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Abstract

Atomic Broadcast, an important abstraction in dependable distributed com-
puting, is usually implemented by many instances of the well-known consen-
sus problem. Some asynchronous consensus algorithms achieve the optimal
latency of two (message) steps but cannot guarantee this latency even in
good runs, with quick message delivery and no crashes. This is due to colli-
sions, a result of concurrent proposals. Collision-fast consensus algorithms,
which decide within two steps in good runs, exist under certain conditions.
Their direct application to solving atomic broadcast, though, does not guar-
antee delivery in two steps for all messages unless a single failure is toler-
ated. We show a simple way to build a fault-tolerant collision-fast Atomic
Broadcast algorithm based on a variation of the consensus problem we call
M-Consensus. Our solution to M-Consensus extends the Paxos protocol to
allow multiple processes, instead of the single leader, to have their proposals
learned in two steps.
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1 Introduction

Atomic broadcast is a primitive that allows components of a distributed
system to agree on an ever-growing sequence of broadcast messages [4]. The
problem can be defined in terms of proposers and learners, which respectively
broadcast and deliver messages [6, 8]. To implement a replicated state ma-
chine [5], for example, clients playing the role of proposers issue commands
to the replicas through atomic broadcast. The replicas learn the agreed se-
quence of commands and execute them in order. Assuming commands are
deterministic, all replicas undergo the same state transitions.

Atomic broadcast is often solved using the consensus problem as a build-
ing block. In fact, the two problems are equivalent with respect to solvability
but consensus has a simpler definition since learners must eventually learn
only a single value out of the set of proposed ones. The equivalence between
consensus and atomic broadcast, though, brings out some interesting results.
First, it extends to atomic broadcast the famous FLP impossibility result
stating that consensus is not deterministically solvable in asynchronous sys-
tems subject to failures [3]. Moreover, since the reduction from consensus to
atomic broadcast is direct (learners learn only the first element of the agreed
sequence), any lower bounds for consensus also apply to atomic broadcast.

Generally speaking, one can solve atomic broadcast by means of a totally
ordered succession of consensus instances. A sender that wants to broadcast
a message proposes it in the first instance for which the sender has not pro-
posed or learned anything yet. Consensus ensures that the decision reliably
reaches all nonfaulty learners, and the delivery order is given by the order-
ing of the instances, that is, the i th instance’s decision gives the i th element
in the learned sequence. Proposers must be also consensus learners so that
they can check if their proposal in some instance was decided or not and
repropose it in a different instance in case it was not the consensus decision.
Clearly, the performance of any implementation of this general approach is
highly dependent on the consensus protocol it hinges upon.

This solution to atomic broadcast has a problem, though: Because the
decision of each instance is bounded to a single proposal, messages proposed
but not decided in a given instance must be reproposed on subsequent in-
stances until they get decided, increasing their delivery delay. Notice that
even implementations in which proposals are composed of sets of messages
(e.g., [2]) may suffer from this problem since there is no guarantee that all
processes propose always the same sets in all instances.

Some consensus algorithms for the asynchronous model rely on a leader
to coordinate the agreement procedure and this can be used to bypass the
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problem above. In such algorithms, proposals are sent to the leader, which
selects one as the possible decision and continues with the algorithm exe-
cution. In an atomic broadcast implementation, all the consensus instances
could share the same leader, as done in Paxos [6]. Instead of selecting an
instance of consensus by the time a message is broadcast, proposals could be
just forwarded to the leader. The leader selects the first instance it has not
used and continues with the algorithm as if the received proposal related to
that instance. This gives to the atomic broadcast implementation the same
latency as the consensus protocol—three message steps in general, or two
for messages broadcast by the leader.

There are consensus protocols that can achieve the latency of two mes-
sage steps for multiple proposers by employing stricter conditions for a pro-
posal to be decided (e.g, Fast Paxos [9]). In such algorithms, there is no
leader involved in the general case for getting a proposal decided but quo-
rums are necessarily bigger. Moreover, the absence of a leader to circumvent
the FLP impossibilty result creates a problem called collision, which hap-
pens when two concurrent proposals are issued but none gets decided after
two message steps [10]. To solve a collision, extra message steps are required.
It is possible to ensure a latency of two message steps in normal runs and
avoid collisions. An asynchronous consensus algorithm that achieves this
is called collision-fast. In [10], Lamport states the two conditions in which
collision-fast asynchronous consensus algorithms are possible. The first case
restricts fault tolerance to a single failure and is solved by a simple variant
of Paxos, which allows the optimization we mentioned in the previous para-
graph for atomic broadcast. As for the second condition, which does not
restrict the number of failures, its algorithm applied to solving atomic broad-
cast cannot solve the problem of different proposals for the same instance of
consensus resulting in a single decision. Thus, non-decided proposals must
be resubmitted in different instances, delaying their learning.

Indeed, when more than one process can fail, it seems impossible to use
the standard reduction from atomic broadcast to consensus and obtain a
collision-fast atomic broadcast protocol, that is, an atomic broadcast imple-
mentation in which messages broadcast are delivered within two message
steps in normal runs. Differently, we reduce atomic broadcast to a varia-
tion of consensus we call M-Consensus. In M-Consensus, processes decide
not on a single proposed value, but on a bounded composition of them.
This way, if concurrent proposals happen, all of them may take part in the
final decision. To implement atomic broadcast, we use a succession of M-
Consensus instances as done before with standard consensus. Wise collision-
fast implementations of M-Consensus, however, can produce a collision-fast
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atomic broadcast. Collision-fast Paxos, our solution to M-Consensus, ex-
tends the original Paxos algorithm to allow multiple proposers, and not
only the leader, to have their proposals decided in two message steps. As
we show in the paper, our protocol can be used to implement a collision-fast
atomic broadcast that tolerates as many failures as the original Paxos.

