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Adaptive Load Sharing for Network Processors

Lukas Kencl, Jean-Yves Le Boudec

Abstract—A novel scheme for processing packets in a router switch port than the input line cards) network processors or
is presented that provides load sharing among multiple network forwarding engines, which serve a certain predefined set of
processors distributed within the router. It is complemented by inputs to carry out the packet processing tasks on packets

a feedback control mechanism designed to prevent processor . . t th . ts. Again. the traff th |
overload. Incoming traffic is scheduled to multiple processors 2/MVING al (hese Inputs. Again, the trailic may not be evenly

based on a deterministic mapping. The mapping formula is distributed over these sets, which leads to less efficient utiliza-
derived from the robust hash routing (also known as the highest tion.
random weight - HRW) scheme, introduced in K.W. Ross, IEEE In [TWO1] it is observed that the parallel approach, im-

Network, 11(6), 1997, and D.G. Thaler et al., IEEE Trans. . : :
Networking, 6(1), 1998.No state informationon individual flow plicitly leading to load sharing, makes more sense when

mapping has to be stored, but for each packet, a mapping ports have a widely varying load. That is p(_arhaps why in
function is computed over anidentifier vector a predefined set of contemporary routers, the parallel approach is more present
fields in the packet. An adaptive extensiorto the HRW scheme in the multi-service edge routers (such as Juniper Networks
is provided to cope with biased traffic patterns. We prove that M40 and M120 [Net] and Cisco 10000 [Sys] series), while

our adaptation possesses theninimal disruption property with o -qntemporary backbone routers (such as Juniper Networks
respect to the mapping and exploit that property to minimize

the probability of flow reordering. Simulation results indicate 1320 [Net] or Cisco CSR routers [Sys]) usually employ a
that the scheme achieves significant improvements in processordistributed architecture, with localized packet processing at
utilization. A higher number of router interfaces can thus be each input.

supported with the same amount of processing power. We present a novel packet processing scheme, which seeks
Index Terms—Router architecture, packet processing, load to maximize the number of router interfacéisat can be
sharing, load balancing, feedback control. supported with dixed amount of network processors of given
processing powewhile keeping the advantages and avoiding
l. INTRODUCTION the drawbacks of both the distributed and parallel router

architectures. Our basic premise is that a router that provides
load sharing among the network processisrable to support a
ITH recent developments in transmission technologiegreater number of interfaces, while upholding the performance
more demanding performance characteristics are beiggarantees.
sought when designing routers. The previously centralizedThe packet processing tasks are carried out by multiple
router devices with a single general-purpose processor caistributed processors, and packets are scheduled among them
not cope with the ever-increasing workloads and are beiagcording to a mapping computed at run-time. Thus, the
replaced by routers with more effective architectures, i.@tal load of the router system is shared among the multiple
distributed or parallel [CAL99], [TWO01], [Cha02]. processing units. The subsequent increase in processor uti-
In the case of adistributed architecture[Cef97], most lization lowers the total system cost and the electricity power

of the packet processing load is shifted to special-purposensumption. In addition, router fault tolerance is improved.
processors, often called network processors or forwarding

engines, typically located directly at the router inputs. Such
an architecture has the drawback of poor utilization becauSe
all the processors are hardly ever saturated, as the load ifor a general survey of load-sharing algorithms, see
almost never evenly distributed over the inputs and does n8He95]. A widely accepted taxonomy of load-sharing al-
always reach the nominal ratParallel router architectures gorithms has been presented by Casavant and Kuhl [CK88].
[ADJK92], [Fed00] are based on a pool of parallel processoisager, Lazowska and Zahorjan [ELZ86] have studied specific
located remotely from the inputs, with all of the processomdaptive load-sharing policies consisting of a transfer and a
being able to perform the data path processing tasks. Packetstion policy. Their work shows that simple adaptive load-
may be buffered at the inputs, and relevant fields of theharing policies yield significant performance improvements
packet (for example, the packet header) are being sent to thktive to the non-load-sharing case and, at the same time, per-
pool for resolution. Such an architecture does not suffer frofarmance very close to complex adaptive policies. In addition,
underutilization because loads of all the inputs are combinadhreshold-based location policy is shown to bring substantial
at the pool. Instead, the pool interconnect tends to becomé@rgrovements over a random selection location policy.
major bottleneck. Another drawback is that if load balancing is The task of determining a processing unit on which a
performed over the pool, the load balancing device is a singlpecific processing job should be executed such that a system-
point of failure for the entire router. wide function is optimized has been shown to WBEP-
Other successful designs [ea98], [Sem99] seek to combimmplete in general (see [ERAL95]). A heuristic that produces
both approaches by containing remotely located (at a differedhe answer in less time, but is not necessarily an optimal one,

A. Router Architecture

Load Sharing


leboudec
Text Box
Accepted for publication in ACM/IEEE transactions on networking


is thus typically used. Such a global task-scheduling heurisantrol loop As in the Network Dispatcher concept [GH99],
tic usually takes some kind of dynamic processor worklodtbws are mapped to processors, yet no state information on
information as input. The most effective representation gfrticular flows is stored. The HRW mapping is hash-based
the workload index has been a topic of intensive resear@nd is thus easily computable at high speeds (as opposed
Kunz [Kun91] has demonstrated that a single, one-dimensiona) for example, a table-based lookup or classification). The
workload descriptor yields better results than more complexapping possesses several advantages over other hash-based
descriptors. load balancing schemes; it allows the hashed objects to be split
In the networking domain, particular attention to load shamto hash buckets of arbitrary size, as determined by predefined
ing has recently been drawn to the areas of Web servergights. As we prove in this work, a specific method for the
Web caching and clustered digital libraries [BOO00], [GH99)weights’ adaptation can be found, which results in minimal
[Ros97], [2YZ198]. The CARP distributed caching schemeglisruption of the mappingdptimizationandadaptationof the
which uses the highest random weight (HRW) algorithmapping is the subject of this work.
[Ros97] by Ross, is a popular choice for Web caches and . ) . oo
is implemented in products offered by Microsoft [BO00]. "€ mapping adaptation procedure aims to prevent indi-
Although the algorithm provides load balancing over th¥idual processor overload. Due to uneven packet flow pop-

request object space, itimt adaptiveand therefore potentially ularities, significant imbalance can occur even in the case of
vulnerable to traffic locality. homogenous processors. Shi et al. [SMGO05] have shown that if

