Controlling and Efficient Coding of
MPEG-4 Compliant Avatars

Tolga K. Capin, Daniel Thalmann

Computer Graphics Laboratory (LIG)
Swiss Federal Institute of Technology (EPFL)
1015 Lausanne, Switzerland
{ capin, thalmann} @lig.di.epfl.ch

Abstract

The MPEG-4 includes support not only for natural
video and audio, but also for synthetic graphics
and sounds. MPEG-4 Version 2 includes the
representation of human bodies in addition to
faces. In the MPEG-4 Version 2 Committee Draft,
Body Animation Parameters (BAPs) and Body
Definition Parameters (BDPs) allow virtual bodies
to be streamed in very low bit rates and provide
deformation of body surface based on skeleton
posture. In this paper, we overview body coding
using MPEG-4, discuss MPEG-4 compliant avatar
control, and we present our experimental results.

Keywords: MPEG-4, SNHC, Body Animation

1. Introduction

ISO/IEC JTC1/SC29/WG11 (Moving Pictures
Expert Group - MPEQG) is currently working on the
Version 2 of the MPEG-4 standard scheduled to
become International Standard in December 1999.
In a world where audio-visual data is increasingly
stored, transferred and manipulated digitaly,
MPEG-4 sets

independent and therefore can be

freedom to the consumer of the data.

Video and audio acquired by recording from
the real world is called natural. In addition to the
natural objects, synthetic, computer generatedC
graphics and sounds are being produced and useg
in ever increasing quantities. MPEG-4 aims to d
enable integration of synthetic objects within the
scene. It will provide support for 3D Graphics,
synthetic sound, Text to Speech, as well as
synthetic faces and bodies. In this paper we

its objectives beyond ‘plain’

compression. Instead of regarding video as a
sequence of frames with fixed shape and size an
with attached audio information, the video scene isb
regarded as a set of dynamic objects. Thus th
background of the scene might be one object,
moving car another, the sound of the engine the
third etc. The objects are spatially and temporally
stored,
transferred and manipulated independently. The
composition of the final scene is done at the
decoder, potentially allowing great manipulation

concentrate on the representation of bodies in
MPEG-4, and in particular the efficient coding of
body animation.

The following section provides the introduction
to the representation of bodies in MPEG-4. We
explain how Body Animation Parameters and
Body Definition Parameters are used to define the
shape and animation of bodies. Then we present
our algorithm for efficient encoding of Body
Animation Parameters and Body Definition
Parameters. In the final sections we present the
results and conclusions, as well as the ideas for
future work.

2. Body Animation in MPEG-4

Conceptually the FBA object consists of a

collection of nodes in a scene graph which are
animated by the FBA object bitstream. The shape,
texture and expressions of the face are generally
controlled by the bitstream containing instances of
Facial Definition Parameter (FDP) sets and/or
Facial Animation Parameter (FAP) sets. Upon

construction, the FBA object contains a generic
face with a neutral expression and a generic body
with a default posture. This model can already be
rendered. It is also immediately capable of

eceiving the FAPs and BAPs from the bitstream,
hich will produce animation of the face and

ody. If FDPs and BDPs are received, they are

€sed to transform the generic model into a
aparticular model determined by its shape and

(optionally) texture.

Upon construction, the Body object contains a
generic virtual human or human-like body with the
default posture. This body can already be rendered.
It is also immediately capable of receiving the
BAPs from the bitstream, which will produce
animation of the body. If BDPs are received, they
are used to transform the decoder’s generic body
into a particular body determined by the parameter
ontents. Any component can be null. A null
omponent is replaced by the corresponding
efault component when the body is rendered.
Similar to the face, the BAPs can be transmitted
also without first downloading BDPs, in which
case the decoder animates its local model.

No assumption is made and no limitation is
imposed on the range of defined mobilities for
humanoid animation. In other words the human
body model should be capable of supporting
various applications, from realistic simulation of
human motions to network games using simple
human-like models.