2 Model and Definitions

2.1 Model

Instead of using processes, we state our definitions in terms of agents that
perform actions in the system; processes can aggregate the roles of several
agents. We assume an asynchronous crash-recovery model in which agents
communicate by exchanging messages with no bounds on the time it takes
for messages to be transmitted or actions to be executed. Messages can
be lost or duplicated but not corrupted; agents can fail by stopping only
and never perform incorrect actions. Agents are assumed to have some sort
of local stable storage to keep their state in between failures so that finite
periods of absence are not distinguishable from excessive slowness. Although
we assume agents may recover, they are not obliged to do so once they have
failed. For simplicity, an agent is considered to be nonfaulty iff it never fails.

2.2 Atomic Broadcast

Given two sets of agents, namely proposers and learners, the atomic broad-
cast problem consists of ensuring that messages broadcast by proposers are
eventually delivered by all learners, in the same order. As in [8], we phrase
the problem as the agreement on an ever-growing sequence of broadcast
messages, of which learners learn increasing prefixes. First, though, we in-
troduce the required notation. We represent a sequence s as the tuple of its
elements 〈v1, v2, . . . , vn〉, where n is the length of s and vi equals s[i ], the
sequence’s i th element. We say that sequence s is a prefix of sequence t ,
noted as s v t , iff the length of s is less than or equal to the length of t
and, for all i from 1 to the length of s, s[i ] = t [i ]; s and t are equal iff s v t
and t v s. The empty sequence 〈〉 has length zero and is a prefix of any
other sequence. Atomic broadcast’s safety properties can then be defined
as follows, where delivered [l ] refers to the sequence of messages delivered by
learner l , initially 〈〉.

Nontriviality For any learner l , delivered [l ] contains only broadcast mes-
sages and no duplicates.
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Stability For any learner l , if delivered [l ] = s at some time, then s v
delivered [l ] at all later times.

Consistency For any pair of learners l1 and l2, either delivered [l1] v
delivered [l2] or delivered [l2] v delivered [l1].

In an actual system, client applications broadcast commands and learn
the result of their execution, tasks possibly associated with proposers and
learners in our model. Since we cannot require clients not to fail, we define
liveness in terms of another set of agents: the acceptors. Let a quorum
be any finite set of acceptors large enough to ensure liveness. The liveness
property of atomic broadcast is defined as follows.

Liveness For any proposer p and learner l , if p, l and a quorum of ac-
ceptors are nonfaulty and p broadcasts a message m, then eventually
delivered [l ] contains m.

2.3 Algorithms

In this section, we formally define atomic broadcast algorithms and what
it means for them to be collision-fast. The formal definitions we give are
mostly borrowed from [10]; as in that work, we start by describing events.

An event is an action performed at some agent either spontaneously or
triggered by the reception of a message. Each event e performed by agent
eagent sends exactly one message emsg , receivable by any agent, including
itself. We assume that events are totally ordered at the agents performing
them, that is, we assume that each event e performed by agent eagent is
uniquely identified by the positive integer enum , indicating that e was the
enum

th event performed by eagent . For an event e triggered by the reception
of a message, we let ercvd equal the triple 〈m, a, i〉, where m is the received
message, a is the agent that sent it, and i the index enum of m’s sending
event e.

A scenario is the set of events performed in some single (partial) execu-
tion of an algorithm. For every event in a scenario, all other events that could
have causally influenced it must also be in the scenario. To formally define
a scenario, we let �S be, for any set S of events, the transitive closure of the
relation→ on S such that e → f iff either (i) eagent = fagent and enum ≤ fnum

or (ii) f is a message-receiving event and frcvd = 〈emsg , eagent , enum〉.

Definition 1 (Scenario [10]) A scenario S is a set of events such that:
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• for any agent a, the set of events in S performed by a consists of ka

events numbered from 1 through ka , for some natural number ka ;

• for every message-receiving event e ∈ S, there exists d ∈ S, d 6= e,
such that ercvd = 〈dmsg , dagent , dnum〉; and

• �S is a partial order on S.

A scenario obtained by removing the last events of a scenario S , according
to the precedence relation �S , is called a prefix of S .1

Definition 2 (Prefix [10]) A subset S of a scenario T is a prefix of T ,
written S v T, iff for any events d in T and e in S, if d �T e then d is in
S.

An algorithm can be seen as the set of non-empty scenarios it allows.
However, we are only interested in algorithms that are compliant with our
model. We define an asynchronous algorithm as follows, where Agents(S ) is
the set of agents that performed events in S .

Definition 3 (Asynchronous Algorithm [10]) An asynchronous algorithm
Alg is a set of scenarios such that:

• every prefix of a scenario in Alg is in Alg; and

• if T and U are scenarios of Alg and S is a prefix of both T and U such
that Agents(T \ S ) and Agents(U \ S ) are disjoint sets, then T ∪ U
is a scenario of Alg.

We define a source of a scenario S as an event e ∈ S that is minimal in
the ordering �S , and we let the depth of an event be the number of message
steps that precede the event.

Definition 4 (Event Depth [10]) The depth of an event e in a scenario
S equals 0 if e is a source of S , otherwise it equals the maximum of

(i) the depths of all events d with dagent = eagent and dnum < enum , and

(ii) if e is an event that receives a message sent by event b, then 1 plus
the depth of b.