IBM Network Dispatcher [GH99] is a software tool thatflow popularity reflects closely a Zipf-like [Zip49] probability

routes TCP connections to multiple servers that share thgiptribution P(R) ~ 1/R*, where frequency of some eveft
workload, based on a monitored load metric. The algorithif ProPortional to the function of its rank, with the exponent
contains an adaptive control loop, but it is requiredmain- ¢ close tol, static load balancing schemes can result in vast
tain state informatiorwhere each TCP connection has beefRefficiency. For distributions with larger thanl (very likely

mapped. in real-world scenarios), the authors prove that static hashing

Load-sharing methods have also recently been studied®f flow identifiers cannot balance the workload.
relation to the task of distributing Internet traffic over multiple 1,4 design is further complicated by the need to minimize

links or paths within the network [CWZ00], [SRS99]. Iy probability of packet reordering within one flow identified
[CWZ00], the performance of various static hashing schemgs ¢, mmon fields of the TCP/IP header. Owing to the nature
as well as of one adaptive scheme for splitting traffic among neworking transport protocols, it is often illegal—or at
multiple links is evaluated. The adaptive method, as presentgd,q; exiremely undesirable—to allow packet reordering within
requires considerable state information to be maintained h packet flow [KLS98]. Network protocols are designed
can potentially disrupt the flow order. The work presentéthseq on the assumption of in-order delivery service of the
in [SRS99] concentrates on mapping traffic onto multiplgeryork. Although the widely used TCP protocol attempts to
network paths in order to achieve better bandwidth utilizatiqqcyje this problem by correct reordering at the destination,
and routing stability. The method divides traffic flows intqgqrgering slows data delivery, increases receiver buffer size
short-lived and long-lived flows and uses a different mapping,y sl may not prevent undesirable retransmissions and
discipline for each group: an adaptive one for the long-liveg,psequent network congestion. Realtime applications, e.g.,
and a static one for the short-lived flows. It is demonstratgg)p may need to implement buffering to accommodate out-
that for this problem, thanks to the particular length distribus; orqer packets. Stateful applications such as flow policing,
tion of network flows, such a hybrid approach is better thafiop offload or intrusion detection may also perform sub-
each method alone, as it achieves a better balance and S%ﬂﬁnally on reordered traffic. The adverse effects of par-
on signalling overhead. The study of flow length distributiogiejism "in Internet components, causing packet reordering
in [SRS99] has been inspirational for some of the experimenjSer normal operation, have been observed as widespread and
presented in Section V. leading to poor TCP performance [BPS99]. This phenomenon
Other research ([KTZ92], [TZ92]) has concentrated 0 nersistently observed in more contemporary measurement

exploring the possibilities of parallel implementations of the qies [PBBOS5], ultimately prompting the Internet Engi-

TCP/IP packet processing within routers. In these studieRering Task Force (IETF) into attempts to standardize its
functional decomposition of individual packet-processing taskseasurement format [Jay06], [MCR6].

has been determined and various possible forms of parallelism
have been categorized: spatial parallelism, pipelining or con-If packets from the same flow are to be processed by differ-
current operation. ent processors, packet reordering can easily occur. Therefore,
According to this classification, the specific kind of paralpackets belonging to a particular flow should be processed
lelism employed in the load-sharing algorithm presented hdog the same processor. As it is not possible to monitor all
would best be characterized as spatial parallelism, i.e., packetdfic characteristics in a router, including per-flow state,
are scheduled to multiple processors, all of which are capabler to solve the N’P-complete mapping problem at run-
of carrying out the same tasks (although they do not neceisne, a fully optimal mapping is not achievable. However, we
sarily possess homogeneous processing capacity). A mapphgw that the heuristic presented here, which uses aggregate
is established between flows and processors. It is basedt@&ific monitoring as feedback, closely approaches an optimal
the CARP HRW [Ro0s97] mapping, extended by adaptive solution.



C. Outline the information vectord that arrived at a router during a

The paper is organized as follows: in Section II, we descrigne interval (¢ — %t,t]. Thus 377 7(t) = 3 ;aa(t) and
the environment and the related assumptions. In Section Ht) = 2 aw(t)l(w)-_ ~
we present the scheme for load sharing among networkVe denote as flovidentifier vectord = (v1,v2,...,vg,) -
processors, and in Section IV we lay the theoretical basis @rS€t of predefined packet fields that do not change within a
the dynamic adaptation of the scheme by proving the minimadrticular flow. E_ach;i represents a piece of data within the
disruption property of our adjustments and then describe tA@Cket and the integer,, k, > 1, represents the number of
adaptation in detail. In Section V, we present results of of|f!ds contained in vectar. Typically, but not necessarily; is
simulations and discuss optimality issues. Section VI degl@mposed of some fields contained within the packet header.
with aspects of practical implementation of the load-sharirfg?" Our purposes, any predefined set of fields (or just one

scheme within a router. Finally, in Section VII, we preserfif them) that remains constant within a flow can serve as
some concluding remarks. the identifier vector. In this work we assume thatC .

We denoteV as the vector space corresponding to all the
possible values of the identifier vectgr(once the format of
the identifier vector has been established).

We consider a router model where certain processors aren typical example of an identifier vector is the traditional
dedicated to the data plane and certain ones to the conffgly ID, which consists of a 5-tuple of protocol number
plane. We use the terletwork Processing Unit (NPUlo  (prot), source and destination ports (SP, DP) and source and
denote the device that performs the paCket'prOCESSing ta@@tinaﬁon addresses (SA, DA), that iS, in such a dase:, 5
(such as address lookup, classification, filtering, etc.), i.e. thad 7 = (prot, SP, SA, DP, DA). Alternatively, one could use
processor dedicated to the data path within a router. In contragk destination address as a unique parameterthugv, ) =
we denote a€Control Point (CP)a typically general purpose (DA). In the first case}’ would represent a set of all possible

processor that performs the router control functions such @y IDs, whereas in the second casdé,would be equal to
shortest path computation, topology information dissemingye protocol address space.

tion or traffic engineering. Our work concentrates on issues| et ys define asidentifier persistence vecton(t) =

primarily related to the data path within a router. (A3 (1), Ag, (1), Ag(t) € {0,1} a vector that monitors

The router consists of input-output line cards;n NPUS  the persistence of a certain flow (determined by an identifier
and at least one CP. With respect to NPUs we considel,gctor) within a time interval(t — 2At,t]. We consider a
heterogeneous router model, where each processor may R@yg persistent if in each of the two consecutive time intervals
different processing power. Thug,; denotes the processing(;_2A¢, ¢t—At] and(t—At, ¢ ] a packet belonging to the flow
power of NPUj, that is, the maximum number of packetyrives. We assume that only persistent flows are vulnerable
processing units an NPyl is able to carry out per time unitty reordering, which can occur when consecutive packets
At. We denotey the total system processing power, that iselonging to a persistent flow are processed by different
=300 My processors.

We denote),(#) as the actual packet-processing load of we define time intervalAT to be the maximum time a
NPU j, that is, the amount of packet processing carried Outghgle packet spends in the system. If no packet of a flow
NPU j during the interval — At, ¢]. We denoteX(t) as the arrives during the time intervalt — AT, ¢], we assume that
total processing load of the system within the time i”terV%rocessing a subsequent packet from the flow at any processor
that is, A(t) = >_1" \;(t). We definep;(t) as the workload goes not lead to reordering.
intensity of each NPU, that ig;(¢) = A;(t)/u;, andp(t) the |5 qyr scenario, we assume that any procesgore

total system workload intensity(t) = A(t)/u. {1,...,m} is able to process any packet.
We denotey;(¢t) as the amount of packets that arrive at line

cardi in time interval (¢t — At,t]. The maximum transport

capacity of each link igy, thus,Vi, ¥ > ~;(¢). [11. L OAD SHARING FORNETWORK PROCESSORS
We define the packet information vectorw =

(w1, ws,...,w,) as the set ofk, packet fields that

are examined, processed or altered within a router and thaWith the above router model in place, our objectives pre-

carry the information based on which the subsequent next-rggnted in Section I-A can be reformulated as follows: given a

and the treatment required for the packet within a routeputer containing a set ofi network processors of processing

are determined (i.e., for example, the destination addrepswersyu; and given a maximum line card spegdmaximize

the source port, TTL, URL, label, etc.). We dendté as the number of interfaces that such a router can support with

the packet information vector space, i.e. the vector spageperformance constraidt (packet losy < ¢,, wheree,, is a

consisting of all possible values of packet information vectgiven constant.

weW. Definition 1 provides a useful reference point for achieving
A packet containing an information vecta? consumes the objective.

