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Abstract- The kurtosis of a signal is a quantitative measure
of how 'peaky' it is. In this paper we consider two scenarios of
communication over fading channels with kurtosis constraints:
in the first, we analyze a non-coherent Rayleigh fading channel
where the input signal is required to satisfy a kurtosis constraint
in addition to a power constraint. In the second, we find the
'worst' fading process that satisfies a kurtosis constraint and has
a given second moment, while the fading coefficients are assumed
to be known at the receiver. In both cases the transmitter is
assumed ignorant of the instantaneous fading realization. The
technique that enables our analysis is based on bounding mutual
information between random variables which satisfy kurtosis
and second moment constraints; the bound is tight in the low
second moment regime and can be extended to multi-antenna
communications.

I. INTRODUCTION

We consider two scenarios of communicating over fading
channels where a kurtosis constraint is relevant. A kurtosis
constraint prevents the underlying random variable from being
too peaky, in an appropriate sense which we will clarify later.
In the cases we consider, the transmitter has no information of
the instantaneous channel realization. Our first consideration
is a Rayleigh fading channel, where the input signal has a
kurtosis constraint in addition to an average power constraint.
This is of interest in some situations, which will be mentioned
in the sequel. We obtain an upperbound on capacity, which is
tight in the low power regime. Extensions to multi-antenna
channels can be done by an appropriate definition of kurtosis
constraint on the input vectors. The second scenario is where
the channel coefficients have an arbitrary law and are known
at the receiver, but the transmitter is forced to use indepen-
dent Gaussian inputs. By using the same bounding technique
mentioned above, we obtain the worst channel which satisfies
a kurtosis constraint and having a given gain. Here also, we
explain some extensions to multi-antenna channels.

The organization of the rest of the paper is as follows.
Section 2 explains the kurtosis constraint in detail. Bounds
for capacity of Rayleigh fading channel and signaling schemes
which come close at low powers are presented in the section
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3 and 4. Finding the worst channel in the coherent case using
Gaussian inputs is explained in the next section. We conclude
in section 6.

II. KURTOSIS CONSTRAINT

Consider the complex scalar channel in (1) where y is
the channel output, x the input. The input is corrupted by
a multiplicative fading h which is unknown to both the
transmitter and receiver except for its statistics. The additive
noise is considered to be circularly symmetric white Gaussian
of variance one. The fading h is assumed to be independent
of both z and x.

y = hx +z (1)

If the multiplicative fading h is of unit variance, the capacity
per unit energy C of this channel is same as standard additive
white Gaussian noise (AWGN) channel (y = x + z), when the
input is power constrained [1],[5]. As the capacity per unit
energy is one of the relevant performance measures for infinite
bandwidth channels, one is tempted to think that at large
bandwidths the fading and non-fading channels are equally
good. However, [3]-[6] clearly shows that this statement is
misleading, if applied to channels with large but finite band-
width. Moreover, the input distribution that achieves capacity
in fading channels becomes more and more 'peaky' as the
power per degree of freedom decreases, while Gaussian inputs
are optimal at all operating regions in an AWGN channel. The
statement that a distribution is peaky can be characterized more
precisely by the kurtosis of the underlying random variable,
which is defined for a complex random variable w as,

K(W)(= Elw2
(ElWl2)2

(2)

By Jensen's inequality, ,Q) > 1.
A constraint on the average or peak power may seem natural

in many situations. A kurtosis constraint makes sense when
the requirements of communication prevents long durations
of idleness (no transmissions), thus ruling out highly peaky
signaling schemes. These requirements may be demanded by
the communication standards, operational requirements at the
transmitter or receiver such as synchronization etc. Another

5500
1-4244-0355-3/06/$20.00 (c) 2006 IEEE

This full text paper was peer reviewed at the direction ofIEEE Communications Society subject matter expertsfor publication in the IEEE ICC 2006proceedings.



situation where such a constraint is natural is when the ratio
of peak to average power needs to be limited.
The capacity under an average or peak constraint on the

input power will be a concave function, as can be seen by
a simple time-sharing argument. However, an intriguing fact
about the kurtosis constraint is that the capacity may no
longer be a concave function of the transmit power, since the
distributions which satisfy a kurtosis is not a convex set:
Lemma 1: Every non-trivial convex combination of two

distributions, each of which individually satisfies the same
kurtosis constraint with equality will have a strictly higher
kurtosis.