1For simplicity, we use the same nomenclature and notation to define the prefix relation
between sequences, scenarios, and, as shown later, v-mappings. These sets are different
and used in different contexts, which makes us believe this cannot be a source of confusion.
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We now must define what a collision-fast atomic broadcast protocol is.
Due to the space limitations, though, the definition we present considers
only scenarios in which messages are broadcast in the source events. As a
result, an algorithm might be collision-fast according to this simplified def-
inition even if it does not ensure the same delivery latency for non-source
broadcasts. Nonetheless, we believe that algorithms that satify our defi-
nition can be usually adapted to ensure the same delivery latency for all
messages broadcast in normal runs, as this is the case for our solution.

A normal scenario is one in which the execution starts by one or more
agents atomically broadcasting, messages are not lost or duplicated, time-
outs do not occur, messages are received in FIFO order, and no event re-
ceives a message with depth lower than its own minus one, that is, message
reception is not delayed for two message steps or more.

Definition 5 (Normal Scenario [10]) A scenario S is normal iff:

• the only sources of S are (atomic) broadcast events;

• the message sent by any single event is not received twice by the same
agent;

• every non-source event is a message receiving event;

• if d1 and d2 are events in S with d1agent = d2agent and d1 �S d2, and
e2 is an event in S that receives the message sent by d2, then there
exists an event e1 in S with e1agent = e2agent and e1 �S e2 such that
e1 receives the message sent by d1; and,

• if d and e are events in S and e receives the messages sent by d, then
edepth equals 1 plus ddepth in S.

Our definition of collision-fast atomic broadcast states that the messages
initially broadcast are delivered in two message steps. In order to measure
that, we use the definition below.

Definition 6 (Complete to Depth [10]) An agent a is complete to depth
δ in a scenario S iff either δ = 0 or every agent in Agents(S ) is complete to
depth δ − 1 and a receives every message sent by an event in S with depth
less than δ.

We consider an atomic broadcast algorithm to be collision-fast iff there is
a set M of agents and a set P of at least two proposers such that all messages
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initially broadcast by any subset O of the proposers in P are delivered by
a learner l when l is complete to depth 2 in a normal scenario in which no
agent in M ∪ O ∪ {l} crashes. Our formal definition below is derived from
the definition of Collision-fast Accepting in [10].

Definition 7 (Collision-fast Algorithm) An asynchronous atomic broad-
cast algorithm Alg is collision-fast iff there is a set M of agents and a set
P of proposers with at least two proposers such that, for every nonempty
subset {p1, . . . , pk} of P with pi all distinct:

• for any broadcastable messages m1, . . . ,mk there is a scenario {e1, . . . , ek}
in Alg such that each ei is a source event in which pi broadcasts mi ;
and,

• for every learner l and every normal scenario S of Alg with Agents(S ) =
{l , p1, . . . , pk}∪M that contains {e1, . . . , ek} as a prefix, if l is complete
to depth 2 in S, then delivered [l ] contains m1, . . . ,mk .

3 M-Consensus

In the M-Consensus problem, where M stands for mapping, agents must
agree on an increasing mapping from proposers to either proposed values or
to the special value Nil . Before formalizing the problem, though, we define
the value mapping data structure, v-mapping for short, it depends upon.

3.1 Value Mapping Sets

In order to introduce v-mappings, we must define some function notation.
As usual, we let f (d) be the result of function f for its domain element
d . We represent the set of all functions with domain D and range R by
[D → R], and the domain of a function f by Dom(f ). Moreover, we assume
the existence of a special function ⊥ such that Dom(⊥) = {}.

A value mapping set is a data structure defined in terms of sets Domain
and Value. Each pair 〈Domain,Value〉 corresponds to a different set ValMap
of value mappings, defined as all functions from subsets of Domain to Value∪
{Nil}, where Nil is a special value not present in Value. More formally,
ValMap =

⋃
{[D → R] : D ⊆ Domain ∧ R = Value ∪ {Nil}}. A v-mapping

is therefore a function that maps some elements of Domain to either a value
in Value or Nil . Notice that, since {} ⊆ Domain for any set Domain, ⊥
is present in every v-mapping set. To ease the presentation, hereinafter we
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consistently use uppercase letters for values in Value ∪ {Nil} and lowercase
letters for v-mappings in ValMap.

We call a pair 〈d ,V 〉, where d ∈ Domain and V ∈ Value ∪ {Nil}, a
single mapping, or s-mapping for short, and define the append operation
v • 〈d ,V 〉, where v is a v-mapping and 〈d , v〉 is an s-mapping, to equal
v-mapping f such that (i) Dom(f ) = Dom(v)∪ {d} and (ii) ∀q ∈ Dom(f ) :
if q ∈ Dom(v) then f (q) = v(q) else f (q) = V . Informally, v • 〈d ,V 〉
extends v with the s-mapping 〈d ,V 〉 iff d is not in the domain of v . The
append operator defines a partial order relation on a v-mapping set. We
say that v-mapping v is a prefix of v-mapping w , and w is an extension of
v (v v w), iff w can be generated from v by a series of append operations.
The precedence between v and w can be easily checked since v v w iff
Dom(v) ⊆ Dom(w) and ∀d ∈ Dom(v) : v(d) = w(d). We define v < w to
be true iff v v w and v 6= w .

