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Abstract. We analyze a generalization of a recent algorithm of Bleichenbacher
et al. for decoding interleaved codes on the Q-ary symmetric channel for large
Q. We will show that for any m and any ε the new algorithms can decode up to a
fraction of at least βm

βm+1
(1−R−2Q−1/2m)−ε errors, where β = ln(qm−1)

ln(qm)
, and

that the error probability of the decoder is upper bounded by O(1/qεn), where
n is the block-length. The codes we construct do not have a-priori any bound on
their length.

1 Introduction

The general Q-ary symmetric channel of communication has not been as prominently
featured in the literature as the binary symmetric channel. While the case of small Q has
been investigated by some authors in connection with belief-propagation algorithms, the
case of large Q has been largely untouched.

Perhaps one reason for this omission is the complexity of belief-propagation type
algorithms which increases with the alphabet size Q, rendering the design of efficient
decoding algorithms impossible for large Q. Another possible reason is the observation
that for large Q the code design problem can be reduced to the code design problem
for the binary erasure channel, albeit at the expense of some loss in the rate of the
transmission. This reduction is for example employed in the Internet: in this case the
symbols are packets; each packet is equipped with a checksum, or more generally, a
hash value. After the transmission, the hash value of each symbol is checked, and a
symbol is declared as erased if the hash value does not match. If h bits are used for the
hash value, and if Q = 2mh = qm, then, each symbol’s effective information rate is
reduced by a factor of (m − 1)/m. If the error rate of the Q-ary symmetric channel is
p, and if the erasure code operates at a rate of 1 − p − ε for some ε, then the effective
rate of the transmission is about 1 − (p + ε + 1/m), and the error probability is upper
bounded by n/2h = n/q, where n is the block-length of the erasure code, when an
erasure correcting code such as a Tornado code [9] is used.

A linear time decoding algorithm for the Q-ary symmetric channel using LDPC
codes was recently proposed by Luby and Mitzenmacher [8]. They did not exhibit codes
that come arbitrarily close to the capacity of the Q-ary symmetric channel, but it is
possible to extend their methods to find such codes [11]. In their construction, the error
probability of the decoder is at most O(n/Q), which can be much smaller than the error
probability obtained using the hashing method.
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Recently, Bleichenbacher et al. [1] invented a new decoding algorithm for Inter-
leaved Reed-Solomon Codes over the Q-ary symmetric channel. As the name suggests,
the codes are constructed with an interleaving technique from m Reed-Solomon codes
defined over Fq, if Q = qm. These codes are similar to well-known product code
constructions with Reed-Solomon codes as inner codes, but there is an important im-
provement: interleaved codes model the Q-ary channel more closely than a standard
decoder for the product code would. It follows that interleaved codes achieve much
better rates: interleaved Reed-Solomon Codes can asymptotically have rates as large as
1 − p(1 + 1/m), which is much more than the rate 1 − 2p achieved with a standard
product code decoder. Bleichenbacher et al. prove that the error probability of their de-
coder is upper bounded by O(n/q), where n is the block length of the code. Compared
to the hashing method, this decoder has about the same error probability, but the rate of
the code is closer to the capacity of the channel.

A general method for decoding of interleaved codes has been discussed in [3]. The
gist of the algorithm is to find a polynomial in m + 1 variables that passes through
the points given by the interpolation points of the code and the coordinate positions
of the received words. The polynomial can then be used to scan the received word, and
probabilistically identify the incorrect positions. The method can decode up to a fraction
of 1 − R − Rm/(m+1) errors, with an error probability of O(nO(m)/q), where R is the
rate of the code. Note that the error probability of this algorithm increases with n. Note
also that this algorithm is superior to that of Bleichenbacher et al. for small rates. The
interleaved decoding algorithm has also been used in conjunction with concatenated
coding [6].

