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Abstract—In this paper we combine kinesthetic demonstra-
tions and dynamical systems to enable a humanoid robot to imi-
tate constrained reaching gestures directed toward a target. Using
a learning algorithm based on Gaussian Mixture Regression, the
task constraints are extracted from several demonstrations. Those
constraints take the form of desired velocity profiles for the end-
effector and joint angle variables, with associated covariance
matrices describing the variations allowed around the desired
profiles. Those constraints are then used to modulate a dynamical
system which has the reaching target as attractor. This way,
the reaching trajectory can be reshaped in order to satisfy the
constraints of the task, while preserving the adaptability and
robustness provided by the dynamical system. In particular, the
system can adapt to changes in the initial conditions and to target
displacements occurring during the movement execution.
We first evaluate the potential of this method on experiments
involving the Hoap3 humanoid robot putting an object into a
box. We then show how a manipulation tasks can be executed
as sequences of such constrained reaching movement. This is
illustrated on a packaging task performed by the robot.

I. INTRODUCTION

The control of humanoid robots operating in human

environments presents a huge challenge for roboticists.

A major part of this challenge is related to the fact that,

unlike traditional industrial robots, domestic robots must

operate in dynamic and uncontrolled environments. The

dynamical system approach to robot control has been argued

to be a promising direction to tackle the problems linked

to such requirements [1]. However, if this approach has

been quite successful in designing attractor behaviors [2],

obstacle avoidance behaviors [3], cyclic movements [4], the

problem of designing a dynamical system that produces

goal-directed trajectories satisfying specific constraints

inferred by demonstrations does not have a fully satisfying

solution yet. This problem has been addressed by [5] and this

paper continues along this line. More specifically, we extend

this work by considering multiple and possibly redundant

variables to imitate, in a Programming by Demonstration
framework.

Constrained reaching movements are present in nearly every

manipulation task. For example when approaching an object in

a particular way for grasping, or transporting an object while

keeping a particular orientation or avoiding an obstacle. The

system presented below can enable a humanoid robot to exe-

Fig. 1. A human operator kinesthetically demonstrates a task to the robot,
i.e. by grabbing and moving its limbs while the robot records joint angle
trajectories.

cute such movements without being specifically programmed

for that purpose. Rather, it is a general-purpose system that

first learns a task by generalizing over a set of kinesthetic
demonstrations performed by a human operator (see Fig.
1). Further, it can adapt the learned behavior to different
initial conditions and to changes in the environment while
performing the task.
The rest of this paper is structured as follows: Section II

presents an overview of the system. The more detailed pre-

sentation starts with Section III which describes how the

constraints are extracted from the demonstrations. Section IV

then describes how those constraints are used to modulate a

dynamical system. Experiments using the Hoap3 humanoid

robot and involving domestic tasks are presented in Section

V. Finally, in Section VI, a conclusion highlights the strengths

and limitations of our system.

II. SYSTEM OVERVIEW

Let ξ(t) ∈ R
s describe the complete state of the robot at

each time step t. In the application described in the rest of
this document, ξ consists of the joint angles θ ∈ R

n of the

robot arms and of the end-effectors’ locations x ∈ R
m

ξ = [xT θT ]T . (1)

The aim of the algorithm is to reproduce the qualitative

features common to several demonstrated trajectories, while

adapting to different initial conditions and target locations.

The information flow of the algorithm is illustrated in Fig. 2.
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Fig. 2. A schematic overview of the system. In this paper, the variable
ξ contains the joint angles θ and the end-effector location x. Trajectories
provided by kinesthetic demonstrations are fed into a learning system, the
output of which, ξ̇o(t), is used to modulate a dynamical system. This
dynamical system has as attractor a target ξg given by a stereo-vision tracking
system and outputs a desired velocity ξ̇d(t). Coherence is then enforced
between the elements of this desired velocity, resulting in a velocity ξ̇∗(t)
performed by the robot.

After having being exposed to several demonstrations {ξ̇(t)}
of the task, the algorithm extracts a generalized form of the

original demonstration ξ̇o(t) using a probabilistic model, with
associated covariance matrices representing the variations and

correlations allowed along the trajectories. The generalized

trajectories and associated covariance matrices are then used

to modulate a dynamical system. Coherence constrained are

applied to the output of the dynamical system ξ̇d(t), resulting
in a final set of trajectories ξ̇∗(t) which can actually be
performed.

