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Abstract

It is well-known that random error-correcting codes achieve the
Gilbert-Varshamov bound with high probability. In [2], the authors
describe a construction which can be used to yield a polynomially
large family of codes of which a large fraction achieve the Gilbert
Varshamov bound. In this project, we investigate ways to obtain
codes known to achieve this bound, given such a family of codes. Since
computing the minimum distance of a code is NP-hard, we work with
a class of Goppa codes described in [1] whose minimum distance is
known. We know that there exist Goppa codes which achieve the
Gilbert-Varshamov bound, but we do not know if there are codes
in this class which achieve it. We investigate various approaches to
determining the rate of a code and try to apply them to this class
of codes in order to determine if they achieve the Gilbert-Varshamov
bound. These approaches include investigating upper bounds on the
covering radius of a code and refining an existing lower bound on the
code dimension. We also implemented the described class of Goppa
codes using the PARI/GP computer algebra system [5], in order to
obtain numerical values which would allow us to detect patterns and
formulate conjectures regarding those codes.
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1 Motivation

We expose the results of the construction in [2] and explain why they make
it meaningful to investigate the dimension of codes whose minimum distance
is known, so as to determine if they achieve the Gilbert-Varshamov Bound.
We start by stating this bound.

1.1 The Gilbert-Varshamov Bound

Constructions of error-correcting codes try to achieve a good tradeoff between
a high rate and a large minimum distance. The Gilbert-Varshamov (GV)
bound defines a tradeoff between rate and minimum distance.

Theorem 1 [4] Let 0 ≤ δ < 0.5. Then there exists an infinite sequence of
[n, k, d] binary linear codes such that d

n
≥ δ and with rate r = k

n
satisfying

r ≥ 1−H(
d

n
) ∀n.

Moreover, we know that a random code achieves the GV bound with high
probability.

1.2 Using Pseudorandomness

In [2], the authors used pseudorandomness under some hardness assump-
tions to obtain a construction which results in the following: given a family
of efficiently samplable objects of which an ε-fraction satisfies a property P
verifiable in polynomial space, and such that the size of the family is expo-
nential in the representation size n of the objects, the construction outputs
a family of size polynomial in n, of which at least an ε − 1

nk fraction still
satisfies P .
We can apply this construction to error-correcting codes as follows: given
a code of block length n, its representation size is polynomial in n and the
number of such codes is exponential in n. We know that a randomly chosen
code achieves the GV bound with high probability, hence a large fraction
of the codes of block length n achieves the GV bound. By applying the
construction in [2], we obtain a polynomially large family of codes of which
still a large fraction achieves the GV bound. It hence becomes feasible to
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enumerate these codes and check various properties of theirs.
Given such a polynomially large family of codes, we are guaranteed to find a
code (actually, many codes) among them which achieves the GV bound, but
we still don’t know which. In order to check if a code achieves the GV bound,
we need to know its minimum distance and its dimension. We can compute
the rate of a code of block length n in time polynomial in n. However,
computing the minimum distance of a code is NP-hard. Hence it becomes
interesting to focus on codes whose minimum distance is already known. An
example of such codes will be investigated in section 3.
In this project, we focused on Goppa codes (section 2), and specifically on
the class of Goppa codes described in [1]. We implemented the construction
of this class of codes to obtain numerical values of the codes dimensions.
Other possible approaches to the problem of finding a single good code involve
investigating properties of the covering radius of codes, and improvements of
a known lower bound on the code dimension (section 6).

2 Goppa codes

Definition 1 Given a finite field Fqm and a polynomial G(x) of degree t with
coefficients from Fqm, we define a subset L = {γi}n

i=1 of Fqm such that no γi

is a root of G(x). Then the Goppa code Γ(L, G) consists of all vectors c ∈ Fn
q

such that
n∑

i=1

ci

x− γi

≡ 0 (mod G(x))

Goppa codes have the following properties [4]:

• A well-known lower bound on the code dimension k is given by

k ≥ n−mt.

• The minimum distance d of the code is lower bounded by d ≥ t + 1.
If the Goppa code is binary and such that G(x) has no multiple zeros,
we get the tighter lower bound d ≥ 2t + 1.

• There exist sequences of Goppa code which asymptotically meet the
Gilbert Varshamov bound (see 4.1).
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3 The construction in [1]

In [1], the authors construct a subclass of Goppa codes over F2 such that the
Goppa polynomial is a separable polynomial of degree t given by

g(x) = xt + A,

where t | (2m − 1), A is a t-th power in F2m \ {0} and

L = {γ ∈ F2m : G(γ) 6= 0}.

