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Abstract— We address the problem of video streaming over
multiple parallel networks. In the context of multiple users,
accessing different types of applications, we are looking for
efficient ways of allocating network resources and selecting
network paths for each application, in order to maximize the
overall systems performance. Our optimization joint problem
consists of finding the appropriate application rate allocation
and network parameters for each individual user, such that a
universal system quality metric is maximized. A specific mapping
between the requirements of each considered application and the
overall quality metric is introduced, and our results are compared
to other solutions based on throughput optimization strategies.
The superiority and robustness of our approach is shown through
extensive simulations in constant and dynamic systems, when
clients can join/leave the access networks. Furthermore, we
introduce heuristic algorithms which can obtain good results and
are inexpensive in terms of computation and execution time.

I. I NTRODUCTION

The fast expansion of internet coverage and the increasing
availability of wired/wireless network services encourage the
development of QoS demanding applications. End users can
seamlessly choose from a variety of parallel wireless services
(e.g., UMTS/GPRS/WiFi) [1], in order to access these appli-
cations. Moreover, efforts towards inter-networking different
wireless technologies are underway [2], to better meet QoS
and cost requirements [3]. In such a context, managing the
overall network resources, in the presence of multiple clients
accessing simultaneously different applications, becomes of
crucial importance for network operators.

With the latest wireless technologies, clients have par-
allel access to different applications, like web brows-
ing/downloading, voice conversations and media streaming,
each having their distinct QoS requirements and hence, their
particular need of network resources. Standardized protocols
for network resource allocation in application dedicated net-
works exist, e.g., GSM systems for voice applications, or
the internet congestion control mechanisms for data traffic;
however, they might prove suboptimal in a more complex envi-
ronment, where different types of applications share common
network resources.

In this paper we consider a multiple user scenario, where
clients can access various applications with different Quality-
of-Service (QoS) requirements over possibly multiple access
networks (Figure 1). We discuss and solve a global optimiza-
tion problem that periodically computes the optimal rate allo-

cation and network selection for each user/application, given
a universal quality metric. To this end, we take into account
the parameters of the networks available to each user, and the
specific characteristics of wireless applications. One by one,
the behavior of each considered application is designed as a
function of the user’s network access parameters. Specifically,
we derive a distortion model for streaming applications, which
depends on the available data rate, transmission loss process
at each client, and specific video sequence characteristics.
Similarly, voice and data transfer applications are analyzed.
Then, we define a universal quality metric that maps the
QoS behavior of all applications as a function of the network
parameters. Our final goal is to maximize the overall QoS of
the system, under the given network resource constraints.

Real systems will often offer a limited choice in the mode
of operation of the accessed applications; e.g. different voice
transcoders operating at different rates in the case of voice
conversations, a limited number of scalable encoded video
layers for streaming applications, or a set of standard download
rates for data transfer applications. Our final solution consists
of an optimal decision on the mode of operation (total required
rate) and network resource allocation for each client accessing
a specific application. Such a global solution requires the
computation over the whole set of application modes, for every
user. Given the time varying nature of the wireless connections
and the dynamics of users leaving/joining the system, the
optimality of our solution is insured by iterative computations
that take into account the actualized system status. To this
end, we provide fast heuristic algorithms that can be used
in real time system optimizations, based on the utility trade-
off between system performance improvement and required
resources [4]. We show that our QoS metric behaves well in
a large set of system setups, and outperforms other traditional
QoS metrics based on throughput, in terms of overall achieved
quality, user fairness and adaptability to dynamic system
setups. Finally, we show that our proposed heuristic algorithms
obtain a close to optimum system performance with a low
computational effort.

Our contributions in this paper are three-fold:
• First we introduce a video distortion model for scalable

video coding. The model takes into account the overall
encoding rate of the layered video, and the transmission
loss process that affects the video packets of the different
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layers. The model is validated through extensive video
experiments;

• In the context of multiple parallel applications over wire-
less networks, we discuss the opportunity of a single uni-
fying quality metric that maps the specific requirements
of each considered application to a single value. Later,
this quality metric is used in our optimization framework
for improving the overall system performance;

• Finally, we propose a fast heuristic algorithm which
computes a close to optimum resource allocation solution
in an iterative process, by taking into account the network
access characteristics at each active client, along with the
specific requirements of its desired application.