(W) processing units at an NPU. We defineaagval vector Def. 1: Let us define ascceptable load sharinga scheme

a(t) = (ag,(1),...,aa,,(t)) a vector of size[lW|, where distributing the interfaces’ load among the network processors

the elementu;(t) denotes the number of packets containingith the following properties:

Il. NOTATION AND ASSUMPTIONS

A. Requirements



Multiple (N) Multiple (M)

o if A(t) < p, thenVy, A;(t) < i i.'e'., if the system's. Incoming InputOutput Detwork Procsssors
not overloaded, themoneof the individual processors is Packet —
overloaded, - Lape B 21(7)=3

. . H H ;?V x X< e
LA > o then'y, A(t) >y, ie., i the system A Yo B
is overloaded, therall of the individual processors are 7

6. switch to 4

X
=
X
= packet fields 47_
X

.
X

overloaded. conaes e :
Generally, P (packet losp = 377%; P (A;(t) > py). In e vt .
the case of acceptable load sharing, a single processor is fieds containedin  —{N1] M]
overloaded if and only if the entire system is overloaded, vector
thus P’ (packet losp = P (A(t) > p) = P (3271, A(t) >

m . ) . . . .
’ . Clearly, P’ acket loss < P (packet loss and Fig- 1. Load-sharing scheme abstractionUpon arrival, a packet is parsed
ZJ:l ,u) y (p }; - (p )’6 to extract the relevant fields, the identifier vectoand the packet information

’ ) - i
R _(packet losp is the minimal aCh'eva.ble pgc_ke.t loss probas,eciores. Then, the packet is buffered, the mappjfi@) is computed and the
bility. Thus, as acceptable load sharing minimizes the packetket information vectow is sent for resolution to NPY, f(%) = j. At

loss probability for a given total system load. it enables tH&VY 3. the vectorw is processed and the resolution information is returned to
' the requesting unit. The packet is then switched to the correct output port and

total _5y5tem _|Oad to be increased to the U_p_permOSt Ii_nﬂ'lte corresponding packet alterations or manipulations, based on the resolution
possible within the above packet loss probability constraingsults, are applied.

Thus the number of supportable interfaces is maximized.

In addition to performance guarantees, a load-sharing sys-
tem among parallel NPUs should possess the following projgr the packet (next hop, outgoing switch port, QoS applied)
erties: is returned to the requesting unit. Then, the packet is switched

Flow order preservation-packet reordering could occur ifto the correct outgoing port and the corresponding packet
packets belonging to the same flow were processed by differ@figrations or manipulations, based on the resolution results,
NPUs. Thus, the assignment of packets to processors shodid applied (this may mean, for example, applying certain
either be fully deterministic with respect to flows, or shoul®0S, attaching an MPLS label or splicing with another TCP
attempt to minimize the probability of packets belonging tgonnection).
the same flow being treated by different processors. The mappingf we propose for such a purpose is based on

Absence of state informatierkeeping state information the robust hash mapping scheme (alternatively called highest
upon assigning of concurrent flows is extremely costly in ternigndom weight (HRW) mapping) presented in [TR98] and
of memory and processing overhead. Therefore, it is highixtended in [Ros97].
desirable that the assignment of flows to processors can b®ef. 2: Packet-to-NPU (HRW) Mapping f: Let g(7,j)
carried out without the state information being stored. be a pseudo-random functign: V' x {1,2,...,m} — (0, 1),

Support of heterogeneous processethe system must be i.e., we assumg(v, j) to be a random variable if0, 1) with
able to support heterogeneous architectures, that is, whergform distribution. Let a packet arrive at an ingutarrying
there are processors with various processing capacities pregenidentifier vectot’ € V. The mappingf (v) is then computed
or where preference should be given to some processors agsdollows:
the amount of requests processed.

Fault tolerance—the system must be able to adjust to a @ = (1)
processor failure quickly and gracefully, i.e. without a great =
disruption. zj9(v,j) = ke{mﬁ?fm} xk g(T, k), (2)
B. Packet-to-NPU Mapping wherez; € RT is a weight multiplier assigned to each NPU.
The basis of our load-sharing scheme is that the load of eaciThe weightsz = (z1,...,2z,,), as described in [R0os97],
input (ingress traffic arriving at a line card) is distributed fohave a 1-to-1 correspondence with the partitioning vegter
processing among the NPUs usingleterministicmappingf  (p1,- - -, Pm), Which determines the fraction of request object

(see Figure 1). The mappingis computed over thientifier space (the identifier vector spakg in our case) assigned for
vector 7. The computatiory' (7) = j determines the particular processing to each NPU, i.e; = |V;|/|V].
NPU j to which the packet is mapped for processing. The The HRW mapping possesses the following properties,
function f(v), f: V — {1,2,...,m}, splits the vector space which are particularly useful for the purpose of flow-to-
V into m exclusive subspaces;. Packets from a particular processor mapping [Ros97], [TR98]:
subspace are all mapped to the same processor. Load balancing—the robust hash mapping provides load
Upon arrival of a packet at an input, the packet is parséchlancing over the request object space, even for the hetero-
to extract the fields relevant for packet processing, i.e., tgeneous case. This is extremely useful for the ability to support
identifier vectorg and the packet information vecta¥. The processors of heterogeneous processing capacities because the
packet is buffered, the mapping§(¢) is computed and the mapping weights allow the fraction of load mapped to a
packet information vectot is then sent to NPY, f(¢) =j particular processor to be controlled. However, this mechanism
for resolution. is useful just as well in systems with homogenous processors,
At NPU j, the packet information vecta@ is processed as it allows to address imbalance due to uneven packet flow
and the resolution information about the treatment requir@dpularities.



Control Point

Minimal disruption—it has been shown in [TR98] that in 3. compute new [“CPp | 2 check trigger for

the case of a processor failure, removal or addition, the number R T o)

of request objects that are remapped to another destination is by W/ \t’“““ intensity ()= 7,0

minimal. This property is useful for providinfgult tolerance Multiple (n) 1 Maltiple ()

(if a particular processor fails, only flows mapped to that e Carts Z% [ o rocmers

processor are affected). 2 [
However, we observe that the minimal disruption property is —45@ gs

not limited to these special cases. In Section IV we show that . : :

by a similar line of proof as in [TR98], the minimal disruption - [

property holds as well focertain special kinds of adjustments
of the mapping weights. We exploit that fact when carryingig. 2. Load sharing with feedback. Periodically, the CP gath-
out the mappmg adaptation in order n@inimize the amount ers information about the workload intensity of the NP$t) =

- : (p1(t), p2(t), ..., pm(t)). If the adaptation is triggered, the CP adjusts the
of flow remappmg&:aused by the adaptatlon. multiplicative weights vectoi and the new vector is then downloaded to the

