
1

Motor functions in the VLNET Body-Centered
Networked Virtual Environment

Igor-Sunday Pandzic1, Tolga K. Capin2,
Nadia Magnenat Thalmann1, Daniel Thalmann2

1MIRALAB-CUI
University of Geneva

24 rue de Général-Dufour
CH1211 Geneva 4, Switzerland

{Igor.Pandzic, Nadia.Thalmann}@cui.unige.ch
http://cuisg13.unige.ch:8100/HomePage.html

2Computer Graphics Laboratory
Swiss Federal Institute of Technology

CH1015 Lausanne, Switzerland
{capin,thalmann}@lig.di.epfl.ch

http://ligwww.epfl.ch

Abstract

In order to enhance the sense of presence within networked Virtual Environments it
is important to increase the quality of physical or social interaction of participants with
each other and with the environment. We beleive that this increase of quality can be
achieved by realistic modeling and animation of the human body representing the
participant, together with the natural behaviors of the objects in the environment. The
representation of self as a realistic-looking virtual human body with natural movement
helps participants not only to perceive each other and thus feel together, but also to
interact with the environment in a straightforward and natural fashion. This property is
further enhanced if the objects in the environment behave in a natural, expected way. In
the Virtual Life Network (VLNET) system we use realistic human body representation
together with a set of motor functions giving behaviors to actors and objects to reach the
mentioned goals.

Keywords: networked virtual environments, virtual humans, virtual life, computer
animation, multimedia

1. Introduction

In the past few years we have seen an increasing number of research efforts for
building networked Virtual Environments, and solutions were proposed for building
toolkits for communication in networked virtual worlds [Amselam 95][Carlsson
93][Macedonia 95][Singh 95], and special-purpose applications [Maxfield 95]
[Stansfield 95][Gisi 94][Broll 95].

Networked virtual environments share problems with single-user environments, but
they also need to consider other factors. A virtual environment should give the users a
feeling of presence within this environment providing better interaction and an intuitive
interface. Presence requires that the participant become part of the environment, and
interact with the environment using natural ways. The degree of presence is expected to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147926431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

increase with an increasing level of physical or social interaction with appropriate
reactions from the environment. Therefore, a multi-user virtual environment system
should provide efficient and accurate representation and interaction of the objects with
realistic animation, as well as efficient communication management. A user feels a better
degree of presence if other participants within the same environment believe that she is
present and active in the same environment, and they show it. This property is likely to
increase collaboration and interaction among participants within the VE. As the body
movements help to show intentions and real actions more clearly, hence decreasing
ambiguity in interaction, it is important to represent the participants by virtual human
bodies in shared environments.

There has been similar research to represent virtual humans in virtual environments
[Granieri 95][Yoshida 95]. In the VLNET (Virtual Life Network) system that we have
developed [Capin 95], we attempt to provide a more realistic representation through the
use of motor functions, combined with interaction with the environment. The motor
functions encompass more than inverse kinematics or displaying previously-recorded
key frames, as they take into consideration other parameters specific to the motion.
Also, they are based on fast heuristics.

Typically the VEs are created by bringing together different models, possibly with
different scalings and even different formats. Unlike CAD models, these models lack
any corresponding interaction information concerning other objects. This makes it
difficult to manipulate the scene, as when, for example placing an object comfortably in
the right location without it floating in air. Therefore, realistic goal-oriented methods
have to be provided for animating the objects depending on the user input. We propose
different classes of motor functions that can be combined for this problem. In this
paper, we present these motor functions of the VLNET system, and we discuss the
issues and problems in building body-centered networked VEs with environment
interaction.

 2. User Representation

To improve the interaction among the participants in a multi-user virtual environment
we employ the full-body participant representation using virtual actors. The body of a
virtual actor should realistically represent the real participant's body and the body
animation should be naturally correlated to the user actions. However, realistic
modeling and animation of virtual humans is not a straightforward task.

The user representation in VLNET is based on the HUMANOID articulated body
model [Boulic 95], At the core of this model there is a skeleton structure resembling the
anatomical structure of a real skeleton. The skeleton structure consists of a 3D
articulated hierarchy of joints, each with realistic limits of movement. It comprises 74
degrees of freedom without the hands, with an additional 30 degrees of freedom for
each hand.