The rest of this paper is organized as follows: we review
the relevant state of the art in Section II. Section III presents
the considered applications and available access networks.
We present our joint optimization problem in Section IV and
explain our heuristic approach to solving it in Section V. We
offer a concrete modelling example in Section VI. Extensive
simulation results are presented in Section VII, while Section
VIII concludes this paper.

II. RELATED WORK

Media streaming applications over wireless environments
have drawn the attention of the research community. The
overview work of [5] gives a complete presentation of potential
streaming systems in wireless networks and discusses the
standardization efforts. The authors of [6] evaluate different
mechanisms for robust streaming over WiFi networks. They
propose an adaptive cross-layer protection strategy for robust
and efficient scalable video streaming, by performing trade-
offs between throughput, reliability and delay, depending on
the channel conditions and application requirements. On the
other hand efficient techniques for streaming over wireless
networks which offer some QoS guarantees (e.g., UMTS
networks) are presented in [7]. Here, channel efficiency is
improved by using the common UMTS channel for streaming,
along with proactive hybrid ARQ protocols. Furthermore,
the authors of [8] present a resource allocation framework
based on service differentiation and analyze the capacity
benefit achieved through service prioritization and dynamic
rate adaptation. Most of these works address the problem of
media streaming alone, and do not consider the larger setup,
when different applications, with possibly different quality
requirements share the same wireless medium. In the same
time, they do not address systems where multiple wireless
services can be interworked in order to improve the end user
experience.

Service interworking is slowly emerging as a viable com-
mercial solution in order to achieve a better end-user appli-
cation quality, over unreliable wireless transmission mediums.
While initial commercial products already exist [1], standard-
ization efforts are paving the way towards more advanced
products and services [2], [9]. The authors of [10] present
handover possibilities between WLAN and cellular wireless
systems and discuss the possible issues and problems. We
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Fig. 1. Multiple wireless networks framework.

rely on these sustained efforts, and introduce a mechanism for
the global optimization of system performance, when multiple
clients, in the service area of more wireless networks access
parallel applications. We rely on specific network access
parameters at each client in order to take an optimal decision
regarding the network resources allocation.

Finally, the recent works in [11]–[14] present a new frame-
work for resource allocation and optimization in wireless
systems. They exploit the information available at different
layers of the network architecture in order to optimize the
overall system performance. The authors of [15] describe a
framework for the joint performance optimization of multiple
parallel applications sharing the same wireless channels, under
a universal quality metric. However, none of these early works
address the problem of resource allocation and network selec-
tion when multiple users have access to several heterogeneous
networks, administered by the same operator.

III. SYSTEM MODEL

A. Multiple Applications

AssumeN active users that simultaneously access via a
serverS any of three different types of applications, namely
voice conversation (V ), real-time media streaming (M ) and
FTP download (F ). Let useri, 1 ≤ i ≤ N access one of the
available applicationsk, k ∈ {V,M, F}, and letMi = ri be
the mode of operation of useri, decided byS. It describes the
average rate allocated to useri that has chosen applicationk.
We assume thatS can scalably adapt the transmission process
to the channel conditions of useri. To this end, for each
application k, the server can choose the right transmission
parameter, from a predefined set of available parametersPk.

We first consider a multimedia streaming application that
transmits a scalable encoded stream to the end user. LetL
be the number of available encoded media layers available at
the serverS, where the layerl ≤ L is characterized by its
average encoding rateρl. The distortion of the multimedia,
as perceived by the end client can generally be computed as
the sum of the source distortion (DS), and the channel dis-
tortion (DL). In other words, the quality depends on both the
distortion due to a lossy encoding of the media information,
and the distortion due to losses experienced in the network. A
commonly accepted model for the source rate distortion is a
decaying exponential function on the encoding rate, while the



channel distortion is roughly proportional to the number of lost
packets and is differentiated by the importance of the video
layer containing the lost packets. Hence we can explicitly
formulate the video distortion metric as:

