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Adaptive Load Sharing for Network Processors
Lukas Kencl, Jean-Yves Le Boudec

Abstract—A novel scheme for processing packets in a router
is presented that provides load sharing among multiple network
processors distributed within the router. It is complemented by
a feedback control mechanism designed to prevent processor
overload. Incoming traffic is scheduled to multiple processors
based on a deterministic mapping. The mapping formula is
derived from the robust hash routing (also known as the highest
random weight - HRW) scheme, introduced in K.W. Ross, IEEE
Network, 11(6), 1997, and D.G. Thaler et al., IEEE Trans.
Networking, 6(1), 1998.No state informationon individual flow
mapping has to be stored, but for each packet, a mapping
function is computed over anidentifier vector, a predefined set of
fields in the packet. An adaptive extensionto the HRW scheme
is provided to cope with biased traffic patterns. We prove that
our adaptation possesses theminimal disruption property with
respect to the mapping and exploit that property to minimize
the probability of flow reordering. Simulation results indicate
that the scheme achieves significant improvements in processor
utilization. A higher number of router interfaces can thus be
supported with the same amount of processing power.

Index Terms—Router architecture, packet processing, load
sharing, load balancing, feedback control.

I. I NTRODUCTION

A. Router Architecture

W ITH recent developments in transmission technologies,
more demanding performance characteristics are being

sought when designing routers. The previously centralized
router devices with a single general-purpose processor can-
not cope with the ever-increasing workloads and are being
replaced by routers with more effective architectures, i.e.
distributed or parallel [CAL99], [TW01], [Cha02].

In the case of adistributed architecture[Cef97], most
of the packet processing load is shifted to special-purpose
processors, often called network processors or forwarding
engines, typically located directly at the router inputs. Such
an architecture has the drawback of poor utilization because
all the processors are hardly ever saturated, as the load is
almost never evenly distributed over the inputs and does not
always reach the nominal rate.Parallel router architectures
[ADJK92], [Fed00] are based on a pool of parallel processors,
located remotely from the inputs, with all of the processors
being able to perform the data path processing tasks. Packets
may be buffered at the inputs, and relevant fields of the
packet (for example, the packet header) are being sent to the
pool for resolution. Such an architecture does not suffer from
underutilization because loads of all the inputs are combined
at the pool. Instead, the pool interconnect tends to become a
major bottleneck. Another drawback is that if load balancing is
performed over the pool, the load balancing device is a single
point of failure for the entire router.

Other successful designs [ea98], [Sem99] seek to combine
both approaches by containing remotely located (at a different

switch port than the input line cards) network processors or
forwarding engines, which serve a certain predefined set of
inputs to carry out the packet processing tasks on packets
arriving at these inputs. Again, the traffic may not be evenly
distributed over these sets, which leads to less efficient utiliza-
tion.

In [TW01] it is observed that the parallel approach, im-
plicitly leading to load sharing, makes more sense when
ports have a widely varying load. That is perhaps why in
contemporary routers, the parallel approach is more present
in the multi-service edge routers (such as Juniper Networks
M40 and M120 [Net] and Cisco 10000 [Sys] series), while
the contemporary backbone routers (such as Juniper Networks
T320 [Net] or Cisco CSR routers [Sys]) usually employ a
distributed architecture, with localized packet processing at
each input.

We present a novel packet processing scheme, which seeks
to maximize the number of router interfacesthat can be
supported with afixed amount of network processors of given
processing powerwhile keeping the advantages and avoiding
the drawbacks of both the distributed and parallel router
architectures. Our basic premise is that a router that provides
load sharing among the network processorsis able to support a
greater number of interfaces, while upholding the performance
guarantees.

The packet processing tasks are carried out by multiple
distributed processors, and packets are scheduled among them
according to a mapping computed at run-time. Thus, the
total load of the router system is shared among the multiple
processing units. The subsequent increase in processor uti-
lization lowers the total system cost and the electricity power
consumption. In addition, router fault tolerance is improved.

B. Load Sharing

For a general survey of load-sharing algorithms, see
[SHe95]. A widely accepted taxonomy of load-sharing al-
gorithms has been presented by Casavant and Kuhl [CK88].
Eager, Lazowska and Zahorjan [ELZ86] have studied specific
adaptive load-sharing policies consisting of a transfer and a
location policy. Their work shows that simple adaptive load-
sharing policies yield significant performance improvements
relative to the non-load-sharing case and, at the same time, per-
formance very close to complex adaptive policies. In addition,
a threshold-based location policy is shown to bring substantial
improvements over a random selection location policy.

The task of determining a processing unit on which a
specific processing job should be executed such that a system-
wide function is optimized has been shown to beNP-
complete in general (see [ERAL95]). A heuristic that produces
the answer in less time, but is not necessarily an optimal one,
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is thus typically used. Such a global task-scheduling heuris-
tic usually takes some kind of dynamic processor workload
information as input. The most effective representation of
the workload index has been a topic of intensive research.
Kunz [Kun91] has demonstrated that a single, one-dimensional
workload descriptor yields better results than more complex
descriptors.

In the networking domain, particular attention to load shar-
ing has recently been drawn to the areas of Web servers,
Web caching and clustered digital libraries [BO00], [GH99],
[Ros97], [ZYZ+98]. The CARP distributed caching scheme,
which uses the highest random weight (HRW) algorithm
[Ros97] by Ross, is a popular choice for Web caches and
is implemented in products offered by Microsoft [BO00].
Although the algorithm provides load balancing over the
request object space, it isnot adaptiveand therefore potentially
vulnerable to traffic locality.

IBM Network Dispatcher [GH99] is a software tool that
routes TCP connections to multiple servers that share their
workload, based on a monitored load metric. The algorithm
contains an adaptive control loop, but it is required tomain-
tain state informationwhere each TCP connection has been
mapped.

Load-sharing methods have also recently been studied in
relation to the task of distributing Internet traffic over multiple
links or paths within the network [CWZ00], [SRS99]. In
[CWZ00], the performance of various static hashing schemes
as well as of one adaptive scheme for splitting traffic among
multiple links is evaluated. The adaptive method, as presented,
requires considerable state information to be maintained and
can potentially disrupt the flow order. The work presented
in [SRS99] concentrates on mapping traffic onto multiple
network paths in order to achieve better bandwidth utilization
and routing stability. The method divides traffic flows into
short-lived and long-lived flows and uses a different mapping
discipline for each group: an adaptive one for the long-lived
and a static one for the short-lived flows. It is demonstrated
that for this problem, thanks to the particular length distribu-
tion of network flows, such a hybrid approach is better than
each method alone, as it achieves a better balance and saves
on signalling overhead. The study of flow length distribution
in [SRS99] has been inspirational for some of the experiments
presented in Section V.

Other research ([KTZ92], [TZ92]) has concentrated on
exploring the possibilities of parallel implementations of the
TCP/IP packet processing within routers. In these studies,
functional decomposition of individual packet-processing tasks
has been determined and various possible forms of parallelism
have been categorized: spatial parallelism, pipelining or con-
current operation.

