
EPFL Swiss Federal Instute of Technology LIG Computer Graphics Lab CH 1005 Lausanne VD Switzerland
nathalie soraia schweiss kallmann aune boulic thalmann@lig di epfl ch

1

One Step towards Virtual Human Management
for Urban Environment Simulation

N. Farenc, S. Raupp Musse, E. Schweiss,
M. Kallmann, O. Aune, R. Boulic, D. Thalmann

Abstract. In this paper , we present an approach to integrate
different applications for a virtual human simulation in a complex
environment. We present the design of one system and the
integration of the various features: creation and use of information
extracted from the environment and crowd management.

1 INTRODUCTION

For several years, we have been working on modelling and
simulating realistic virtual humans. All simulations were made
using environment without semantic or behavioural indication. This
project aims at performing simulations of autonomous agents or
crowds within complex scenes including some degree of interaction
with the environment. This paper presents different aspects of
human and object simulation and their integration in an urban
environment using information extracted from a virtual city.
To make more realistic simulations the environment must integrate
some semantic notion about specific areas. This corresponds to
natural human analysis using urban basic knowledge like “ a side
walk is for pedestrians ”. Our environment is decomposed into
entities corresponding to semantic or functionality information.
Several works have been done on virtual city to reconstruct real city
with image processing or sophisticated tools [DON97, RUS96,
JEP96], or to use urban context to deal with traffic problem [JEP96,
HOW97, MOK97], urban displacement [ING96, JEP96, AUF94] or
city modelling [FUJ95, JEP96]. Our aim is to have a hierarchical
urban model with integrated knowledge adapted to human
behaviour simulation. In the context of crowd management, we
need this knowledge to drive the motion of autonomous groups and
to synchronise different actions like object interaction, collision
avoidance, etc. For the autonomous crowds , we have used the
flocking model [REY 87] [MUS 97]. In our case of Intelligent
Virtual Environment (IVE), the information has to be interpreted by
the virtual creature. The graphical data base conception has to
integrate semantic information within the objects. To provide
virtual humans with a range of simple responses to daily life event
stimulati, we present an approach supporting rules_based
behaviours. In addition, a rule analyser module allows end users to
define their own set of behavioural rules in natural language. At a
low level the interactions between virtual humans and objects are
integrated in the objects during their modelling phase so as to
provide all the low level parameters needed to perform many object
interactions.
The paper is structured as follows : in the next section we present
the city model and all the associated information. The subsequent
section is about the designer viewpoint on the associated modelling
constraints; the fourth section presents the modelling of objects
interactions; the fifth section introduces human crowd control; the
sixth section talks about a rule-based behaviour control to perform
more sophisticated human simulation, and the last section deals
with the integration of theses application.

2 CITY DATA BASE

What do we need to perform virtual human behavioural simulation
in a complex environment like a city? With this question in mind
we can assume that urban displacements are very much dependent
on geometrical data and urban knowledge. Accessing a specific
location in a big scene is not trivial (a point in front of the door in
an office, or the location of the crosswalk entry), and the geometric
data extraction is very much dependent on the model used. A city is
a complex environment. What does that mean? For us a complex
environment is a place where information (semantic and geometric)
is dense and can be structured and organised using rules. We define
urban knowledge for this work as a set of urban structural
information and objects (complex environment) usable according to
some conventions. We define the urban knowledge as an
association between some places (geometric area) and some
semantic information.

Figure 1 - Fly view of a block

The aim is to be able to deduce what action is possible according to
this information. For example, in a city, we can annotate sidewalks
like areas for pedestrian mobiles, so that in such places they can
walk or have social encounters [DOY97]. The city data base has to
informe all “mobiles” (objects with mobility such as pedestrians,
cars, buses, bicycles) where they can circulate and in some cases
even if pedestrians can cross an area, they have to be synchronised
with other mobiles depending on the traffic signals status. Then the
environment has to inform mobiles that they are in a
synchronisation area and have to deal with other mobiles. A
problem is the management of such large quantity of data consisting
of thousands of crosswalks, specific points and objects. How to
distinguish them, and access their own information (geometrical
and specific ones)? How to organise them to access information in a
minimum of time? From these observations our approach is to
define some areas. The areas are either subdivided into sub_areas or

