
1

Data Exchange in Networked Collaborative Virtual
Environments

Igor Pandzic1 , Tolga Capin2 ,

Nadia Magnenat-Thalmann1 , Daniel Thalmann2

1 MIRALab - CUI
University of Geneva

24 rue du Général-Dufour
CH1211 Geneva 4, Switzerland

{Igor.Pandzic,Nadia.Thalmann}@cui.unige.ch
http://miralabwww.unige.ch/

2 Computer Graphics Laboratory
Swiss Federal Institute of Technology (EPFL)

CH1015 Lausanne, Switzerland
{capin, thalmann}@lig.di.epfl.ch

http://ligwww.epfl.ch/

Abstract

One of the ultimate goals of SNHC is to provide a framework supporting the

Networked Collaborative Virtual Environments (NCVE) for a wide range of applications.

We briefly present an existing NCVE system called Virtual Life Network (VLNET).

VLNET is a NCVE system incorporating realistic representation and animation of virtual

humans for higher realism of simulation and more natural interaction with users of the

system, as well as with autonomous agents. Based on our experience in VLNET we

analyze the requirements of NCVE systems that should be considered by SNHC. In

particular, we examine in detail various types of data traveling through the network in this

type of application, and requirements for each type.

Introduction

In its ultimate extension, SNHC will provide a framework to support Networked

Collaborative Virtual Environments (NCVEs) integrating multiple graphically represented

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147926396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

users, 2D, 3D, audio and video objects for a wide range of applications ranging from

shopping to health care [Doenges 96]. NCVEs represent an active area of research and

several systems. Several systems have been developed [Barrus 96, Capin 95, Carlsson

93, Macedonia 94, Ohya 95, Singh 95, Thalmann 95], varying greatly in networking

solutions, scalability, application scope, user embodiment solutions, efforts to integrate

natural video and/or audio data. Nevertheless, whatever the network topology of the

NCVE (client/server, multicast, multiple servers, combinations [Funkhouser 96]) the data

that is being communicated from one participant in the simulation to the other(s) is

essentially similar. Based on the example of our Virtual Life Network system, we analyze

the types of data communicated in NCVE systems.

The next chapter provides an extensive introduction to VLNET. VLNET is a NCVE

system exploiting highly realistic Virtual Humans to represent users as well as

autonomous agents in the simulation. The bodies and faces of Virtual Humans, as well as

other objects in the environment, can be controlled by exchangeable external drivers

connected to a set of simple interfaces. This concept provides a simple and flexible means

of controlling the otherwise complex system. To insure even more flexibility in

development, and to improve performance, VLNET internal architecture is also extremely

modular, with a number of processes working on precisely defined tasks.

After the introduction to VLNET, in the following chapter we explore in detail the

types of data used for communication in VLNET, analyzing the scope, requirements,

implementation.

Finally we give conclusions and ideas for future work.

Virtual Life Network

Virtual Life Network (VLNET) [Capin 95, Pandzic 96, Thalmann 95] is a

Networked Collaborative Virtual Environment system using highly realistic Virtual

Humans for the participant representation. The Virtual Humans in VLNET are completely

articulated deformable bodies with articulated faces. They can faithfully reproduce body

postures and facial expressions and, combined with appropriate real-time animation

techniques, reproduce natural motions, actions, emotions and speech. Through a set of

3

external interfaces, VLNET provides flexible means of controlling not only the users'

embodiments but also other objects in the scene. This allows easy support of various

input devices, as well as straightforward connection to external control programs

simulating autonomous behaviors or animating the virtual world based on external data

sources (e.g. on-line stock exchange data, weather data etc.). While providing easy

access through external interfaces to all interesting functionalities, VLNET performs the

basic functions like networking, database management and rendering in a manner

transparent to the user.

From the networking point of view, VLNET is a based on a fairly simple

client/server architecture. The server is mostly responsible for session management and

message distribution. It is designed to work in pair with a standard HTTP server for

database distribution. The design of the VLNET client is highly modular, with

functionalities split into several processes. This allows not only performance

improvements, but also the possibility to easily replace certain modules and obtain

different functionalities.

Next two sections discuss in more detail the server and client architecture.