D = α · (
l∑

j=1

ρj)ξ +β ·p1 +
l∑

j=2

(pj · (Dj−1−Dl) ·
j−1∏
s=1

(1−ps))

wherel is the total number of streamed video layers andα,
ξ andβ are sequence dependent parameters.Dj represents the
source distortion of the firstj layers of the video stream, and
pj is the average loss rate experienced during the transmission
process by the video packets of layerj. Notice that our model
for the loss distortionDL separates the packet losses in the
base layer (seen as more severe, because of frame loss and
the activation of error concealment strategies at the decoder)
and the losses in the enhancement layers (seen as affecting
only the total quality of the given frame, in the absence of
temporal prediction encoding in the higher video layers). We
validate the distortion model with streaming experiments in
Section VI.

Additionally, we assume that the serverS can protect
each media layer against transmission errors, with one ofE
systematic forward error correction schemesFEC(ne, ke),
e = 1 . . . E. The loss probability for each video layerj,
protected byFEC(n, k) can be computed starting form the
total error probability affecting the transmission processp
(considered as an iid random variable). Letpj be the error
probability affecting video layerj, after FEC decoding. It can
be computed as the average probability of loosingi video
packets from the FEC block (1 ≤ i ≤ k), and at least
bn− k − i + 1c redundant packets [16].

pj =
1
k
·

k∑

i=1

i · pi(n, k),

wherepi(n, k) is the probability of loosing at leastn−k +
1 packets from the FEC block, out of which,i packets are
video packets. For an iid loss process,pi(n, k) can be easily
computed:

pi(n, k) =
(

k

i

)
pi(1− p)k−i

f∑

l=bf+1−ic

(
f

l

)
pl(1− p)f−l,

wheref = n− k.
We definePM = {ρm : 1 ≤ m ≤ O} as the set of available

streaming modes, whereO = L·E represents the total number
of feasible combinations between the media encoded layers
and FEC schemes, andρm is the total rate imposed by mode
m. The final perceived quality at the end user depends on the
number of media layers transmitted, and the loss process that
affects the media packets after FEC decoding, according to
the distortion model proposed above.

Finally, we model the voice and data download applications.
We considerNV available voice transcoders at the serverS.

Each transcoderv is characterized by its encoding rateρv.
We definePV = {ρv : 1 ≤ v ≤ NV } as the available
parameter set for the voice application. The perceived quality
of the voice application at the end client depends on the
complexity of the transcoderv, and hence the allocated rate
ρv, and the error processp that affects the data transmission.
We also assumePF = {ρf : 1 ≤ f ≤ NF } as the
available parameter set for the FTP application.ρf represents
the download rate of the FTP session. The perceived quality of
the application will depend on the total download time, hence
on the allocated download rate and error process that affects
the data transmission.

We define the QoS metricΓ (Mi) = f(ri, pi) as a function
of the allocated rateri and the average loss probabilitypi

affecting the data transmission of applicationk, towards user
i. A concrete example of such a QoS metric, along with the
appropriate mappings between this metric and the perceived
quality of the applications presented above is given in Section
VI. Finally, we defineM = {Mi : 1 ≤ i ≤ N} as the global
operation mode of the system, when the serverS allocates the
rateri = ρk ∈ Pk to each active useri, accessing application
k.

B. Multiple Networks

Even if the problem formulation proposed here is generic,
we constrain ourselves to a scenario with two active networks
that relay application data between the serverS and user
i. Q Net is a QoS modelled network, characterized by a
guaranteed service to all active users when network loads
are inferior to the congestion point (e.g., through spreading
codes and transmission time intervals assignment in the case
of an HSDPA system), and high blocking probability in
saturated regime. Its total resources are characterized by the
instantaneous total throughputRQ, which takes into account
the channel conditions of all active users in the network.RQ

is preferentially distributed among active users according to
the importance of their accessed application (e.g., HSDPA sys-
tems prioritize voice conversations over streaming applications
and FTP downloads).RQ is periodically estimated on time
intervals T , possibly with a certain prediction error, which
translates into a generally small packet error probabilitypQ

i

that equally affects all active users.
The second network, BENet, is modelled as a Best Effort

network that provides services to clients on a first-come-first-
serve basis (e.g., a WiFi hotspot). Each active clienti in this
network can access resources at a maximum data rateRB

i and
is affected by an average loss processpB

i , over time intervals
T . While channel conditions in wireless environments change
on very short time scales (e.g., up to a few tens of ms), we
assume thatRB

i andpB
i represent average values computed on

larger time scalesT (e.g., one to a few seconds), and represent
the average channel conditions for useri on the given period
T .

