
A Taxonomy of Networked Virtual Environments

Tolga K. Capin, Daniel Thalmann

Computer Graphics Laboratory (LIG)
Swiss Federal Institute of Technology (EPFL)

1015 Lausanne, Switzerland
{capin, thalmann}@lig.di.epfl.ch

Abstract

There have been several networked virtual
environments (NVEs) described in the literature.
Each NVE system considers a separate part of
the problem and a reference frame for listing all
components and comparing different NVEs
missing. We summarize the issues to consider
while developing complete NVEs, and we
compare the most characteristic solutions in the
literature for each issue.

1. Introduction

In order to discuss the issues to be considered in
NVE development and analysis, we can divide
our taxonomy into three elements:

• Preconditions are the facts that NVE system
designers have minimum control of. These
typically include the target application
requirements, constraints of the network,
computing and interface equipment.

• Design decisions include the tools and
parameters that NVE system developers can
control, such as the protocol for
communication and the client architecture.

• Further issues include the further tools and
techniques that NVE system designers can
exploit in order to run the NVE system more
efficiently, and to increase the quality of the
feedback to the user.

2. Preconditions of NVEs

2.1 Target Applications

There have been a number of pilot or
working applications constructed in the
literature. Although the theoretical approach of
the early systems tried to provide a general-
purpose virtual environment for any type of

application (Bricken and Coco 1993), it was later
realized that these systems lack efficiency, one
of the principal requirements for NVE systems.
Recent efforts concentrated on characterizing
applications for different dimensions. Slater et
al. (1995) proposed three such dimensions: 1)
the number of participants and entities
simultaneously involved in the same world. 2)
the complexity of the objects and their
behaviours, ranging from static data to those
responding to participant interaction, and on to
dynamically changing objects without user
intervention. 3) the degree of interaction among
participants, ranging from low (users can see
each other), through medium (users can be
involved in complex activities), to high
(synchronized activities to achieve a common
task). Each of the applications will need different
network requirements and interentity
synchronization; this will affect the development
of the NVE system.

2.2 Underlying Network

The network characteristics underlying the NVE
system can have a wide range. Funkhouser
(1996) classified the network characteristics of
wide area networks into three types:
1) Connection: this allows two workstations to
send data unidirectionally over a connection-
oriented link. An example is the modem link
using a standard telephone line, with two-way,
connection-oriented, unicast data transport with
low latency and bandwidth. 2) Unicast: this
allows a message to be sent to each other entity
on the network for distributing messages. An
Internet connection without the multicast
capabilities is an example. This distribution of
one update message requires O(N) separate
communications. 3) Multicast: a subset of
workstations can communicate with each other

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147926249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

using connectionless messages. The underlying
network should support the multicast operation.
The MBONE (Multicast Backbone implemented
over the Internet) is an example. This requires
one update message for distributing a message.

For generality, heterogeneous networks can
be constructed using a combination of these
different network types.

2.3 Projected Hosts

The projected number of connecting hosts is
an important factor in developing efficient NVE
systems. Although the number of connecting
hosts is expected to increase with the concurrent
developments in network and CPU technology,
we can postulate that some applications will
require smaller numbers of participating hosts
than others. These applications will typically
require better display quality and representation
than large-scale NVEs (e.g. teleconferencing). In
addition, it is also important to consider the
properties of the connecting hosts. The
processing power of the workstation should be
sufficient to cope with the messages received,
and to perform the environment simulation and
processing of remote entities without degrading
the performance and quality of the simulation.

A number of research groups studied
medium- to large-scale virtual environments.
Among them, NPSNET was reported to be
successfully simulated with 300 entities,
theoretically shown to grow to thousands
(Macedonia et al. 1995).

2.4 Input Devices and Rendering

Many different types of input device are in
current use. In their number of tracked degrees
of freedom, they range from the ubiquitous
mouse to a large number of magnetic trackers
attached to the body. Similarly, the display
systems can be as simple as a desktop display, or
a more complicated set of helmet-mounted
displays.

3. Design Decisions for NVEs

The design decisions of NVEs are the parameters
under the control of NVE system developers.
Different than the preconditions of NVEs, these
are the elements that can be changed during

software development, in order to have an
efficient simulation of the virtual world.