Another class of algorithms to which the interleaved decoding algorithm can be
compared is that of list-decoding algorithms [13,12,5]. However, this comparison is not
fair, since these decoding algorithms work under adversarial conditions, i.e., recover
a list of closest codewords without any restriction on the noise (except the number of
corrupted positions). The best known codes to-date (in terms of error-correction capa-
bility) with a polynomial time decoding algorithm are given in [10]. For these codes the
authors provide a decoding algorithm which can correct up to a fraction of 1 − ε errors
with a code of length n and rate Ω(ε/ log(1/ε)) over an alphabet of size nO(log(1/ε)).
The codes provided in this paper improve upon this bound considerably, when the rate
is not too small.

We have recently shown in [2] that the error probability of the decoder in [1] is in
fact O(1/q), independent of n. In this paper, we present a slightly different algorithm
than that of Bleichenbacher et al. for the class of algebraic-geometric codes (AG-codes).
We will show that the algorithm can successfully decode e errors with an error proba-
bility that is proportional to

(
1
q

)βm(n−k−2g)−(βm+1)e

where g is the genus of the curve underlying the AG-code, R is the rate, Q = qm, and
β = ln(qm−1)

ln(qm) .
Since the error probability of our algorithm does not increase with n, it is possible to

consider long codes over the alphabet Fq. In particular, using codes from asymptotically
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optimal curves over Fq2 [7,4], and assuming that m is large enough, our codes will be
able to reliably decode over a Q-ary symmetric channel with error probability p, and
maintain a rate close to 1 − p − 2√

q−1 .
Despite the proximity to channel capacity we can gain with this algorithm, the

construction of codes on the Q-ary channel with both rate close to the capacity and
polynomial-time decoding complexity (where we measure complexity relative to the
size of the received input, i.e. as a function of n log(Q)), is still an open challenge.

In the next two sections of this paper we will introduce interleaved codes and the
main decoding algorithm, and analyze this algorithm. The last section gives a detailed
comparison of our method with various hashing methods. For the rest of the paper we
will assume familiarity with the basic theory of AG-codes.

2 Interleaved AG-Codes and Their Decoding

Let X be an absolutely irreducible curve over Fq, and let D,P1, . . . , Pn denote n + 1
distinct Fq-rational points of X. Let g denote the genus of X. For a divisor A of X we
denote by L(A) the associated linear space. The theorem of Riemann states that the
dimension of this space, denoted dim(A), is at least deg(A) − g + 1.

Fix a parameter α with 2g − 2 < α < n. A (one-point) AG-code associated to
D,P1, . . . , Pn and α is the image of the evaluation map Ev: L(αD) → F

n
q , Ev(f) =

(f(P1), . . . , f(Pn)).
Suppose that Q = qm, and let β1, . . . , βm denote a basis of FQ over Fq. We define

a code over FQ of length n in the following way: the codewords are

⎛
⎝ m∑

j=1

fj(P1)βj , . . . ,
m∑

j=1

fj(Pn)βj

⎞
⎠ ,

where (f1, . . . , fm) ∈ L(αD)m. (This algebraic interpretation of interleaved coding
was communicated to us by A. Vardy [14].) Note that this code does not necessarily
form an FQ-vector space, but it does form an Fq-vector space.

Suppose that such a codeword is sent over a Q-ary symmetric channel, and that
e errors occur during the transmission. Denote by E the set of these error positions.
Because of the properties of the Q-ary symmetric channel, each of the m codewords of
the constituent code is independently subjected to a q-ary symmetric channel under the
additional assumption that for each of these positions, at least one of the codewords is
corrupted.

Our task is to decode the codeword. We proceed in a way similar to [1]: let t be a
parameter to be determined later, and let W and V be defined by

W :=

⎛
⎜⎜⎜⎝

φ1(P1) φ2(P1) · · · φd(P1)
φ1(P2) φ2(P2) · · · φd(P2)

...
...

. . .
...