2.1 Structure of the FBA bitstream

A face and body object is formed by a temporal
sequence of face and body object planes. An FBA
object represents a node in an ISO/IEC 14496
scene graph. An ISO/IEC 14496 scene is
understood as a composition of Audio-Visua
objects according to some spatial and temporal
relationships. The scene graph is the hierarchical
representation of the ISO/IEC 14496 scene
structure (see | SO/IEC 14496-1).

Alternatively, an FBA object can be formed by
a temporal sequence of FBA object plane groups
(called segments for simplicity), where each FBA
object plane group itself is composed of atemporal
sequence of 16 FBA abject planes

2.2 Body Animation Parameters

BAP parameters comprise joint angles connecting
different body parts. These include: toe, ankle,
knee, hip, spine (C1-C7, T1-T12, L1-L5),
shoulder, clavicle, elbow, wrist, and the hand
fingers. The detailed joint list, with the rotation
normals, are given in the following section.

Note that the normals of rotation move with the
body, and they are fixed with respect to the parent
body part. That is to say, the axes of rotation are
not aligned with the body or world coordinate
system, but move with the body parts.

The hands are capable of performing
complicated motions and are included in the body
hierarchy.

The unit of rotations is defined as 10°2 radians.
The unit of trandation BAPs (BAPs tr_vertical,
tr_lateral, tr_fronta) is defined in millimeters.

2.3 BAP Grouping

In order to further decrease the bandwidth
requirements and facilitate communication, the
joints comprising the body can be partitioned into
a finite set of groups with respect to their
interrelationships and importance. For example,
joints related to the spine can be grouped. In this
way, if the motion affects only one part of the
body, only the joints of that part of the body which
change in the frame are coded and sent through the
bitstream to the server, and then other clients. For
example, if the virtual human is waving with their
right arm, only joints involved in moving the right
arm are sent through the network.

We divide the body degrees of freedom into the
groups shown in Table 1. Complete degrees of

freedoms are given in MPEG-4 Verson 2
(PDAM1) specification. The groups can be sent
separately by introducing a mask for each group,
and inserting this mask in the beginning of the
message. The mask has the following format:

<13-bit mask><4-bit mask><dofs for each
group in mask>...

For example, to send only arm joints, the message
has the following format:

<0000000011000><0000><5floats><7floats>

This decreases the size of the message from 408
bytes to 60 bytes. Thus, with an additiona
overhead of 3 bytes, we can decrease the message
size significantly.

The detailed list of BAP groups and the associated
BAPs are given in MPEG-4 PDAM 1.

Pelvis:

sacroiliac _tilt, sacroiliac_torsion, sacroiliac_roll

L eft legl:

I_hip_flexion,|_hip_abduct,|_knee flexion,|_ankle flex
Right legl:

r_hip_flexion,r_hip_abduct,r_knee flexion,r_ankle flex
L eft leg2:

I_hip_twisting, |_knee_twisting, |_ankle_twisting,
|_subtalar_flexion,|_midtarsal_flexion,|_metatarsal_flex
Right leg2:

r_hip_twisting, r_knee_twisting, r_ankle_twisting,
r_subtalar_flexion,r_midtarsal_flexion,r_metatarsal_flex
Left arml:

|_shoulder_flexion,|_shoulder_abduct,| _shoulder_twist
|_elbow_flexion, | _wrist flexion

Right arm1:
r_shoulder_flexion,r_shoulder_abduct,r_shoulder_twist
r_elbow_flexion, r_wrist_flexion

Left arm2:

|_sternoclavicular_abduct, |_sternoclavicular_rotate,
|_acromioclavicular_abduct, |_acromioclavicular_rot,
|_elbow_twisting, |_wrist_pivot, |_wrist_twisting

Right arm2:

r_sternoclavicular_abduct, r_sternoclavicular_rotate,
r_acromioclavicular_abduct,r_acromioclavicular_rot,
r_elbow_twisting, r_wrist_pivot, r_wrist_twisting
Spinel:

skullbase roll, skullbase_torsion, skullbase tilt,
vcdroll, vedtorsion, vedtilt,vtéroll, vt6torsion, vt6tilt,
vl3roll, vi3torsion, vi3tilt,