Proof: Let xl and x2 be two random variables with
E[lx1 2] = P1 and E[ x2 2] P2 and kurtosis i(xi)
K(X2) = K-A A

EI x1
p12 P2P2

The kurtosis of a convex combination of X1 and X2 is given
by

AE[x4] + (1
(AP1 + (1 -

AA)E[x4]
A)p2)2

KAPl + (1
(AP1 + (1 -

A)P22>
A)2

The last step follows from Jensen's Inequality applied to
function x -> x2. This in turn means that for a fixed kurto
the capacity may be a non-concave function of power,
thus the capacity per unit energy may not be achieved
vanishing powers. As an example, for the Rayleigh flat fad
channel, the mutual information under a power constrain
and kurtosis constraint i is bounded by [6],

If)<1 K(X)p2I(X;y) < ,-xP
-2

A non-negative concave function bounded by 1 ( )p2 1

necessarily be zero near P= 0. Thus we see that capacit)
a non-concave function in this case.
We denote by Op, the set of all input distributions wi

satisfy a given power constraint p. Let HP,, be the sut
of 9p which satisfies the power constraint with equality
has kurtosis less than K. We drop the suffix and use II
notational convenience. Since the additive noise is normaliz
the terms power and SNR are used interchangeably.

III. UPPER BOUND FOR RAYLEIGH FADING CHANNEL

For the channel model in (1), the mutual information
be written as,

the receiver.
When the multiplicative fading component in (1) is Gaus-

sian circularly symmetric, the channel becomes the so called
Rayleigh fading channel. Thus, given the input x, the output
y is zero mean Gaussian with variance (1 + lx 2E h 2). The
normalized case has E h l2 = 1.
A kurtosis constraint in addition to the usual power con-

straint is useful to avoid peaky signaling, as mentioned earlier.
Under these constraints, finding the capacity is a maximization
problem. Any chosen input distribution gives a lower bound. In
particular, one can choose discrete distributions with support
on a few values on the complex plane, so that the computation
of mutual information is easy. We will see that this gives
close bounds in the low power regime. Finding upperbounds
which are tight for moderate powers is less straightforward.
Nevertheless, for the power constrained case, bounds which
are first order tight in power can be obtained using an elegant
formula given in [5]. We use a simple technique which
incorporates all the input moment constraints to obtain tighter
bounds.

(4) It is easy to see that the input phase conveys no information
in the Rayleigh channel. Let symbols u and v denote respec-

* tively the input and output squared magnitudes of the Rayleigh
the channel. With this the channel is described by,

1 e V
PMU) -exp1+u 1+u (7)

By letting Q denote the distribution of u, since the entropy of
v is less than that of a Gaussian with the same variance, we
can bound (6) as,

(8)(5) IQ (x; y) = IQ (u; v) < log(I + P) + EQ Llog
I

will Defining g(u) =log( 4 ),
y is I v g o P

IQ (u; v) < EQ [g (u)] + log (I1 + P) (9)

An upperbound for capacity is obtained by taking the supre-
mum over all input distributions Q C II, where II is the input
set defined in Section 2.