The body envelope (skin) is attached to the skeleton in the form of 16 deformable
surfaces representing the body parts: head, pelvis, thorax, abdomen, left and right
upper leg, lower leg, foot, upper arm, lower arm, and hand. As the skeleton is
animated, these surfaces follow the movement and are deformed appropriately at the
seams to form a realistic-looking deformed body. The body can be represented in three
levels of detail ranging from 2000 to 40000 triangular facets.

3

The high quality visual representation is only one step towards a believable body
model; at least as important is the natural body movement corresponding to the user
actions. This could be best achieved by using a large number of sensors to track all
degrees of freedom in the real body. However, this is generally not possible or not
practical. Normally, only a few degrees of freedom will be tracked, and the rest has to
be interpolated using the behavioral human animation knowledge and different motion
generators.

Each user sees the virtual environment through the eyes of her body, and can control
the movement of the body by various sensor devices (varying from spaceball and
dataglove, to numerous sensors attached to body). In addition to her eye position, the
user also has control of her virtual hand to interact with the environment (pick and
reposition objects). We selected these two modes of control, as most conventional input
devices sense position and orientation of the head (e.g. head-mounted displays) and the
hand (e.g. dataglove).

In the VLNET system, we provide a set of motor functions that are responsible for
different human motion: walking motor for navigation, and arm motor for manipulation
of objects. These motor functions are more powerful than playing previously-recorded
motions: they are based on approximations coming from biomechanical experiments,
and they attempt to consider different parameters of the motion they are responsible for,
in order to give parametrized motion (for example step length in walking as a function
of velocity).

Figure 1: An example of real-time walking sequence

When the user navigates through the environment, the walking motor is used to
perform a natural walking motion. The participant uses input devices (e.g. spaceball,
dataglove with gesture interpretation) to update the eye position of the virtual actor.
Based on this control, the incremental change of the eye position is computed and the
rotation and velocity of the body center is estimated. The walking motor uses the
instantaneous velocity to compute the length and duration of the walking cycle, from
which it computes the joint angles of the body. The walking motor is based on the

4

HUMANOID walking model [Boulic 90], guided interactively by the user or
automatically generated from the given trajectory. Figure 1 shows an example of the
walking motion in real time.

For object picking and the arm motion in general, the arm motor has to compute the
joint angles of the arm based on the 6 degrees of freedom of the hand determined by
user input. Figure 2 ilustrates the complexity of the degrees of freedom of the joints in
the arm. There are multiple solutions of joint angles reaching the same hand position,
and the most realistic one has to be chosen. At the same time the joint constraints have
to be taken into account. These considerations make the arm motor much more
complicated then a simple inverse kinematics problem. For the arm motor we use the
captured data obtained using sensors and stored into a precomputed table of arm joints.
This table divides the normalized volume around the body into a discrete number of
subvolumes (e.g. 4x4x4) and stores the mapping from subvolumes into joint angles of
the right arm. Figure 3 shows an example of arm motion produced by this mechanism.

scap_rotate

scap_ab
duct
shoulder_abduct

shoulder_twisting

elbow_twisting

shoulder_flexion

elbow_flexion

wrist_flexion

wrist_pivot

Figure 2: Degrees of Freedom for the Right Arm

The users can also select a posture for the upper body for different emotions:
tiredness, happiness, paying attention, etc. Currently, the user explicitly selects one
emotion, using commands similar to smileys that are used commonly in text messages
to express different emotions. The emotion motor sets the body joints at the vertebrae
ending at the shoulders, based on this input. There is a need to define an emotion motor
function that automatically recognizes the appropriate motion using data sensed from the
real user. This developed motor function is an introductory step to building an automatic
emotion motor. Figure 4 shows body postures for some example emotions set by this
motor.

5

Figure 3: An example real-time grasping sequence

Figure 4: Emotion Motor updates the joints on the upper part of the
body depending on the user's input. Some of the possible
emotion representations: a) paying attention, b) tired, c)
surprised.

Facial expressions are among the most important means of human communication,
expressing intentions, thoughts and feelings. Therefore we include the facial
communication in our multi-user virtual environment to enhance the communication
between the users [Pandzic 94].