Note that the system described below does not make any

assumption on the form of data and, thus, ξ could be composed
of other variables, such as, for instance, the position of the

objects to be manipulated or the same data projected in a

latent space as done in [6].

III. CONSTRAINT EXTRACTION

In this section, we briefly summarize the Gaussian Mixture

Regression (GMR [7]) procedure used to obtain a single

“model” trajectory from several demonstrations. This appli-

cation has been described in details in [6], [8]. The principle

of this method is to model the joint distribution of “input” and

“output” variables as a Gaussian Mixture Model (GMM). In

our case, the output variables are the velocities ξ̇ and the input
variable is the time t. If we join those variables in a vector
υ = [t ξ̇T ]T , it is possible to model its probability density
function as

p(υ) =
K∑

k=1

πkN
(
υ;μk,Σk), (2)

where πk is a weighting factor (the prior) and N (υ;μk,Σk)
is a Gaussian function with mean μk and covariance matrix

Σk:

N (
υ;μk,Σk)=

(
(2π)d|Σk|

)− 1
2 · (3)

exp
( − 1

2
(υ − μk)T Σ−1

k (υ − μk)
)
, (4)

where d is the dimensionality of the vector υ. The mean
vector μk and covariance matrix Σk can be separated into

their respective input and output components:

μk = [μT
k,t μT

k,ξ̇
]T (5)

Σk =
(

Σk,t Σk,tξ̇

Σk,ξ̇t Σk,ξ̇

)
(6)

This GMM is trained using a standard Expectation-

Maximization (EM) algorithm, taking the demonstrations as

training data. EM starts with an initial estimate of the para-

meters and converges to a local maximum of the likelihood

function. As initialization is important, the initial parameters

are thus estimated by a rough segmentation of the data using

k-means clustering. The number of components is found using

Bayesian Information Criterion (BIC), as described in [6].

After training, we thus obtain a joint probability density

function for the input and the output. Because it is a GMM, the

conditional probability density function, i.e., the probability of

the output conditioned on the input is also a GMM. Hence, it

is possible to recover the expected output variable ξ̇o, given

the observed input variable t:

ξ̇o(t) =
K∑

k=1

hk(t)
(
μk,ξ̇ + Σk,ξ̇tΣ

−1
k,t(t − μk,t)

)
, (7)

where parameters hk(t) are given by:

hk(t) =
πkN (t;μk,t,Σk,t)∑K

k=1 πkN (t;μk,t,Σk,t)
. (8)

The covariance matrix of this conditional probability distrib-

ution is given by:

Σξ̇(t) =
K∑

k=1

h2
k(t)

(
Σk,ξ̇ − Σk,ξ̇tΣ

−1
k,tΣk,tξ̇

)
(9)

Thus, in our application, the GMM can be used to generate

a smooth movement by taking the expected velocities ξ̇o(t)
conditioned on time t. This movement is taken to be the one
to imitate. This method is illustrated in Fig. 7, where one sees

a set of trajectories (light gray lines), the gaussian mixture

components modeling them (ellipses) and the expected trajec-

tory (thick line). Moreover, Σξ̇(t) provides an indication about
the variability and correlations across the observed variables.

Indeed, at any given time step, variables with low variability

across demonstrations can be interpreted as more relevant to

the task than variables with high variability.

IV. DYNAMICAL SYSTEM MODULATION

Let ξs(t) be a variable describing the current state of the
robot. Again, this variable can contain the end-effector location

and and/or the robot joint angles. The dynamical system

ξ̈s(t) = α(−ξ̇s(t) + β(ξg − ξs(t))), (10)

with scalar constants 0 < β,α < 1, will smoothly bring
the robot to a target state ξg with a straight line and remain

there, as illustrated in Fig. 3, left. Because this dynamical

system creates a stable attractor on the target, the latter will be

reached despite possible perturbations. This dynamical system

2



α=0.08;β=0.04

α=0.08
β= 0.01

β=0.04
α=0.12 α=0.08

β=0.02

time steps t

 0
 0  50  100  150  200  250  300

ξ

ξg

T
time steps t

go

g

 0
 0

Fig. 3. Left: dynamics of the signal ξ according to (10) for various values of
the parameters. Throughout this document the values α = 0.08 and β = 0.02
were used. Right: behavior of the modulation factor γ. It smoothly reaches
0 at the end of the movement T , in order to let the robot reach the goal.
Throughout this paper, γ0 is set to 1.5.

is similar to the VITE model of human reaching movements

[9], and has been used to enable a robot to perform robust

reaching motions [2].