φ1(Pn) φ2(Pn) · · · φd(Pn)

⎞
⎟⎟⎟⎠ , V :=

⎛
⎜⎜⎜⎝

ψ1(P1) ψ2(P1) · · · ψs(P1)
ψ1(P2) ψ2(P2) · · · ψs(P2)

...
...

. . .
...

ψ1(Pn) ψ2(Pn) · · · ψs(Pn)

⎞
⎟⎟⎟⎠ ,
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where φ1, . . . , φd form a basis of L
(
(t + g)D

)
, and ψ1, . . . , ψs form a basis of L

(
(t +

g + α)D
)
. Let

(∑m
j=1 y1jβj , . . . ,

∑m
j=1 ynjβj

)
be the received word, and let

A :=

⎛
⎜⎜⎜⎝

V −D1W
V −D2W

. . .
...

V −DmW

⎞
⎟⎟⎟⎠ , (1)

where Dj is the diagonal matrix with diagonal entries y1j , . . . , ynj . The decoding pro-
cess is now as follows:

– Find a non-zero element v = (v1 | · · · | vm | w) in the right kernel of A, where
v1, . . . , vm ∈ F

s
q and w ∈ F

d
q . If v does not exist, output a decoding error.

– Identify v1, . . . , vm with functions in the space L
(
(t + g + α)D

)
, and w with a

function in L
(
(t + g)D

)
. If w divides vj for each j = 1, · · · ,m, then set f1 =

v1/w, · · · , fm = vm/w, and output f1, · · · , fm. Otherwise, output a decoding
error.

The value of t determines the error probability of the decoder, as the following main
theorem suggests.

Theorem 1. Suppose we have t that satisfies

g − 1 ≤ t ≤ βm

βm + 1
(n − α − g − 1) − c

βm + 1
,

for some c > 0, and where β = ln(qm−1)
ln(qm) . Let e denote the number of errors incurred

during transmission, and suppose that e ≤ t. Then we have:

(1) If e + t < n − α − g, then the error probability of the above decoder is zero.
(2) For general e ≤ t the error probability of the above decoder is at most q

q−1 · q−c.

This theorem will be proved in the next section.

3 Analysis of the Decoder

To analyze the decoder of the last section, we make the following simplifying assump-
tions:

(a) The error positions are 1, 2, . . . , e.
(b) The functions f1, . . . , fm sent over the channel are all zero.

It is easily seen that we can assume (a) and (b) without loss of generality. This goes
without saying for (a); as for (b), note that since the code is invariant under addition,
the behavior of the matrix A in (1) with respect to the algorithm is the same no matter
which codeword is sent.

The assumptions imply the following:
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(1) For each i = e + 1, . . . , n, and for each j = 1, . . . ,m, we have yij = 0. Equiva-
lently, for each j, the last n − e diagonal entries of Dj are zero.

(2) For each i = 1, . . . , e, the vector (yi1, . . . , yim) is chosen uniformly at random
from F

m
q \{(0, . . . , 0)}.

(3) The probability of a decoding error is upper bounded by the probability that there
exists a vector (v1 | · · · | vm | w) in the right kernel of A for which at least one of
the vi is non-zero, plus the probability that the right kernel of A is trivial.

Note that because both the number of errors and the error positions have been fixed,
the only randomness in the matrix A comes from the values yij for i = 1, . . . , e and
j = 1, . . . ,m.

We will show that if e ≤ t, then the right kernel of A is nontrivial. Hence, we
only need to bound the probability that there exists a vector (v1 | · · · | vm | w) in
the right kernel of A for which at least one of the vi is non-zero. Let us call such a
vector erroneous. Note that if the right kernel of A is nontrivial and does not contain
any erroneous vectors, then the algorithm is successful with probability one.

We bound the probability of the existence of an erroneous vector in the following
way: for each non-zero w ∈ L

(
(t + g)D

)
, we calculate the expected number of (v1 |

· · · | vm) such that v = (v1 | · · · | vm | w) is in the right kernel of A. An upper bound
on the desired probability can then easily be obtained using Markov’s inequality.