According to this classification, the specific kind of paral-
lelism employed in the load-sharing algorithm presented here
would best be characterized as spatial parallelism, i.e., packets
are scheduled to multiple processors, all of which are capable
of carrying out the same tasks (although they do not neces-
sarily possess homogeneous processing capacity). A mapping
is established between flows and processors. It is based on
the CARP HRW [Ros97] mapping, extended by anadaptive

control loop. As in the Network Dispatcher concept [GH99],
flows are mapped to processors, yet no state information on
particular flows is stored. The HRW mapping is hash-based
and is thus easily computable at high speeds (as opposed
to, for example, a table-based lookup or classification). The
mapping possesses several advantages over other hash-based
load balancing schemes; it allows the hashed objects to be split
into hash buckets of arbitrary size, as determined by predefined
weights. As we prove in this work, a specific method for the
weights’ adaptation can be found, which results in minimal
disruption of the mapping.Optimizationandadaptationof the
mapping is the subject of this work.

The mapping adaptation procedure aims to prevent indi-
vidual processor overload. Due to uneven packet flow pop-
ularities, significant imbalance can occur even in the case of
homogenous processors. Shi et al. [SMG05] have shown that if
flow popularity reflects closely a Zipf-like [Zip49] probability
distributionP (R) ∼ 1/Ra, where frequency of some eventP
is proportional to the function of its rankR, with the exponent
a close to1, static load balancing schemes can result in vast
inefficiency. For distributions witha larger than1 (very likely
in real-world scenarios), the authors prove that static hashing
on flow identifiers cannot balance the workload.

The design is further complicated by the need to minimize
the probability of packet reordering within one flow identified
by common fields of the TCP/IP header. Owing to the nature
of networking transport protocols, it is often illegal—or at
least extremely undesirable—to allow packet reordering within
such packet flow [KLS98]. Network protocols are designed
based on the assumption of in-order delivery service of the
network. Although the widely used TCP protocol attempts to
tackle this problem by correct reordering at the destination,
reordering slows data delivery, increases receiver buffer size
and still may not prevent undesirable retransmissions and
subsequent network congestion. Realtime applications, e.g.,
VoIP, may need to implement buffering to accommodate out-
of-order packets. Stateful applications such as flow policing,
TCP offload or intrusion detection may also perform sub-
optimally on reordered traffic. The adverse effects of par-
allelism in Internet components, causing packet reordering
under normal operation, have been observed as widespread and
leading to poor TCP performance [BPS99]. This phenomenon
is persistently observed in more contemporary measurement
studies [PBB05], ultimately prompting the Internet Engi-
neering Task Force (IETF) into attempts to standardize its
measurement format [Jay06], [MCR+06].

If packets from the same flow are to be processed by differ-
ent processors, packet reordering can easily occur. Therefore,
packets belonging to a particular flow should be processed
by the same processor. As it is not possible to monitor all
traffic characteristics in a router, including per-flow state,
nor to solve theNP-complete mapping problem at run-
time, a fully optimal mapping is not achievable. However, we
show that the heuristic presented here, which uses aggregate
traffic monitoring as feedback, closely approaches an optimal
solution.
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C. Outline

The paper is organized as follows: in Section II, we describe
the environment and the related assumptions. In Section III,
we present the scheme for load sharing among network
processors, and in Section IV we lay the theoretical basis for
the dynamic adaptation of the scheme by proving the minimal
disruption property of our adjustments and then describe the
adaptation in detail. In Section V, we present results of our
simulations and discuss optimality issues. Section VI deals
with aspects of practical implementation of the load-sharing
scheme within a router. Finally, in Section VII, we present
some concluding remarks.

II. N OTATION AND ASSUMPTIONS

We consider a router model where certain processors are
dedicated to the data plane and certain ones to the control
plane. We use the termNetwork Processing Unit (NPU)to
denote the device that performs the packet-processing tasks
(such as address lookup, classification, filtering, etc.), i.e. the
processor dedicated to the data path within a router. In contrast,
we denote asControl Point (CP)a typically general purpose
processor that performs the router control functions such as
shortest path computation, topology information dissemina-
tion or traffic engineering. Our work concentrates on issues
primarily related to the data path within a router.

The router consists ofn input-output line cards,m NPUs
and at least one CP. With respect to NPUs we consider a
heterogeneous router model, where each processor may have
different processing power. Thus,µj denotes the processing
power of NPU j, that is, the maximum number of packet-
processing units an NPUj is able to carry out per time unit
∆t. We denoteµ the total system processing power, that is,
µ =

∑m
1 µj .

We denoteλj(t) as the actual packet-processing load of
NPU j, that is, the amount of packet processing carried out at
NPU j during the interval(t−∆t, t ]. We denoteλ(t) as the
total processing load of the system within the time interval,
that is, λ(t) =

∑m
1 λj(t). We defineρj(t) as the workload

intensity of each NPU, that is,ρj(t) = λj(t)/µj , andρ(t) the
total system workload intensity,ρ(t) = λ(t)/µ.

We denoteγi(t) as the amount of packets that arrive at line
card i in time interval (t − ∆t, t ]. The maximum transport
capacity of each link iŝγ, thus,∀i, γ̂ ≥ γi(t).

We define the packet information vector ~w =
(w1, w2, . . . , wkw ) as the set of kw packet fields that
are examined, processed or altered within a router and that
carry the information based on which the subsequent next-hop
and the treatment required for the packet within a router
are determined (i.e., for example, the destination address,
the source port, TTL, URL, label, etc.). We denoteW as
the packet information vector space, i.e. the vector space
consisting of all possible values of packet information vector
~w ∈ W .

A packet containing an information vector~w consumes
l(~w) processing units at an NPU. We define asarrival vector
~a(t) = (a~w1(t), . . . , a~w|W |(t)) a vector of size|W |, where
the elementa~w(t) denotes the number of packets containing

the information vector~w that arrived at a router during a
time interval (t − ∆t, t ]. Thus

∑n
1 γi(t) =

∑
~w a~w(t) and

λ(t) =
∑

~w a~w(t) l(~w).
We denote as flowidentifier vector~v = (v1, v2, . . . , vkv

)
a set of predefined packet fields that do not change within a
particular flow. Eachvi represents a piece of data within the
packet and the integerkv, kv ≥ 1, represents the number of
fields contained in vector~v. Typically, but not necessarily,~v is
composed of some fields contained within the packet header.
For our purposes, any predefined set of fields (or just one
of them) that remains constant within a flow can serve as
the identifier vector. In this work we assume that~v ⊆ ~w.
We denoteV as the vector space corresponding to all the
possible values of the identifier vector~v (once the format of
the identifier vector has been established).

A typical example of an identifier vector is the traditional
flow ID, which consists of a 5-tuple of protocol number
(prot), source and destination ports (SP, DP) and source and
destination addresses (SA, DA), that is, in such a case,kv = 5
and~v = (prot, SP, SA, DP, DA). Alternatively, one could use
the destination address as a unique parameter, thus~v = (v1) =
(DA). In the first case,V would represent a set of all possible
flow IDs, whereas in the second case,V would be equal to
the protocol address space.

Let us define asidentifier persistence vector~∆(t) =
(∆~v1(t), . . . , ∆~v|V |(t)), ∆~v(t) ∈ {0, 1} a vector that monitors
the persistence of a certain flow (determined by an identifier
vector) within a time interval(t − 2∆t, t ]. We consider a
flow persistent if in each of the two consecutive time intervals
(t−2∆t, t−∆t ] and(t−∆t, t ] a packet belonging to the flow
arrives. We assume that only persistent flows are vulnerable
to reordering, which can occur when consecutive packets
belonging to a persistent flow are processed by different
processors.