Spine2:

vezroll, vc2torsion, ve2tilt,vtlroll, vtltorsion, vtitilt,
vt10roll,vt10torsion,vt10tilt, vllroll, vlltorsion, vlitilt,
viI5rall, viStorsion, viStilt

Spine3:

ve3roll, vedtorsion, vedtilt,veeroll, vebtorsion, vebtilt,
vtdroll, vtdtorsion, vt4tilt,vt8roll, vt8torsion, vt8tilt,
vt12roll, vt12torsion, vt12tilt,vl4roll,vl4torsion, vi4tilt,
Spine4:

vcbroll, vestorsion, vestilt, ve7roll, ve7torsion, ve7tilt
vtzroll, vt2torsion, vt2tilt, vt7roll, vt7torsion, vttilt,
vtllroll, vtlltorsion, vt11tilt,vi2roll,vi2torsion, vi2tilt,
Spineb:

vclroll, veltorsion, veltilt, vt3roll, vt3torsion, vt3tilt,
vt5roll, vt5torsion, vtstilt, vi9roll, vtStorsion, viStilt,
L eft hand1:
I_pinky1_flexion,|_pinky2_flexion,|_pinky3_flexion,
I_ringd_flexion, |_ring2_flexion, I_ring3_flexion,
|_middlel_flexion,|_middle2_flexion,|_middle3_flex
|_index1_flexion, |_index2_flexion,|_index3_flexion,
|_thumbl flexion, I_thumbl_pivot,
|_thumb2_flexion, |_thumb3_flexion

Right hand1:

r_pinkyl flexion, r_pinky2_flexion,r_pinky3 flexion,
r_ringl_flexion, r_ring2_flexion, r_ring3_flexion,
r_middlel_flexion,r_middle2_flexion,r_middle3_flex
r_index1 flexion, r_index2_flexion, r_index3_flexion,
r_thumbl_flexion, r_thumbl_pivaot,
r_thumb2_flexion,r_thumb3_flexion

L eft hand2:

|_pinkyO_flexion,|_pinky1 pivot,|_pinkyl_twisting,
|_ring0_flexion,|_ringl_pivot,l_ringl_twisting,
I_middle0_flexion,|_middliel_pivot,|_middlel_twist
|_index0_flexion,l_index1_ pivot,
|_index1_twisting,l_thumbl_twisting

Right hand2:

r_pinkyQ_flexion, r_pinky1_pivot,r_pinkyl twisting,
r_ring0_flexion,r_ringl_ pivot, r_ringl_twisting,
r_middle0_flexion,r_middlel_pivot,r_middlel_twist
r_index0_flexion, r_index1_pivot,

r_index1_twisting, r_thumbl_twisting

Global positioning:

HumanoidRoot_tr_vertical, HumanoidRoot_tr_lateral,
HumanoidRoot_tr_frontal,HumanoidRoot_rt_turn,
HumanoidRoot_rt_roll,HumanoidRoot_rt_tilt

2.4 BAP Coding

For each joint in the state vector, the quantization
module stores a quantum value. The quantum
value indicates what the step size is going to be for
that joint angle in the compressed representation of
the joint angle parameter. Thus, a quantum value
of 1 indicates the angle will be encoded with the
most precision, and 255 indicates a lower
precision. Note that each degree of freedom has a
different precision requirement. Therefore
different quantization step sizes are applied to each
degree of freedom. The base quantization step
sizes for each joint angle are presented in the next
chapter.