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147926372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

grouped, depending on the ‘level of information’ in the same way as
in a geographical map, we decompose a large area into sub_areas
with information inherent to the level of description. (Figure 2). At
the city level we have information about the main roads to cross the
city and at the block level we can find information on the streets,
the locations of parcels and junctions. This decomposition tidies up
and links the semantic data.
In order to sort and classify data one solution is to structure the
information in a hierarchy. The city has been decomposed into
several areas, depending of their geographical and functional
properties. At each level in the environment representation the
accessible information corresponds to a level of abstraction. At a
town level we are interested in knowing the name of different
quarters and not the position of the next pedestrian crossing.
Moreover, information for crossing an area can be “how to cross a
city?” (reply concerning motor ways) or “how to cross a street?”
with information for pedestrian informing about sidewalks or
pedestrian crossing or objects to avoid collisions. Specific areas of
the scene are defined as “Environment Entities” ENV because they
hold geometrical and semantic information. In the city, at the first
stage we start at the “block” level which is under the quarter level.
A block is composed of streets, cross-roads and parcels. All these
entities are themselves composed of sidewalks, pedestrian
crossings, rolling (or traffic) way for the street, travelling or not
travelling areas for parcels. Here is a drawing representation of the
ENV hierarchy :

Figure 2 - City hierarchical decomposition in ENV

To create a data base with ENV we use a graphic scene. In the scene
some objects are named in such a way as to detect them as ENV and
analysed to extract their name and their geometrical data. From a
set of ENV we calculate some dependency information (according
to the hierarchical model), all the geometrical information (walking
area is defined in a parcel world) and the connexity information
between ENV. The connexity data is used to know the possibilities
of reaching some place from one point depending on the mobile
type considered. Some simple semantic information is associated
with ENV (area for car, pedestrian or bus) showing who can use
which ENV. Other information can be added concerning more
specific action such as “playground”. The Figure 1 represents a
view of our modelled block. The Figure 3 shows the connexity
graph for the ENV used by pedestrians mobiles; we can see the
objects only usable by pedestrian mobiles (crosswalk, sidewalk and
pedestrian traffic zone. The cylinders are points allowing movement

from one ENV to the next and correspond to the connexity graph
links between the nodes (ENV). The naming convention of objects
is based on a precise definition and it’s an important part of the
work. Objects are parsed using their names, and put in the ENV
hierarchy according to the information provided by the name
analysis. The next section concerns the designers view point about
this kind of constraint.

Figure 3 - Connexity graph for pedestrian ENV represented by real
visual objects in the block, and by the graph associated.

3 THE DESIGN ASPECTS

In an interactive walkthrough, only the geometry is relevant while
the semantic and spatial aspects of the graphical database are
interpreted in an intuitive way by the user. To provide an
autonomous behaviour to the IVE agents, these have to be informed
about the significance of the geometry they are dealing with. In this
case the absolute necessity is to build some semantic tools, which
inform the different components of the virtual world about their
own functionality. As in the real word an IVE needs common rules.
It means we have to conceptualize of such environments in a precise
way to ensure that the designer team will produce a graphical and
semantic environment usable by developers. Which syntax ? The
preoccupations of the developers and the designers are quite
different. The designers have to manage different definitions of the
objects: geometric, visual and spatial. They have to ensure the
compatibility of the graphical database with a range of formats
involved in its constitution. Responsible for the major parts of the
data entry the designers are prone to acts of omission or creating
wrong semantic entries, hence the rules involved have to be as
simple as possible. In most of the cases it would be better to
automate the translation between the graphical information and the
needs of the routines, such as those used for collision detection or
recursive naming.