We define time interval∆T to be the maximum time a
single packet spends in the system. If no packet of a flow
arrives during the time interval(t − ∆T, t ], we assume that
processing a subsequent packet from the flow at any processor
does not lead to reordering.

In our scenario, we assume that any processorj ∈
{1, . . . ,m} is able to process any packet.

III. L OAD SHARING FOR NETWORK PROCESSORS

A. Requirements

With the above router model in place, our objectives pre-
sented in Section I-A can be reformulated as follows: given a
router containing a set ofm network processors of processing
powersµj and given a maximum line card speedγ̂, maximize
the number of interfacesn that such a router can support with
a performance constraintP (packet loss) < εp, whereεp is a
given constant.

Definition 1 provides a useful reference point for achieving
the objective.

Def. 1: Let us define asacceptable load sharinga scheme
distributing the interfaces’ load among the network processors
with the following properties:
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• if λ(t) ≤ µ, then∀j, λj(t) ≤ µj , i.e., if the systemis
not overloaded, thennoneof the individual processors is
overloaded,

• if λ(t) > µ, then ∀j, λj(t) > µj , i.e., if the system
is overloaded, thenall of the individual processors are
overloaded.

Generally, P (packet loss) =
∑m

j=1 P (λj(t) > µj). In
the case of acceptable load sharing, a single processor is
overloaded if and only if the entire system is overloaded,
thus P ′ (packet loss) = P (λ(t) > µ) = P (

∑m
j=1 λj(t) >∑m

j=1 µ). Clearly, P ′ (packet loss) ≤ P (packet loss) and
P ′(packet loss) is the minimal achievable packet loss proba-
bility. Thus, as acceptable load sharing minimizes the packet
loss probability for a given total system load, it enables the
total system load to be increased to the uppermost limit
possible within the above packet loss probability constraint.
Thus the number of supportable interfaces is maximized.

In addition to performance guarantees, a load-sharing sys-
tem among parallel NPUs should possess the following prop-
erties:

Flow order preservation—packet reordering could occur if
packets belonging to the same flow were processed by different
NPUs. Thus, the assignment of packets to processors should
either be fully deterministic with respect to flows, or should
attempt to minimize the probability of packets belonging to
the same flow being treated by different processors.

Absence of state information—keeping state information
upon assigning of concurrent flows is extremely costly in terms
of memory and processing overhead. Therefore, it is highly
desirable that the assignment of flows to processors can be
carried out without the state information being stored.

Support of heterogeneous processors—the system must be
able to support heterogeneous architectures, that is, where
there are processors with various processing capacities present
or where preference should be given to some processors as to
the amount of requests processed.

Fault tolerance—the system must be able to adjust to a
processor failure quickly and gracefully, i.e. without a great
disruption.

B. Packet-to-NPU Mapping

The basis of our load-sharing scheme is that the load of each
input (ingress traffic arriving at a line card) is distributed for
processing among the NPUs using adeterministicmappingf
(see Figure 1). The mappingf is computed over theidentifier
vector~v. The computationf(~v) = j determines the particular
NPU j to which the packet is mapped for processing. The
function f(~v), f : V → {1, 2, . . . , m}, splits the vector space
V into m exclusive subspacesVj . Packets from a particular
subspace are all mapped to the same processor.

Upon arrival of a packet at an input, the packet is parsed
to extract the fields relevant for packet processing, i.e., the
identifier vector~v and the packet information vector~w. The
packet is buffered, the mappingf(~v) is computed and the
packet information vector~w is then sent to NPUj, f(~v) = j
for resolution.

At NPU j, the packet information vector~w is processed
and the resolution information about the treatment required

Fig. 1. Load-sharing scheme abstraction.Upon arrival, a packet is parsed
to extract the relevant fields, the identifier vector~v and the packet information
vector ~w. Then, the packet is buffered, the mappingf(~v) is computed and the
packet information vector~w is sent for resolution to NPUj, f(~v) = j. At
NPU j, the vector~w is processed and the resolution information is returned to
the requesting unit. The packet is then switched to the correct output port and
the corresponding packet alterations or manipulations, based on the resolution
results, are applied.

for the packet (next hop, outgoing switch port, QoS applied)
is returned to the requesting unit. Then, the packet is switched
to the correct outgoing port and the corresponding packet
alterations or manipulations, based on the resolution results,
are applied (this may mean, for example, applying certain
QoS, attaching an MPLS label or splicing with another TCP
connection).

The mappingf we propose for such a purpose is based on
the robust hash mapping scheme (alternatively called highest
random weight (HRW) mapping) presented in [TR98] and
extended in [Ros97].

Def. 2: Packet-to-NPU (HRW) Mapping f : Let g(~v, j)
be a pseudo-random functiong : V × {1, 2, . . . , m} → (0, 1),
i.e., we assumeg(~v, j) to be a random variable in(0, 1) with
uniform distribution. Let a packet arrive at an inputi, carrying
an identifier vector~v ∈ V . The mappingf(~v) is then computed
as follows:

f(~v) = j (1)

⇔
xj g(~v, j) = max

k∈{1,...,m}
xk g(~v, k), (2)

wherexj ∈ R+ is a weight multiplier assigned to each NPU.
The weights~x = (x1, . . . , xm), as described in [Ros97],

have a 1-to-1 correspondence with the partitioning vector~p =
(p1, . . . , pm), which determines the fraction of request object
space (the identifier vector spaceV , in our case) assigned for
processing to each NPU, i.e.,pj = |Vj |/|V |.

The HRW mapping possesses the following properties,
which are particularly useful for the purpose of flow-to-
processor mapping [Ros97], [TR98]:

Load balancing—the robust hash mapping provides load
balancing over the request object space, even for the hetero-
geneous case. This is extremely useful for the ability to support
processors of heterogeneous processing capacities because the
mapping weights allow the fraction of load mapped to a
particular processor to be controlled. However, this mechanism
is useful just as well in systems with homogenous processors,
as it allows to address imbalance due to uneven packet flow
popularities.
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Minimal disruption—it has been shown in [TR98] that in
the case of a processor failure, removal or addition, the number
of request objects that are remapped to another destination is
minimal. This property is useful for providingfault tolerance
(if a particular processor fails, only flows mapped to that
processor are affected).

However, we observe that the minimal disruption property is
not limited to these special cases. In Section IV we show that
by a similar line of proof as in [TR98], the minimal disruption
property holds as well forcertain special kinds of adjustments
of the mapping weights. We exploit that fact when carrying
out the mapping adaptation in order tominimize the amount
of flow remappingscaused by the adaptation.

For load-sharing purposes in general, there is no need for the
mappingf to be identical at all line cards. In fact, a different
mapping can be used at each line card. For example, at line
card i, a mappingfi(~v) could be computed using functiongi

of the formgi(~v, j) = g(~v, i + j). However, our scheme does
require that the weights vector~x be identical at each card.

IV. A DAPTATION THROUGH FEEDBACK

A. Problem Statement

Load sharing among multiple processors can become very
inefficient if insufficient attention is paid to keeping the
individual processor load under control. The goal of the
adaptation is to prevent undesirable effects, i.e. primarily
processor overload and consequent packet loss. It may not
be obvious how such effects can occur when, as claimed,
the HRW mapping provides load balancing. However, it is
important to note that it provides load balancing over the
request object space, i.e., in our case, the identifier vector
spaceV . In contrast, the loads due to the actual traffic received
at the router input ports may by no means be distributed
uniformly over this request object space, but rather will exhibit
certain locality patterns. This means that in spite of the load-
balancing property, mappingf can potentially lead to grossly
imbalanced load distributions. For such cases, the mapping
must be adjusted to account for non-uniform load distribution
in the received traffic. As thus the mappingf now changes
with time, we definef(t)(~v) : V → {1, 2, . . . , m} as the
instance off at time t.