Let [rQ
i , rB

i ] be the rate allocation of useri over the two
networks, withri = rQ

i + rB
i . Please observe that application

rates rQ
i = 0 or rB

i = 0 imply that useri is inactive in



the given network. Finally, let the tupleτi = [rQ
i , pQ

i , rB
i , pB

i ]
characterize the application rates and channel conditions for
each useri in the two networks. The following resource
constraints apply:

N∑

i=1

rQ
i ≤ RQ,

N∑

i=1

rB
i

RB
i

≤ 1. (1)

for Q Net and BENet respectively. While the first con-
straint refers to the total available throughput on the QNet, the
second one refers to the maximum available time for transmis-
sion on the downlink at the access point of the BENet. Finally,
under these conditions, the total error probability that affects

the transmission to useri, reads :pi =
rQ
i · pQ

i + rB
i · pB

i

rQ
i + rB

i

.

IV. N ETWORK SELECTION AND RATE ALLOCATION

PROBLEM

We assume that the serverS periodically solves the op-
timization problem, in full knowledge of the connection pa-
rameter tupleτi, ∀i : 1 ≤ i ≤ N , and of the application
parameter setsPk, ∀k ∈ {V, M, F}. Within each time interval
T , we optimize the allocation of network resources among
the N clients, with the final goal of maximizing the overall
quality of the system. In other words, we are looking for the
optimal global operation modeM∗ = {M∗

i : 1 ≤ i ≤ N}
containing the optimal application mode for each clienti,
whereM∗

i = r∗i ∈ Pk, k being the application accessed by
client i:

M∗ = arg max
M

N∑

i=1

Γ(Mi) (2)

under the constraints provided by Eq. (1). A discrete search
through all operation modes leads to the solutionM∗ with
optimal overall QoS. Alternatively, in the next section, we offer
a heuristic algorithm that achieves close-to-optimal results
with a faster convergence time.

V. UTILITY BASED RATE ALLOCATION ALGORITHM

In this section we introduce our heuristic approach for
solving the rate allocation optimization problem. We build
on the utility framework introduced in [4], and present an
algorithm that iteratively takes a locally optimal decision on
each user’s application mode.

Let Pk, k ∈ {V, M, F} be the sets of application modes
ordered in increasing order of their required rates, and let
Mi be the allocated mode of useri at a given iteration
of our algorithm. We definei → M′

i as the transition of
user i to the next application modeM′

i requiring the next
higher application rater

′
i. The utility of this transition can be

computed as:

Ui =
Γ(M′

i)− Γ(Mi)
r
′
i − ri

,

and represents the trade-off between the system quality
improvement and the extra resources required by useri’s

transition. During each iteration, the proposed algorithm finds
the useri∗ that brings the highest utility to the overall system
by its transition:

i∗ = arg max
i

Ui,

The extra resources will be allocated to useri∗ starting
with the resources of QNet. Once the resources of QNet are
depleted, the algorithm finds a different userj that can free
the required resources for useri∗, by reallocating part of its
rate r ≤ rj on the other network BENet. Let G(j, r) be the
operation by which rater ≤ rj of userj is redirected through
BE Net, and letHj be the loss in system utility caused by
the switch. This operation is performed as long as the overall
utility of the system is still improved (Ui −Hj > 0), and as
long as free network resources still exist in the overall system.
The algorithm stops when there are no more free resources in
the network system, or when no other possible user transition
can bring any improvement in the overall system utility.