Proof of Theorem 1. Throughout we use the notation vj to denote both a vector in F
s
q

and the corresponding element of L
(
(t+α+g)D

)
(obtained with the basis ψ1, . . . , ψs).

Likewise w can denote both a vector in F
d
q and an element of L

(
(t + g)D

)
(with the

basis φ1, . . . , φd).
First we will show that if e ≤ t, then the right kernel of A is nontrivial. To this end,

note that by the Theorem of Riemann dim
(
(t+g)D−∑e

i=1 Pi

) ≥ t−e+1 > 0, hence
L

(
(t+g)D−∑e

i=1 Pi

)
is nontrivial. Let w be a non-zero function in this space. Setting

vj := wfj (= 0), we see that the vector v = (v1 | · · · | vm | w) is in the right kernel
of A, and is nontrivial, as required. It follows that the error probability of the decoder is
upper bounded by the probability that the right kernel of A contains erroneous vectors.

If v = (v1 | · · · | vm | w) ∈ ker(A) then we have

∀i = 1, . . . , n, ∀ j = 1, . . . ,m : vj(Pi) = yij · w(Pi). (2)

Furthermore, since we are assuming that the zero codeword was transmitted, we
have yij = 0 for i > e (since i is not an error position). From this and (2) we can
deduce that

∀i = e + 1, . . . , n, ∀ j = 1, . . . ,m, : vj(Pi) = 0. (3)

This implies that

∀ j = 1, . . . ,m : vj ∈ L

(
(t + α + g)D −

n∑
i=e+1

Pi

)
=: L

(
T

)
. (4)

In particular, this proves part (1) of the theorem: if t+α+g−n+e < 0, or equivalently,
if t + e < n−α− g, then this linear space is trivial, and hence any element in the right
kernel of A is non-erroneous (since it has the property that vj = 0 for all j = 1, . . . ,m).
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For w ∈ L((t + g)D) let Z(w) = {Pi | 1 ≤ i ≤ e, w(Pi) = 0}. Let Z(w) be its
complement in {P1, . . . , Pe}, and let γ(w) = |Z(w)|. If v is erroneous, then there is
some j with vj �= 0. This vj cannot have more than 	1 := deg(T ) = t + g + α− n + e
zeros. This implies that the number of points in the set {P1, . . . , Pe} at which vj does
not vanish is at least 	2 := e − 	1 = n − α − g − t. Furthermore from (2) we see that
if vj(Pi) �= 0 then w(Pi) �= 0, and so w must be also be non-zero on at least 	2 of the
points P1, . . . , Pe. So if v is erroneous then γ(w) ≥ 	2.

If v = (v1 | · · · | vm | w) ∈ ker(A) then for all Pi ∈ Z(w) we have vj(Pi) =
yij · w(Pi) = 0. From this and (4) we obtain

∀j = 1, . . . ,m : vj ∈ L

⎛
⎝T −

∑
P∈Z(w)

P

⎞
⎠ =: L(S). (5)

Fix w ∈ L
(
(t + g)D

)
, with γ(w) ≥ 	2. We will count the expected number of

non-zero (v1 | . . . | vm) for which v = (v1 | · · · | vm | w) ∈ ker(A).
If Pi ∈ Z(w) then yij = vj(Pi)

w(Pi)
, and so for a given a non-zero (v1, . . . , vm) ∈

L
(
S)m, we will have v ∈ ker(A) if and only if yij has the appropriate values for all

j = 1, . . . ,m and for all i with Pi ∈ Z(w). Since these i are all error positions, for
each one there must be a j with yij �= 0. So for each i, (yi1, . . . , yim) can take qm − 1
different values uniformly (of which exactly one will satisfy yij = vj(Pi)

w(Pi)
for all j). Let

(v1, · · · , vm) ∈ L
(
S)m be a nonzero vector. Using the fact that |Z(w)| = γ(w), we

obtain

Pr
[
(v1 | · · · | vm | w) ∈ ker(A)