We start from this dynamical system and modulate it by

a trajectory ξ̇o(t) abstracted from the demonstrations. The
idea is simply to compute a weighted average between the

velocities ξ̇o(t) extracted from the demonstrations (7) and
the velocities given by the dynamical system (10). Since the

resulting end-effector positions and joint angle configuration

may not be consistent, a consistent solution ξ̇∗(t) for those
variables is found by minimizing an imitation metric H .

More precisely, we run two concurrent dynamical systems,

one for each set of variables (end-effector location and joint

angles). So, when reaching for a target position xg, we run

the following system:

ẍs(t) = α(−ẋs(t) + β(xg − x∗(t))) (11)

ẋs(t) = ẋ∗(t) + ẍs(t) (12)

ẋd(t) = γ(t)ẋs(t) + (γ0 − γ(t))ẋo(t), (13)

where x∗(t) and ẋ∗(t) are the real position and velocity and
γ(t) is a factor weighting the influence of the dynamical
system versus the demonstration. This factor varies with the

time according to

γ(t) = γ0 · max(((T − t)/T )2, 0), (14)

where T is the duration of the observed movement. As shown
in Fig. 3, right, this ensures a smooth decay to zero and

is necessary in order to guarantee that the target will be

reached. The duration of movement reproduction can exceed

T . In the dynamical system above (11), one can notice that
the damping is not made on the actual velocity of the system

ẋ∗(t) but on ẋs(t) which is the velocity component specified
by the dynamical system. This way, (11) does not correct the

velocity specified by the demonstrations. It only adjusts for

the position. Indeed, the aim is to keep the velocity similar

to the demonstrated ones while adjusting for the positions in

order to reach the target.

The same system modulation is applied to the joint angle
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Fig. 4. The reproduced trajectories (dash-dotted line) are qualitatively similar
to the observed trajectory (solid line), although they reach the goal from
different initial positions.

data.

θ̈s(t) = α(−θ̇s(t) + β(θg − θ∗(t))) (15)

θ̇s(t) = θ̇∗(t) + θ̈s(t) (16)

θ̇d(t) = γ(t)θ̇s(t) + (γ0 − γ(t))θ̇o(t), (17)

In general the variables ẋd(t), θ̇d(t) will not be consistent.
Consistency of the end-effector and joint angle velocities

ẋ(t), θ̇(t) is ensured by applying the constraint:

ẋ(t) = J
(
θ(t)

)
θ̇(t), (18)

where J
(
θ(t)

)
is the jacobian of the kinematic function at

θ(t). In order to have consistent values, we find the values
(ẋ∗, θ̇∗) that optimize the imitation metric: 1

H(ẋ∗, θ̇∗, ẋd, θ̇d) =
1
2
(ẋ∗ − ẋd)T Wx(ẋ∗ − ẋd) +

1
2
(θ̇∗ − θ̇d)T Wθ(θ̇∗ − θ̇d), (19)

where Wx ∈ R
m×m and Wθ ∈ R

n×n are matrices setting

respectively the relative importance and covariance of the

end-effector location and joint angle variables. As mentioned

above, the covariance matrices of the demonstrated velocities,

Σξ̇(t) (9), give an indication of how relevant the corre-
sponding variables are at time t. Thus, Wθ and Wx are

directly determined by the inverse of Σξ̇. The optimization

is performed under the consistency constraint expressed by

(18). The solution of this constrained optimization problem

(as shown in [8]) is given by:

θ̇∗ =
(
Wθ + JT WxJ

)−1(
Wθ θ̇

d + JT Wxẋd
)

(20)

This solution θ̇∗ is then executed by the robot.