Algorithm 1 Utility based rate allocation algorithm
Input:

2: RQ, pQ
i , RB

i , pB
i , ∀ useri;

Pk, ∀k ∈ {V,M, F}, ordered in ascending order ofρk;
4: Mi = 0, ∀ useri;

Output:
6: Global Rate Allocation ModeM;

Procedure RateAllocation
8: While (1)

for i = 1 to N do
10: Compute the utility ofi →M′

i:

Ui = Γ(M′
i)−Γ(Mi)

r
′
i−ri

;
12: end for

find i∗ = arg maxi Ui;
14: Push(i∗,M′

i∗ , Q Net);
Procedure Push(i,M′

i, Q Net)
16: if Q Net has enough free resourcesthen

i →M′
i;

18: update free resources on QNet;
else

20: Switch(i,M′
i, Q Net);

end if
22: Procedure Switch(i,M′

i, Q Net)
find userj that can transfer part of his allocated raterj

to BE Net with minimumHj ;
24: if Ui −Hj > 0 then

perform the switch of userj rate:G(j, r);
26: i →M′

i;
update free resources on QNet and BENet;

28: else
Break;

30: end if

Algorithm 1 represents a sketch of the proposed algo-
rithm. The Push procedure always attempts to increase the
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foreman qcif , 30 fps, one BL and one EL,β = 147.

system’s utility by allocating the free QNet resources to the
best user. If the free resources are not enough, theSwitch
procedure tries to find a new user that can free up enough
resources by reallocating parts of its allocated rate through
the BENet. As long as the network resources allow it, the
procedures repeat until no higher modes are available at any
client, or no extra utility improvement can be brought to the
overall system.

The complexity involved in the search fori∗ is O(N), the
same being valid for theSwitch procedure. In the worst case,
the algorithm requiresO(N · |Pk|) iterations to pass through
every application mode of every user. Hence the total complex-
ity of the algorithm isO(N2·|Pk|). For a reasonable number of
wireless users, and a finite set of available application modes,
the algorithm will converge rapidly to a global rate allocation
vectorM. Its performance is further studied in Section VII.

VI. V IDEO MODEL VALIDATION AND MOS QUALITY

METRIC

In this section we validate the distortion model introduced in
Section III-A, and we exemplify on a concrete quality metric
Γ based on theMOS (Mean Opinion Score) value.

First we encode theforeman qcif sequence (300 frames,
30 frames per second) in one base layer (BL) and one
enhancement layer (EL), with the help of the H.264/SVC
encoder. The total rate of the encoded sequence is varied, by
encoding at different quantization parameters (QP) for the BL.
The encoder always uses a QP for the EL, 6 points below
the QP of the BL. We are considering one network packet
per frame and per video layer. On the sequence of packets
we are inflicting transmission packet losses according to an
independent loss probabilityp ∈ [0, 0.05], and we compare the
decoded video quality with the original one, by averaging over
100 simulation runs. Results for the validation of the source
distortion are presented in Figure 2, while Figure 3 presents
the validation of the loss distortion model. We observe that

the model closely follow the experimental results1.
Next, we introduce the quality metric based onMOS.

MOS reflects the average user satisfaction on a scale of 1 to
4.5. The minimum value reflects an unacceptable application
quality, and the maximum value refers to an excellent QoS.
The perceived quality of each of the three applications is
converted into an equivalentMOS value, which is later used
in the optimization problem.

The performance of different voice transcoders as a function
of network losses is mapped toMOS values using thePESQ
algorithm on a representative set of voice samples [15] in
Figure 4. We observe that, while good network conditions lead
to increased user experience, high packet error rates degrade
the perceived quality of the voice communication.

The perceived media streaming quality is initially mapped
into an MSE (mean square error) distortion measure, as
presented in Section III-A. Later on, a nonlinear mapping
betweenMSE and MOS values is used, as illustrated in
Figure 5.

Finally, the perceived quality of the FTP application is
mapped toMOS values according to a logarithmic function
of the achieved throughput:MOS = a · log(b · r(1− p)). The
variablesa and b are system dependent parameters, and can
be set by the network operator (Figure 6).