Given a set T ⊆ ValMap, we say that v-mapping v is a lower bound
of T iff v v w for all w in T . A greatest lower bound (glb) of T is a
lower bound v of T such that w v v for every lower bound w of T , and
we represent it by uT . Similarly, we say that v is an upper bound of T iff
w v v for all w in T . A least upper bound (lub) of T is an upper bound
v of T such that v v w for every upper bound w of T , and we represent
it by tT . For simplicity of notation, we use v u w and v t w to represent
u{v ,w} and t{v ,w}, respectively. There is always a unique glb for a set T
of v-mappings. The existence of a lub, however, depends on whether the set
T is compatible, but if it exists, then it is unique. Two v-mappings v and w
are defined to be compatible iff there exists a v-mapping u such that v v u
and w v u. A set S of v-mappings is compatible iff its elements are pairwise
compatible. Compatibility can be easily checked since two v-mappings are
compatible iff the elements in the intersection of their domains are mapped
to the same values.

We say that a value mapping is complete iff its domain equals Domain. It
is easy to see that a complete v-mapping does not have any strict extension,
since no append operation applied to it can result in a different v-mapping.
An interesting complete v-mapping is the one that maps every element in
Domain to Nil . This v-mapping is independent of the set Value and, for
this reason, we call it the trivial v-mapping. A v-mapping is nontrivial iff
it is different from the trivial one.
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3.2 Problem definition

As we have done for atomic broadcast, we define the M-Consensus problem
in terms of the sets of proposer, acceptor, and learner agents, and a set of
proposable values. The problem considers the v-mapping set with Domain
equal to the set of proposers and Value equal to the set of proposable val-
ues. Proposers propose values and learners learn v-mappings that can differ
but must always be compatible, can only be extended, and must eventually
equal the same complete nontrivial v-mapping. We say that a v-mapping is
proposed iff all elements of its domain are mapped either to Nil or to a pro-
posed value and we let learned [l ] represent the v-mapping currently learned
by learner l , initially ⊥. Based on that, the properties of M-Consensus are
defined as follows:

Nontriviality For any learner l , learned [l ] is always a nontrivial proposed
v-mapping.

Stability For any learner l , if learned [l ] = v at some time, then v v
learned [l ] at all later times.

Consistency The set of learned v-mappings is always compatible and has
a nontrivial lub.

Liveness For any proposer p and learner l , if p, l and a quorum of acceptors
are nonfaulty and p proposes a value, then eventually learned [l ] is
complete.

Learners initially know ⊥, which is a valid prefix for any v-mapping. As
proposers make proposals, learners can extend their learned v-mappings as
long as they are always proposed and nontrivial. Note that a v-mapping
that maps all its domain to Nil but does not cover all elements in Domain
is nontrivial and can be learned by a learner, which is not a problem since
the remaining elements of Domain can still be mapped to some value. Con-
sistency ensures that all currently learned values can be extended to a com-
mon v-mapping that satisfies the Nontriviality property. The existence of
a nontrivial lub is also implied by Liveness and Nontriviality, but its pres-
ence in the Consistency property makes the problem specification machine-
closed [1]. The Liveness property states that all correct learners will even-
tually learn a complete v-mapping, which implies that, like consensus and
differently from atomic broadcast, an instance of M-Consensus eventually
terminates.

With respect to solvability, M-Consensus is equivalent to consensus. It is
easy to see that an algorithm that solves consensus can solve M-Consensus
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by just having learners learn a mapping in which a specific proposer is
mapped to the decided value and all the others are mapped to Nil . An
algorithm that solves M-Consensus also trivially solves consensus by just
totally ordering the set of proposers and picking up the value mapped to
the first proposer not mapped to Nil . Actually, this equivalence grants to
M-Consensus all known lower bounds for consensus. The advantage of M-
Consensus, though, has to do with the implementation of atomic broadcast
since it allows two concurrent proposals to appear in the problem solution,
mapped to different proposers. This avoids the proposal collision problem
existent in consensus-based atomic broadcast and explained in Section 1.

4 Collision-Fast Paxos

This section describes our solution to M-Consensus, which we later employ
to solve atomic broadcast. An unambiguous TLA+ [7] specification of the
algoritm and its proofs of correctness can be found in the appendix.

4.1 Basic Algorithm

We first describe our basic algorithm, which satisfies safety but does not
guarantee liveness, a topic addressed in the next section. The algorithm is
structured in rounds and the only assumption we make about them is that
they are totally ordered by a relation ≤. For simplicity, it can be assumed
that rounds correspond to the natural numbers unless we explicitly state it
differently (Section 4.2). As in the original Paxos protocol [6], every round
has a single coordinator assigned to it. Coordinators represent a different
sort of agent besides proposers, acceptors, and learners.

We also assign to each round r a subset of the proposers we call the
collision-fast proposers of r . The collision-fast proposers of a round are the
only proposers allowed to have their proposals learned in two communication
steps at that round. As we explain later, making all proposers collision-fast
for all rounds would restrict the algorithm’s resilience.

At some round r , a collision-fast proposer p fast-proposes an s-mapping
〈p,V 〉 at most once. It does that when it has a value to be proposed
or when it notices that another collision-fast proposer of round r has fast
proposed a non-Nil value—a situation in which p fast-proposes 〈p,Nil〉. If
the fast proposal contains a mapping with a proposed value, it is sent to
the acceptors and other collision-fast proposers; otherwise it is sent directly
to the learners. An acceptor may accept multiple v-mappings as long as
the newly accepted v-mapping extends the previous one. The v-mappings
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accepted by the acceptors are generated from the non-Nil s-mappings fast-
proposed and, therefore, always map at least one proposer to a non-Nil
value.