A. Simulations

In this section we illustrate the properties of the algorithm

presented above on one-dimensional trajectories. Fig. 4

shows a model (or observed) trajectory (solid line). In the

1Dependence on time is omitted to simplify the notation.
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Fig. 5. The effect of a sudden target displacement. If the target suddenly
switches (dotted line), the system smoothly adapts its trajectory to reach it.

global system, this model trajectory is the outcome of the

GMR. The system has to imitate that trajectory and reach

the same target, but starts from four different positions. The

exact features of the trajectory that need to be replicated

can vary from task to task, and it is therefore difficult to

evaluate the quality of the imitation. Nonetheless, we see that

the reproduced trajectories (dash-dotted lines) replicate the

qualitative features of the model trajectory (the two velocity

peaks) and reach the target. However, the speed pattern is

accelerated, the further the goal is from the initial position. In

the next section, results of physical experiments are displayed

to allow a better evaluation of the system.

In Fig. 5, the effect of a sudden target displacement is shown.

Similarly to Fig. 4 the system has to imitate an observed

trajectory (solid line) starting from a different position.

However, as indicated by the dotted line, the target suddenly

switches to a new location. The dashed-dotted line shows

how the system adapts its trajectory to reach the new target.

V. EXPERIMENTS

The simulation results presented above illustrate that the

system is able to reproduce some of the features of a model

trajectory. We now turn to physical experiments with clear

success/failure criteria to confirm the effectiveness of the

system. For those experiments, we use a Hoap3 humanoid

robot built by Fujitsu. This robot has two cameras located in

its eyes, and four backdrivable degrees of freedom (dofs) in

each arm. The fifth dof, the wrist, is not backdrivable and could

thus not be used for kinesthetic demonstrations. The robot is

controlled in position through a built-in on-board controller.

A. Putting an object into a box

The first experimental task consists in putting an object

(here a cylinder) into a box. This is a constrained reaching

task in the sense that the robot must reach the box from above,

without hitting it. In the setting considered here, the robot

knows (through vision tracking of a colored patch) where the

box is, but has no information relative to its size. The system

Fig. 6. The experimental setup for the object-in-the-box task. The Hoap3
humanoid robot puts a cylinder into a box. The box is tracked by the a stereo-
vision system mounted in the eyes of the robot. The white line represents the
trajectory depicted in Fig 8.
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ẋ
3

t

Fig. 7. The Gaussian Mixture Model trained with the 26 kinesthetic demon-
strations of the object-into-the box task. Only the the models corresponding
to the velocities of the end-effector are represented. ẋ1, ẋ2, ẋ3 correspond to
the velocities along the x,y and z directions of the Cartesian space. The thin
lines represent the demonstrations and the thick lines the generalization ξ̇o(t)
learned using the GMR. The ellipses represent the Gaussian components of
the joint probability distribution. The models and trajectories corresponding
to the joint angle velocities are not represented.

must extract from the kinesthetic demonstrations made a

human operator that it must first reach up above the box and

then down into the box (see Fig. 1). The experimental setup

is shown in Fig. 6. During the demonstrations, the human

operator makes the robot passively put the cylinder into the

box, varying the initial arm posture and the position of the

box. Using the method described in section III, velocities for

all joint angles and the end-effector are extracted.

The corresponding Gaussian Mixture Model figures in Fig.

7. In this figure, one can notice that, unlike the horizontal

components, the extracted velocity of the vertical component

ẋ3 is significantly different from zero, indicating that it must

go up and then down. Moreover, we see that the variance is

smaller for this vertical component (elongated ellipses), i.e.

the trajectory is more constrained.
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Fig. 9. A top-view of the starting location of the cylinder. The robot is
facing upward. The robot successfully puts the cylinder into the box for all
tested initial configurations. The robot is prevented from reaching some initial
positions by its torso or the box itself, which explains the white areas near
the shoulder and at the right of the box.

During reproduction, the robot tracks the position of the

box using its stereo-vision system. The reaching target is set

to be the top of the box, and the starting position is given

by the motor sensors. At the end of the trajectory, the robot

releases the cylinder and the task is performed successfully if

the cylinder falls into the box. Fig. 8 shows such a successful

trajectory. The same trajectory is drawn on Fig. 6 to illustrate

its effect in the experimental setup.