The objective of the control loop is to prevent overutilization
of a single processor when the system is under-utilized or, vice
versa, to prevent under-utilization of a single processor when
the system is over-utilized. At the same time, we aim to mini-
mize the amount of packet-to-NPU remappings. Assuming that
the mappingf is being adjusted periodically in time intervals
∆t, the objective for the adjustment at timet − ∆t can be
formulated as the following optimization problem:

Def. 3: NPU load-sharing optimization problem:

max
∑

~v∈V

∆~v(t)
∑

j∈M

1{f(t−∆t)(~v) = j}∗1{f(t)(~v) = j}, (3)

Fig. 2. Load sharing with feedback. Periodically, the CP gath-
ers information about the workload intensity of the NPUs~ρ(t) =
(ρ1(t), ρ2(t), ..., ρm(t)). If the adaptation is triggered, the CP adjusts the
multiplicative weights vector~x and the new vector is then downloaded to the
NPUs.

with constraints:

if ρ(t) ≤ 1 ⇒ λj(t) ≤ µj , ∀j, (4)

if ρ(t) > 1 ⇒ λj(t) ≥ µj , ∀j, (5)

where

λj(t) =
∑

~v∈V

1{f(t)(~v) = j}
∑

~w⊇~v

a~w(t) l(~w). (6)

Note that this problem statement is only useful for defining
the objective of our method, but not for computing the actual
solutionf(t). In order to be able to carry out the optimization
described in Def. 3, one would have to know already at time
t − ∆t both ∆~v(t), which would require one to maintain a
huge amount of state information, as well asa~w(t), which
can only be predicted speculatively. Furthermore, even if
such knowledge were available, one would still have to solve
an NP-complete problem, as Def. 3 is an integer linear
programming optimization. Thus, heuristics, such as the one
presented below, are typically used, yet the above definition
remains useful for setting the objective and evaluating the
quality of the solution ex-post.

Note that in order to apply the formula for minimizing the
packet-to-NPU remappings to the minimization of the number
of packets reordered, the adaptation interval∆t must satisfy
∆t ≥ ∆T . Then, during the interval a flow is vulnerable to
reordering,∆T , a packet flow can be remapped at most once
and thus minimizing the number of remappings also minimizes
the number of reorderings.

B. Adaptation Algorithm

The adaptation scheme works in the following general way
(see Figure 2): periodically, the CP gathers information about
the workload intensity of the NPUs. If an adaptation threshold
is exceeded, the CP adjusts the weights of the mappingf . The
new multiplicative weights vector~x is then downloaded to the
NPUs. Let~x(t) be the instance of weights’ vector~x used to
computef(t) at time t.

In order to evaluate the status of individual processors,
we need a processor workload intensity indicator. For that
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purpose, we introduce a smoothed, low-passfiltered processor
workload intensitymeasurēρj(t) of the form

ρ̄j(t) =
1
r

ρj(t) +
r − 1

r
ρ̄j(t−∆t), (7)

where r is an integer constant. A similar filtered measure
for total system workload intensity is introduced asρ̄(t) =
1
r ρ(t) + r−1

r ρ̄(t − ∆t). The filtering is done to reduce
the influence of short-term load fluctuations and to obtain
information about thetrend in processor workload intensity.

The adaptation algorithm consists of two parts (see Figure
3): the triggering policy, which specifies the conditions to
act, and theadaptation policy, which specifies how to act.
A trigger is periodically evaluated and, based on the result,
specific action is taken.

1) Triggering Policy: We introduce a dynamicworkload
intensity thresholdε′ρ(t) defined as

ε′ρ(t) = ρ̄ (t) +
1
2

(1− ρ̄ (t)) (8)

=
1
2

(1 + ρ̄ (t)). (9)

Thus the dynamic workload intensity threshold is positioned
midway between the current filtered total system workload
intensity ρ̄(t) and workload intensity of 1. The closer the
total system workload intensity approaches 1, the higher the
likelihood of violating the acceptable load-sharing bounds and
therefore the tighter the threshold follows the total system
workload intensity.

During time intervals when the total system workload
intensity ρ̄(t) remains in the vicinity of 1, the value of the
workload intensity threshold may be too close tōρ(t) to
provide a meaningful threshold for adaptation. To prevent such
cases, we introduce a form ofhysteresisinto the threshold
computation by defining a fixed threshold in the close vicinity
of 1.

Let εh > 0 be a fixed hysteresis bound, which prevents
adaptation within the interval

(
(1 − εh) ρ̄(t), (1 + εh) ρ̄(t)

)
.

The εh is typically set to a value close to 0, for example
0.01, thus preventing adaptation when the load stays within
1 percent of the total system workload intensity. Note that
the hysteresis may result in allowing an NPU to be slightly
overloaded within the hysteresis bound limit.

A dynamic triggering thresholdερ(t), which combines the
workload intensity thresholdε′ρ(t) with the hysteresis bound, is
thus set to determine the amount of over- (or under-)utilization
allowed at one processor:

Def. 4: Triggering Threshold ερ(t): Let the dynamic
workload intensity thresholdε′ρ(t) and the hysteresis bound
εh be defined as above. Then the triggering threshold is
defined (according to whether the system in total is over- or
underutilized) as follows:

ερ(t) = max
(
ε′ρ(t), (1 + εh) ρ̄(t)

)
, ρ̄(t) ≤ 1, (10)

ερ(t) = min
(
ε′ρ(t), (1− εh) ρ̄(t)

)
, ρ̄(t) > 1. (11)

The result of the comparison of the filtered workload inten-
sity to the threshold then acts as a trigger for the adaptation

Fig. 3. A scheme of the adaptation algorithm. Periodically, the filtered
workload intensity~ρ(t) is evaluated against the trigger, and the weights’ vector
~x is adjusted and uploaded if the evaluation is positive.

to start. An appropriate trigger is again chosen according to
whether the system as a whole is over- or underutilized:

ρ̄(t) ≤ 1 ⇒ if (ερ(t) < max
j

ρ̄j(t)) thenadapt

ρ̄(t) > 1 ⇒ if (ερ(t) > min
j

ρ̄j(t)) thenadapt.

2) Adaptation policy:We propose a simple scheme for the
periodic adaptation that operates directly on the weights’ vec-
tor. A subset of elements of~x is multiplied by an adjustment
factor α. Propositions 1 and 2 provide the theoretical basis:

Proposition 1: Let α ∈ R+, α 6= 1. Let A, B be two
nonempty, mutually exclusive subsets ofM = {1, . . . , m},
M = A∪B. Let f , f ′ be two HRW mappings using identical
pseudo-random functiong(~v, j), but having different weight
vectors~x = (x1, . . . , xm) and~x ′ = (x′1, . . . , x

′
m) as follows:

x′j = α xj , j ∈ A, (12)

x′j = xj , j ∈ B. (13)

Let pj and p′j , denote the fraction of request object space
mapped to nodej using the HRW mapping with weights~x
and~x ′, respectively. Then, ifα < 1,

p′j ≤ pj , j ∈ A (14)

p′j ≥ pj , j ∈ B. (15)

and, conversely, ifα > 1,

p′j ≥ pj , j ∈ A (16)

p′j ≤ pj , j ∈ B. (17)

Proof: We first prove the inequality (14) by contradiction.
Assume that∃j0 ∈ A such thatp′j0

> pj0 . It means that there
exists at least one identifier vector~v0, for which f ′(~v0) = j0,
yet f(~v0) 6= j0.