For load-sharing purposes in general, there is no need for thf&Js.
mappingf to be identical at all line cards. In fact, a different
mapping can be used at each line card. For example, at line ]
cards, a mappingf;(7) could be computed using functigp ~ With constraints:
of the formg; (¥, j) = g(¥,i + j). However, our scheme does . .
require that tr(1e V\Beight(s vectd>r be identical at each card. !f PO =1 = A() < gy, V5, )
if p(t) >1 = )\J(t) > /Lj,Vj, (5)

where
IV. ADAPTATION THROUGH FEEDBACK

Nt =3 Hfw(@ =4} Y aa®l@).  (6)
A. Problem Statement vev W27

Load sharing amona multible brocessors can become v Note that this problem statement is only useful for defining
L Afing among pie pro : : the objective of our method, but not for computing the actual
inefficient if insufficient attention is paid to keeping the

individual processor load under control. The goal of th‘éomuonf(”' In order to be able to carry out the optimization

N . . - described in Def. 3, one would have to know already at time
adaptation is to prevent undesirable effects, i.e. primari . . 2
— At both Az(t), which would require one to maintain a
processor overload and consequent packet loss. It may Hot

be obvious how such effects can occur when, as cIaimecVge amount of state information, as well @s(t), which

the HRW mapping provides load balancing. However, it |%dn only be predicted speculatlvely. Furthe_rmore, even if
. : X . Such knowledge were available, one would still have to solve
important to note that it provides load balancing over the ; . .

: . . . o an N'P-complete problem, as Def. 3 is an integer linear
request object space.e., in our case, the identifier vector

spacel’. In contrast, the loads due to the actual traffic receivag o Jramming optimization. Thus, heuristics, such as the one

at the router input ports may by no means be distributgcﬁesemed below, are typically used, yet the above definition

uniformly over this request object space, but rather will exhibif NS useful for_ setting the objective and evaluating the
uality of the solution ex-post.

certain locality patterns. This means that in spite of the loaf" . L
: : : Note that in order to apply the formula for minimizing the
balancing property, mapping can potentially lead to grossly acket-to-NPU remappings to the minimization of the number

imbalanced load distributions. For such cases, the mapp o .
must be adjusted to account for non-uniform load distributio 1gpackets reordered_, the ad_aptat|on mtem)s@must satisty
t > AT. Then, during the interval a flow is vulnerable to

in the received traffic. As thus the mappirfgnow changes .
with time, we definef)(v) : V. — {1,2,...,m} as the reordenng,A_T, a packet flow can be rema_pped at most once
and thus minimizing the number of remappings also minimizes

instance off at timet. )
U , ... the number of reorderings.
The objective of the control loop is to prevent overutilization

of a single processor when the system is under-utilized or, vice
versa, to prevent under-utilization of a single processor whé&n Adaptation Algorithm
the system is over-utilized. At the same time, we aim to mini-

ize th t of ket-to-NPU . A ing t The adaptation scheme works in the following general way
Mize the amount of packet-to- remappings. Assuming h@%e Figure 2): periodically, the CP gathers information about
the mappingf is being adjusted periodically in time interval

At, the objective for the adjustment at timte— A can be s.the workload intensity qf the NPUs..If an adaptation t_hreshold
for}nulated as the following optimization problem: 's exceeded, the CP adjusts the weights of the mappiriie
_ T ' new multiplicative weights vectar is then downloaded to the
Def. 3: NPU load-sharing optimization problem: NPUs. LetZ(t) be the instance of weights’ vectar used to
computef(t) at timet.
max Z Ag(t) Z W fi—an (@) =} 1{fy(¥) = 5}, 3) In order to evaluate the status of individual processors,
sev JeM we need a processor workload intensity indicator. For that



purpose, we introduce a smoothed, low-pfiigsred processor
workload intensitymeasures; (¢) of the form

e e
_ r— _
pj(t) = - pj(t) + - pj(t — At), (7)

Compute
filtered workload intensity 7 ()

where r is an integer constant. A similar filtered measure
for total system workload intensity is introduced a8) = o Trigger vos Adapt
L p(t) + =1 p(t — At). The filtering is done to reduce adspation e

the influence of short-term load fluctuations and to obtain
information about thdrend in processor workload intensity.

The ao,'aptaF'O” alg,orlthm -conS|sts.c.)f two parts (See Flgull—:l . 3. A scheme of the adaptation algorithm. Periodically, the filtered
3): the triggering policy, which specifies the conditions toworkioad intensitys(t) is evaluated against the trigger, and the weights’ vector
act, and theadaptation policy which specifies how to act.  is adjusted and uploaded if the evaluation is positive.

A trigger is periodically evaluated and, based on the result,
specific action is taken.
1) Triggering Policy: We introduce a dynamievorkload to start. An appropriate trigger is again chosen according to

Triggering Policy Adaptation Policy

intensity thresholdt’ (1) defined as whether the system as a whole is over- or underutilized:
P
1 p(t) <1 = if (e,(t) < maxp;(t)) thenadapt
Gt = pM+50-7) ® | i
1 pt) >1 = if (e,(t) > mjmpj(t)) thenadapt
= S (1+75(). )

2 2) Adaptation policy:We propose a simple scheme for the
Thus the dynamic workload intensity threshold is positiongueriodic adaptation that operates directly on the weights’ vec-
midway between the current filtered total system workloddr. A subset of elements af is multiplied by an adjustment
intensity 5(t) and workload intensity of 1. The closer thefactor «. Propositions 1 and 2 provide the theoretical basis:
total system workload intensity approaches 1, the higher theProposition 1:Let o € R*, o # 1. Let A, B be two

likelihood of violating the acceptable load-sharing bounds amnempty, mutually exclusive subsets bf = {1,...,m},

therefore the tighter the threshold follows the total system = AU B. Let f, f’ be two HRW mappings using identical

workload intensity. pseudo-random functiop(?, j), but having different weight
During time intervals when the total system workloadectorsz = (x1,...,zy,) andz’ = (z,...,,) as follows:

intensity p(¢) remains in the vicinity of 1, the value of the , )

workload intensity threshold may be too close @) to vy = axj, jEA, (12)

provide a meaningful threshold for adaptation. To prevent such w; = z; JEB. (13)

cases, we introduce a form diysteresisinto the threshold

. / 1 i
computation by defining a fixed threshold in the close vicinit et p; and pj, denote the fraction of request object space

apped to nodg using the HRW mapping with weightg

of 1. o . :
Let ¢, > 0 be a fixed hysteresis bound, which prevent%ndx , respectively. Then, i < 1,
adaptation within the interva((1 — €5,) p(t), (1 + €5) p(t)). P, < pj, jEA (14)
The ¢, is typically set to a value close to 0, for example 'S . icB (15)
0.01, thus preventing adaptation when the load stays within Py o= PbiJ ’
1 percent of the total system workload intensity. Note thaihd, conversely, ifv > 1,
the hysteresis may result in allowing an NPU to be slightly _
overloaded within the hysteresis bound limit. p; = pj, jEA (16)
A dynamic triggering threshold, (¢), which combines the p; < pj, jEB. a7

workload intensity threshold,(¢) with the hysteresis bound, is

thus set to determine the amount of over- (or under-)utilization Proof: We first prove the ine/quality (14) by contradiction.
allowed at one processor: Assume thatljo € A such thap’, > p;,. It means that there

Def. 4: Triggering Threshold €,(t): Let the dynamic exists at least one identifier vectds, for which f/(vy) = jo,

workload intensity threshold(t) and the hysteresis boundyetf(vo)/?i]o- . o
e, be defined as above. Then the triggering threshold is”S (U/O) = _Jo, we have zjg(t,jo) =
defined (according to whether the system in total is over- 8t3%keM 9(%, k). But then:

underutilized) as follows: 1

rj,9(v0, jo) = S 5, 9(%o, jo)
ep(t) =max (e,(t), (1+e)p(t), pt)<1, (10)
eo(t) =min (€,(t), (1—en)p(t)), p(t)>1. (11)