VLNET Server

A standard HTTP server and a VLNET Connection Server have to run permanently

on a VLNET server site. They can serve several worlds, which can be either VLNET files

or VRML 1.0 files. For each world, a World Server is spawned as necessary, i.e. when a

client requests a connection to that particular world. The life of a World Server ends

when all clients are disconnected.

Figure 1 illustrates the connection of clients to the VLNET server site. A VLNET

session is initiated by a Client connecting to a particular world designated by a URL. The

Client first fetches the world database from the HTTP server using the URL. After that it

extracts the host name from the URL and connects to the VLNET Connection Server on

the same host. The Connection Server spawns the World Server for the requested world

if one is not already running and gives the Client the port address of the World Server.

4

The Client can provide the user data (the files describing the body the user wants to

be represented with) by sending a URL. This data is distributed to other Clients in the

session. The Client also has to fetch the user data from the other Clients. Once the

connection is established, all communication between the clients in a particular world

passes through the World Server.

The World Server manages the communication intelligently by distributing the

incoming data to the clients on an as-needed basis. This means for example that a video

bitstream is not transmitted to a client who is currently not looking at the video object.

HTTP Server

VLNET
Connection

Server

World 1 World 2 World 3

VLNET
World Server

VLNET
World Server

VLNET Client VLNET Client VLNET Client

Figure 1: Connection of several clients to a VLNET server site

VLNET Client architecture

The design of the VLNET Client is highly modular, with functionalities split into a

number of processes. Figure 2 presents an overview of the modules and their

connections. VLNET has an open architecture, with a set of interfaces allowing a user

with some programming knowledge to access the system core and change or extend the

system by plugging custom-made modules, called drivers, into the VLNET interfaces.

These drivers only have to use a defined API to connect to VLNET. They can run on the

local host, or on a remote host. The VLNET core consists of a number of processes

5

performing the basic functions like object updating, rendering, networking. These

processes communicate through shared memory. The VLNET main process consists of

four logical units, called engines, each with a particular task and an interface to external

applications (drivers).

The VLNET Core

The VLNET core is a set of processes, interconnected through shared memory, that

perform basic VLNET functions. The Main Process performs higher level tasks, like

object manipulation, navigation, body representation, while the other processes provide

services for networking (Communication Process), database loading and maintenance

(Database Process) and rendering (Cull Process and Draw Process).

The Main Process consists of four engines covering different aspects of VLNET.

It also initializes the session and spawns all other processes and drivers. Each engine is

equipped with an interface for the connection of an external driver.

The Object Behavior Engine takes care of the predefined object behaviors, like

rotation or falling, and has an interface allowing to program different behaviors using

external drivers.

The Navigation and Object Manipulation Engine takes care of the basic user

input: navigation, picking and displacement of objects. It provides an interface for the

navigation driver. If no navigation driver is activated, standard mouse navigation exists

internally. Currently, navigation drivers exist for the SpaceBall and Flock of

Birds/Cyberglove combination. New drivers can easily be programmed for any device.

The Body Representation Engine is responsible for the deformation of the

body. In any given body posture (defined by a set of joint angles) this engine will provide

a deformed body ready to be rendered. The body representation is based on the

Humanoid body model [Boulic 95]. This engine provides the interface for changing the

body posture. A standard Body Posture Driver is provided, that connects also to the

navigation interface to get the navigation information, then uses the Walking Motor and

the Arm Motor [Boulic 90; Pandzic 96] to generate the natural body movement based on

the navigation. Another possibility is to replace this Body Posture Driver by a simpler one

6

that is directly coupled to a set of Flock Of Birds sensors on the users body, providing

direct posture control.

The Facial Representation Engine provides the synthetic faces with a

possibility to change expressions or the facial texture. The Facial Expression Interface is

used for this task. It can be used to animate a set of parameters defining the facial

expression. The facial representation is a polygon mesh model with Free Form

Deformations simulating muscle actions [Kalra 92].

All the engines in the VLNET core process are coupled to the main shared memory

and to the message queue.

Cull and Draw Processes access the main shared memory and perform the

functions of culling and drawing as their names suggest. These processes are standard

SGI Performer [Rohlf 94] processes.