We implement the facial communication by capturing the user's face using a camera
and distributing it in real time to other users to be texture-mapped on the face of the
virtual actor. Thus the virtual actor has the real moving face of the remote user.

6

The original images captured by the camera are first processed to extract the subset
of the image containing the user's face. This processing is based on a comparison with
an initial background image (the requirement is that the background is static). The
extracted facial image is compressed at each frame and distributed to other users. At the
receiving side, an additional service process is charged with the receipt and
decompression of the images. The main application gets the decompressed images
through shared memory from the service process, decoupling the facial video frame rate
from the application frame rate.

The facial images are texture-mapped on a simplified model of a human head with
attenuated features. This is a compromise between mapping on a simple shape (e.g.
box, ellipsoid) which would give unnatural results and mapping on a full-featured
human head model where more precise image - feature alignment would be necessary.
The texture mapping is illustrated in figure 5.

The main drawback of the facial module is that it is not possible to incorporate it with
users wearing HMD, as the face cannot be captured. However, it provides a good
medium of interaction with shutter glasses or in the absence of these devices.

Figure 5: Mapping of the face to the 3D virtual actor. Usage of simple
head provides a compromise between 3D geometry and
texture quality.

3. Interaction with Virtual Environment and Object Behaviors

It is expected that the participants feel a higher degree of presence if the environment
reacts to their actions in a realistic way. For example, the user should be able to interact
with the environment, reposition objects by picking them up with her virtual hand, and
releasing them, making them fall. In order to pick up an object, the user moves her hand
near the object and explicitly requests picking (e.g. by clicking spaceball button, closing
dataglove). The objects stay picked until released explicitly by the user.

Typically the VEs are created by bringing together different models, possibly with
different scalings and even different formats. Unlike CAD models, these models lack
any corresponding interaction information between objects. This makes it difficult to
manipulate the scene. A dynamics simulation with collision response would solve this
problem. However for medium-sized environments this is a time-consuming solution,
resulting in unwanted delays in the simulation. Therefore, we adopt a solution which
compromises between realistic appearance and goal-oriented behaviors. We extend the

7

view-dependent object associations framework proposed by Bukowski and Sequin
[Bukoswki95] and we propose three classes of motor functions that can be attached to
the objects, and include efficient communication schemes. We present the classification
in this section, and network issues for executing these motor functions in multi-user
VEs, in the next section.

A set of behaviors can be associated dynamically with any object in the environment.
The object behaviors are implemented as different motor functions which give them a
means of interacting with the users and the other objects. The types of motor functions
can be divided into 3 classes:

• continuous motor functions: these functions require transformation update of the
object regularly, within a specific period of time without any delay. For example,
hands of a clock to show the time are in this category.

• user-dependent motor functions: these functions depend on the user input. This can
be an explicit user input (for example, request for changing servers, see below); or
implicit input (for example, automatic door behavior driven by position of the user).

• environment-dependent motor functions: these functions are dependent on the
environment as well as the object itself. We define different built-in motor functions
corresponding to this category: magnet, vertical displacement, horizontal
displacement, axis alignment. Magnet allows to attach different objects to each other
with a predetermined transformation matrix (e.g. the watch body and bracelet are
always attached with one transformation). Vertical displacement is called when the
object is released; and is used for making the objects fall until it collides with an
object, simulating gravity.

A subset of these behaviors can be added optionally to the objects during the scene
creation. Different motor functions can be appended together to obtain more complex
behaviors. For example, when an object is released; the vertical displacement motor is
activated until a collision occurs with another object (e.g. table); after that the axis-
alignment motor, that orients the object in a vertical position with respect to the collided
object, becomes active.

A new motor function can be added only by programming. However, we have
established a well defined step-by-step procedure for adding new motor functions,
enabling a fairly experienced programmer to implement a new motor function easily and
without knowledge of the rest of the application.

A motor function is attached dynamically to an object through a pointer to the motor
function structure. This structure contains the necessary internal data of a particular
motor function and the pointers to the subroutines to be executed in defined situations
(e.g. the Update subroutine is executed in each time step, the Save subroutine is
activated when the user saves the scene configuration to a file). When the subroutines
are executed, they get as a parameter the pointer to the object to which the motor
function is attached. Using this mechanism the user can dynamically attach motor
functions to objects, change their parameters or detach them.