We say that a v-mapping v is chosen at round r iff there exists a (pos-
sibly empty) subset P of the collision-fast proposers of r such that the two
conditions below hold:

• every proposer p ∈ P has fast-proposed s-mapping 〈p,Nil〉 and

• there exists a quorum Q of acceptors such that every acceptor a ∈ Q
has accepted a v-mapping w such that v is a prefix of w extended with
〈p,Nil〉 for every proposer p ∈ P .

More intuitively, one can think that if a collision-fast proposer p has fast-
proposed 〈p,Nil〉 at round r , then every acceptor that has accepted or later
accepts some v-mapping at r will “automatically”, though not explicitly,
extend it with 〈p,Nil〉. Thinking this way, a v-mapping is chosen at round
r if it is a prefix of every v-mapping accepted by some quorum acceptor Q
at r .

Chosen v-mappings are guaranteed to be compatible and a learner can
extend learned [l ] by setting it to the lub between learned [l ] and any chosen
v-mapping. If at least one collision-fast proposer fast-proposes a value, no
process crashes, and messages are correctly delivered, it is easy to see that
learners learn a complete nontrivial v-mapping within two message steps.
However, new rounds might have to be started due to failures. To ensure
consistency in this case v-mappings chosen in some round must be made
compatible with v-mappings chosen in other rounds.

The algorithm keeps the invariant that if a v-mapping is or might be
chosen at some round r then any v-mapping accepted at a higher-numbered
round extends the possibly chosen one. This is guaranteed by the actions
taken to start a new round. A new round’s coordinator queries a quorum
of acceptors to discover if some v-mapping has been or might be chosen
at a lower-numbered round. If this is the case, the coordinator extends
such v-mapping with Nil mappings to make it complete and sends it to the
acceptors for it to be accepted and chosen directly. If no v-mapping has been
or might be chosen at a lower-numbered round, the collision-fast proposers
of the current round are notified that they can fast-propose for that round
(collision-fast proposers wait for this confirmation before fast-proposing at
some round).

For the coordinator to be able to identify if some value has been or
might be chosen at a lower-numbered round by just querying a quorum of
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acceptors, we need the following assumption about quorums:

Assumption 1 (Quorum Requirement) If Q and R are quorums, then
Q ∩ R 6= ∅.

In fact, any general algorithm for asynchronous consensus (and, therefore,
M-Consensus) must satisfy a similar requirement, as shown by the Accepting
Lemma in [10]. A simple way to ensure this is defining quorums as any
majority of the acceptors.

To make our algorithm description precise, we must explain the variables
required by each process. A proposer p has the following variables:

prnd [p] The current round of p. Initially 0.

pval [p] The value p has fast-proposed at round prnd [p] or special value none
if p has not fast-proposed anything at round prnd [p]. Initially none.

The variables of a coordinator c are:

crnd [c] The current round of c. Initially 0.

cval [c] The initial v-mapping for round crnd [c], if c has already queried
a quorum of acceptors for crnd [c] or special value none otherwise.
Initially ⊥ for the coordinator of round 0 and none for all the others.

An acceptor a keeps three variables:

rnd [a] The current round of a. Initially 0.

vrnd [a] The round at which a has accepted its latest value. Initially 0.

vval [a] The v-mapping a has accepted at vrnd [a] if it has accepted some-
thing at vrnd [a], or special value none otherwise. Initially none.

Each learner l keeps only the v-mapping it has learned so far.

learned [l ] The v-mapping currently learned by l . Initially ⊥.

In the following, we present the basic atomic actions that compose the
algorithm.

Propose(p,V ) Executed by proposer p when it wants to propose value V .
p sends message 〈“propose”,V 〉 to some collision-fast proposer for
round prnd [p]. It is just a local message if p is a collision-fast proposer
of prnd [p].
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Phase1a(c, r) Executed by coordinator c to start round r . It is enabled iff:

• c is the coordinator of round r and

• crnd [c] < r .

It sets crnd [c] to r , cval [c] to none, and sends message 〈“1a”, r〉 to
the acceptors.

Phase1b(a, r) Executed by acceptor a, for round r . It is enabled iff:

• a has received a 〈“1a”, r〉 message and

• rnd [a] < r

It sets rnd [a] to r and sends message 〈“1b”, r , a, vrnd [a], vval [a]〉 to
the coordinator of round r . Setting rnd [a] to r makes sure that no
mapping will be further accepted by a at a round lower than r and the
“1b” message tells the coordinator of r that the last value accepted
by a for a round lower than r was vval [a] at round vrnd [a].

Phase2Start(c, r) Executed by coordinator c of round r . This action picks
up an initial v-mapping for round r based on the “1b” messages the
coordinator c received for round r from a quorum of acceptors. It is
enabled iff:

• r = crnd [c],

• cval [c] = none, and

• c has received a “1b” message for round r from every acceptor in
a quorum Q .

Let k be the highest vrnd field received in the “1b” messages mentioned
above and let S be the set of all v-mappings (different from none)
received in the “1b” messages with field vrnd equal to k . If S is empty,
then no v-mapping has been or might be chosen at a lower-numbered
round and c can pick up v-mapping ⊥ to start round r . In this case,
it sets cval [c] to ⊥ and sends message 〈“2S”, r ,⊥〉 to all proposers,
allowing them to fast-propose when they are ready. Acceptors need
not be notified in this case.