As f ′(~v0) = j0, we have x′j g(~v0, j0) =
maxk∈M x′k g(~v0, k). But then:

xj0g(~v0, j0) =
1
α

x′j0
g(~v0, j0)

≥ 1
α

x′kg(~v0, k)

= xkg(~v0, k), ∀k ∈ A;

xj0g(~v0, j0) =
1
α

x′j0
g(~v0, j0)
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≥ 1
α

x′kg(~v0, k)

=
1
α

xkg(~v0, k)

≥ xkg(~v0, k), ∀k ∈ B.

Therefore, xj0g(~v0, j0) = maxk∈M xkg(~v0, k) and thus
f(~v0) = j0, which contradicts our assumption.

Inequality (15) can be proved in a symmetrical way, as well
as the case ofα > 1. 2

Equality in inequalities (14)-(17) is an extreme case, which
can only take place ifα is so close to 1 that the weights
~x change so little that the change does not affect any single
identifier vector.

Note that, given the complex relationship between vectors
~x and ~p (see [Ros97]), it is hard to make further general
statements about the effects of making direct adjustments of
~x.

Proposition 2 (Minimal disruption):Let α ∈ R+. Let A, B
be two nonempty, mutually exclusive subsets ofM =
{1, . . . ,m}, M = A ∪ B. Let f , f ′ be two HRW map-
pings using the identical pseudo-random functiong(~v, j),
but differing in the weight vectors~x = (x1, . . . , xm) and
~x ′ = (x′1, . . . , x

′
m) as follows:

x′j = α xj , j ∈ A, (18)

x′j = xj , j ∈ B. (19)

Again, a subset of elements of~x is multiplied by an adjustment
factor α. Let pj and p′j denote the fraction of request object
space mapped to nodej using the HRW mapping with weights
~x and ~x ′, respectively. Then, the fraction of request object
space mapped to two different nodes by the two mappings is
equal to1

2

∑
j |pj−p′j |. In other words, the amount of request

objects mapped by the two mappings to different destinations
is minimal.

Proof: The case ofα = 1 is trivial. Let α < 1. We prove
that for each nodej, exactly|pj−p′j | |V | objects have changed
the mapping. The proof is divided into two parts:

1) j ∈ A: from Proposition 1 we know thatp′j ≤ pj . Let us
show that all objects mapped toj by f ′ are also mapped
to j by f by contradiction: assume that there exists at
least one identifier vector~v0, for which f ′(~v0) = j,
yet f(~v0) 6= j. But, if f ′(~v0) = j, this means that
x′j g(~v0, j) = maxk x′k g(~v0, k) and therefore

xjg(~v0, j) =
1
α

x′jg(~v0, j) (20)

≥ 1
α

x′kg(~v0, k) (21)

≥ xkg(~v0, k), ∀k ∈ M. (22)

Thus, xj g(~v0, j) = maxk xk g(~v0, k) and f(~v0) = j,
which contradicts our assumption. As all objects mapped
to j by f ′ are also mapped toj by f , the amount of
request objects in which the two mappings differ at node
j is equal to the fraction|pj−p′j | of request object space.

2) j ∈ B: from Proposition 1 we know thatp′j ≥ pj . Let us
show that all objects mapped toj by f are also mapped
to j by f ′ by contradiction: assume that there exists

at least one identifier vector~v0, for which f(~v0) = j,
yet f ′(~v0) 6= j. But, if f(~v0) = j, this means that
xj g(~v0, j) = maxk xk g(~v0, k) and therefore

x′jg(~v0, j) = α xjg(~v0, j) (23)

≥ α xkg(~v0, k) (24)

≥ x′kg(~v0, k), ∀k ∈ M. (25)

Thus x′j g(~v0, j) = maxk x′k g(~v0, k) and f ′(~v0) = j,
which contradicts our assumption. As all objects mapped
to j by f are also mapped toj by f ′, the amount of
request objects in which the two mappings differ at node
j is equal to the fraction|pj−p′j | of request object space.

Thus, the two mappings differ by|pj − p′j | |V | vectors at
each node. By summing up over all nodes and dividing by
2 to account for redundancies, the two mappings differ by
1
2

∑
j |pj − p′j | in total.

The proof forα > 1 is symmetrical. 2

It is important to note that the minimal disruption property
would not generally hold for the adaptation if the weights’
adjustment was not carried out by asingle constant multiplier,
as then the inequalities (21) and (24) would not necessarily
hold for all k ∈ M . As the minimal disruption property is
crucial for minimizing the amount of remappings, Propositions
1 and 2 serve as a background for designing the adaptation of
vector~x to be carried out by a single, constant multiplier:

Def. 5: Weights-Vector ~x Adaptation: Let ρ̄(t) ≤ 1.
Assuming that the trigger condition(ερ(t) < maxj ρ̄j(t)) is
satisfied, let

c(t) =

(
ερ(t)

min {ρ̄j(t) | ρ̄j(t) > ερ(t)}
)1/m

. (26)

Then

xj(t) := c(t) xj(t−∆t), ρ̄j(t) > ερ(t), (27)

xj(t) := xj(t−∆t), ρ̄j(t) ≤ ερ(t). (28)

Conversely, the adaptation for the case ofρ̄(t) > 1 is
performed in a symmetrical manner.

Thus, in the case that the system is underutilized, the
presented adaptationlowers the weights for the exceedingly
(with respect to a threshold)overutilized processors, whereas
weights for others remain unchanged. Conversely, if the sys-
tem in total is overutilized, the adaptationraises the weights
for the exceedingly(with respect to a threshold)underutilized
processors. The lowering or raising of weights is carried out
proportionally, either to the minimal workload intensitȳρj(t),
which exceeds the thresholdερ(t), or to the maximal workload
intensity ρ̄j(t) which remains below the thresholdερ(t).

The factor1/m in the exponent ofc(t) represents the effects
of the number of processors present—less aggressive adjust-
ment is needed if there are more processors. Alternatively,
the exponent of the form of1/ log2(m) can be used, making
the root computation less complex. The effects of using either
exponent are evaluated in Sections V-E and V-F.

V. NUMERICAL RESULTS

We have used the MATLAB v.6 environment on an IBM
PC Pentium III with Microsoft Windows 2000 machine to
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Fig. 4. Flow length cumulative distribution.

simulate a model of a router with multiple NPUs and line
cards.

A. Simulations Input

For router input, we have used generated traffic. The param-
eters for generating the per-interface traffic were approximated
from OC-3 traces statistics compiled in [Aix00], [Nla97] and
[TMW97] and approximated to OC-192 speed by shortening
the time intervals proportionally, i.e., 1 second of the mon-
itored OC-3 traffic corresponds to 15 ms in our OC-192-
like traces. Note that this transformation is a simplification of
reality, since the scaled traces would differ not only along the
time dimension, but the per-flow data volume, the multiplexing
effects and the packet interarrival times would have to be taken
into account as well.