3.1 Virtual Creature Behaviours and the Objects

It's important to make the difference between the behaviour of a
virtual creature and the potential functionality of an object
composing the virtual world. For example, the potential
functionality of a signpost is to inform, and of a door is to open
itself in a specific way. The behaviour of an humanoid is to get and
interpret the information on the signpost or to turn the knob of the
door as the case may be. On the other hand, a virtual dog would
stand on its leg by the signpost or scratch the door. Although all this
information is important, the implementations are quite different.
Objects functionality should be defined at the time of the virtual
world design while creature behaviour has to be done later, since it
needs the scene and objects definitions.

Block

Parceljunction

Sidewalk Route Zone Traffic zone No Traffic zone Building

Street

Rolling way Sidewalk Crosswalk Bus stop Floor

circulation wayRoomEntry

displacement area
synchronisation link
composition link

Harbour quarterCentreNorth quarter

stadium block

City

3

3.2 Different Categories of Objects

As every objects in the real world, have a particular functionality, in
an IVE, the concept of an object also has to be precisely defined
regarding the type of information it owns: visual, spatial,
behavioural.
The Displayed Objects : The graphical database is composed of
different kinds of objects some of which are only used to perform
some specific computations such as collision detection or behaviour
information. Hence we call Displayed Objects only those which are
visualised in the final scene.

The Objects Box : These are associated with walking surfaces and
used to perform local collision detection in this area. In doing so,
we have the advantage of optimising database traversal, avoiding
any object that is present on the walking surfaces. These objects
could correspond to Displayed Objects or not, in the later case they
are used only for calculation.

The Smart Objects : Some objects of the 3D scene need
functionality, which could either be internal to the object (the door
movement) or external (the signpost). In the latter case it informs
the other agents of the IVE. The Smart Object refers to two kind of
data files : the graphical description and the functionality
description. The next section describes this class of objects.

4 MODELLING SMART OBJECTS

The main objective here is to construct a complete framework
where the designer of an object can model not only the object’s
geometry but also extra information like specific parts to interact
with and its functionality. In doing so, some simulator program can
read object’s features that will guide the interaction with a virtual
actor. In this way, the designer can have the feedback of a simulator
program to adjust the object design, taking control of the whole
cycle of the object design and testing. This approach of including
information inside the object description is known in the literature
as Feature Modelling. As commonly stated, a feature is a region of
interest on the surface of a part [PRA85] [PAR93]. In our case, we
are trying to identify “interaction features”; these are parts in the
object that may offer some kind of interaction. Consider for
example, a button to be pressed, the knob of a door, or a drawer in a
table. These features are identified and associated with an object's
functionality, with specific data such as hand shapes to manipulate
them, and also dedicated locations to interact with them. In this
way, the application-specific object reasoning will have sufficient
information to perform its tasks with the object.

4.1 Modelling Interaction Information

We term Smart Object as the object being modelled along with its
interaction and functionality information. A typical Smart Object
description contains, among others features, a collection of
hierarchical parts, actions, commands, gestures and functionality
rules. Each action represents a movement, a change in the material
attributes or a sound to be performed. An action is independent of a
part and can be parameterized. A command is an entity that links a
part to an action that may be triggered after an actor’s gesture.
Object's functionality rules are described by a list of behaviours and
state variables. Each behaviour is described by a list of instructions,
in a script language format..Examples of such insctructions are: a
variable value to change/ check, a gesture to be performed, or a
command to execute.

4.2 Smart Objects and Virtual Humans

In the case of a virtual city environment, the “intelligence” of the
actor should not take care of some low level decisions. Take the
example of an actor passing through a door. In this case, it is not
worthwhile to do a complex reasoning algorithm to decide things
like which hand shape best fits the door knob. In this case, it’s
simpler to store the best pre-defined hand shape to be used in the
door object itself. And this should be done in the design phase of
the door. There is a compromise when deciding what kind of
information should be included within the object, and what should
be left to the object’s reasoning algorithm. The idea is to be able to
model, in the design phase of the object, as much generic
information as possible. And then, each application-specific
reasoning can decide how far object’s information is to be used or
calculated. For example the door can have a pre-defined agent
position to be opened with the right hand, but the reasoning module
may decide itself the hand to use for any given position. The Smart
Object reasoning in a virtual city environment might have
perceptions and communicate with other entities. For example, an
automatic door might have a perception to test if there is some actor
near it, so that the door automatically opens. On the other hand, the
actor perceives that there is a door, through which it can go and
enter without any interaction, as it is an automatic door. Once the
main needs of the application-specific reasoning are well defined,
the Smart Object framework provides a versatil way to model many
possible interactions.