If S is not empty, then it might be the case that some v-mapping has
been or might be chosen at a round lower than or equal to k . As
mentioned before, the algorithm guarantees that if a v-mapping was
or might be chosen at some round lower than k , then it is a prefix of all
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values accepted in k , including those in S . Moreover, if any v-mapping
has been or might be chosen at round k , then, by the quorum assump-
tion, it must have been accepted by some acceptor in Q and, thus,
is present in S . As we explain in action Phase2b(a, r), v-mappings
accepted by acceptors for the same round are always compatible and
this obviously guarantees the compatibility of set S . Therefore, tS ex-
tends both the v-mappings possibly chosen at rounds lower than k and
the v-mappings possibly chosen at k . Because acceptors only accept v-
mappings that map at least one proposer to a non-Nil value, tS also
satisfies this property and extending it with s-mappings 〈p,Nil〉 for
every proposer p does not generate the trivial mapping. Let v be tS
extended with 〈p,Nil〉 for every proposer p; coordinator c sets cval [c]
to v and sends message 〈“2S”, r , v〉 to all acceptors and proposers.

Phase2Prepare(p, r) Executed by proposer p, for round r . It is enabled iff:

• prnd [p] < r and
• p has received a message 〈“2S”, r , v〉.

First, it sets prnd [p] to r . If v = ⊥, it sets pval [p] to none; otherwise,
it sets pval [p] to v(p). Recall, from action Phase2Start(c, r) above,
that a “2S” message for any round contains either ⊥ or a complete
v-mapping.

Phase2a(p, r ,V ) Executed by proposer p, where r is the current round of
p and V is either a proposed value or Nil . It is enabled iff:

• prnd [p] = r ,
• p is a collision-fast proposer of r ,
• pval [p] = none, and
• either p has received message 〈“propose”,V 〉 or V equals Nil

and p has received message 〈“2a”, r , 〈q ,W 〉〉, where 〈q ,W 〉 is an
s-mapping from any proposer q to a non-Nil value W .

It sets pval [p] to V and sends message 〈“2a”, r , 〈p,V 〉〉 either to the
acceptors and other collision-fast proposers of r , if V does not equal
Nil , or directly to the learners otherwise. In this action, proposer p
fast-proposes, giving its opinion about the value it should be mapped
to. It is triggered by the receipt of a “propose” message with a pro-
posed value (a local 0-latency message if p sent it to itself) or by the
receipt of a “2a” message from another collision-fast proposer, which
forces p to set its opinion to Nil .
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Phase2b(a, r) Executed by acceptor a, for round r and v-mapping v . It is
enabled iff:

• rnd [a] ≤ r and

• Either one of the two following conditions is satisfied:

a) a has received message 〈“2S”, r , v〉, where v 6= ⊥, and vrnd [a] <
r or vval [a] = none

b) a has received message 〈“2a”, r , 〈p,V 〉〉, where V 6= Nil .

It sets rnd [a] and vrnd [a] to r and changes vval [a] depending on
whether condition (a) or (b) above is satisfied. If condition (a) is
true, it sets vval [a] to v . If condition (b) is true and vrnd [a] < r
or vval [a] = none, then it sets vval [a] to Bottom • 〈p,V 〉 extended
with 〈q ,Nil〉 for every proposer q that is not collision-fast for r ; oth-
erwise, it sets vval [a] to its previous value extended with 〈p,V 〉, that
is, vval [a] • 〈p,V 〉. It then sends message 〈“2b”, r , a, vval [a]〉 to all
learners, with the updated value of vval [a].

Condition (a) implies that the coordinator of round r has picked up v-
mapping v 6= ⊥ for round r based on the votes of a quorum of acceptors
for lower-numbered rounds. As explained in action Phase2Start(c, r),
this v-mapping v is complete and different from the trivial mapping.

Condition (b) implies that the coordinator of round r has picked up ⊥
for the initial v-mapping of r and collision-fast proposers were allowed
to fast-propose. In this case, the first mapping acceptor a accepts
for round r maps the proposer p that sent the “2a” message to the
(non-Nil) value it sent and maps every proposer that is not collision-
fast for r to Nil , since they are not allowed to fast-propose. When a
receives the “2a” messages from other collision-fast proposers of round
r with non-Nil values, a just appends the received s-mapping to the
previously accepted v-mapping.

It is not possible that, for some round r , an acceptor executes this
action due to condition (a) and another acceptor executes it due to
condition (b). If acceptors execute this action for a round r satisfying
condition (a), they must accept the same complete v-mapping v . If
acceptors execute this action for r satisfying condition (b), they must
accept v-mappings that map a proposer p either to Nil , if p is not
collision-fast for r , or to the value p sent in its “2a” message, if p is
collision-fast for r . Since no proposer can send different “2a” messages
for the same round, all v-mappings accepted by condition (b) must be
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compatible. This arguments shows that it is safe to calculate the lub of
any set of v-mappings accepted for the same round, as done in action
Phase2Start(c, r).

Learn(l) Executed by learner l . It is enabled iff l has received “2b” messages
for some round r from a quorum Q and message 〈“2a”, r , 〈p,Nil〉〉 from
every proposer p in a (possibly empty) subset P of the collision fast
proposers of round r . It calculates the lub of the chosen v-mappings
based on the received information in order to update the currently
learned v-mapping of l . Let Q2bVals be the set of all v-mappings
received in the “2b” messages for round i from acceptors in Q , and let
newv be uQ2bVals extended with 〈p,Nil〉 for every proposer p in P .
The action sets learned [l ] to learned [l ] t newv .