The Communication Process receives messages from the network (actually

from the VLNET World Server) and puts them into the Message Queue. All the engines

read from the queue and react to messages that concern them (e.g. Navigation Engine

would react to a Move message, but ignore a Facial Expression message which would be

handled by the Facial Representation Engine). All the Engines can write into the outgoing

Message Queue, and the Communication Process will send out all the messages. All

messages in VLNET use the standard message packet. The packet has a standard header

determining the sender and the message type, and the message body. The message body

content depends on the message type but is always of the same size, satisfying all

message types in VLNET.

The Data Base Process takes care of the off-line loading of objects and user

representations. It reacts to messages from the Message Queue demanding such

operations.

The Drivers

The drivers provide the simple and flexible means to access and control all the

complex functionalities of VLNET. Simple, because each driver is programmed using a

7

very small API that basically consists of exchanging crucial data with VLNET through

shared memory. Flexible, because using various combinations of drivers it is possible to

support all sorts of input devices ranging from the mouse to the camera with complex

gesture recognition software, to control all the movements of the body and face using

those devices, to control objects in the environment and to build any amount of artificial

intelligence in order to produce autonomous or semi-autonomous agents in the networked

virtual environment.

LEGEND:

Internal VLNET processes; can be changed only by recompiling VLNET

Logical entities within VLNET main process, called engines

Internal shared memory segments for data exchange within internal processes; not
accessable to users

External shared memory interfaces, accessable to the users through defined APIs

External processes (called drivers); can be programed by the user using the defined APIs;
they are replacable and sometimes optional

External devices; sometimes optional or replacable

FACIAL
REPRESEN-

TATION
ENGINE

BODY
REPRESEN-

TATION
ENGINE

OBJECT
BEHAVIOR

ENGINE

NAVIGATION
AND OBJECT

MANIPULATION
ENGINE

COMMUNI-
CATION

PROCESS

MESSAGE
QUEUE

MAIN
SHARED
MEMORY

DATA BASE
PROCESS

CULL
PROCESS

DRAW
PROCESS

FACIAL
EXPRESSION
INTERFACE

BODY
POSTURE

INTERFACE

NAVIGATION
INTERFACE

OBJECT
BEHAVIOR
INTERFACE

FACIAL
EXPRESSION

DRIVER

BODY
POSTURE
DRIVER

NAVIGATION
DRIVER

OBJECT
BEHAVIOR

DRIVER

VLNET MAIN
PROCESS

...MORE
OBJECT

BEHAVIOR
DRIVERS

NET

SCREEN,
HMD

CAMERA

FOB,..

SB,
MOUSE,

TRACKING

If any of the drivers runs on
a remote host, the network interface

is automatically installed here
VLNET CORE

Figure 2: Virtual Life Network system overview

8

The Drivers are directly tied to the Engines in the VLNET Main Process. Each

engine provides a shared memory interface to which a driver can connect. Most drivers

are optional and the system will provide minimal functionality (plain navigation and

manipulation of objects) without any drivers. The drivers are spawned automatically by

the VLNET Main Process on the beginning of the session, based on the command line

where all possible combinations of drivers can be specified. The drivers can be spawned

on the local host or on a remote host, in which case the transparent networking interface

processes are inserted on both hosts. In a simple case, as with most drivers shown in

figure 1, a driver controls only one engine. However, it is possible to control more then

one engine with a single driver, insuring synchronism and cooperation.

The Data Flow

At the bottom line, Networked Virtual Environments are about passing data from

one user to another, or others, allowing this data to be input, processed and output in

flexible ways with a high level of abstraction. Looking at figures 1 and 2 we can analyze

the flow of data from one user to the other(s) and various steps of processing the data.

The user inputs the data through the drivers. At this level the data is classified into

precise categories with defined interfaces: face, body, navigation and object behaviors.

By replacing drivers, the user can use different devices or metaphors for the input.

From the drivers, the data passes to the engines, each specialized for a particular

type of data. Here the data is used to perform appropriate actions if necessary (e.g.

navigation).

The engines pack the data into a form appropriate for network transmission and

pass it to the communication process. This level is completely transparent to the users.

The communication process transmits the data to the server, which transmits it (if

necessary) to the other clients' communication processes.

The communication process makes the data available to the engines. Each engine

reacts to the data of its concern, unpacks it and represents it in appropriate form.

9

The database downloads are separated from this data flow and use the HTTP

server.