The following parameters characterize the traffic:
• Number of packets arrived per time interval—a discrete

time homogeneous Markov chain, attaining values in
the interval of [3000, 22000] with uniform transition
probability to states within a neighboring interval, the
step of change limited within [−4000, 4000] packets of
difference at each iteration every 15 ms.

• Number of flows existent in a time interval—a stochastic
recurrence, with state space attaining values in the inter-
val of [8000, 240000], with uniform transition probability
to states within a neighboring interval. The step of change
in the amount of flows at each iteration every 15 ms
ranges between a positive and negative value of the
maximum amount of packets per iteration divided by the
mean number of packets per flows finished in the previous
iteration. The direction of change (increase or decrease)
in the number of flows is correlated with the direction of
change in the number of packets (number of flows grows
when number of packets grows and vice versa), as shown
in [TMW97] to hold.

• Flow length—the amount of packets in a flow. We have
used a measured flow length distribution as documented
in [SRS99]. The distribution is shown in Fig. 4. As the
measured distribution covers only a finite part of the
spectrum (up to a flow length equal to 1886 packets), we
have used a Pareto distribution to approximate the heavy
tail of the distribution. Other publications on the topic of

flow length distribution [TMW97] [ZBPS02] [CTB98],
as well as the analysis of [Aix00] exhibit similar patterns
and thus we believe it to be a good approximation.

• Maximum per-flow fraction of interface rateεf —the
maximum fraction of the total rate of an interface (in
packets per second) a single flow is allowed to occupy.
If εf = 1/2, a single flow may occupy up to 50% of the
interface transport capacity. Note that the study [ZBPS02]
suggests that such limits on the maximum per-flow rate
are in agreement with reality.

• Identifier vector values—for the distribution of identifier
vector values, we have approximated a typical distribution
of IP source and destination addresses in networking
traffic as described in [Nla97]. The prevalence of class C
addresses, which occupy a relatively small portion of the
address space (12.5%) and yet account for approximately
65% of the packets in network traffic, led us to consider
a normal distribution of identifier vectors within a 32-bit
integer space, with parameters fitted to those measured
in [Nla97]. Thus, the identifier vectors of flows are
generated with a truncated normal distributionN (0, 1)
out of the 32-bit integer space.

• Load per packet—we have used a simplified representa-
tion of the packet load in number of processing units
it takes to process a packet. We have defined three
possible levels of the per-packet loadl ∈ {1, 2, 3}. The
rationale for such a definition is an analogy with the most
common router function—the address lookup—where the
forwarding table is often organized into a tree structure
and a lookup requires a variable number of memory
accesses, depending on the tree depth per particular prefix
[DBCP97] [NK98]. Often, the trees are organized in
three levels, and thus an address lookup may require 1-3
memory accesses. In our simulations, the distribution of
the per-packet load over the identifier vectors is uniform.
That is certainly a simplification of reality, as obtaining
realistic values would require matching traffic traces to a
corresponding lookup table, a task not within our means.

B. System Model Parameters

The iterations of the traffic generation process as well as the
evaluations of the adaptation trigger are carried out at a time
interval ∆t of 15 ms. Such intervals should be comfortably
large to be greater than any hypothetical∆T (maximum time
a packet can spend in the system), which is typically defined in
terms of nanoseconds. The unit of load at each NPU is equal
to 1 memory access. Unless stated otherwise, we assume a
homogeneous router model, where all the NPUs have equal
processing capacity, corresponding to a full load of a single
router interface, which amounts to 22000 packet per 15 ms.
This leads toµj = 44000 processing units (memory accesses)
per 15 ms. The NPUs are considered buffer-less devices that
cannot process more traffic within an interval than the limit
of maximum number of processing units per time interval.
Traffic exceeding this limit per time interval is assumed to be
dropped.

Unless stated otherwise, the low-pass filter constantr is set
to r = 3 and the hysteresis bound toεh = 0.1. The number of
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links n and processorsm in the simulations have been chosen
such that the total system workload intensity remains close to
1, so that it makes sense to investigate the performance with
respect to the acceptable load-sharing bounds.

In the subsequent simulations, three alternatives of a router
system model are compared frequently to demonstrate the
functionality and advantages of the adaptive load-sharing
method; (1) a naive system whereno load sharingis deployed
over the processors and thus the entire load of any single
interface is mapped to a particular processor; (2) astatic
load-sharing system, which uses the HRW packet-to-NPU
mappingf to map packets to processors, yet with mapping
weights remaining static, as configured initially according
to the capacities of the individual processors; and, (3), the
adaptivesystem, with the dynamically adapted weights of the
packet-to-NPU mappingf(t).

C. Adaptive Load Sharing

Figures 5–7 illustrate via a simulation how the adaptive load
sharing method works in general. A load ofn = 13 links is
processed by a router equipped withm = 8 processors. The
cases where no load sharing is deployed, where load sharing
is deployed using the static mapping and where load sharing
is deployed using the adaptive mapping are compared. All the
alternatives are put in perspective by comparison with the ideal
solution.

Figure 5 compares the per-processor workload intensity for
each method. Clearly, individual processor workload intensity
remains within close vicinity of the ideal workload intensity
when adaptive load sharing is deployed.

Figure 6 compares the number of packets dropped under the
three scenarios. Again, the adaptive case results closely follow
the total system curve, which represents the global minimum.
In Fig. 7, the number of per-iteration flow remappings for
the adaptive load-sharing method is examined. Note that the
number of flows remapped per iteration is several orders of
magnitude smaller than the number of flows appearing per
iteration.

Relevant results of a multitude of such experiments are
summarized in Tables I and II.

D. Influence of Maximum Per-Flow Rateεf

Simulations show that the fractionεf a single flow is
allowed to consume from the rate of a single interface, and,

TABLE I
ACCEPTABLELOAD SHARING.

Packets dropped % of All

Acceptable load sharing (ideal) 0.7548
Adaptive load sharing 1.3256
Static load sharing 2.2590

Packets dropped in excess of ideal

Adaptive load sharing 0.5708
Static load sharing 1.5042

Improvement of adaptive over static %

1 - (adaptive / static) 60.4591
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Fig. 7. Flows remapped.Load of n = 13 links is processed by a router
equipped withm = 8 processors, with the adaptive load sharing method being
executed. Shown on a on logarithmic scale are the statistics of the number of
flow remappings that occurs within an iteration. The upper line shows the total
number of flows appearing within an iteration, the middle line the number of
persistent flows (flows that had appeared in the previous iteration as well) and
the lowest one the amount of persistent flows remapped within an iteration.
Clearly, there is at least one order of magnitude difference between each of
the flow statistics, showing that only a small fraction of flows is vulnerable to
remapping and out of these, only a very small fraction is eventually remapped.

consecutively and more importantly, from the capacity of a
single NPU, is a key parameter. It determines the effectiveness
of the adaptive method. The lower the limit on a single flow’s
rate, the better the method performs, as shown in Fig. 8, where
the same system model is subject to traffic with a varying
maximum flow rate factor: Cases of the maximum flow rate
being limited to 10%, 25%, 50% of the link capacity and
the case where a single flow can occupy the whole link (or
NPU) are compared. Clearly, the lower the limit, the better the
adaptive method performs.

E. Fractional Factorial Analysis of the Load-Sharing Method

To test the influence of various tunable parameters (factors)
on the adaptive method’s performance, we have employed the
technique known as fractional factorial analysis [Jai91]. Upon
alternating the values of each factor, one can measure the
influence of each factor on the variance of the results.