5 HUMAN AND CROWD CONTROL

Simulation of human crowds for populating virtual worlds
provides a more realistic sense of virtual group presence [BEN97].
There are several approaches to model autonomous crowds
[BOUV97] [BRO97]. In a Virtual Urban Environment, it is useful
to simulate autonomous populations, i.e. agents which have a kind
of environment knowledge (section 2) and are able to move and
interact with their environment. This type of crowd is called
autonomous crowd that must obey the environment specifications,
the programmed interaction with objects, etc. This information
must be specified at the beginning of the simulation.

Crowd behavior

Groups specification

Group behavior

Individual
behavior

Emergent behavior

Figure 4 The architecture of the CROWD system

The other kind of crowd control present in our work is the guided
crowd which must always be guided by a leader. This leader can be
an avatar (virtual human representation controlled by an end user)
or an intelligent autonomous agent (section 6). The guided crowd
responds to dynamic information (which can change as a function
of time), such as the interaction with the objects, the displacement
to reach a specific point of interest, etc provided by the leader. We
have defined a crowd as a set of groups composed of human agents.

4

The crowd behaviour is distributed across a number of groups, and
the individual behaviours conform to corresponding group
specification [MUS 97].The data structure of our crowd model is
presented in Figure 4. At a highest information level, a crowd is
treated as a single entity which is formed by agent groups which
have the following specific behaviours:
• seek goal (the groups have one or more goals to follow);
• flocking motion (group ability to walk together);
• collision avoidance;
• formation to reach a goal or an interest point (when a goal or an

interest point is shared by many individuals);
• action to be performed when the agent arrives at a specific goal

[BOUL97];
• following motion (group’s ability to follow another group);
• group control (which can be autonomous or guided).
 Some group behaviours can occur if the simulation environment
is known (section 2), It means the physical locations of the
goals or interest points, positions and dimensions of each
obstacle, etc are known. We can see in figure 5 some interest
points (represented by cylinders) which are distributed for the
different groups to construct the group's paths.

 Figure 5 - Interest points and goals to drive the crowd

 Based on these goals, the autonomous crowd motion occurs
always considering the behaviours of all the others groups.
Figure 6 shows one image of this simulation.

 Figure 6- Different groups entering in the stadium

 6 RULE-BASED BEHAVIOR CONTROL

 The rule-based behaviour control guides the crowd in the city. It
sends high level orders like “Go to supermarket” choosen according
to behavioural rules and crowd states.

 Main criteria of the rule-based behaviour control

 Type of behaviour : In this part of the behaviour control, we are
treating daily life behaviours like either “Need for buying the
bread”, or “Wish to visit a museum”, or “Replying to a phone call”.
 Agent relations : The features of this module are adapted not only to
object and humanoid interactions but also to high level humanoid
relationships.
 Behaviour treatment : According to the system state, the module
selects rules which produce state changes [NOR92].

 Rule syntactic analyser

 Rules are interpreted by the syntactic analyser and added in the
behavioural rules base (Figure 7). We have developed a syntactic
analyser to allow non programmers to design daily life simulations
by defining a set of rules in a pseudo-natural language. Indeed, the
user can write his/her own rules in a file in order to simulate not
only daily life behaviours, but also human characters. This analyser
reads and translates the user’s behavioural rules for the system. The
system, then, works with the rule base composed of predefined
basic rules and user’s rules. The analyser the rules to have a fixed
syntax and be based on the following semantic elements.