The Network Traffic in VLNET

In this chapter we explore in detail the data types used for communication in

VLNET. For each type of data we analyze the current and possible use, requirements,

current implementation with any drawbacks and ideas for improvements based on our

experience.

Figure 3 presents a classification of various types of network traffic happening in

VLNET. The principal types of data are the VLNET message packets carrying the

essential simulation data, download data, video, audio and text.

VLNET Message Packets

Use

The VLNET Message packets carry all the essential simulation data: session

establishment messages, client/server negotiation, state updates, events. According to

their use (and it will be shown later that it has an impact also on the requirements) we

divide them into state, event and system messages.

System messages are used for session management and client/server negotiation.

These are all the messages necessary for the client to establish the connection with the

server, receive a user ID, send his personal information, receive information about other

users, quit a session.

Event messages communicate events generated by the user, e.g. picking up and

object or grouping objects.

The state messages update the state of the user or the objects. The MOVE message

updates the transformation matrix of the object or user, thus changing the position,

orientation and scaling. For a user, the change can concern the whole body, or separately

head or hand positions. The JOINTS message updates the joint angles of the user's body,

defining the body posture. The HAND_JOINTS message does the same for left or right

hand. The FACE_EXP message updates the facial expression of the user.

10

NETWORK TRAFFIC TYPES

VLNET MESSAGE PACKETS DOWNLOAD VIDEO AUDIO TEXT

State Messages Event Messages System Messages

MOVE
JOINTS
HAND_JOINTS
FACE_EXP

PICK
UNPICK
GROUP

ERROR
END
BUSY
READY
GET_BODY
SEND_BODY
SET_WORLD
PORT
SEND_UID
SET_NAME
NEW_USER

Figure 3: Network Traffic Types in VLNET

Requirements

The VLNET Message Packets (and similar messages in other systems) are small,

typically under 100 bytes. Some of the event and system messages are even smaller,

carrying just a flag (e.g. BUSY and READY messages indicating the client state to the

server). Thus the bitrate generated by event and system messages is typically extremely

low, aided also by the fact that these messages happen relatively rarely. However, the

error resilience of both system and event messages must be maximal, in particular the

system messages whose loss can cause complete malfunction of the system.

For the State messages the situation is slightly different. Though they are also

small, they do carry more information then event and system messages. Also, they

happen much more often. As a result, they generate a higher bitrate, though still in the

order of tens of kilobits maximally, in case of very high client activity. Each message

outdates and replaces the previous message of the same type: for example, once the new

face expression is received, the last one is obsolete. Thus a loss of one message is not

crucial, and will cause only a very temporary function flaw - up to the moment when the

next message is received correctly. Therefore the error resilience doesn't represent such a

big issue for these messages as for the previous types.

11

Latency is not a critical issue, but should be small for event and update messages.

Implementation

The VLNET Message Packets are uniformly sized (80 bytes). They have a header

containing the sender ID and the message type. The body of the message is interpreted

according to the type (this is implemented as a union in C). The uniform message size and

header provide great benefits for the internal message handling, especially when messages

are passed between processes through shared memory, because all the messages can be

treated in the same way. Once the messages reach the communication process (see figure

2), the benefit of uniformity is spoiled by the efficiency issue. Clearly it is very inefficient

to use a big message packet just to send a one-bit flag. This is currently tolerated because

of the ease of implementation - all the messages can be treated in the same way for

sending and receiving. Nevertheless, by processing the messages more intelligently at this

level lower bitrate and higher error resilience can be achieved.

For some of the state messages, we have successfully used the dead-reckoning

technique with a big save in bitrate (HOW MUCH TOLGA?).

For the event and system messages, higher security can be achieved by treating

them with a better networking protocol.

In the current implementation, the actual parameters used to define body postures

and facial expressions correspond to those proposed in the response to the SNHC Call for

Proposals [MPEG-N1195] and described in detail in our submissions to the CfP [MPEG-

M1211, MPEG-M1165]. Therefore they are very similar to the SNHC draft for those

parameters [MPEG-N1365] which was based on these and other proposals.

Download

Use

Download is used for all database transfer to the client, as well as for the transfer of

user's body representation data to other users. The data consists typically of 3D geometry

and textures.