In order to evaluate the adaptiveness of the system, trials were

made with different starting locations. The initial positions

were distributed on the horizontal plane of the table. For each

initial position, the task was performed successfully. It was not

possible to find a starting position on that horizontal plane for

which the robot failed. Fig. 9 plots the starting configurations

that where tried. One sees that trials were made from different

sides and distances from the box. For the plane of the table,

the whole workspace was covered.

However, if the initial position is set much below the height

of the table, the robot cannot perform the task successfully.

This is illustrated in Fig. 10, where one sees the success or

failure of the robot depending from the initial position in z.

In order to evaluate the robustness to perturbations, the box
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Fig. 10. The robustness to variations in the vertical initial position. The lower
lines represents failures, the upper line success. The robot cannot successfully
perform the task if the initial position is much lower than the demonstrated
ones, which started from the height of the table (about 40 mm).
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Fig. 11. The box is moved while the robot is reaching for it. The thin line
is the trajectory without the perturbation. If the box is displaced during the
movement, as shown by the circles, the system adapts its trajectory (thick
line).

was displaced during the execution of the task. An example

is displayed in Fig. 11. During movement execution, the box

is displaced, and the robot adapts its trajectory to reach it.

B. Packaging

As mentioned above, constrained reaching movements are

present in many domestic tasks and applications. To conclude

our set of experiments, we extend the previous task in order to

have a more complete application. The task considered here is

a simple packaging task, which consists of putting and object

into a box, closing it and ringing a bell. This task can be

segmented into six constrained reaching subtasks:

1) reach for the object (and grab it);

2) put the object into the box;

3) hold the box with one hand

4) close the box with the other hand;

5) reach for the handle of a bell

6) ring the bell.

For this experiment, each of those six subtasks is trained

separately, i.e., the task segmentation is made manually. This

segmentation could also be performed automatically, but this

is not the focus the present paper. The object, the bell handle

and the box do not have a fixed location. The task is performed
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Fig. 12. The trajectories generated for the execution of the packaging task.
In the first row, the robot reaches for the object and puts it into the box. In
the second row, it holds the box with the right hand and closes it with the
left hand. In the third row, it reaches for the bell and rings it.

by successively performing the constrained reaching motions

for each subtask. The setup and an example of resulting

trajectories are illustrated in Fig. 12. For this kind of tasks, it is

crucial that the robot adapt to changes in the environment, as

those changes are sometimes cause by the robot itself. For the

example of Fig. 12, one sees that the box has moved between

the first and the second subtask (the two upper pictures). The

robot has slightly moved the box while putting the object in

it, but could nevertheless perform the task successfully.

VI. CONCLUSION

In this paper we have presented an algorithm that enables

a robot to perform constrained reaching tasks in a dynamic

environment. This algorithm consists first of extracting

constant features of the movement and then use them in

conjunction with a dynamical system. This allows the system

to reproduce a task, while adapting to new external conditions.

Of course this system still leaves room for improvement.

For example, one can notice that the trajectories generated

by the system are similar to the demonstrated ones especially

at their beginning. Due to the decaying of γ(t), at the end
of the trajectory the influence of the dynamical system gets

bigger and the similarity gets smaller. Thus, tasks that involve

a specific modulation at the end of the trajectory may not

be as successfully reproduced as the tasks presented in this

paper. Moreover, if the dynamical system is adaptive, the

modulation itself is not. Thus, if the robot arm is halted by

an external intervention, one could have discontinuities in the

velocities when resuming the movement. Work is currently

done to overcome those limitations.

In fine, this system presents an interesting combination of
learning and wiring. The fact that the target has to be reached

is wired in by the use of the dynamical system. This gives

the adaptability to various initial conditions and to target

displacements. The learning component, present in the form

of Gaussian Mixture Regression, gives the generality of the

system, its ability to perform many different tasks. Those

tasks can thus be learned without the need of building a model

of the environment. In our example, the system does not need

any information about size of the box. This information is

implicitly given by the demonstrations. This property is very

valuable for humanoids operated by unexperienced users as

it does not require any programming skills.
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