VII. S IMULATION RESULTS

A. Simulation Setup

We test the performance of our proposed rate allocation
and path selection method, and we compare its performance
against a classic optimization solution that uses application
throughput as a quality metric.

We use 4 voice transcoders, namely G.723.1B, iLBC,
SPEEX and G.711 with average encoding rates of 6.4, 15.2,
24.6 and64kbps respectively. To simulate the media streaming
application, we encode theforeman qcif sequence (300

1For a complete validation of the video distortion model please see [17].
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frames) with the H.264/SVC codec. We encode one base layer
and one enhancement layer, each of70kbps. Additionally, we
use one forward error correction modeFEC(20, 17) which
can correct up to 3 packet errors in a block of 20 packets. For
FTP downloads, we set 4 available download rates of 50, 100,
150 and200kbps respectively.

Due to the high complexity of the full search algorithm
for finding the overall optimal rate allocation solution, we use
small network scenarios (5 or 6 users) in order to validate the
MOS quality metric, and the proposed heuristic algorithm.
Later we compare our proposed heuristic algorithm with other
heuristics in larger network setups. For comparison purposes
we define asOptimMOS andOptimTh the full search algo-
rithms which optimize the network resource allocation based
on the MOS, and respectivelyThroughput QoS metrics.
In the same time we defineAlgorithm 1 as Heuristic,
while Switch represents the same heuristic algorithm, with the
constraint that no user can be allocated resources from both
networks in the same time (e.g., when the algorithm decides
to switch one client from one network to another, its whole
allocated rate is rerouted through the new network).SwitchTh
is similar to Switch, but acts according to theThroughput
QoS metric.

B. Small Network Scenarios

A total of 6 clients are placed in the coverage area of both
networks (3 voice, 2 FTP, and one streaming user). ServerS
performs the optimization of the rate allocation periodically,

every T = 1s. The average throughputRQ of Q Net varies
in the interval[100, 150]kbps and the prediction errorpQ

i is
kept around1%. The connection data rateRB

i of the users
in the BENet is set in the interval[220, 310]kbps, and the
individual average loss probabilitiespB

i are randomly chosen
in the interval [1, 15]%. We average our results over 100
simulation runs of 10 seconds each.

We first compare the average performance of the overall
system, when the optimization is performed according to the
MOS and throughput quality metrics. We start by identifying
the traffic distribution obtained by each optimization metric
over the two networks. Table I presents the fraction of traffic
that passes through both networks, for each application. We
observe that theMOS optimization rightfully uses the QNet
resources for the voice and streaming applications, while the
FTP traffic is forwarded through BENet. On the other hand,
the throughput optimization favors the FTP application, as it
forwards part of its traffic over QNet (hence increasing the
offered rate for the application), at the expense of lower avail-
able resources for the voice and streaming applications that
share the same network. This explains the lower overall system
performance obtained for the throughput metric, compared to
MOS (Figure 7). For a total average system throughput vary-
ing from 320 to460kbps, theMOS optimization outperforms
the throughput optimization in most cases by as much as 0.15
MOS points. We also observe that theHeuristic algorithm
closely matches the optimal behavior, and the experimental
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Fig. 11. Client performance when users are
added/removed to/from the system:OptimTh al-
gorithm.
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Fig. 12. Average systemMOS values:
Heuristic vs. Switch, 20 users.

results obtained after performing experiments with real video
sequences. In the same time, Figure 8 presents the quality
performance among the proposed heuristic algorithms. While
Switch andHeuristic are quite close to optimum,SwitchTh
fails to allocate enough resources to some of the users, hence
the important degradation in overall system performance.

TABLE I

TRAFFIC DISTRIBUTION OVER THE TWO NETWORKS(IN %).

MOS Optimization Throughput Optimization
Application Q Net BE Net Q Net BE Net

Voice 100 0 100 0
Streaming 88.5 11.5 94 6

FTP 1 99 12 88

Finally, we test the two optimization metrics in dynamic
systems where users are allowed to join/leave the networks.
We start with 5 clients (2 voice, 1 streaming and 2 FTP
users). At timet = 3s we add a streaming user, and at time
t = 8s we remove one voice user. Figure 9, Figure 10 and
Figure 11 present the average application performance for each
user. We observe that in the case ofMOS optimization, the
system is able to cope with the extra user at the expense of
a small quality degradation for the existing users, for both
OptimalMOS andHeuristic algorithms. On the other hand,
the throughput optimization is unfair, as some of the clients are
penalized more than the others, and the overall performance
is worse.