They prove that the minimum distance of such codes is equal to the design
distance d = 2t + 1.
The interest of this construction from the perspective of [2] is that we obtain
a family of codes for which the minimum distance is known. Hence it becomes
possible to check in polynomial time which codes of the family output by the
construction of [2] achieve the GV bound.

3.1 An interesting property of the family of Goppa
codes in [1]

Definition 2 Two linear codes C and C ′ are said to be equivalent if and only
if there exists a permutation π of of the codeword components such that

π : C → C ′

is an isomorphism.

Claim
The class of Goppa codes defined in [1] is such that given m and t, different
choices of A define equivalent codes.

Proof
Let C and Cα be the Goppa codes defined over F2m by the Goppa polynomials
G(x) = xt + 1t = xt + 1 and G(x) = xt + αt, respectively. We will prove
the claim by showing that there exists a permutation π of the codeword
components such that

π : C → Cα
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is an isomorphism, so that C and Cα are equivalent codes.
Let c = (c1, . . . , cn) be a codeword of C. It satisfies the condition

n∑
i=1

ci

x− γi

≡ 0 (mod xt + 1).

We can index each coordinate ci of the codeword by the corresponding el-
ement of F2m , γi, where each γi is such that it is not a root of the Goppa
polynomial xt + 1, i.e. it is not a tth root of unity.
Define the permutation πα over F2m as πα(a) = αa. πα is indeed a permuta-
tion since πα(a) = πα(b) means αa = αb, hence a = b. Moreover, πα maps
the tth roots of unity {1, ξ, . . . , ξt−1} to the tth roots of α {α, αξ, . . . , αξt−1};
and it maps each element γi which is not a tth root of unity to the element
αγi, which is not a tth root of α. We can therefore view πα as simply a
permutation of the components of the codeword c, such that each ci is now
indexed by αγi. It is enough then to show that the obtained vector is a
codeword in the Goppa code Cα, i.e. that it satisfies

n∑
i=1

ci

x− αγi

≡ 0 (mod xt + αt).

We have indeed

n∑
i=1

ci

x− αγi

=
n∑

i=1

ci/α

x/α− γi

=
1

α

n∑
i=1

ci

y − γi

≡ 0 (mod yt + 1)

where we have performed a change in the formal variable x by replacing it
with y = x/α. But

yt + 1 = (
x

α
)t + 1 =

1

αt
(xt + αt).

So we get that
n∑

i=1

ci

x− αγi

≡ 0 (mod xt + αt),
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hence we obtained a codeword in the Goppa code Cα. Therefore C and Cα

are equivalent Goppa codes. �

Clearly, two equivalent codes have the same minimum distance, since their
lowest-weight codewords are permutations of each other and hence have the
same weight. Also, two equivalent linear codes have the same dimension
since they have the same number of codewords.

4 Asymptotic Behaviour of Goppa Codes in

General and the Class of [1] in Particular

In this section, we reproduce the proof that there exist Goppa codes which
achieve the GV bound. We investigate the applicability of this proof to the
specific case of the class of codes described in [1]. We show that the proof
cannot be adapted to this particular case. Hence we cannot say anything yet
about the asymptotic goodness of this class of Goppa codes.

4.1 A Counting-Based Argument to Prove that Goppa
Codes are Asymptotically Good

Theorem 2 [7] There exists a sequence of Goppa codes over Fq which meets
the GV bound.

Proof
Given parameters n = qm, t, d, we want to find a Goppa code Γ(L, G) with
minimum distance d, with L = Fqm = {α0, . . . , αn−1}, and with G(x) being
a degree-t polynomial irreducible over Fqm .
Consider any word c= (c0, . . . , cn−1) of weight j. We can write

n−1∑
i=0

ci

x− αi

=
fc(x)∏n−1

i=0 (x− αi)

where the degree of fc(x) is less than j. Then for c to be a codeword, it must
satisfy

fc(x)∏n−1
i=0 (x− αi)