The actua formula to obtain quantized state
vector S from Sis

Quantized Value (i) =
StateV ector(i)/(Quantum(i)* Global_Quantization_Value)
- Rounded to the nearest integer
(for each joint angle i)

During decoding, the dequantization formula
worksin reverse:

StateVector’ (i) = QuantizedValue(i) * Quantum (i)
(for each joint anglei)

Encoder:
Input i Arithmetic Output
sream S Sae’| Quantization = oncoder Codes aromm
Vector Quantized n
Sate Minmax
vector
Decoder:
» A .
I;rpez}n Codes | ﬁ;::jr;alc s Dequantization | Output
> : S Qate
Minmax Quantized vedtor

state
vector

Figure 1. Dataflow of scalable compression

The bit rate is controlled by adjusting the
guantization step via the use of a quantization
scaling factor called Global Quantization Value.
This value is applied uniformly to all DOFs. The
magnitude of the quantization parameter ranges
from 1 to 31. By modifying this value, we can
control the bit rate requirements. For example, a
global quantization value of 1 requires higher bit
rates, changing it to 31 gives less accurate
quantized values, letting the next step, arithmetic
coding, to compress for lower bit rates. We
measure the precision requirement for Quantum(i)

3. Controlling of MPEG-4 Avatars

The participant should animate their virtual human
representation in real time; however, the human
control is not straightforward: the complexity of
virtual human representation needs a large number
of degrees of freedom to be tracked. In addition,
interaction with the environment increases this
difficulty even more. Therefore, the human control
should use higher-level mechanisms to be able to
animate the representation with maximal facility
and minimal input. We divide the virtua human
control methods into three classes (Thalmann et al.
1995):

» Directly controlled virtual humans. the state
vector of the virtual human is modified directly
(e.g. using sensors attached to the body) by
providing the new DOF values directly (e.g. by
sensors attached to the body).

e User-guided virtual humans: the external
driver guides the virtual human by defining
tasks to perform, and the virtual human uses its
motor skills to perform this action by
coordinated joint movements (e.g. walk, sit).

* Autonomous virtual humans: the virtual human
is assumed to have an internal state which is
built by its goals and sensor information from
the environment, and the participant modifies
this state by defining high-level motivations,
and state changes (e.g. turning on vision
behaviour).

The control methods are not independent,
higher-level controls require lower-level
capabilities. Autonomous behaviour assumes
motor skills to accomplish control, and motor
skills modify individual DOFs.

We have developed the following motion
control techniques for MPEG-4 avatars:

« Directly control of avatar using Flock of Birds
magnetic trackers from Ascension
Technologies.

e User-guided control of avatar for walking,
picking, breathing, bending.

e Autonomous virtual human example: chatting
with Eliza-based autonomous actor.

4. Encoding of MPEG-4 Avatars

We are developing an efficient method for
encoding BAPs that optimize the bitrate vs.
resulting quality, letting the user choose the
required bandwidth. The required bandwidth
should be used together with the current animation
to find the right grouping and quantization values.
We will present the detailed algorithm in the final
version.

> May hel p you?

Participant> Which are the papers published at
LIG in 1999?

| don’t

know.

Figure 3: Eliza-based helper application

5. Experimental Results

We present the results below. In the final
version of the paper we will present more detailed
results and a videotape that shows the resulting
animations.

Bit rate (Kbits/second)

60
50 ~ 49
4
40 40
37 "'\oak‘ 2
30 36

Kbits/s

%
20 2 22

10

Quantization (index) value

—o—u_welcome(l-frames)
——u_welcome (P-frames)
u_welcome (I-frames, quant index)
u_welcome (P-frames, quant index)

Figure 4: Comparison of bit rate requirements
of the proposed quant index technique compared
to linear quantization values. (Note that these bit
rates contain all the BAPs, No BAP masking was

used for these figures. Using BAP masking

decreases bitrates further).

6. Conclusion

In this paper, we present the body animation
coding in MPEG-4, and MPEG-4 compliant avatar
control. We believe that research on efficient
encoding algorithms of face and body models is
only starting, and we present our current approach.

References:

Capin T.K., Pandzic |I.S., Thalmann D., Magnenat
Thamann N. Avatars in Networked Virtual
Environments, John Wiley, June 1999.

ISO/IEC 14496-1: MPEG-4 PDAM1, available on
MPEG official web site: www.cselt.stet.it/mpeg

Thalmann D., Capin T.K., Magnenat Thalmann N.,
Pandzic I.S. (1995) Participant, User-Guided and
Autonomous Actors in the Virtual Life Network

VLNET, Proc. ICAT/VRST '95% Chiba, Japan,
pp. 3-11.