Y]

1 /
_ TS k
o r3.9(o, k)

The result of the comparison of the filtered workload inten- o 1, ..
sity to the threshold then acts as a trigger for the adaptation jog(Wo,jo) = = @j,9(vo, jo)



> 1 x5.9(Vo, k) at least one identifier vectary, for which f(vy) = 7,
‘i‘ yet f'(vo) # j. But, if f(7p) = j, this means that
= — z,9(Vo, k) xj g(Uo, j) = maxy xy g(Uo, k) and therefore
[0
> arg(Vo, k), Vke€B. 259(Vo,j) =« x;9(7o,j) (23)
Therefore, z;, (70, jo) = maxgenm xk9(To,k) and thus > zpg(To, k) (24)
f (%) = jo, which contradicts our assumption. > ax5.9(vo, k), VkeM. (25)

Inequality (15) can be proved in a symmetrical way, as well
as the case of > 1. ]

Equality in inequalities (14)-(17) is an extreme case, which
can only take place iftv is so close to 1 that the weights
Z change so little that the change does not affect any single
identifier vector.

Note that, given the complex relationship between vectors

# and j (see [Ros97]), it is hard to make further generajaCh node. By summing up over all nodes and dividing by

statements about the effects of making direct adjustments 0 accoun/t f_or redundancies, the two mappings differ by
= 3 2_; [pj — pjj| in total.

The proof fora > 1 is symmetrical. a

It is important to note that the minimal disruption property
would not generally hold for the adaptation if the weights’
adjustment was not carried out bysggle constant multiplier
as then the inequalities (21) and (24) would not necessarily

Thus ; g(to, j) = maxy zj, (v, k) and f'(v) = j,
which contradicts our assumption. As all objects mapped
to ;7 by f are also mapped tg by f’, the amount of
request objects in which the two mappings differ at node
J is equal to the fractiofp, —p’;| of request object space.
Thus, the two mappings differ blp; — p’[[V'| vectors at

Proposition 2 (Minimal disruption):Leta € RT. Let A, B
be two nonempty, mutually exclusive subsets bf =
{1,...,m}, M = AU B. Let f, f' be two HRW map-
pings using the identical pseudo-random functigfv, j),

lzu/tidlﬁe/rlng m/the V\;ell?ht \./ectors: = (@1,-..,2m) and hold for all K € M. As the minimal disruption property is

7= (..., 2) as follows: crucial for minimizing the amount of remappings, Propositions
x; = azj, jEA, (18) 1land 2 serve as a background for designing the adaptation of
x; — &, jeB. (19) vector z to be carried out by a single, constant multiplier:

Def. 5: Weights-Vector £ Adaptation: Let p(t) < 1.

Again, a subset of elements 8fis multiplied by an adjustment Assuming that the trigger conditiof¥,(t) < max; p;(t)) is

factor a. Let p; and p; denote the fraction of request objecsatisfied, let

space mapped to nogausing the HRW mapping with weights e (t) 1/m

Z and & /, respectively. Then, the fraction of request object c(t) = < — 2 )

space mapped to two different nodes by the two mappings is min {p;(t) | 7;(t) > (1)}

equal to% Zj Ip; —pj|- In other words, the amount of requestl hen

it?sbjrﬁicr:?mrg;apped by the two mappings to different destinations o) = c(t)a;(t — A), pi(t) > e(t), @27)
Proof: The case ofv = 1 is trivial. Let o < 1. We prove zj(t) =zt = AL, pi(t) < €(t). (28)

that for each nodg, exactly|p; —p’;| |V| objects have changedConversely, the adaptation for the case aft) > 1 is

the mapping. The proof is divided into two parts: performed in a symmetrical manner.

1) j € A: from Proposition 1 we know that; < p;. Let us Thus, in the case that the system is underutilized, the
show that all objects mapped jdoy f’ are also mapped presented adaptatiolowers the weights for the exceedingly
to j by f by contradiction: assume that there exists gwith respect to a thresholdajverutilized processoysvhereas
least one identifier vectod,, for which f/(7,) = j, Wweights for others remain unchanged. Conversely, if the sys-
yet f(dy) # j. But, if f/(5,) = j, this means that tem in total is overutilized, the adaptaticaises the weights

(26)

), g(To, j) = maxy x}, g(7, k) and therefore for the exceedinglywith respect to a thresholdinderutilized
) processors The lowering or raising of weights is carried out
zig(T,j) = — ac;-g(ﬁo,j) (20) proportionally, either to the minimal workload intensity(t),
‘i‘ which exceeds the threshadgl(t), or to the maximal workload
> — (V. k) (21) intensity p;(t) which remains below the threshotg(t).
«

The factorl /m in the exponent of(¢) represents the effects

of the number of processors present—less aggressive adjust-
Thus, z; g(,j) = maxy xx g(7o, k) and f(zy) = j, Mment is needed if there are more processors. Alternatively,
which contradicts our assumption. As all objects mappd@e exponent of the form af/ log,(m) can be used, making
to j by f’ are also mapped tg by f, the amount of the root computation less complex. The effects of using either
request objects in which the two mappings differ at nod@ponent are evaluated in Sections V-E and V-F.
j is equal to the fractiofp; —p’| of request object space.

2) j € B: from Proposition 1 we know that; > p;. Let us V. NUMERICAL RESULTS
show that all objects mapped jdoy f are also mapped We have used the MATLAB v.6 environment on an IBM
to j by f’ by contradiction: assume that there existeC Pentium Il with Microsoft Windows 2000 machine to

> arg(to, k), VekeM. (22)



flow length distribution [TMW97] [ZBPS02] [CTB98],
as well as the analysis of [Aix00] exhibit similar patterns
and thus we believe it to be a good approximation.

o Maximum per-flow fraction of interface rate;—the
maximum fraction of the total rate of an interface (in
packets per second) a single flow is allowed to occupy.
If e =1/2, a single flow may occupy up to 50% of the
interface transport capacity. Note that the study [ZBPS02]
suggests that such limits on the maximum per-flow rate
are in agreement with reality.