= 0 (mod G(x))
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Since G(x) is irreducible over Fqm , it has no common factors with the de-
nominator of this fraction and must divide fc(x) for c to be a codeword.
But fc(x) has degree at most j − 1, so there are at most b j−1

t
c irreducible

polynomials of degree t that can divide fc(x).
Counting over the codewords that we do not want to include in our code, i.e.
all codewords of weight j < d, the number of irreducible polynomials that
include such codewords in the corresponding Goppa code is at most

d−1∑
j=1

bj − 1

t
c(q − 1)j

(
n
j

)
≤

d−1∑
j=1

d

t
(q − 1)j

(
n
j

)
where, for a given j, the

(
n
j

)
factor comes from the choice of the nonzero

coordinates of c, and the (q−1)j factor from the choice of the values of those
coordinates.
Using the fact that the volume Vq(n, d− 1) of a ball of radius d− 1 is given

by Vq(n, d − 1) =
∑d−1

j=0(q − 1)j
(

n
j

)
, we get that the number of polynomials

to exclude is less than

d

t
Vq(n, d− 1)

On the other hand, we know from [7] that the number of irreducible polyno-
mials of degree t over Fqm exceeds

1

t
qmt(1− q−(1/2)mt+m)

Hence a sufficient condition for the existence of Goppa codes with minimum
distance at least d is

d

t
Vq(n, d− 1) <

1

t
qmt(1− q−(1/2)mt+m) (1)

Taking base-q logarithms, dividing by n and taking the limit as n →∞, we
can write this condition as

Hq(δ) + o(1) <
mt

n
+ o(1) (2)

where δ is the required minimum distance, i.e. δ = limn→∞ d/n.
We can see that by our choice of n (hence m) and t, we can make mt

n
very
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close to Hq(δ), say mt
n

= Hq(δ) + ε. For these values of the parameters, we
know that there exists a Goppa code Γ(L, G) since condition 2 is satisfied.
Also, by a property of Goppa codes, the rate r of this code will satisfy

r ≥ 1− mt

n
> 1−Hq(δ)− ε

Hence the resulting Goppa code achieves the GV bound. �

4.2 Applicability of the Argument to the Construction
in [1]

If we try to apply the proof in [7] to the specific subclass of Goppa codes
described in [1], setting q = 2, the difference lies in the total number of
irreducible polynomials of degree t. Since now the Goppa polynomial has to
be of the form

G(x) = xt + A

with A being a t-th power in F2m , the number of such polynomials is limited
by the number of possible choices of A.
Let α be a generator of F2m . Since we must have A = γt for some element γ
of F2m , and since any element of F2m can be written as a power of α, we see
that A has to be one of

(α1)t, (α2)t, . . . , (α
2m−1

t )t.

So there are only 2m−1
t

possible choices of A for a given t, and therefore only
that many irreducible polynomials of degree t to choose from.
Hence 1 becomes

d

t
V2(n, d− 1) <

2m − 1

t
(3)

Taking base-2 logarithms, dividing both sides by n and letting n → ∞, the
condition becomes

H(δ) + o(1) <
m

n
+ o(1) (4)

But we know that n = |L| = 2m, hence 4 is equivalent to

H(δ) + o(1) <
log n

n
+ o(1) (5)

which cannot be achieved for constant δ as the right-hand side goes to 0 for
large n. �
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5 Implementation of the family of Goppa codes

described in [1]

5.1 Implementation details

We used the PARI/GP computer algebra system to implement the class of
Goppa codes described in [1] for various choices of the parameters m and t.
The idea was to calculate the resulting code dimension in each case. This
would allow us to see if there exist some codes within this family which
achieve the GV bound, if the n−mt lower bound is tight enough for various
parameter settings, and if there are certain patterns in the observed results
that would allow us to formulate plausible conjectures about this family of
codes.
We start the implementation by an appropriate choice of m, such that 2m−1
is not prime (so that there are meaningful choices for the value of t as a divisor
of 2m − 1). For this choice of m, we generate an irreducible polynomial
f of degree m, and generate the elements of the field F2m , represented as
polynomials modulo f , with coefficients in F2.
Having set up the field, we can now vary t over all meaningful values among
the divisors of 2m−1. A meaningful value is one that does not yield a relative
minimum distance δ which is too small (less than around 0.01) or too large
(more than around 0.5), where the relative minimum distance is given by
δ = 2t+1

n
.

Given the choice of t, we set the Goppa polynomial to be

G(x) = xt + 1t = xt + 1.

By the property of this family of Goppa codes explained in section 3.1, dif-
ferent choices of α in the expression G(x) = xt + αt will lead to equivalent
codes, hence codes with the same dimension. We can then simply fix α = 1
and calculate the corresponding dimension.
We then find the elements of L by testing each element of the field for be-
ing a root of G(x). Note that since G(x) is separable, it has t roots in F2m

(namely, for our choice of G(x), these are the tth roots of unity in F2m).
Hence the code block length is given by n = 2m − t. We can now compute a
parity check matrix F2m for the code. The formal derivation of this matrix is
explained in section 5.2. We then transform this matrix into a matrix over
F2 by simply replacing each entry of the matrix, which is an element of F2m ,
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by the corresponding m-component column vector with components from F2

(this can be done since F2m is isomorphic to Fm
2 ). Then computing the rank

of this matrix will give us the code dimension and hence the rate.
Section 5.3 shows the obtained code dimension for various choice of the pa-
rameters, along with the GV bound calculated for these parameters, given
by 1−H(δ), where H denotes the binary entropy function.