FILE

Rules

in
natural

language

S

y

n

t

a

c

t

i

c

A

n

a

l

y

s

e

r

Behavioral Rules

Base

Behavior management

Data

System

state

Behavior

Treatment

high level order
(to guide the

crowd)

User

feedback
(crowd state)

 Figure 7 : General organisation

 Semantic elements

 The basic semantic elements [WIL86] used in our system are :

 1 - ENTITIES : agents (i.e. human being and physical object)
 2 - ACTIONS : to be, to pick, to have to, to cause, to feel
 3 - TYPE INDICATORS : a kind of, how
 4 - SORTS : man, woman, any characters
 5 - CASES : source, location, direction, goal, in, possessed

 6.1 Rules architecture

 Data structure

 The rules are composed of two parts [NOR92] : a premise
corresponding to the condition or test which determines when the
rule can be selected, and a conclusion, or actions, implied when the
premise test is validated.
 Rule structure : IF (condition) THEN (action)
 In our rule based system, the premises tests can be classified into
three categories : 1 - Is an agent a kind of a given sort ?

 2 - For an agent, are actions active ?
 3 - How is an action performed ?

 The rule conclusion represents the state when the premise is
validated by the current state of the virtual world.

 A daily life behaviour treatment

 The rules are structured into different sets of rules organised in
trees. The role of the root rules - called ‘start rules’ - is to determine

5

which daily life order occurred. The system, then, deduces a
sequence of responses, by exploring the rules of the tree which root
was selected. When a rule premise is validated, the conclusion
produces some activation and desactivation of actions for the virtual
agents. Consequently, the state of the system changes and only the
‘next rules’ down in the tree are then taken into consideration. A
daily life behaviour treatment ends with the validation of a ‘leaf
rule’ (i.e. with no ‘next rule’).

 7 - A CASE STUDY

 Now that all the different applications have been briefly presented,
we examine a concrete example to see how data can be exchanged
to perform realistic simulation of humanoids in an urban
environment. The test case: “an autonomous agent named h4 wants
to go from its home to the supermarket”. We have four agents, three
smart objects which are traffic lights L1, L2 and door D, and three
possible paths. The agent’s wish is decided by the rule-based
behaviour control. The rule-based behaviour control asks the city
data base to know how h4 can go to the supermarket; it receives
some lists of ENV/points. These lists start (normally not for the first
one) with an entrance in a synchronisation area which means the
autonomous agent (the crowd leader in our case) has to use its
perception or to have a way to know what it can do. The crowd
module is the agent manager making them walk and avoiding
collisions. During the displacement, the autonomous agent can meet
a smart object in which case, depending on the smart object type,
the interaction can influence the smart object state or the
autonomous agent or both. In the case where the agent goes to a
door, we can imagine that the door is automatic and has to open
when an agent is near. The Figure 8 shows the representation of the
context. In the path we can see that the agent has to go through a
synchronisation area with the traffic lights, and an automatic door D
has to open when the agent is arriving at the supermarket.

 Figure 8 - Simple representation of agent’s routing in the block

 How to communicate in an open system with applications running
simultaneously and using information from others tools without too
much data exchange? We have thought about a kind of
“ client_server ” system where all messages are sent to a central
receptor which analyses the label message and redirects it to the
proper recipient.
 The main drawbacks of this method are the volume of message sent
to the controller, the complexity of the controller for message
treatment and the low level control for the rule-based behaviour
control. The controller can be saturated, and we run into some
problems of synchronisation between messages and the applications
treatment. As an alternative, we can minimise the data transmitted
by devoting low level decision to other application belonging to the

agent application. The crowd humanoids and the smart objects are
defined as agents in a software architecture called AGENTlib
[BOUL97]. The AGENTlib maintains a data base concerning all the
agents created during one simulation. We can also define some
perception, which allow agents to extract information about
neighbours for example. The perception can be specialised by
adding a selection criteria for some types of agents in a limited
space. With these features we can refine our model for the
integration as follow. If we analyse the different applications as
application linked or not with AGENTlib, we can see that the data
base for the city and the rule-based behaviour control are
independent and can run with only connection with the controller.
The Crowd management and the smart object application are
defined on top of AGENTlib layer. To manage situation like
synchronisation with traffic lights we can use some specialised
action dedicated to synchronous area management. This specialised
action is a predefined behaviour activated for each agent arriving in
a synchronous area. Then in this case all messages for traffic lights
management are internal and don’t pass through the controller. In
such a configuration, the crowd application gives access to the
perception for the leaders, and if needed delegates the control to the
smartobject application or to a specialised action. The next Figure 9
represents our communication approach.