L _ u . Identifier vector values-for the distribution of identifier

” * * vector values, we have approximated a typical distribution

of IP source and destination addresses in networking

traffic as described in [NIa97]. The prevalence of class C

addresses, which occupy a relatively small portion of the

simulate a model of a router with multiple NPUs and line ~ &ddress space (12.5%) and yet account for approximately
cards. 65% of the packets in network traffic, led us to consider

a normal distribution of identifier vectors within a 32-bit

. . integer space, with parameters fitted to those measured

A. Simulations Input in [Nla97]. Thus, the identifier vectors of flows are
For router input, we have used generated traffic. The param- generated with a truncated normal distributiéf(0, 1)

eters for generating the per-interface traffic were approximated out of the 32-bit integer space.

from OC-3 traces statistics compiled in [Aix00], [NlIa97] and , Load per packet-we have used a simplified representa-

[TMW97] and approximated to OC-192 speed by shortening tion of the packet load in number of processing units

the time intervals proportionally, i.e., 1 second of the mon- it takes to process a packet. We have defined three

itored OC-3 traffic corresponds to 15 ms in our OC-192-  possible levels of the per-packet load: {1,2,3}. The

like traces. Note that this transformation is a simplification of  rationale for such a definition is an analogy with the most

reality, since the scaled traces would differ not only along the  common router function—the address lookup—where the

time dimension, but the per-flow data volume, the multiplexing  forwarding table is often organized into a tree structure
effects and the packet interarrival times would have to be taken and a lookup requires a variable number of memory

P(Flow length > X)
o o o o o
N w 1S @ 2

o
Y

o
[ ]

"
%

Fig. 4. Flow length cumulative distribution.

into account as well. _ _ accesses, depending on the tree depth per particular prefix
The following parameters characterize the traffic: [DBCP97] [NK98]. Often, the trees are organized in
« Number of packets arrived per time intervaa discrete three levels, and thus an address lookup may require 1-3

time homogeneous Markov chain, attaining values in memory accesses. In our simulations, the distribution of
the interval of [3000, 22000] with uniform transition the per-packet load over the identifier vectors is uniform.
probability to states within a neighboring interval, the  That is certainly a simplification of reality, as obtaining
step of change limited within-f4000, 4000] packets of realistic values would require matching traffic traces to a
difference at each iteration every 15 ms. corresponding lookup table, a task not within our means.
« Number of flows existent in a time intervah stochastic
recurrence, with state space attaining values in the int&- System Model Parameters
val of [8000, 240000], with uniform transition probability The iterations of the traffic generation process as well as the
to states within a neighboring interval. The step of changwaluations of the adaptation trigger are carried out at a time
in the amount of flows at each iteration every 15 mimterval At of 15 ms. Such intervals should be comfortably
ranges between a positive and negative value of tkerge to be greater than any hypothetiggl’ (maximum time
maximum amount of packets per iteration divided by thea packet can spend in the system), which is typically defined in
mean number of packets per flows finished in the previotsrms of nanoseconds. The unit of load at each NPU is equal
iteration. The direction of change (increase or decreage) 1 memory access. Unless stated otherwise, we assume a
in the number of flows is correlated with the direction ohomogeneous router model, where all the NPUs have equal
change in the number of packets (number of flows grovysocessing capacity, corresponding to a full load of a single
when number of packets grows and vice versa), as shoveuter interface, which amounts to 22000 packet per 15 ms.
in [TMW97] to hold. This leads tou; = 44000 processing units (memory accesses)
» Flow length—the amount of packets in a flow. We haveper 15 ms. The NPUs are considered buffer-less devices that
used a measured flow length distribution as documentednnot process more traffic within an interval than the limit
in [SRS99]. The distribution is shown in Fig. 4. As theof maximum number of processing units per time interval.
measured distribution covers only a finite part of th&raffic exceeding this limit per time interval is assumed to be
spectrum (up to a flow length equal to 1886 packets), vekopped.
have used a Pareto distribution to approximate the heavyUnless stated otherwise, the low-pass filter constaatset
tail of the distribution. Other publications on the topic ofo » = 3 and the hysteresis bound ¢p = 0.1. The number of
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links n and processors: in the simulations have been chosen
such that the total system workload intensity remains close to
1, so that it makes sense to investigate the performance with g4/
respect to the acceptable load-sharing bounds.

In the subsequent simulations, three alternatives of a routgr
system model are compared frequently to demonstrate (Eéoa’ E
functionality and advantages of the adaptive load-sharing

method; (1) a naive system whete load sharings deployed | 2| |

over the processors and thus the entire load of any single Flows appearing
interface is mapped to a particular processor; (23tatic Flows persistent

. . 1 —— Flows remapped
load-sharing system, which uses the HRW packet-to-NPU10 = 100 150 200
mapping f to map packets to processors, yet with mapping Time

weights remaining static, as configured initially according
to the capacities of the individual processors; and, (3), th&. 7. dFIO_erTSn remapped. Load of_r;] :h 13dlink_s isI prgcc;ssed by ahr%utt)er_

. . . . quipped withm = 8 processors, with the adaptive load sharing method being
adaptlveSyStem’ with _the dynamlca”y adapted Welghts of th ecuted. Shown on a on logarithmic scale are the statistics of the number of
packet-to-NPU mapplnq(t). flow remappings that occurs within an iteration. The upper line shows the total

number of flows appearing within an iteration, the middle line the number of
persistent flows (flows that had appeared in the previous iteration as well) and

C. Adaptive Load Sharing the lowest one the amount of persistent flows remapped within an iteration.

. . . . . . Clearly, there is at least one order of magnitude difference between each of
Figures 5-7 illustrate via a simulation how the adaptive l0agk flow statistics, showing that only a small fraction of flows is vulnerable to
sharing method works in general. A load of= 13 links is remapping and out of these, only a very small fraction is eventually remapped.
processed by a router equipped with= 8 processors. The
cases where no load sharing is deployed, where load sharing
[ I ing th ic mapping and where | harin . . .
s deployed using the static mapping and where load sha gnsecutlvely and more importantly, from the capacity of a

is deployed using the adaptive mapping are compared. Al tﬁﬁ"]gle NPU, is a key parameter. It determines the effectiveness

alternatives are put in perspective by comparison with the Id%‘?lthe adaptive method. The lower the limit on a single flow’s

solution. -
Figure 5 compares the per-processor workload intensity t%??rte, the better the method performs, as shown in Fig. 8, where

L X fhe same system model is subject to traffic with a varying
each method. Clearly, individual processor workload intensi N oximum flow rate factor: Cases of the maximum flow rate

remains within close vicinity of the ideal workload intensitybeing limited to 10%, 25%, 50% of the link capacity and

when adaptive load sharing is deployed. e case where a single flow can occupy the whole link (or

Figure 6 compares the number.of packets dropped underk U) are compared. Clearly, the lower the limit, the better the
three scenarios. Again, the adaptive case results closely follg aptive method performs

the total system curve, which represents the global minimum.
In Fig. 7, the number of per-iteration flow remappings for

the adaptive load-sharing method is examined. Note that {8€ Fractional Factorial Analysis of the Load-Sharing Method
number of flows remapped per iteration is several orders of

magnitude smaller than the number of flows appearing perTo test the influence of various tunable parameters (factors)

iteration. on the adaptive method'’s performance, we have employed the
Relevant results of a multitude of such experiments afgchnique known as fractional factorial analysis [Jai91]. Upon
summarized in Tables | and II. alternating the values of each factor, one can measure the

influence of each factor on the variance of the results.
Each factor has been alternated between two values
(levels)—high #+4) and low (Lo). The following factors and
Simulations show that the fraction; a single flow is levels have been explored:
allowed to consume from the rate of a single interface, and,, Adaptation coefficient exponerithe levels used were
Lo =1/log,(m) and Hi = 1/m;

D. Influence of Maximum Per-Flow Ratg

TABLE |
ACCEPTABLELOAD SHARING.
TABLE Il

[ Packets dropped [ % of All'] FLOW REMAPPINGS

Acceptable load sharing (ideal) 0.7548 .