Each factor has been alternated between two values
(levels)—high (Hi) and low (Lo). The following factors and
levels have been explored:

• Adaptation coefficient exponent.The levels used were
Lo = 1/ log2(m) andHi = 1/m;

TABLE II
FLOW REMAPPINGS.

All Persistent Remapped

Mean over simulations
% of all 100.00 19.23 0.02
% of persistent - 100.00 0.11
Per iteration
Max, # of flows 77,076 15,304 204
Max, % of all 100.00 21.19 0.43
Max, % of pers. - 100.00 2.22
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(a) No load sharing.
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(b) Static load sharing.
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(c) Adaptive load sharing.
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Fig. 5. Per-processor workload intensity.A load of n = 13 links is processed by a router equipped withm = 8 processors. If no load sharing is deployed,
the entire load of each link is assigned to a particular processor. This is compared to a case where load sharing is deployed using a static, non-adaptive
mappingf and to load sharing with the dynamically adapted mappingf(t). Individual processor workload intensity when (a) no load sharing, (b) the static
load-sharing, and (c) the adaptive method is deployed. (d) Summary to results: maximum and minimum per-processor workload intensity per each scheme. In
all figures, the total system workload intensityρ(t), which is the same in all three cases, is shown for comparison, as it represents an ideal reference value.
Clearly, individual processor workload intensity remains within the closest vicinity of the ideal workload intensity when adaptive load sharing is deployed.

0 50 100 150 200
0

2

4

6

8

10

x 10
4

 Pa
ck

ets
 dr

op
pe

d

 Time

System in total
No LS
Static LS
Adaptive LS

(a) Packets dropped in total.
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(b) Packets dropped in excess.

Fig. 6. Packets dropped.A load of n = 13 links is processed by a router equipped withm = 8 processors. The graphs depict the numbers of dropped
packets when not using a load sharing scheme, when using a static load sharing method and when using an adaptive method. (a) Number of packets dropped
by the system using each of the schemes, compared to the ideal value of the minimal number of packets the system would have to drop, should the individual
processors be ideally saturated. (b) Comparison of static and adaptive methods in terms of the number of packets dropped in excess of the ideal minimal
value. Clearly, the adaptive method significantly outperforms the static one and avoids a large number of unnecessary packet drops, in particular during periods
when the ideal solution likewise leads to no packet drops.
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Fig. 8. Influence of maximum per-flow fraction rate limit εf . The key
response variables—number of packets dropped in excess, the fraction of flows
remapped out of all flows seen per iteration and out of all flows persistent
per iteration—are shown for four different settings of the maximum per-flow
rateεf : 10%, 25%, 50% and 100% of the line rate, or of a single processor’s
capacity. All the observed response variables grow with the increasingεf ,
which thus has a negative impact on the method’s performance.

• NPU processing capacity distribution.For level Lo, all
the individual capacities were equal, whereas levelHi
implied an exponential distribution of capacities, with
relative capacities in{1, 2, 4, 8};

• Adaptation interval.The levels used wereLo = 1, mean-
ing the adaptation would be carried out at every iteration,
if triggered, andHi = 10, meaning the adaptation would
only be carried out every 10th iteration;

• Hysteresis boundεh. The levels used wereLo = 0.01
andHi = 0.1;

• Filtering parameterr. The levels used wereLo = 3
(meaning that a significant influence is attributed to the
recently measured value) andHi = 32 (meaning the
recently measured value has less influence).

The results of the experiments are shown in Table III, where
−1 represents theLo level and 1 theHi level. The impact
of each factor on the variance of the key response variables
(the number ofpackets dropped in excessand the number of
flows remapped) is shown in Table IV.

The fractional factorial analysis results show that of the
factors studied, only three have a significant influence on the
results: the adaptation interval, the hysteresis bound and the
filtering parameter.

The most significant factor appears to be, not surprisingly,
the adaptation interval. Clearly, more frequent adaptation
leads to more accurate load sharing and thus less packet loss,
yet more frequent adaptation leads to more flow remappings as
well. The exact duration of the adaptation interval thus needs
to be set according to the desired parameters of the system.

The number of packets dropped is likewise significantly
influenced by thefiltering parameterr. As this factor, in
comparison, has relatively little influence on the number of
flows remapped, it makes sense to choose a value ofr that
leads to fewer packet drops. Clearly, whenr is high, the
system does not take the recent information strongly enough
into account. A lower value, like ther = 3 in the experiment,
can thus be recommended.
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Fig. 9. Influence of the number of NPUs.Graphic representation of results
in Table V. Experiments 1 and 2 are conducted withm = 8 processors and
3-6 with m = 64 processors. In 5 and 6, the maximum per-flow rate fraction
εf is adjusted accordingly and thus these two experiments do not differ too
significantly from the results of 1 and 2. However, clearly, the higher the
number of processors, the more the accuracy of the method is affected.

The second most influential factor on the variance of the
number of flow remappings is thehysteresis boundεh. The
hysteresis bound, on the contrary, has little effect on the
number of packets dropped. It thus clearly makes sense to
set the bound to a larger value, for example theεh = 0.1
used in the experiment, in order to prevent unnecessary flow
remappings.

The relatively insignificant influence of the NPU processing
capacity distribution factor confirms that the HRW mapping
and the weights’ adaptation work equally well with both
uniform and highly nonuniform distributions of processing ca-
pacities. Likewise, the exact value of the adaptation coefficient
exponent does not have much influence. This outcome favors
using thelog2(m) option, as computing the root in Eq. (26)
is then less demanding.

F. Influence of the Number of Processors

In this simulation we evaluate the effects of altering the
total number of processors present in the system,m. We
compare systems where the total processing capacity remains
constant, yet the number of NPUs present and their processing
capacity differs. Here again, the scenarios compared involve
a router withn = 13 interfaces andm = 8 NPUs of uniform
processing capacityµj , plus a system withm = 64 processors,
where each NPU has a processing capacity ofµj/8.

At the same time we compare the effects of altering the
exponent in the adaptation coefficient between the values
of 1/m and 1/ log2(m) to observe which of the two more
accurately reflects the higher number of processors present.
Furthermore, we alter the maximum per-flow fractionεf ,
because the maximal fraction a single flow is allowed to
consume from a single interface’s rate is reflected in the
maximum fraction of processing capacity a single flow may
consume at a single NPU. Thus, in one set of simulations
when m = 64, we decreaseεf according to the ratio of the
decrease of a single NPU’s processing capacity,1/8. Thus,εf

attains a value of eitherεf = 0.1 or εf = 0.0125.
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TABLE III
FRACTIONAL FACTORIAL ANALYSIS RESULTS.

No. Exponent NPU cap. Adaptation int. Hysteresis FilterPackets dropped Flows remapped

1. −1 −1 −1 1 −1 87091 700
2. −1 −1 1 −1 1 223181 422
3. −1 1 −1 1 1 203333 306
4. −1 1 1 −1 −1 164660 438
5. 1 −1 −1 −1 1 177332 858
6. 1 −1 1 1 −1 228731 190
7. 1 1 −1 −1 −1 119675 926
8. 1 1 1 1 1 266604 16
Total / 8 183830 482

TABLE IV
EFFECTS OF FACTORS.