5.2 The Parity Check Matrix

A parity check matrix for a Goppa code in the family of [1], with Goppa
polynomial

G(x) = xt + αt

can be derived as follows.
The constraints on the codewords are given by the equation

n∑
i=1

ci

x− γi

≡ 0 (mod G(x)).

We can derive a parity check matrix for the code from these conditions. Since
no γi is a root of G(x), x − γi is invertible (mod G(x)) and, from [4], its
inverse is

−G(x)−G(γi)

x− γi

G(γi)
−1.

In our case, this is

−xt − γt
i

x− γi

1

γt
i + αt

.

Hence the conditions become

n∑
i=1

ci
xt − γt

i

x− γi

1

γt
i + αt

≡ 0 (mod G(x))

i.e.
n∑

i=1

ci(x
t−1 + γix

t−2 + γ2
i x

t−3 + . . . + γit− 1)
1

γt
i + αt

= 0

This is an identity, not a congruence modulo G(x), since the polynomial on
the left-hand-side is of degree less than t.
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Hence we can derive a parity check matrix for the code by equating the
coefficients of the polynomial

(xt−1 + γix
t−2 + γ2

i x
t−3 + . . . + γt−1

i )

to zero for each i. We obtain a parity check matrix

H =


1 1 · · · 1
γ1 γ2 · · · γn

γ2
1 γ2

2 · · · γ2
n

...
γt−1

1 γt−1
2 · · · γt−1

n




1
γt
1+αt

1
γt
2+αt

...
1

γt
n+αt


Note that more generally, a parity check matrix for any Goppa code can be
derived similarly.

5.3 Results

The following table displays the output of the program for various settings
of the input parameters.
For each setting of m and t, the corresponding n is calculated using n = 2m−t.
The dimension column corresponds to the main output of the program, and
can be compared to the lower bound given by n−mt. The rate is given by k

n

where k denotes the code dimension. It can be compared to the GV bound
given by 1−H(δ).
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m t n dimension lower bound rate δ 1−H(δ)
4 3 13 2 1 0.154 0.538 0.00427
6 3 61 43 43 0.705 0.115 0.486
6 7 57 17 15 0.298 0.263 0.169
6 9 55 16 1 0.291 0.345 0.0701
8 3 253 229 229 0.905 0.0277 0.817
8 5 251 211 211 0.841 0.0438 0.740
8 15 241 124 121 0.515 0.129 0.446
8 17 239 123 103 0.515 0.146 0.399
8 51 205 2 -203 0.00976 0.502 0.0000172
9 7 505 442 442 0.875 0.0297 0.807
9 73 439 58 -218 0.132 0.335 0.0802
10 3 1021 991 991 0.971 0.00686 0.941
10 11 1013 903 903 0.891 0.0227 0.844
10 31 993 687 683 0.692 0.0634 0.659
10 33 991 686 661 0.692 0.0676 0.643
10 93 931 105 1 0.113 0.201 0.276
11 23 2025 1772 1772 0.875 0.0232 0.841

We notice that the tested codes achieve better than the GV bound in most
cases. This could be due to the fact that our chosen values for the field size
are still too small to exhibit asymptotic behaviour. However, the limitations
of GP/PARI did not allow us to consider larger values of m.
Also note that the lower bound n − mt is tight for many cases. However,
for the “typical” cases (which correspond to “realistic” values of r) such as
n = 439 and r = 0.132, or n = 931 and r = 0.113, the lower bound is very
loose, as expected.

6 Other Approaches

Other possible approaches to finding a single good code, given a polynomial
family of codes of which a large fraction achieves the GV bound, involve in-
vestigating properties of the covering radius of codes, and possible improve-
ments to the n−mt lower bound on the code dimension. In this section, we
concisely describe these approaches.
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6.1 Upper Bounding the Covering Radius

Definition 3 Given a code C over Fn
2 , the covering radius ν of C is defined

as the minimum radius such that the set of balls of radius ν centered around
the codewords covers the whole Fn

2 space. Formally,

ν = min
l

(
⋃
c∈C

B(c, l) = Fn
2 ).