Adaptive load sharing 1.3256 ‘ : : [ Al [ Persistent] Remapped]

Static load sharing 2.2590 Mean over simulations
[ Packets dropped in excess of idea] | Zf) g]': a!rsistent 100.00 1]6?)(2)3 ggi

Adaptive load sharing 0.5708 PD _tp i - -

Static load sharing 1.5042 or feration

- : Max, # of flows 77,076 15,304 204

[ Improvement of adaptive over static % | Max, % of all 100.00 21.19 043
[ 1 - (adaptive / static) | 60.4591 | Max, % of pers. - 100.00 2.22
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Fig. 5. Per-processor workload intensity.A load of n = 13 links is processed by a router equipped with= 8 processors. If no load sharing is deployed,

the entire load of each link is assigned to a particular processor. This is compared to a case where load sharing is deployed using a static, non-ad
mapping f and to load sharing with the dynamically adapted mapping. Individual processor workload intensity when (a) no load sharing, (b) the static
load-sharing, and (c) the adaptive method is deployed. (d) Summary to results: maximum and minimum per-processor workload intensity per each schen
all figures, the total system workload intensjiyt), which is the same in all three cases, is shown for comparison, as it represents an ideal reference valu
Clearly, individual processor workload intensity remains within the closest vicinity of the ideal workload intensity when adaptive load sharing is deployec
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(a) Packets dropped in total. (b) Packets dropped in excess.
Fig. 6. Packets dropped.A load of n = 13 links is processed by a router equipped with= 8 processors. The graphs depict the numbers of dropped

packets when not using a load sharing scheme, when using a static load sharing method and when using an adaptive method. (a) Number of packets di
by the system using each of the schemes, compared to the ideal value of the minimal number of packets the system would have to drop, should the indiv
processors be ideally saturated. (b) Comparison of static and adaptive methods in terms of the number of packets dropped in excess of the ideal mil
value. Clearly, the adaptive method significantly outperforms the static one and avoids a large number of unnecessary packet drops, in particular during pe
when the ideal solution likewise leads to no packet drops.
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Fig. 8. Influence of maximum per-flow fraction rate limit e;. The key Fig. 9. Influence of the number of NPUs.Graphic representation of results
response variables—number of packets dropped in excess, the fraction of flow3able V. Experiments 1 and 2 are conducted with= 8 processors and
remapped out of all flows seen per iteration and out of all flows persiste3#6 with m = 64 processors. In 5 and 6, the maximum per-flow rate fraction
per iteration—are shown for four different settings of the maximum per-flow; is adjusted accordingly and thus these two experiments do not differ too
ratee . 10%, 25%, 50% and 100% of the line rate, or of a single processosgynificantly from the results of 1 and 2. However, clearly, the higher the
capacity. All the observed response variables grow with the increasing number of processors, the more the accuracy of the method is affected.
which thus has a negative impact on the method’s performance.

The second most influential factor on the variance of the
« NPU processing capacity distributioffror level Lo, all  number of flow remappings is thieysteresis bound,. The
the individual capacities were equal, whereas lekel hysteresis bound, on the contrary, has little effect on the
implied an exponential distribution of capacities, witthhumber of packets dropped. It thus clearly makes sense to
relative capacities i{1,2,4,8}; set the bound to a larger value, for example the= 0.1
« Adaptation intervalThe levels used werbo = 1, mean- ysed in the experiment, in order to prevent unnecessary flow
ing the adaptation would be carried out at every iteratiofpemappings.

if triggered, andHi = 10, meaning the adaptation would  The relatively insignificant influence of the NPU processing

only be carried out every 10th iteration; capacity distribution factor confirms that the HRW mapping
« Hysteresis bound. The levels used werdo = 0.01 and the weights' adaptation work equally well with both
and Hi = 0.1; uniform and highly nonuniform distributions of processing ca-

« Filtering parameterr. The levels used werdo = 3 pacities. Likewise, the exact value of the adaptation coefficient
(meaning that a significant influence is attributed to theyponent does not have much influence. This outcome favors
recently measured value) anfdi = 32 (meaning the ysing thelog,(m) option, as computing the root in Eq. (26)
recently measured value has less influence). is then less demanding.

The results of the experiments are shown in Table Ill, where

—1 represents théo level and 1 theH: level. The impact

of each factor on the variance of the key response variabfes!nfluence of the Number of Processors

(the number ofpackets dropped in exceasid the number of  |n this simulation we evaluate the effects of altering the
flows remappelis shown in Table IV. total number of processors present in the system,We

The fractional factorial analysis results show that of theompare systems where the total processing capacity remains

factors studied, only three have a significant influence on thenstant, yet the number of NPUs present and their processing
results: the adaptation interval, the hysteresis bound and Hagpacity differs. Here again, the scenarios compared involve
filtering parameter. a router withn = 13 interfaces andn = 8 NPUs of uniform

The most significant factor appears to be, not surprisinglyyocessing capacity;, plus a system withn = 64 processors,

the adaptation interval Clearly, more frequent adaptationwhere each NPU has a processing capacity: o8.

leads to more accurate load sharing and thus less packet losgt the same time we compare the effects of altering the

yet more frequent adaptation leads to more flow remappingsexonent in the adaptation coefficient between the values

well. The exact duration of the adaptation interval thus needt 1/m and 1/log,(m) to observe which of the two more

to be set according to the desired parameters of the systemccurately reflects the higher number of processors present.
The number of packets dropped is likewise significantlfurthermore, we alter the maximum per-flow fractiep,

influenced by thefiltering parameterr. As this factor, in because the maximal fraction a single flow is allowed to

comparison, has relatively little influence on the number @bnsume from a single interface’s rate is reflected in the

flows remapped, it makes sense to choose a value tbht maximum fraction of processing capacity a single flow may

leads to fewer packet drops. Clearly, whenis high, the consume at a single NPU. Thus, in one set of simulations

system does not take the recent information strongly enoughenm = 64, we decrease; according to the ratio of the

into account. A lower value, like the= 3 in the experiment, decrease of a single NPU'’s processing capatity, Thus,e;

can thus be recommended. attains a value of either; = 0.1 or ¢; = 0.0125.
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TABLE Ill
FRACTIONAL FACTORIAL ANALYSIS RESULTS.

[ No. [[ Exponent NPU cap. Adaptation int.  Hysteresis  FilfePackets dropped Flows remapped]
1. -1 -1 -1 1 -1 87091 700
2. -1 -1 1 -1 1 223181 422
3. -1 1 -1 1 1 203333 306
4. -1 1 1 -1 -1 164660 438
5. 1 -1 -1 -1 1 177332 858
6. 1 -1 1 1 -1 228731 190
7. 1 1 -1 -1 -1 119675 926
8. 1 1 1 1 1 266604 16
Total / 8 183830 482

TABLE IV

EFFECTS OF FACTORS
Factor Packets dropped Flows remapped
Estimate | % of Variation | Estimate | % of Variation

Total / 8 183830 482.0
Adaptation exponent 14260 0.066 155 0.003
NPU capacity dist. 4742 0.007 -60.5 0.040
Adaptation interval 36968 0.443 -215.5 0.512
Hysteresis bound;, 12164 0.052 -179.0 0.354
Filter parameter 33787 0.370 -81.5 0.073

TABLE V

INFLUENCE OF THE NUMBER OF PROCESSORS

[ No. [ m [ Adaptation exponenf Maximum flow rate (%)] Packets dropped in excess (%)Flows remapped (%)

T || 8 1/Tog, (m) 10.00 0.343 0.0176
2 || 8 1/m 10.00 0.447 0.0151
3 || 64 1/Tog, (m) 10.00 4423 0.1345
4 || 64 1/m 10.00 6.605 0.0332
5 || 64 1/Tog, (m) 1.25 0.795 0.0797
6 || 64 1/m 1.25 1.242 0.0204