(10)C < sup EQ[g(U)] + log(' + P)
QEH

When is SNR is very low, the bound for mutual information
in (8) can be expanded using Taylor series. The second order
approximation of logarithm can be used to lower-bound the
second term of (8) as,

I (x; y) I(hx;hx+z) -I(h;hx+zlx) (6)
The first term can be upper-bounded by the capacity of
a corresponding AWGN channel with input u = hx. The
second term corresponds to a hypothetical channel between
the channel fading and received signal, given the input. In
the estimation parlance, this term captures the effectiveness of
estimating h from the channel input and output. The above
decomposition can be extended to a more general multi-
antenna model with part of the filter coefficients known at

E[log(l + u)] > E(u) -E(u2)
2 (1 1)

Substituting (11) in (8), along with log(l + P) < P gives a
capacity upperbound:

C(P, K) < IKp2-2
(12)

where C(P, i) represent the capacity with a power constraint
P and kurtosis constraint K. This bound cannot be good at
any but very small values of P as we know that for the non-
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coherent Rayleigh channel, the capacity quickly falls ii
double logarithmic behavior even when there is no kui
constraint [7]. The weakness of the bound here lies in (11
we need to improve this expression. We note that the qua
E log(I + ax), a C R+ arises in many other situations too
Sections 4 and 5).
We tackle the problem above by constructing a new bc

which stays close even at moderate values of power.
following theorem captures the essential idea on whici
proposed bound here is based on. Recall the definition c
II, which is the set of input distributions with power P
also satisfies the kurtosis constraint.

Theorem 1: Let s(u) 2, 0viu' be a second dc
polynomial which bounds the function g(u) log(I -
u > 0 from above and has a2 > 0. Then

sup EQ (g(u)) < ozo + oaiE[u] + a82K(E[u])2
QCH

Proof: Since g( ) < s(.),

E[g(u)] < E[s(u)]
2

E[Zoajut]
i=O

< aO0 + aVlP + aV2KP2

where the last inequality follows from the fact that a2 > (
E [u] = P in the set 171. This is true for any input distributic
particular for the one which maximizes the left hand side.'
Equation (8) along with Theorem 1 gives an upper bouni
the capacity under our constraints of interest. We now prc
to construct the polynomial s(.). See [8] for a stronger vei
of Theorem 1.

nto a
rtosis
) and
intity
(see

)und,
The

h the
)f set
) and

figure below. From an operational standpoint, it means that
limiting the kurtosis is equivalent to constraining the peak
value of input squared magnitude by KP.

Since scaling the input does not affect its kurtosis, one
can immediately obtain the following corollary to bound the
capacity of an unnormalized Rayleigh channel with -y =

E[lh 2].
Corollary 2:

sup I [x; y] < log (1 +-yP)
QCH

- log(l + -yKP) (18)

Some comparisons are in order here. The construction is
-gree different from the bound for the power constrained case as

) in [7], which is tight at high SNR. The bound here is tight
only the when power per degree of freedom is not high, so that

(13) the fourth moment constraint is active for input distributions
that achieve good data rates. In addition to including the fourth
moment constraints, the bound here also is in a compact form
devoid of any further optimization over parameters. However,
the methods in [7] can be combined with the technique used
here to construct tight bounds for all power levels, thereby

(14) extending the results of [7]. The technique involves construct-
ing polynomials which bound more complex functions than

(15) log(l + x). However, this will not make a big difference in
the very low power regime.

Capacity upperbounds in (12) and (17) along with above-
and mentioned lowerbound is shown in figure below, for a kurtosis

n, in constraint i < 25 and linear SNR scale. For comparison, the
Thus unconstrained capacity is also shown. In models where the
d for
)ceed
rsion

0 0( [

A. Bounding Polynomial
The supremum of E log(I + u) over all distributions in II

can be bounded as in the following theorem.
Theorem 2:

sup EQ [log(l + u)] > log(l + KP) (16)

The proof of the above theorem is given in the appendix.
Equation (16) together with (8) yields a new upperbound for
the capacity of a Rayleigh fading channel.