] ≤ (
1

qm − 1

)γ(w)

. (6)

If v ∈ ker(A) then vj(Pi) = yijw(Pi), so if vj(Pi) = 0 then yij = 0 for all i
with Pi ∈ Z(w). Since yij cannot be 0 for all j, for each Pi ∈ Z(w) there must be
some j with vj(Pi) �= 0. Since t < n − g − α by assumption, we have L

(
(t + g +

α)D − ∑n
i=1 Pi

)
= 0, and since vj ∈ L(S), there exists a subset U ⊆ Z(w) of size

dim(S) for which the values of vj on the points in U uniquely determines vj . So picking
(v1, . . . , vm) ∈ L(S)m is the same as picking vj(Pi) for j = 1, . . . ,m and for Pi ∈ U .
Furthermore, as stated above if v is in ker(A) then for all Pi there must be some j with
vj(Pi) �= 0. So the number of choices for (vj , . . . , vm) ∈ L(S)m for which there exists
j with vj(Pi) �= 0 for all Pi ∈ U is at most (qm − 1)dim(S) and hence for a fixed w, the
expected number of erroneous vectors v = (v1 | · · · | vm | w) ∈ ker(A) is at most

(
1

qm − 1

)γ(w)

· (qm − 1
)deg(T )−e+γ(w)+1 = qβm(deg(T )−e+1), (7)

using the fact that dim(S) ≤ deg(S)+1 = deg(T )−e+γ(w)+1, where β = ln(qm−1)
ln(qm) .

Since t + g ≥ 2g − 1 by assumption, by the Theorem of Riemann-Roch we have
dim L

(
(t + g)D

)
= t + 1, and so there are at most qt+1 possible choices for w (there
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may be considerably less since we consider only those with γ(w) ≥ 	2). The expected
number of erroneous vectors in ker(A) is therefore at most

qt+1 · qβm(deg(T )−e+1) = qt+1+βm(t+g+α−n+e−e+1)

= q(βm+1)t−βm(n−α−g−1)+1,
(8)

and so if t ≤ βm
βm+1 (n − α − g − 1) − c

βm+1 then the expected number of erroneous
vectors in ker(A) is at most q1−c. If a vector is erroneous, then any non-zero Fq-scalar
multiple of that vector is also erroneous. Thus, the probability that the number of er-
roneous vectors is larger than 0 equals the probability that the number of erroneous
vectors is at least q−1. By Markov’s inequality, this probability is at most the expected
number of erroneous vectors divided by q − 1. This implies that

Pr[exists erroneous vector in ker(A)] ≤ q1−c

q − 1
=

q

q − 1
· q−c. �	

We conclude the section with the following observation: Setting t = βm
βm+1 (n−α−

g − 1) − 2g
βm+1 (so c = 2g in the bound above), and observing that the dimension k of

the code is at least α + 1 − g, we get

t ≥ βm
βm+1 (n − k − 2g) − 2g

βm+1

= βm
βm+1 (n − k) − 2g

= n
(

βm
βm+1 (1 − R) − 2g

n

)
.

Since our algorithm can correct up to t errors, the error probability of the Q-ary
symmetric channel we consider can be at most t

n , which is about 1−R− 2g
n when m is

very large (recall that β = ln(qm−1)
ln(qm) ). Therefore if m is very large, if q is a square, and if

a sequence of very good algebraic curves is used to construct the underlying AG-code,
then on a Q-ary symmetric channel with error probability p the maximum achievable
rate for vanishing error probability of the decoder is roughly

1 − p − 2√
q − 1

.

(This follows from the fact that for a very good sequence of AG-codes the ratio g/n
tends to 1/(

√
q − 1).) This shows that these codes and these decoding algorithms can

get very close to the capacity of the Q-ary symmetric channel.