Factor Packets dropped Flows remapped
Estimate % of Variation Estimate % of Variation

Total / 8 183830 482.0
Adaptation exponent 14260 0.066 15.5 0.003
NPU capacity dist. 4742 0.007 -60.5 0.040
Adaptation interval 36968 0.443 -215.5 0.512
Hysteresis boundεh 12164 0.052 -179.0 0.354
Filter parameterr 33787 0.370 -81.5 0.073

TABLE V
INFLUENCE OF THE NUMBER OF PROCESSORS.

No. m Adaptation exponent Maximum flow rate (%) Packets dropped in excess (%)Flows remapped (%)

1 8 1/ log2(m) 10.00 0.343 0.0176
2 8 1/m 10.00 0.447 0.0151
3 64 1/ log2(m) 10.00 4.423 0.1345
4 64 1/m 10.00 6.605 0.0332
5 64 1/ log2(m) 1.25 0.795 0.0797
6 64 1/m 1.25 1.242 0.0204

The individual experiments and the results are summarized
in Table V and Fig. 9. Clearly, as shown in Section V-D, the
influence of the maximum per-flow rateεf is crucial for the
results of experiments No. 3 and 4. Thus in order to evaluate
fairly the effects of the number of processorsm, the maximum
per-flow rateεf needs to be adjusted as in experiments No. 5
and 6.

When εf is adjusted, results of the system withm = 64
NPUs (No. 5 and 6) differ not as significantly from results on
a system withm = 8 NPUs, although the performance does
worsen in both of the key response variables. The effects of the
altered exponents in computing the adaptation coefficients can
be compared. Using1/m leads to less aggressive adaptation of
the mapping weights, and thus fewer flows are remapped. In
contrast, the less fine-grained1/ log2(m) adjusts the mapping
more aggressively and thus prevents packet loss, but at a cost
of more flow remappings.

VI. I MPLEMENTATION ISSUES

A. Router Architecture

An implementation of a router combining the distributed
router architecture with the load-sharing scenario is depicted
in Figure 10.

Another potential implementation is shown in Figure 11.
It is a load-sharing extension of the concepts of the Juniper
Networks routers [Sem99], where the header and the payload-
processing paths are separated by two switches, input and out-
put. The control information in the packet header is processed

in a remote NPU, whereas the payload is temporarily stored
in a distributed shared memory coupled to the input switch.
Sharing the load among the NPUs brings significant utilization
benefits.

B. Packet-to-NPU Mapping

The major implementation issue related to load sharing is
how to provide a fast-computable pseudo-random functiong
for computing the mappingf , with the properties required in
the mapping definition (Def. 2).

Fig. 10. Load sharing within a distributed multiprotocol router. An
NPU resides at every line card and the NPUs are interconnected through a
switch. Upon packet arrival, the packet information vector~w travels through
the switch to NPUj, chosen by computing the mappingf(~v) = j over
the identifier vector~v. At NPU j, the vector ~w is processed and the
resolution information is returned to the requesting NPU. The packet is then
switched to the correct output port and the corresponding packet alterations
or manipulations, based on the resolution results, are applied. The mapping
weights can be adjusted to give preference to local processors.
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Fig. 11. Multiprotocol router, consisting of an input- and output
switch/shared memory and a pool of multiple NPUs, sharing the load of
N line cards. Every line card is connected to two switches/shared memories,
input and output. Each of the multiple NPUs is reachable from a line card
through a switch. Upon packet arrival, the packet is buffered in the input
shared memory and the information vector~w travels through the input switch
to NPU j, chosen by computing the mappingf(~v) = j over the identifier
vector ~v at the line card. At NPUj, the vector ~w is processed and the
resolution information is switched to the resulting port of the output switch.
The packet is then retrieved from the shared memory, the corresponding packet
alterations or manipulations, based on the resolution results, are applied and
the packet is transmitted on the link.

A good candidate appears to be the hash function based
on the Fibonacci golden ratio multiplierφ−1 = (

√
5 − 1)/2

presented in [Knu98]. The Fibonacci hash function leads to
the “most random” scrambling of sequences [Knu98]. It is
defined as follows:

hφ−1(x) = (φ−1 x)mod 1. (29)

Such a function can be fit into the mapping scheme as follows:

g(~v, j) = hφ−1(~v XOR hφ−1(j)). (30)

As the valueshφ−1(j) can be precomputed, the actual com-
putation per vector~v requires only4m basic mathematical
operations andm comparisons (to find the maximum).

Depending on computing capacity available, other hash
functions may be used. The study in [CWZ00] documented
good spreading properties of the CRC16 function, but at the
cost of higher complexity. For a survey of other hash functions
for implementing the HRW mapping, see [RKMD02].

In our simulations in Section V, we have used Fibonacci
hashing to computeg(~v, j).

C. Load Indicator

Another open implementation issue is how to actually
measure the load of the processors or the number of processing
units spent per time interval. Alternative measures to the one
used in the simulations (number of memory accesses an NPU
has performed during the time interval∆t) can be for example
the number of processing cycles or the number of packets
processed per time interval. A counter value is periodically
read by the CP. Multiple indicators can be combined into one
using relative weights, as in [GH99], yet note that results in
[Kun91] indicate that the benefit over a one-dimensional load
descriptor is minimal.

D. Information Management

Although the utilization information gathering appears to
present unnecessary extra effort for the router system, note
that similar statistics collection is readily available and often
required from the existing router equipment [(ed95] [MR91]
and therefore should result in a minimum load increase on the
system. The communication required between the NPUs and
the CP is minimal, as the NPU only periodically reports its
utilization, a single parameter, and the CP broadcasts the new
weights vector when needed. The computational demand at the
CP is negligible (see Subsection IV-B2). Should the centralized
CP be perceived as a bottleneck or a single point of failure,
the whole scheme can easily be distributed, with the NPUs
broadcasting its utilization and recomputing and updating its
own weights vector.

VII. C ONCLUSIONS ANDFUTURE WORK

We have proposed a scheme for sharing packet-processing
tasks among multiple network processors within a router.
The scheme is based on an adaptive deterministic mapping
of flows to processors. The proposed load-sharing scheme
requires no flow state information to be stored within a router.
The mapping itself is derived from the robust hash routing
presented in [Ros97] and [TR98]. We have extended the
mapping with an adaptation discipline aimed at keeping the
processor load below a dynamically derived threshold. The
threshold reflects the total system workload intensity.

The adaptation is performed by adjusting the weights of
the packet-to-processor mapping, thus reducing or increasing
the amount of flows a processor must handle. Thanks to the
proved minimum disruption property of our adjustments of the
mapping, the adaptation requires only a very small number
of flows to be remapped. Thus the probability of packet
reordering within a flow is kept low.

Such a scheme is particularly useful in routers with many
input ports, and with packets requiring large amounts of
processing. With the proposed scheme, a kind of statistical
multiplexing of the incoming traffic over the multiple network
processors is achieved, thus in effect transforming a router into
a parallel computer. The improvements in processor utilization
decrease the total router cost and power consumption as well
as improve fault tolerance.

The spectrum of potential applications is not limited to a
router. The method can be deployed in any networking system
that benefits from spreading the load over multiple processing
units and that requires packets belonging to a single flow to be
processed by the same processor. Such applications include,
for example, a Web server load balancer or a distributor of
traffic over multiple network links.

As for future improvements, further study is planned to
gain insight into how various traffic patterns influence the
performance of the load-sharing scheme. Another topic open
for research is the influence of load sharing on QoS guarantees
provided by a router.
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