RULES

CITY
Router

CROWD SMART
OBJECT

Controller

Message-based
communication

function calls

BEHAVIOR

AGENT

ACTIONPERCEPTION

 Figure 9 - Representation of the system with specialised action

 If we analyse “ Agent X wants to go to the supermarket ” we can
find the following format data exchange :

 Sender Receiver
via

controller

 Message or Action

 RBB City “ path to supermarket form (x0, y0) for
Agent X ”

 calculate for the best path
 City Crowd “ list_path(lists of points) for Agent X ”
 Group X walk to (xn, yn,zn)
 Activation perception in AGENTlib by the crowd control. Get information
that agent traffic light L1 is near. Internal call to a specialised action
which handles the synchronisation with other agents. When it is done the
control is given back to the crowd management. The crowd continues to
reach the path points. smobj : perception of Agent X near the door D
status closed smobj : door D open, new status door D open. The crowd
continue to reaches the path’ points
 Crowd City “ Agent X arrived at the end of the path

position (x,y,z) in supermarket ? ”
 City define the list of the ENV corresponding to this point in the hierarchy
and verification whether the point (x,y,z) is in the supermarket ENV.
 City RBB “ Agent X arrived in the supermarket ”

 Abbreviations :
• rule-based behaviour : RBB
• data base system for the city: City
• crowd management : Crowd

entrance with

door D

Traffic lights L1

h4
home

h3

h2

h1

Supermarket

L2

Our specific agent h4
which wants to go to the
supermarket

Path for autonous agent

 A synchronisation ENV in the
city : junction or crosswalk.

Humanoid agent

Urban object as building

The city

Path points for agent h4

6

• smart object application : Smobj
In this configuration the controller manages messages concerning
only queries for the rule-based behaviour or for the data base system
for the city. Others messages are internal and so are some function
calls . The internal perception avoids some messages concerning
smart-objects status. The specialised action deals with the
synchronisation problems internally. The drawbacks is integration
of more applications and perhaps more memory space allocated for
specialised action. The controller still has to parse messages to send
good query depending on the incoming message. As the interesting
points we can note that all these applications are well integrated,
each has a well defined job, messages passing through the controller
are very limited and the use of state finite automaton is a good
solution for synchronisation problems.

Some results of a simple integration

Below, there is a picture of simple integration of city environment
data and crowd application. Some paths have been defined to move
around the city and the humanoids are walking on sidewalks and
crosswalks. A bus has been implemented and it is synchronised
with the humanoid in a very simple way using tags to inform of
each other presence. In such cases, the specialised module can
synchronise agent and bus.

Figure 10 - View of humanoids in the city

8 - CONCLUSION

In this paper we have presented our various applications and their
integration to perform realistic simulation in an urban environment.
We have started the integration between the data base system for
the city and the crowd management application, and also the crowd
management and the rule-based behaviour control. Our future goal
is to create the controller and some functions to treat message in the
first stage between the crowd application and the rule-based
behaviour. The future integration of other applications will depend
on the quantity of messages exchanged. This integration has some
consequences on the development of all the applications involved.
Besides, as the work of 3D designers is constantly evolving, they no
longer have the choice of staying under the shadow of the artistic
rules. Their understanding of the technological environment has to
be strong enough to manage intelligent databases. Tomorrow’s
designers will learn to use high level syntax to be able to design
graphical, behavioural and semantic environments.

ACKNOLEDGEMENTS

Thanks to Srikanth Bandi for its proof reading, Joaquim Esmerado
and Luciana Porcher Nedel for their help concerning the paper
production.