4. Network Structure

8

The communication is based on a client/server model as illustrated in figure 6. The
server is designed as a lightweight applications making it possible to run the server
continuously in background on any host without putting a noticeable strain on the CPU.
This actually provides permanent virtual worlds to which the VLNET clients can
connect, each being a kind of virtual meeting place.

World 1
Server

World 2
Server

user 1

user 2

user 3 user 4

HMD FOB

SB

Station

shutter
glasses

head
tracker

Figure 6: Communication Architecture of the VLNET System is
based on a client/server model with links between the
servers

When the client establishes connections with the server, the server first provides the
scene description to the new client, including all the object files necessary to build and
visualize the virtual environment. All the other clients are informed that a new user
entered the virtual world. The user representation information (body description, face)
is exchanged between all the users, passing through the server. This insures that each
user can provide his own body and face description and thus be recognized by others.

Once this initial information exchange is finished, all information exchange is done
through the server using uniformly sized packets which are not more than the Maximum
Transfer Unit of the protocol being used. The content of each packet is interpreted
according to its type - new transformation of an object, body skeleton angles,
grouping/ungrouping information, entry/exit messages etc. The packet is a data
structure comprising a header which contains the message type and the sender id, and
the body which is a union of data structures - one for each message type. All
geometrical information is sent in absolute, rather then incremental values, insuring the
coherence of the shared virtual environment even if a packet is lost.

When a user quits her VLNET session, the server cancels her from the client list and
informs all other clients, thus insuring that this user disappears from the environment.

Links to other servers (i.e. other virtual worlds) can be established in a similar
fashion as VRML or WWW links. These links can be attached to any object using a

9

specialized motor function. When the user approaches such an object (it makes sense to
make it look like a door), she is disconnected from the current server and connected to
another one following the link. This gives the user the impression of "walking into
another world". The user can take any objects with her when going to a different world.
The linking mechanism, providing the possibility to carry objects through different
worlds and allowing virtual actors to walk freely through the worlds, actually provides
a hyper-world consisting of multiple servers scattered across the network.

The motor functions can be handled in different ways in the networked application.

The simplest mechanism is to execute the motor function locally on each host. This
is appropriate for motor functions that do not put much strain on the CPU and where
there is no danger of loosing the coherence of the shared environment. Time dependent
motor functions are generally handled in this way.

The second way to handle the motor functions in a networked environment is to
execute the function only on the host on which it has been triggered, and distribute the
object position updates to other hosts. The standard communication packets are used for
this distribution. This approach has two advantages: it distributes the processing, which
is convenient for the more power-consuming motor functions, and it guarantees the
coherence of the shared environment. This approach is used in general by the user- and
environment-dependent motor functions (although some of them can be handled by the
first, simple approach).

An extension of this second approach is provided for the motor functions that need
to communicate some function-specific data. To this end a general-purpose
communication packet can be used by the motor function. As an example of this
approach, we have implemented a virtual slide show. When a user changes the slide,
the slide show motor function distributes the slide number to other hosts, insuring that
everybody sees the same slide.

5. Results

We have tested the VLNET system over the ATM network between Geneva and
Singapore, provided during the Telecom'95 exhibition in Geneva. Our results showed
that the ATM network is suitable for guaranteeing quality of service for small-sized
packets between the server and the clients. We will make another test with larger
numbers of users located in Geneva, Belgium, and Singapore.

We have built experimental worlds for different applications such as teleshopping,
game-playing and medical education, and have made tests between multiple users
located in Switzerland and Japan over the Internet network and Swiss ATM Pilot
network. Snapshots from some of these sessions are presented in figure 7.

10

Figure 7: Some application examples (entertainment, medical)

6. Conclusion and future work

In this paper we have presented the VLNET system which provides a shared
environment with virtual humans and their interactions. The motor functions provide
powerful and efficient tools for increasing realism of body-centered interactions. In
addition, they allow parallel animation of objects in the multiple-user VEs, improving
the speed of interaction.