3.1 Host Program Architecture

An NVE is defined as a single environment
shared by multiple participants connecting from
different hosts. Each host typically stores the
whole or a subset of the scene description, and
lets the participant use their own avatar to move
around the NVE. Additionally, the local program
simulates the behaviour of a set of entities in the
world, and also handles the real-world sensing
using a set of input devices.

NVE software shares similar design goals as
the other types of software: generality, usability,
portability, understandability and efficiency. In
addition, there are other characteristic goals of
NVEs: rapid development of applications,
modularity, decoupling of main VE tasks from
the application, immersion and embodiment of
participant.

Toolkit-Based Architectures

Toolkit-based architectures provide tools and
libraries for creation and interaction with virtual
environments. They provide: controlling the
objects in the environment, moving the body
representation, changing viewpoint, object
relationships, display, management and
synchronization of resources, networking
multiple participants, obtaining statistics.
Example toolkits are WorldToolKit, MR Toolkit,
and other 3D graphics toolkits such as
Performer, Java3D. We will review the
advantage and disadvantage of each toolkit.

Integrated Software-Based Architectures

 Integrated software-based architectures, in
contrast to toolkit approaches, provide a
complete system that implements basic VE tasks.
This is similar to thinking of implementing the
NVE system as a distributed database access
problem, therefore the details of the main NVE
tasks and synchronization of data are transparent
to the application developer. The new
applications are developed either by using the
previously developed components, or by
replacing them with new programs. VEOS, dVS,
NPSNET, DIVE, MASSIVE, SPLINE,
BrickNet, VISTEL are some of the systems.

3.2 Data and Task Distribution

Each virtual object and each participant
embodiment within the NVE affects the
performance of the different parts of the
simulation: network, CPU, graphics. These
overheads easily become significant with
increasing number of participants and
complexity of environments. The main solution
to this problem is to let each participant’s host
computer process only the part of the
environment it is interested in. Many researchers
propose methods for dividing and sharing the VE
data and processing at each host computer.
Distribution may depend on the application,
client architecture, network topology and other
design decisions. Generally, the data distribution
is not transparent; the application developer,
designer of the applications and the participants
should be aware of the data distribution, so it is
neither possible nor necessary to make the
distribution fully transparent. In this section and
the following sections, we survey the various
methods for sharing and distributing a virtual
world over multiple participants, i.e. their host
computers.

Sharing of the virtual world typically
involves sharing the geometry, and transmitting
object updates. However, some systems such as
BrickNet allow applications to share the
behaviours too.

Partitioning of the virtual world is necessary
to decrease the CPU, network and graphics
overheads of the simulation. Additional
advantages of distribution are minimized
communication between network tail links, and
localized reliability problems caused when a host
or link goes down (Macedonia et al. 1994).
Macedonia et al. (1995) also suggest that there
are three possible approaches for partitioning the
scene: spatial, temporal, functional. Various
research groups have proposed methods for
spatial NVE partitioning.

Four schemes are possible (Capin 1999):
separate servers (that separate the world into
independent worlds), uniform geometrical
structure (that divide the world uniformly), free
geometrical structure (that divide the world
based on users choices), user-centred dynamic
structure (that divide the world based on
interactions between users).

3.3 Network Topology

We have discussed possible network
characteristics: unicast, multicast, broadcast. It is
necessary also to consider network topologies
for connecting the clients in the NVE. The
choice of network topology depends on the
network characteristics and applications, among
other preconditions. Network topologies into two
categories: peer-to-peer and client–server. It is
also possible to use a hybrid combination of
these topologies (Funkhouser 1996) (Capin
1999).

3.4 Avatar Representation

The participant is an important element in the
integrated NVE system, so the embodiment
should be represented realistically and
efficiently. The embodiment has functions for
self-representation and for representation to
other participants in the same world. Here are
some functions for self-representation: The
visual embodiment of the user, the means of
interaction with the world, the means of feeling
various attributes of the world using the senses.

The functions for interaction with others are:
perception, localization, identification,
visualization of others’ interest focus and
actions, and social representation through
decoration of the avatar.