Corollary 1: The information rates obtained using input
signals with power and kurtosis constraints through a Rayleigh
fading channel without channel side information is upper-
bounded by

sup I[u; v] < log(l + P) --log(l + KP) (17)

Some observations follow from this. Consider an input sig-
naling scheme with the input squared magnitudes ranging
only two symbols, {0, rP} and having average power P.
The mutual information obtained by this is a lower bound to
capacity. For a range of power levels in the low SNR regime,
this lower bound is close with the upperbound in (17), see

0-04 t

0 02 t

Fig. 1. Upper and Lower bounds of capacity with kurtosis < 25

channel coefficients have two components, h = h + h where
h is assumed to be known at the receiver and h Gaussian
of variance -y, we can extend the proposed bound. Since input
phase is useful in this channel, we no longer have the freedom
to work only with input squared magnitude. Using (6), the
mutual information for the above model becomes,

I(x; y) < E log(l + (lhl2 + -y)P) -I(h; (h+ h)x + zlx, h)
(19)

log( + (h2 + )P)I(h;hx+zx) (20)
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The last equality follows from the fact that hx can be
subtracted from y and the remaining term at receiver is
independent of h. We can conclude using Corollary 2 that,

sup I[x; y] < E log(I + h 2P+yP) --log(I +yKP) (21)

IV. VECTOR MODEL
The results of the previous section can be generalized to the

vector models, or the so called multi-antenna Gaussian fading
channels.

y = H x + z (22)
rx 1 rxt tx 1 rx 1

Here H = H + H, H has circularly symmetric Gaussian
entries independent of H. Further H is also assumed iid
across channel uses. Transmitter knows the channel statistics
but input signals are independent of the channel realization.
Receiver knows H, but not H. In a similar fashion to equation
(19), the mutual information can be written as the sum of two
terms.

I(x; ylH) = I(Hx; Hx + zH) -I(H; Hx + zlx) (23)
We also assume that the columns of H are pairwise indepen-
dent and Ehht = for each column. Using these in (23),
an input distribution of covariance matrix K will have mutual
information,

IK(X; Y H)
< EH log det(I + HKHt + P) -Ex log det(I + x 2)

(24)

Imposing a kurtosis constraint i on the norm of input vector
x, the bound can be simplified using Corollary 2 as,

IK(X; Y H)

< EH log det(I + HKHt + PZ)- log det(I + KPZ)

< EH log det(I + HKHt) + log det(I + PZ)
1-log det(I + KPE) (25)

In the last expression, the inequality log(I+A+B) < log(I+
A) + log(I + B), for A, B, C positive semidefinite is used.
Denoting E[HtH] = A, (25) implies,

IK(X; y H) <trace(AK) + log det(I+ PZ)

-log det(I + KPZ)

of confusion, as mutual information represents an achievable
data rate, which can be made arbitrarily small by using bad
codewords chosen from a distribution. Thus a lowerbound for
achievable data rate is rather trivial. On the other hand, mutual
information is defined as an abstract quantity determined by
the input distribution and channel statistics. Thus a lowerbound
to mutual information for a given channel means that there
exists at least one coding scheme from the set of input distri-
butions satisfying the constraints of interest, which achieves a
data rate bigger than the lowerbound.
We derive a lowerbound to mutual information for the

case where the input has iid Gaussian distribution. In the
scalar case, this indeed is the capacity achieving distribution.
In a number of multi-antenna situations too, independent
Gaussian inputs are capacity achieving, thus our bounds give
lowerbounds on capacity. For the multi-antenna models, we
use a kurtosis constraint on the singular value distribution of
H.
The fading coefficients here are arbitrarily distributed except

for the fact that they obey a variance and kurtosis constraint.
Let us denote E h 2 y and thus E h l4 < _y2, i being the
kurtosis constraint.

The mutual information in this case is given by

(27)IG(x;y) = Eh log(I + h 2P)

By using the bounding method of last section,
1

-IG(X; Y) >- log(1+i-P)

Furthermore, the lower bound is achieved when lh 2 takes
values in the set {0, jy} with appropriate probabilities. Thus
the worst channels are the most peaky within the specified
limits.