Future work remains for including deformable objects in the shared environment.
There is also a need to build an emotion motor that automatically recognizes the emotion
of the real participant, and updates the body realistically corresponding to this emotion.
Currently the motor functions are coded in software. However further research will
continue building general motor functions by combining low-level motors.

Acknowledgments

The research was partly supported by ESPRIT project HUMANOID (P 6079),
Swiss National Foundation for Scientific Research, Silicon Graphics, Federal Office of
Education and Science, and Department of Economy of City of Geneva. We would like
to thank assistants of LIG and MIRALAB for the models and libraries.

References

[Amselam 95] Amselem D., "A Window on Shared Virtual Environments",
Presence: Teleoperators and Virtual Environments, Vol. 4, No. 2, 1995.

[Boulic 95] Boulic R., Capin T., Huang Z., Kalra P., Lintermann B., Magnenat-
Thalmann N., Moccozet L., Molet T., Pandzic I., Saar K., Schmitt A., Shen J., Thalmann
D., "The Humanoid Environment for Interactive Animation of Multiple Deformable
Human Characters", Proceedings of Eurographics '95, 1995.

[Boulic 90] Boulic R., Magnenat-Thalmann N. M.,Thalmann D. "A Global Human
Walking Model with Real Time Kinematic Personification", The Visual Computer ,
Vol.6(6),1990.

11

[Broll 95] Broll W., "Interacting in Distributed Collaborative Virtual Environments",
Proceedings of IEEE VRAIS'95, 1995.

[Bukowski 95] Bukowski R.W., Sequin C.H., "Object Associations: A Simple and
Practical Approach to Virtual 3D Manipulation", Proceedings of ACM Symposium on
Interactive 3D Graphics, Monterey, California, 1995.

[Capin 95] Capin T.K., Pandzic I.S., Magnenat-Thalmann N., Thalmann, D., "Virtual
Humans for Representing Participants in Immersive Virtual Environments", Proceedings
of FIVE '95, London, 1995 (to appear).

[Carlsson 93] Carlsson C., Hagsand O., "DIVE - a Multi-User Virtual Reality System",
Proceedings of IEEE VRAIS '93, Seattle, Washington, 1993.

[Gisi 94] Gisi M.A., Sacchi C., "Co-CAD: A Collaborative Mechanical CAD System",
Presence: Teleoperators and Virtual Environments, Vol. 3, No. 4, 1994.

[Gobbetti 93] Gobbetti E., Balaguer J.F., Thalmann D., "VB2: An Architecture for
Interaction in Synthetic Worlds", Proceedings of ACM UIST '93, Atlanta, 1993.

[Granieri 95] Granieri J.P., Becket W., Reich B.D., Crabtree J., Badler N.I., "Behavioral
Control for Real-Time Simulated Human Agents", Proceedings of ACM Symposium on
Interactive 3D Graphics, Monterey, California, 1995.

[Macedonia 94] Macedonia M.R., Zyda M.J., Pratt D.R., Barham P.T., Zestwitz,
"NPSNET: A Network Software Architecture for Large-Scale Virtual Environments",
Presence: Teleoperators and Virtual Environments, Vol. 3, No. 4, 1994.

[Maxfield 95] Maxfield J., Fernando T., Dew P., "A Distributed Virtual Environment
for Concurrent Engineering", Proceedings of IEEE VRAIS '95, 1995.

[Pandzic 94] Pandzic I.S., Kalra P., Magnenat-Thalmann N., Thalmann D., "Real-Time
Facial Interaction", Displays, Vol 15, No 3, 1994.

[Singh 95] Singh G., Serra L., Png W., Wong A., Ng H., "BrickNet: Sharing Object
Behaviors on the Net", Proceedings of IEEE VRAIS '95, 1995.

[Stansfield 95] Stansfield S., Miner N., Shawver D., Rogers D., "An Application of
Shared Virtual Reality in Situational Training", Proceedings of IEEE VRAIS '95, 1995.

[Yoshida 95] Yoshida M., Tijerino Y., Abe S., Kishino F., "A Virtual Space
Teleconferencing System that Supports Intuitive Interaction for Creative and Cooperative
Work", Proceedings of ACM Symposium on Interactive 3D Graphics, Monterey,
California, 1995.