The individual experiments and the results are summarizeda remote NPU, whereas the payload is temporarily stored
in Table V and Fig. 9. Clearly, as shown in Section V-D, thin a distributed shared memory coupled to the input switch.
influence of the maximum per-flow ratg is crucial for the Sharing the load among the NPUs brings significant utilization
results of experiments No. 3 and 4. Thus in order to evaludienefits.
fairly the effects of the number of processatsthe maximum

per-flow ratee; needs to be adjusted as in experiments No. 5
and 6. B. Packet-to-NPU Mapping

When ¢, is adjusted, results of the system with = 64 The major implementation issue related to load sharing is
NPUs (No. 5 and 6) differ not as significantly from results o 1o provide a fast-computable pseudo-random funcgion

a system withm = 8 NPUs, although the performance doeg, computing the mapping, with the properties required in
worsen in both of the key response variables. The effects of the, mapping definition (Def. 2).

altered exponents in computing the adaptation coefficients can
be compared. Using/m leads to less aggressive adaptation of

i i Incomi
the mapping weights, and thus fewer flows are remapped. In Packet 1. parse 2.1(7)-5 e Cardwin
contrast, the less fine-grainéd log, (m) adjusts the mapping = n' S ]
. (= X 3. request (w) X
more aggressively and thus prevents packet loss, but at a cost 4. NextHop (7) = 4
of more flow remappings. = packet fields 2@ 5ol 9 % B
igontor vecor ¥ 6. switch to 4
V1. IMPLEMENTATION ISSUES 5 addiionsl packet Wi
. fie\d_s contained in 3 4
A. Router Architecture Voo

An implementation of a router combining the distributed
router architecture with the load-sharing scenario is depicte- 10. Load sharing within a distributed multiprotocol router. An
in Fiqure 10 NPU resides at every line card and the NPUs are interconnected through a
g ' L . . . . switch. Upon packet arrival, the packet information veaibtravels through
Another potential implementation is shown in Figure 1khe switch to NPUj, chosen by computing the mappin(#) = j over

It is a load-sharing extension of the concepts of the Junipée identifier vectors. At NPU j, the vectorw is processed and the

olution information is returned to the requesting NPU. The packet is then
Networks routers [Sem39], where the header and the payloé%%tched to the correct output port and the corresponding packet alterations

processing paths are separated by two switches, input and @kinanipulations, based on the resolution results, are applied. The mapping
put. The control information in the packet header is processeelghts can be adjusted to give preference to local processors.
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2.f(V)=3 N
= iﬂ%\‘)\w Although the utilization information gathering appears to
I ._‘>< \@Nfs present unnecessary extra effort for the router system, note
i ,,{! o in | that similar statistics collection is readily available and often
o wtion!packe % S = required from the existing router equipment [(_ed95] [MRO1]
the fogmation. | - and therefore should result in a minimum load increase on the

the infcimalion
vector w

P
7. Switch Packet (N) *feo
AR

system. The communication required between the NPUs and
it & Ot S the CP is minimal, as the NPU only periodically reports its
utilization, a single parameter, and the CP broadcasts the new
. _ - . weights vector when needed. The computational demand at the
Fig. 11. Multiprotocol router, consisting of an input- and output - g . .
switch/shared memory and a pool of multiple NPUs, sharing the load of CP is negligible (see Subsection 1V-B2). Should the centralized
N line cards. Every line card is connected to two switches/shared memorie§P be perceived as a bottleneck or a single point of failure,

input and output. Each of the multiple NPUs is reachable from a line cafﬁe whole scheme can easily be distributed, with the NPUs
through a switch. Upon packet arrival, the packet is buffered in the in !

put . . - . . . .
shared memory and the information vectdtravels through the input switch Broadcastlng its utilization and recomputing and updating its
to NPU j, chosen by computing the mappindv) = j over the identifier own Weights vector.
vector ¥ at the line card. At NPUj, the vectorw is processed and the
resolution information is switched to the resulting port of the output switch. VIl. CONCLUSIONS ANDFUTURE WORK
The packet is then retrieved from the shared memory, the corresponding packet
alterations or manipulations, based on the resolution results, are applied an¥Ve have proposed a scheme for sharing packet-processing

the packet is transmitted on the link. tasks among multiple network processors within a router.
The scheme is based on an adaptive deterministic mapping
of flows to processors. The proposed load-sharing scheme

A good candidate appears to be the hash function basgeguires no flow state information to be stored within a router.
on the Fibonacci golden ratio multiplies™! = (6 —1)/2  The mapping itself is derived from the robust hash routing
presented in [Knu98]. The Fibonacci hash function leads ggesented in [Ros97] and [TR98]. We have extended the
the “most random” scrambling of sequences [Knu98]. It igapping with an adaptation discipline aimed at keeping the

defined as follows: processor load below a dynamically derived threshold. The
threshold reflects the total system workload intensity.
hg-1(x) = (¢~ " 2)mod 1. (29)  The adaptation is performed by adjusting the weights of

the packet-to-processor mapping, thus reducing or increasing
Such a function can be fit into the mapping scheme as followtsie amount of flows a processor must handle. Thanks to the
proved minimum disruption property of our adjustments of the
9(0,7) = hy-1 (7 XOR hg-1(j)). (30) mapping, the adaptation requires only a very small number
of flows to be remapped. Thus the probability of packet
As the valuesh,-1(j) can be precomputed, the actual comreordering within a flow is kept low.
putation per vector requires only4m basic mathematical Such a scheme is particularly useful in routers with many
operations andn comparisons (to find the maximum). input ports, and with packets requiring large amounts of
Depending on computing capacity available, other hagiocessing. With the proposed scheme, a kind of statistical
functions may be used. The study in [CWZ00] documenteadultiplexing of the incoming traffic over the multiple network
good spreading properties of the CRC16 function, but at tipeocessors is achieved, thus in effect transforming a router into
cost of higher complexity. For a survey of other hash functiorssparallel computer. The improvements in processor utilization

for implementing the HRW mapping, see [RKMDO02]. decrease the total router cost and power consumption as well
In our simulations in Section V, we have used Fibonacéis improve fault tolerance.
hashing to computg(7, 5). The spectrum of potential applications is not limited to a

router. The method can be deployed in any networking system
that benefits from spreading the load over multiple processing
C. Load Indicator units and that requires packets belonging to a single flow to be
processed by the same processor. Such applications include,
Another open implementation issue is how to actuallipr example, a Web server load balancer or a distributor of
measure the load of the processors or the number of processiagfic over multiple network links.
units spent per time interval. Alternative measures to the oneAs for future improvements, further study is planned to
used in the simulations (number of memory accesses an NB&ln insight into how various traffic patterns influence the
has performed during the time intervat) can be for example performance of the load-sharing scheme. Another topic open
the number of processing cycles or the number of packéts research is the influence of load sharing on QoS guarantees
processed per time interval. A counter value is periodicallyrovided by a router.
read by the CP. Multiple indicators can be combined into one
using relative weights, as in [GH99], yet note that results in VIII. A CKNOWLEDGEMENT
[Kun91] indicate that the benefit over a one-dimensional load We thank Anees Shaikh for providing the statistical data on
descriptor is minimal. flow length distribution.
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