C. Large Network Scenarios

In this case we are using a total of 20 clients placed in
the coverage area of both networks (7 voice, 6 streaming and
7 FTP clients). The total rate of the system is varied in the
interval [1.3, 1.7]Mbps with RQ ∈ [300, 600]kbps. The loss
probabilities for the two networks and the simulation setup are
similar as in the previous example.

We are looking at the overall average performance of the
Heuristic and Switch algorithms when more active users
are present in the system (Figure 12). Intentionally, we omit
the performance of theSwitchTh algorithm, due to its very
poor results. We observe that whileSwitch performs quite
good, Heuristic still provides a significant improvement in

total system quality. This is mainly due to the extra system
granularity in allocating the resources of the two networks
among the clients, if clients are allowed to connect in parallel
to both networks.

Next, we present the average traffic distribution on the two
networks, for each type of application, when each of the
two algorithms is used to compute the overall rate allocation.
Figure 13 and Figure 14 present the distributions obtained by
the Heuristic and respectivelySwitch algorithms. We ob-
serve thatHeuristic manages to allocate the QNet resources
mostly to the voice application and as much as possible to the
streaming application. The FTP clients are mostly scheduled
on BE Net, which represents an intuitive result. On the other
hand,Switch schedules almost half of the voice applications
on the BENet, at the advantage of streaming applications.
While surprising, this result is explained by the fact that
voice applications, usually requiring less network resources,
are easier to switch on the best-effort network, when the QoS
network becomes congested. Such a behavior can however
be corrected by applying different weights to the clients,
depending on the importance of the accessed application.

Finally, we test our algorithms in dynamic systems. We
allow 4 new users to join the system at timet = 3s (2
voice, 1 streaming and 1 FTP clients), while at timet = 8s,
other 4 users area leaving. Figure 15 and Figure 16 present
the results obtained byHeuristic and Switch respectively.
In the first case, we observe that the algorithm manages to
keep a rather constant application quality for all active clients,
by redistributing parts of the network resources to the new
users. This way,Heuristic achieves fairness among all users,
even if they access different types of applications. On the
other hand,Switch copes worse with the system dynamics;
we observe that the voice and streaming users are penalized,
compared to the FTP users. Again, this is due to the lack
of granularity in reallocating network resources, when new
users enter the system. This highlights the benefit of resource
allocation flexibility given by the multipath network scenario
assumed by the proposed algorithm.
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cation type, per network:Switch algorithm, 20
users.

1 2 3 4 5 6 7 8 9 10
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

Time (s)

M
O

S

Heuristic Allocation

STREAMING users
VOICE users
FTP users

add 4
users

remove
4 users

Fig. 15. Average performance per application
in case users join/leave the network:Heuristic
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Fig. 16. Average performance per application in case users join/leave the
network:Switch algorithm.

VIII. C ONCLUSIONS

We introduce a new rate allocation and network selection
optimization framework for clients accessing multiple appli-
cations over parallel networks. In the optimization process we
take into account the available network resources and the con-
nection parameters of clients, along with the specific quality
requirements of each application. We unify the performance of
all applications under a singleMOS quality metric, which is
later used in the optimization process. Compared to traditional
optimization metrics based on throughput, theMOS approach
achieves a more fair resource allocation among active clients,
and proves to be more scalable in dynamic systems. We
finally provide a heuristic algorithm based on utility functions,
which achieves a close to optimal resource allocation with
low computational resources. Comparing to other heuristic
approaches, our algorithm is more stable and adaptable in
dynamic situations, emphasizing the benefit of resource ag-
gregation in multipath network scenarios. The obtained results
encourage us to further investigate the possibility of multiple
wireless networks interconnecting towards the final benefit of
the end users.
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