292,

Carnegie Mellon University.
Sannella M, Borning A (1992) Multi-Garnet: Integrating Multi-way Constraints with

Garnet, TR-92-07-01, Dept. of Computer Science, University of Washington.