12

Requirements

The size of files to be downloaded depends on the complexity of a particular virtual

environment or body representation. Potentially it can be very large, easily it reaches

megabytes. Errors can not be tolerated, because even a small error in a downloaded file

can cause a bad read. It is obviously desirable that the download time should be as short

as possible, within limits of the requirement on error-free download.

Implementation

All downloads in VLNET are performed using the HTTP protocol. This allows also

to use the familiar HTTP servers for data exchange. Various data formats are supported

for 3D object data, including most of the popular formats.

In this domain there is a great potential for improvement using 3D data compression

techniques for 3D objects, and image compression for textures. When using the 3D

compression techniques, the notion of error tolerance also changes, because it moves into

the 3D object domain. It is possible to define error tolerance in terms of coordinate errors

for vertices, normals etc. However, compression techniques are usually tied to a

particular data format, implying that a conversion is necessary before compression if

multiple data formats are to be supported.

Video

Use

In VLNET the use of video is currently limited to facial communication [Pandzic

96-1]. In our approach the video sequence of the user's face is continuously texture

mapped on the face of the virtual human. The user must be in front of the camera, in such

a position that the camera captures his head and shoulders. A simple and fast image

analysis algorithm is used to find the bounding box of the user's face within the image.

As illustrated in figure 4, this provides effective means of facial communication in real

time, transmitting facial expressions and lip movements and displaying them on the face

of the Virtual Human representing the user.

13

Requirements

Using small images and compression, the bitrate is reduced to approx. 150

Kbit/sec, but this is still huge in comparison with the rest of the data. This data is also less

critical in terms of error tolerance. A very important requirement on the implementation is

that most of the other data should be treated preferentially to video, i.e. it is not acceptable

for a system message to be retarded because of the video.

Figure 4: Video texturing of the face

Implementation

Each facial image in the video sequence is compressed using SGI Compression

Library and the compressed images are passed to the Facial Representation Engine of

VLNET, then redirected to the Communication Process. Obviously, the color images of

120 x 80 pixels, even compressed, do not fit in the standard VLNET Message Packets

used by the Communication process. To avoid multiplexing of the VLNET Message

packets and the video data we use a separate channel (socket) for the video. This allows

14

preferential treatment of the VLNET packets, without a more complex multiplexing.

Nevertheless, opening separate communication channels complicates the system.

Audio

Use

Audio communication is currently used only in the very classical sense: talking to

each other.

Requirements

Audio produces a medium, steady bitrate when active. In the conversation setup,

typically there will be pauses in speech of each speaker which can be detected and no

bitrate generated during the pauses.

Implementation

Currently we use an external public domain software for the audio communication.

We are working on an implementation using a separate audio channel, similar to the

implementation of video.

Text

Use

The obvious use of text communication is the chat using text messages. However,

in NCVEs text can be used for more then that. Combining the facial animation based on

text with a Text To Speech system simple text can be transformed into speech

accompanied with appropriate lip movement. Text is also used to communicate with

autonomous agents.

Requirements

Bandwidth needed for text transfer is low. Occasional errors can be tolerated.

Considering the typing speed, latency is not such a critical issue.

15

Implementation

Since the text has low requirements, it is easy to squeeze it in the same channel with

the video.

Conclusions and future work

We have presented the Virtual Life Network system and used it as an example to

analyze various types of network traffic appearing in the Network Collaborative Virtual

Environment systems. For each type of data we have discussed the use, networking

requirements and implementation. Obviously, NCVE systems generate a broad variety of

network traffic types with widely varying requirements in terms of bitrate, error resilience

and latency. Currently we solve this problem by using different data channels, possibly

with different transmission protocols or even driven by different applications, for major

data categories. A powerful multiplexing algorithm with a possibility of specifying

requirements for each incoming data type would be a more effective solution. Another

interesting domain for future work is the integration of 3D geometry compression

techniques within NCVE systems, which would greatly reduce session establishment

times.

References

[Barrus96] Barrus J. W., Waters R. C., Anderson D. B., "Locales and Beacons:

Efficient and Precise Support For Large Multi-User Virtual Environments", Proceedings

of IEEE VRAIS, 1996.

[Boulic 90] Boulic R., Magnenat-Thalmann N. M.,Thalmann D. "A Global Human

Walking Model with Real Time Kinematic Personification", The Visual Computer,

Vol.6(6),1990.