REFERENCES

[AUF94] M. A. Aufaure Portier, P. Berthet, J. L. Moreno (1994),
“Optimized Network Modelling for Route Planning”, Proceding of
the 4th Eur. Conf. on GIS, EGIS’94 Paris 1994 p.1817 - 1824
[BEN97] S. D. Benford, C. M. Greenhalgh and D. Lloyd.
“Crowded Collaborative Virtual Environments, Proc. 1997 ACM
Conference on Human Factors in Computing Systems (CHI’97),
Atlanta, Georgia, US, March 22-27, 1997
[BOUL97] R. Boulic, P. Becheiraz, L. Emering, D. Thalmann.
“Integration of Motion Control Technique for Virtual Human and
Avatar Real-Time Animation”. ACM VRST’97, Sept. 97, Lausanne
Switzerland, pp111-118, ISBN 0-89791-953-x
[BOUV97] E. Bouvier, E. Cohen and L. Najman. "From crowd
simulation to airbag depolyment: particle systems, a new paradigm
of simulation". Journal of Electronic Imaging 6(1), 94-107
(January 1997).
[BRO97] D. Brogan and J. Hodgins. “Group Behaviors for Systems
with Significant Dynamics”. Autonomous Robots, 4, 137-153. 1997
[DON97] S. Donikian (1997) VUEMS : A virtual Urban
Environment Modeling System in Computer Animation 97 from
p.127 to p.133
[DOY97] P. Doyle, B. Hayes_Roth (1997), “Agents in Annotated
Worlds”, Report No KSL 97_09 Knowledge Systems Laboratory
Stanford University California 94305
[FUJ95] T. Fuji, K. Imamura, T. Yasuda, S. Yokoi, J. Toriwaki
(1995), “A Virtual Scene System for City Planning”, Computer
Graphics : Development in Virtual Environments 1995 from p.485
to p. 496
 [HOW97] Kenneth R Howard (1997), “Unjamming Traffic with
Computers”, Scientific American October 1997
[ING96] R. Ingram, S. Benford, J. Bowers (1996), “Building
Virtual Cities : applying urban planning principles to the design of
virtual environments”, in VRST’96 from p.83 to p.95
[JEP96] W Jepson, R. Liggett, S. Friedman (1996), “Virtual
Modeling of Urban Environments”, Presence Vol. 5 Winter 1996
p.83 - p.95
[MOK97] P. L Mokhtarian (1997), “Now That Travel Can Be
Virtual, Will Congestion Virtually Disappear?”. Computers
Scientific American October 1997
[MUS97] S. R. Musse and D. Thalmann. “A Model of Human
Crowd Behavior : Group Inter-Relationship and Collision Detection
Analysis”. Proc Workshop of Computer Animation and Simulation
of Eurographics’97, Sept, 1997. Budapest, Hungary
[NOR92] P. Norvig, Paradigms of Artificial Intelligence
Programming : Case Studies in Common Lisp, 1992, M Kaufmann,
ISBN 1-55860-191-0, 946 pages
[PAR93] Parry-Barwick S. and Bowyer, A., "Is the Features
Interface Ready?", In "Directions in Geometric Computing", Ralph
Martin ed., chap 4, 130-160
[PRA85] Pratt M. J. and Wilson P. R., "Requirements for Support
of Form Features in a Solid Modeling System", Report R-85-ASPP-
01, CAM-I, 1985
[REY87] C.Reynolds. “Flocks, Herds and Schools: A Distributed
Behavioral Model”. Proc. SIGGRAPH’87, Computer Graphics,
v.21, n.4, July, 1987
[RUS96] T. A. Russ, R. M. MacGregor, B. Salemi (1996), “VEIL:
Combining Semantic knowledge with Image Understanding”,
ARPA Image Understanging Workshop 1996
[WIL86] Y. Wilks “An Intelligent Analyser and Understander of
English” 11 pages - Readings in Natural Language processing, M.
Kaufmann Publishers Inc, ISBN 0-934613-11-7. 1986, 664 pages