4.2 Ensuring Liveness

The previous actions ensure safety, but if messages are lost, coordinators or
collision-fast proposers crash, or coordinators keep on starting new rounds,
then they will not ensure progress. We now extend the algorithm for that.
Some of the assumptions we make are very basic. It is clear that no algorithm
can ensure progress if messages can be indiscriminately lost and non-crashed
agents indefinitely refuse to take actions that are enabled. Therefore, we
assume that if agents a and b do not crash and a keeps resending message
m to b, then b eventually receives m. Moreover, we assume weak fairness
on the actions an agent may take, that is, no action remains enabled forever
without being executed. We tacitly assume that an action is enabled only
if its agent is not crashed.

The FLP result and the equivalence between consensus and M-Consensus
with respect to solvability imply that these assumptions are not enough to
ensure liveness for M-Consensus. As in the original Paxos protocol, we
circumvent FLP by eventually electing a distinguished coordinator—the
leader—responsible for starting new rounds. For it to work, we require also
that every coordinator be reponsible for infinitely many higher-numbered
rounds, which is easily ensured by having round numbers defined as tuples
〈n, c〉 where n is a natural number and c is its coordinator identifier.

When the leader starts a round and picks up ⊥ as its initial value, the
round will only succeed in getting a complete v-mapping chosen and learned
if all its collision-fast proposers remain up. This is inherent to collision-
fast consensus algorithms like ours as implies the Collision-fast Learning
Theorem of [10] and, in fact, it is the main reason why we designed Collision-
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fast Paxos so that the set of collision-fast proposers depends on the round;
had we done it differently, the failure of any collision-fast proposer would
not allow our algorithm to become collision-fast again. As a result, the
leader must be able to somehow identify when a collision-fast proposer of
the current round has crashed in order to start a new one. We assume that
a coordinator c that believes itself to be the leader keeps a set activep[c]
with all the proposers it believes to be currently up. We assume this set
can take any valid value but, in order to ensure liveness, it must eventually
satisfy some conditions we show later in this section.

For progress, we need to make a number of small changes to the algorithm
we presented in Section 4.1:

• We add “c believes itself to be the leader” as a pre-condition to actions
Phase1a(c, r) and Phase2Start(c, r).

• If an acceptor a receives a “1a”, “2S”, or “2a” message for round r
such that r < rnd [a] and the coordinators of r and rnd [a] differ, then
a sends a special message to the coordinator of r to inform that round
rnd [a] was initiated.

• The same sort of special message is sent if a proposer p receives a “2S”
message for round r such that r < prnd [p] and the coordinators of r
and prnd [p] differ.

• Besides the first modification, coordinator c executes action Phase1a(c, r)
only if either it receives a special message informing of round j (r > j >
crnd [c]) was initiated, or the set of collision fast-proposers of crnd [c]
is not a subset of activep[c] but the set of collision-fast proposers of r
is.

• Each proposer p that has sent a “propose” message keeps resending
it to one of the collision-fast proposers of prnd [p].

• Each coordinator that believes itself to be the leader keeps resending,
to all its original receivers, the last “1a” or “2S” message it sent.

• Each proposer p that has executed action Phase2a(p, r ,V ), for round
r = prnd [p] and any V , keeps resending the last “2a” message it sent.

• Each acceptor keeps resending the last “1b” or “2b” message it sent.

These changes do not affect safety because they incur new actions that do
not change the algorithm’s variables and make some actions’ pre-conditions
more restrictive only.
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Except for the conditions related to new variable activep, the liveness
assumption of Collision-fast Paxos is the same as the one of the original
protocol (c.f. Section 2.3 of [9]). We define LA(p, l , c,Q) for any proposer
p, learner l , coordinator c, and quorum Q of acceptors, to be the conjunction
of the following conditions:

• {p, l , c} ∪Q are not crashed.

• p has proposed a value.

• c is the only coordinator that believes itself to be the leader.

• All proposers in activep[c] are not crashed.

• For every round r > crnd [c], c is the coordinator of a round s > r
whose collision-fast proposers are all in activep[c].

• activep[c] is a subset of all its future values.

If LA(p, l , c,Q) holds for some proposer p, coordinator c, and quorum Q ,
from some point in time on, then eventually l learns a complete v-mapping.
If every coordinator is itself the only collision-fast proposer for infinitely
higher-numbered rounds that it coordinates, then Collision-fast Paxos could
ensure liveness in the same situations where Paxos would. In fact, a round
in which the only collision-fast proposer is the round coordinator itself im-
plements a standard Paxos round.

As we mentioned before, the set of collision-fast proposers is defined
per round, so that failed proposers can be excluded from the set to allow
collision-fast termination even after failures. For that, we extend round num-
bers with the round’s set of collision-fast proposers, defining round numbers
as tuples of the form 〈n, c, cf 〉, where n is a natural number, c is the round’s
coordinator, and cf is the sorted list of the round’s collision-fast proposers.
It is clear from this definition that a lexicographical comparison induces a
total order on the round numbers. To ensure the uniqueness of the special
round Zero, it is defined a priori as 〈0, c, cf 〉, for some coordinator c and
list cf . This scheme grants to each coordinator an infinite number of rounds
for every possible set of collision-fast proposers.

5 Atomic Broadcast

Solving atomic broadcast with M-Consensus is simple; achieving a collision-
fast solution, though, depends on the M-Consensus algorithm in use. We
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first present the general approach and then extend it to use Collision-fast
Paxos. A complete TLA+ specification of our atomic broadcast algorithm
is given in the appendix.

5.1 General Approach

To implement atomic broadcast, we use infinitely many M-Consensus in-
stances, each one uniquely identified by a natural number. To differentiate
messages and variables of different instances we superscript them with the
instance’s identification (e.g., learned i , “1bj ”). Atomic broadcast proposers
act both as proposers and learners in each of the M-Consensus instances.