4 Comparison to the Hashing Method

In this final chapter of this paper we give an extensive comparison of our method to
other hashing methods. These methods effectively reduce the number of errors, albeit
at the expense of reducing the rate of transmission.
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The classical method for coding over large alphabets is to dedicate a part of each
symbol as check positions. These positions can be used to store a hash value of the sym-
bol. The advantage is that the hash can be used at the receiver side to detect corrupted
symbols: If it does not match the symbol, the symbol is corrupted and can be discarded.
This way, the decoding problem is effectively reduced to an erasure decoding problem.
There is a downside however: each corrupted symbol has a small probability of having
a matching hash. The decoder will fail if such a symbol is used, and therefore such
decoders have an error term which is linear in the blocklength n.

If we use an [n, k, n − k + 1 − g] AG-code over FQ, and 	 bits are used in each
symbol for the hashing value, then only the remaining log(Q) − 	 bits can be used per
symbol, so the effective rate of the code is

r =
log(Q) − 	

log Q
· k

n
.

There are two possible failure modes for this decoder. First, if too many symbols have to
be discarded, then decoding will fail. A Chernoff-bound argument can be used to show
that this happens with exponentially small probability if the symbol error probability
bounded away from

n − k − 1 + g

n
=

(
1 − log Q

log(Q) − 	
r

)
+

g − 1
n

.

The second failure mode is when an incorrect symbol passes the hashing test and is
therefore used in the decoding process. This happens with probability at most

np

2�
,

where p is the symbol error probability. Note that this error probability is linear in n,
unlike the bounds we get for interleaved codes.

However, it is possible to do better also with the hashing method by adding a second
stage to the decoder. After removing symbols with mismatching hash, a few erroneous
symbols remain; if there are not too many such symbols, those can be corrected in a
second step with the decoder for AG codes. The reasoning is as follows. Let X1 be the
number of received erroneous symbols which have mismatching hash values, and let X2

be the number of received erroneous symbols for which the hash matches. Then after
removing the mismatching X1 symbols, we are left with an [n−X1, k, n−X1−k+1−g]
AG-code. Such a code is correctable for errors up to half the minimum distance, hence
the correctability condition is

n − k + 1 − g > X1 + 2X2.

If p is the symbol error probability, then we have

E[X1 + 2X2] = np · (1 − 2−�) + 2np · 2−�

A Chernoff-bound can then be used to show that if the symbol error probability p is
bounded away from

(1 − R)n + 1 − g

(1 + 2−�)n
,
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the resulting failure probability will be exponentially small (R = k/n). To summarize,
such codes are decodable, if the overall rate (including loss via hashing) is chosen such
that

r <
log(Q) − 	

log(Q)

(
1 − (1 + 2−�)p − g

n
+

1
n

)
.

To compare this to interleaved AG codes, note that the factor

log(Q) − 	

log(Q)

corresponds to the (βm − 1)/(βm) term we have for interleaved codes. So, hashing is
away by the factor (1 + 2−�). On the other hand, the advantage of hashing is that g/n
can be made much smaller than in the interleaved case, since we are working in a much
larger field.

Unfortunately, this fact has another downside in itself: Working on the larger field
increases the complexity of the decoder considerably. For interleaved code, it is
O(n1+ε log(q)2) where for the hashing method, it is O(n1+ε log(Q)2).

Hashing can also be combined with an interleaved code to produce a much faster
decoder which is also extremely simple. The idea is as follows: We dedicate the first of
the m interleaved words just for error detection. That is, the first codeword will always
be a transmitted zero. On the receiver side, symbols which have a non-zero value in
this first interleaved word are again considered erasures. The other interleaved words
can then all be decoded separately, using the standard decoder. That way, it is possible
to get a decoder which operates on the small field only, and which thus has decoding
complexity similar to the interleaved decoder. The error analysis is the same as for the
hashing code over the large field; the downside is that we are back to the case where
g/n tends to 1/(

√
q − 1). Hence, these codes have slightly worse rates than interleaved

AG codes.
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