[Boulic 95] Boulic R., Capin T., Huang Z., Kalra P., Lintermann B., Magnenat-

Thalmann N., Moccozet L., Molet T., Pandzic I., Saar K., Schmitt A., Shen J.,

Thalmann D., "The Humanoid Environment for Interactive Animation of Multiple

Deformable Human Characters", Proceedings of Eurographics '95, 1995.

[Capin 95] Capin T.K., Pandzic I.S., Magnenat-Thalmann N., Thalmann, D., "Virtual

Humans for Representing Participants in Immersive Virtual Environments", Proceedings

of FIVE '95, London, 1995.

16

[Carlsson93] Carlsson C., Hagsand O., "DIVE - a Multi-User Virtual Reality System",

Proceedings of IEEE VRAIS '93, Seattle, Washington, 1993.

[Doenges 96] Doenges, P.K., Capin, T.K., Lavagetto, F., Ostermann, J., Pandzic, I.S.,

Petajan, E.D., "MPEG-4: Audio/Video & Synthetic Graphics/Audio for Mixed Media",

Image Communication Journal (to appear)

[Funkhouser 96] Funkhouser T.A., "Network Topologies for Scalable Multi-User Virtual

Environments, Proceedings of IEEE VRAIS '96, 1996

[Kalra92] Kalra P., Mangili A., Magnenat Thalmann N., Thalmann D., "Simulation of

Facial Muscle Actions Based on Rational Free Form Deformations", Proc. Eurographics

'92, pp.59-69., 1992.

[Macedonia 94] Macedonia M.R., Zyda M.J., Pratt D.R., Barham P.T., Zestwitz,

"NPSNET: A Network Software Architecture for Large-Scale Virtual Environments",

Presence: Teleoperators and Virtual Environments, Vol. 3, No. 4, 1994.

[MPEG-N1195] MPEG4-SNHC Call for Proposals, ISO/IEC JTC1/SC29/WG11

N1195, MPEG96/March 1996.

[MPEG-N1365] Face and body definition and animation parameters, Eric Petajan, Igor

Pandzic, Tolga Capin, Pei-Hwa Ho, Roberto Pockaj, Hai Tao, Homer Chen, Janice

Shen, Pierre-Emmanuel Chaut, Joern Osterman, ISO/IEC JTC1/SC29/WG11 N1365,

MPEG96/October 1996.

[MPEG-M1165] Vidas submission to SNHC CfP on facial animation, ISO/IEC

JTC1/SC29/WG11 M1165, MPEG 1996.

[MPEG-M1211] EPFL/University of Geneva: Body Representation Proposal, Ronan

Boulic, Tom Molet, Tolga Capin, Igor Pandzic, Nadia Magnenat Thalmann, Daniel

Thalmann, ISO/IEC JTC1/SC29/WG11 M1211, MPEG 1996.

[Ohya95] Ohya J., Kitamura Y., Kishino F., Terashima N., "Virtual Space

Teleconferencing: Real-Time Reproduction of 3D Human Images", Journal of Visual

Communication and Image Representation, Vol. 6, No. 1, pp. 1-25, 1995.

[Pandzic96] Pandzic I.S., Capin T.K., Magnenat Thalman N., Thalmann D., "Motor

functions in the VLNET Body-Centered Networked Virtual Environment", Proc. of 3rd

Eurographics Workshop on Virtual Environments, Monte Carlo, 1996.

[Pandzic96-1] Pandzic I.S., Capin T.K., Magnenat Thalman N., Thalmann D.,

"Towards Natural Communication in Networked Collaborative Virtual Environments",

Proceedings of FIVE '96, Pisa, 1996. (to appear)

17

[Rohlf94] Rohlf J., Helman J., "IRIS Performer: A High Performance Multiprocessing

Toolkit for Real-Time 3D Graphics", Proc. SIGGRAPH'94, 1994.

[Singh95] Singh G., Serra L., Png W., Wong A., Ng H., "BrickNet: Sharing Object

Behaviors on the Net", Proceedings of IEEE VRAIS '95, 1995.

[Thalmann95] D. Thalmann, T. K. Capin, N. Magnenat Thalmann, I. S. Pandzic,

“Participant, User-Guided, Autonomous Actors in the Virtual Life Network VLNET”,

Proc. ICAT/VRST ’95, pp. 3-11.