Intuitively, the smaller the covering radius, the better rate we have. More
formally,
Fact
A code C with minimum distance δ achieves the GV bound if the covering
radius is such that ν ≤ δ.

Proof
Denote the rate of the code by r. By definition of the covering radius ν, we
have

2nrV ol(Bν) ≥ 2n.

But

V ol(Bν) =
ν∑

i=0

(
n
i

)
' 2nH(ν/n)

Hence we get
nr ≥ n(1−H(ν/n)),

therefore r ≥ 1−H(δ) if ν ≤ δn. �

In [3], the authors refine the existing upper bound for the covering radius
of Goppa codes over F2m , and prove that under a condition involving t, m
and the number N of zeroes of G(x) in F2m , ν is upper bounded by 2t + 1.
Specifically,

Theorem 3 [3] The covering radius of Γ(L, G) is less than or equal to 2+1
if

2m ≥ 4(µ + t− 1)4t+2

 2

1 +
√

1− 1
(µ+t−1)4t

4t+2

,
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where µ = N
2m/2+1 .

It would thus be interesting to investigate properties of the rate of such
Goppa codes given the upper bound on their covering radius. In this project
we did not investigate further along this line.

6.2 Improving the Dimension Lower Bound

In [6], the author improved the known lower bound for the dimension of
Goppa codes k ≥ n−mt.
In a handwaving manner, the argument can be understood as follows. Let
Γ(L, G) be a Goppa code defined over Fqm . The parity check matrix over
F2m as derived in section 5.2 has t rows. The corresponding matrix over
Fq has mt rows, hence it has rank at most mt. Simply using the formula
k = n− rank(PCM) yields k ≥ n−mt.
In our implementation, we transformed the parity check matrix over Fq by
replacing each entry of the matrix by the corresponding m-component col-
umn vector with components from Fq, which is the most practical way to get
the matrix over Fq. But we can compute the rank of this matrix in another
way. If we denote the rows of the original matrix over Fqm by {r1, . . . , rt},
we can create a new matrix over Fqm by appending to the original ma-
trix t rows σ(r1), . . . , σ(rt), then t rows σ2(r1), . . . , σ

2(rt), . . ., then t rows
σm−1(r1), . . . , σ

m−1(rt). Here σ denotes the Frobenius map σ : α → αq, and
for a row vector ri = (ri1, . . . , rin), σ(ri) = (σ(ri1), . . . , σ(rin)). The obtained
matrix can be shown to be the parity check matrix of a code over the exten-
sion field Fqm which has another parity check matrix with elements from Fq

that is also a parity check matrix of the subfield subcode over Fq. Hence it
has the same rank as the parity check matrix of the subfield subcode over
Fq.
The matrix obtained in this way will have dependencies if some of its rows
were already row vectors over the base field Fq. Hence if we denote the
number of these rows by l, the dimension lower bound can be refined to
become

k ≥ n−mt + (m− 1)l,

since the k ≥ n − mt bound counts these rows m − 1 times more than
necessary. This is intuitively the end result of [6], but derived in a formal
and precise manner.
The lower bound can be further refined using the same idea: there might be
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rows of the original matrix which are row vectors over the field Fqm′ , where
m′ | m. These rows are be counted m

m′ − 1 times more than necessary in the
original lower bound.
An important question is whether it is worth improving the lower bound
further than what was done in [6]. The author states that his improved lower
bound “coincides in many cases with the true dimension of the code”. One
aim of our implementation was to verify the tightness of the n − mt lower
bound and we were surprised to observe that it is actually tight in many
cases. Again, this is possibly due to inaccurate results since our numbers do
not reflect the asymptotic behaviour of the codes.

7 Conclusion and Future Work

We have tried to investigate various approaches to determining the rate of
Goppa codes in general, and that of codes of the class described in [1] in
particular. The relevance of this work is that if we can determine some
properties of the rate of the codes in [1], we would be able to determine
which (if any) of these codes achieve the GV bound. Such a result, combined
with the construction of [2] which yields a polynomial family of codes of which
a large fraction achieve the GV bound, could make it possible to find a single
code known to be asymptotically good. We did not obtain results about the
asymptotic behaviour of the codes in [1] within the scope of this project,
but possible continuations of our work include deeper investigation of the
approaches outlined in section 6, and the implementation of the codes in [1]
over larger fields in order to be able to detect patterns of the code dimensions
as the block length grows large, which would allow us to formulate conjectures
regarding the asymptotic behaviour of these codes.
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