For the multi-antenna case, the model becomes

(29)y = H x + z
rx 1 rxt tx 1 rx 1

The mutual information using independent Gaussian inputs are
given by [4],

IG(x: y) = EH log(I+ t HHt) (30)

If A1, .., Ak are the eigenvalues of HHt, the mutual information
becomes D

IG (x;y) = E EAj log(I + Ai) (31)
(26)

Notice that Jensen's inequality can be directly applied to the
first term of the bound in (25), to move the expecation inside
the log det(.), yielding another bound.

V. WORST CHANNEL IDENTIFICATION
In this section, we construct a lowerbound of the mutual

information for the multiplicative fading model in (1), where
the channel realization is known at the receiver, i.e, the coher-
ent case. Some clarifications are needed before we proceed.
The usage, 'a lowerbound to mutual information' is a cause

Thus the relevant term becomes Ex log(I + A), where A = Ai
with probability k. We impose a constraint on H by restricting
the variance and kurtosis of A as E A 2 = and E A
The preceding discussion then gives a lowerbound for this
case. Thus the channel filter H influences the bound in varying
the kurtosis of A for a given variance.

VI. CONCLUSION

We have proposed upper bounds for possible data rates over
some fading channels, which are popularly used in modeling.
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While the capacity of some of the models can be numerically
computed, the bounds give quick insights and are tight at
low powers. Furthermore, the technique generalizes to many
interesting scenarios.
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APPENDIX

Let g(x) = -log(I + x), x > 0. Observe that g(x) is a
convex function of x. For a given x0 >= 0, define the affine
function of x,

Proof: Substituting the value of polynomial coefficients,

f (xo) (-P _ 2 log(l + xo)
1 +x V Xo

( log(l + Xo)
S0

XO
1+XO) p

XO
1+XO) Kp2 (37)

Taking the derivative with respect to xo and examining coef-
ficients of the logarithmic term,

dx0 (f (xo)) = ° =E

log(l +Xo) X2 -2X3]
x 20

0 (38)

Thus x0 = KP is an optimal point. The statement that this is a
minimum can be verified by noting that the second derivative
is positive at KP. K
Note that finding a minimum is not required to obtain a bound.
By substituting x0 = KP itself yields the desired bound. In
that sense, once we know that x0 = KP is a reasonable choice,
Lemma 3 is redundant.

h(x) = g(xo) + (x-xo)g'(xo), x >= 0,

V(X ) = g(x) - h(x)v(x,xo) (X -XO)2
Since g is convex and since h is tangent to it at xo, it follows
that v(x, xo) >= 0. Further observe that

g(x) = h(x)+(x-xo)2v(x, xo) < h(x)+(x-xo)2 sup v(x,xo).
x

(34)
With g(x) log(l + x), v(x, xo) can be written as (1 +
xo)-2(u-log(l+u))/u2 with u = (x-xo)'(1+xo), and thus
maximizing v(x, xo) over x >= 0 is equivalent to maximizing
(u- log(l + u))/u2 over u >= -xo/(l + xo). It is easy to
see by differentiation that (u- log(I + u))/u2 is a decreasing
function for u > -1. We thus conclude that
Lemma 2: For any xo >= 0,

-log(l + x) < -log(l + ) + O

log(l+xlog(l + o) 1 O
+ (X _XO)2 1±XO) (35)

zo
2

This bound is valid for any x0 in the interval (0, oc), the
optimal one being that which yields the minimum of the right
hand side of (15). This minimization is performed now.

Lemma 3: Let f (xo) = ao (Xo) + a 1 (Xo)P + a2 (XO)Kp2,
where ai (xo) is the coefficient of xt in the right hand side of
(35)fori =0,1,2.Then

f(xo) > f(P),Vxo C R+ (36)
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and let

(32)

(33)