Most of the common systems use simple
avatars to represent participants. Among the
most complex representations, the VLNET
system from EPFL and Miralab uses a wide
range of animation techniques from magnetic
trackers to autonomous control, SPLINE system
from MERL Labs uses procedural animation,
VISTEL from ATR labs uses computer vision
techniques.

3.5 Protocol

Developers of NVE systems should consider all
the factors described up to now, in order to
define the architecture of the system, the
topology for communication, avatar
representation, and the classification of entities
in the VE. Once the NVE system designer makes
these decisions, the system should implement a
protocol to be able to communicate efficiently.
This mainly depends on how the participants and
virtual objects are represented, as well as the

preconditions and design decisions of the NVE
system. The protocol will ideally contain session
management, state and event information, and
interaction among objects. Until now there has
been a lack of efficient standard protocols for
managing NVE systems. The Distributed
Interactive Simulation (DIS) system provides a
special-purpose protocol for military
applications. On the other hand, a general-
purpose reliable multicast protocol is used to
synchronize distributed versions of the NVE
world data. There is also a new standardization
effort within the ISO SC29 MPEG-4 body to
standardize bitstream syntax and semantics for
computer graphics applications and a special ad
hoc group has been formed for multiuser worlds.

4. Further Improvements

The fidelities in NVEs can be further improved
by introducing the following additional features
in the virtual environment:

• Default parameters for different worlds: The
NVE system can provide default behaviours
of objects in order to minimize the world
design complexity. For example, the gravity
property can be part of the world
classification, and the application designer of
the virtual world does not need to specify
gravity behaviour for each entity.

• Collisions: Collisions significantly improve
the quality of the virtual world simulation.

• Access rights: Virtual environments with
large numbers of participants create the
problem of accessing different objects and
parts of the virtual world. This can be
moderated by introducing access rights that
participants need to be given to enter parts of
the world, similar to access rights for files in
operating systems.

• Picking resolution: By default, most of the
current NVEs provide a coarse resolution to
compute intersection tests for picking. This
can be improved by introducing fine object
manipulation techniques.

• Force feedback: Haptics is an important
factor that increases the natural interaction
within the virtual environment.

 Furthermore, the NVE system developers can
exploit various techniques to decrease the
communication and computation overhead for
tasks connected with participant-to-participant
communication; and there are other techniques
to increase the quality and response rate of the
simulation. Here are some of them: 1) Level of
detail: for representing the geometrical data in
different resolutions. 2) Motion level of detail:
for sending the state update messages to remote
hosts in different rates, depending on their
distance. 3) Filtering messages: so that only
interested hosts receive the state changes of an
entity. 4) Dead reckoning: a technique to
decrease the network requirements, based on
extrapolation of future states of entities. 5)
Compression of messages: sending messages
with a loss of information, for using less
bandwidth. 6) Synchronization: so that each host
machine has similar states of the virtual world.

5. Conclusion

We have presented a taxonomy for NVE
systems. We believe that this taxonomy is a
useful tool to analyze and compare various NVE
systems.

References
Bricken W., Coco G. (1993) The VEOS Project,

Technical Report R-93-3, Human Interface
Technology Laboratory, University of
Washington.

Capin T.K., Pandzic I.S., Thalmann D.,
Magnenat Thalmann N. (1997a) A Dead-
Reckoning Algorithm for Virtual Human
Figures, Proc. VRAIS ’97, pp. 161–169.

Capin T.K., Pandzic I.S., Noser H., Magnenat
Thalmann N., Thalmann D. (1997b) Virtual
Human Representation and Communication
in VLNET Networked Virtual
Environments, IEEE Computer Graphics
and Applications, Vol.17, No.2, pp. 42–53.

Capin T.K., Pandzic I.S., Thalmann D.,
Magnenat Thalmann N. Avatars in
Networked Virtual Environments, John
Wiley, June 1999.

Funkhouser T.A. (1996) Network Topologies for
Scaleable Multi-User Virtual Environments,
Proc. VRAIS ’96, pp. 222–228.

Macedonia M.R., Zyda M.J., Pratt D.R., Barham
P.T., Zestwitz (1994) NPSNET: A Network
Software Architecture for Large-Scale
Virtual Environments, Presence, MIT Press,
Vol.3, No.4, pp. 265–287.