To broadcast a message m, a proposer p proposes m in the smallest
instance of M-Consensus i in which it has neither proposed nor learned
anything yet. Being also a learner, p eventually learns the decision of i , and
checks if there exists some proposer q such that learned i [p](q) = m. If there
is, then p knows that m was successfully broadcast and will eventually be
delivered by all nonfaulty learners; otherwise, p re-proposes m in the next
free M-Consensus instance. This procedure can be executed in parallel for
many messages.

Assuming there is a known total order of proposers, learner l builds
sequence delivered [l ] by considering each M-Consensus instance in order and
then, for each proposer p, also in order, checking if p has something mapped
to it on that instance. If so, l appends the mapped value to delivered [l ]
iff it is different from Nil and not yet contained by delivered [l ]. If p has
nothing mapped to, l stops the procedure because the current instance is
not complete yet.

5.2 Collision-fast Paxos Approach

Using Collision-fast Paxos, all M-Consensus instances can share the same
coordinator. This also allows us to keep all instances synchronized with
respect to their current round in all agents. As a result, variables rnd [a],
prnd [p], and crnd [c] can be shared amongst all instances. The other vari-
ables are not shared but could be allocated for an instance only when their
value changes from the initial one. When a coordinator executes action
Phase1a(c, r), it does that for all instances and sends a single “1a” mes-
sage. An acceptors a that executes action Phase1b(a, r), also does that for
all instances and aggregates all “1bi” messages it should send in a single one.
Only a finite number of instances will have vval i [a] 6= none, which allows
the compression of this message to a finite size. After collecting these com-
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posite “1b” messages from a quorum of acceptors, a coordinator c executes
Phase2Start(c, r) for all instances and, similarly, generates a composite “2S”
message containing the “2Si” message of every instance i . A proposer p that
receives such composite “2S” message, simply executes Phase2Prepare(p, r)
for all instances.

The actions above are executed only when the leader changes. During
normal execution, things are simpler. A collision-fast proposer that wants to
atomically broadcast a message M fast-proposes M in the first instance i for
which pval i [p] = none by executing action Phase2a i(p, r ,M ). If everything
goes fine, the message will be eventually learned and delivered; if failures or
suspicions prevent the normal case, eventually pval i [p] will change from M to
Nil due to a “2S” message and p will notice that it will have to repropose M
in another instance. When a proposer that is not collision-fast for its current
round wants to atomically broadcast a message, it simply forwards it to one
of the collision-fast proposers. Notice that, since Collision-fast Paxos ensures
that a collision-fast proposer eventually knows if its fast proposal was learned
or not, this implementation does not require that proposers be learners
too. Acceptors and Learners execute actions Phase2b(a, r) and Learn(l)
independently for each instance. As for progress, this atomic broadcast
implementation has the same liveness condition as Collision-fast Paxos.

As discussed in Section 4.1, in the normal case, if a collision-fast proposer
p fast-proposes a message, then a v-mapping containing it is learned in
two message steps. If there are no concurrent (non-Nil) fast-proposals for
the same instance, this v-mapping will be complete. Otherwise, a learner
complete to depth 2 plus the depth of p’s fast proposal will learn a complete
v-mapping containing all fast proposals, since all are learned in two steps.
Because a message to be broadcast by a collision-fast proposer never waits to
be fast-proposed in some instance and a collision-fast proposer leaves no gaps
between instances, this atomic broadcast algorithm is collision-fast. In fact,
according to our definition it is collision-fast for P equal to the collision-fast
proposers of round 0 and M equal to Q ∪ P where Q is a quorum.

6 Conclusion

We have discussed the implementation of a collision-fast atomic broadcast
protocol. Since the traditional approach to implement atomic broadcast
based on standard consensus cannot result on a resilient collision-fast imple-
mentation, we have proposed a new agreement problem called M-Consensus
that allows multiple proposals to take part in the final decision. Our so-
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lution to M-Consensus, called Collision-fast Paxos, is an extension of the
Paxos protocol in which a number of proposers can have their proposals as
part of the final decision in two message steps. Using Collision-fast Paxos to
implement a collision-fast atomic broadcast algorithm is simple and provides
a very efficient fault-tolerant protocol.

Although there exist atomic broadcast algorithms that can deliver mes-
sages within two steps in some optimistic runs (e.g., [11, 12, 13]), the only
protocol we found in the literature that is truly collision-fast is [14]. It
tolerates more than a single failure but, instead of relying on consensus, it
extends the timestamp-based algorithm presented by Lamport in [5], which
supports our claim that it is impossible to implement a collision-fast atomic
broadcast algorithm that tolerates more than a single failure based on stan-
dard consensus. In contrast to the approach in [14], ours considers a weaker
model, where processes can crash and recover, and messages can be lost or
duplicated. Moreover, our algorithm allows reconfiguration in case collision-
fast proposers fail so that execution can become collision-fast again, which
is not the case for [14] when failures happen.
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A The Safety of Collision-fast Paxos

This section presents the proof that Collision-fast Paxos satisfies the safety
properties of M-Consensus.

A.1 Preliminaries

We start by defining a special data structure we call a ballot array. Our defi-
nition is highly-inspired by the data structure with the same name presented
in [8]. A ballot array represents the voting history of a set of acceptors, that
is, the history of v-mappings accepted by acceptors on different rounds. For
every acceptor a, it keeps the current round of a, b̂Aa , and, for every ac-
ceptor a and round r , the vote a has cast at r , bAa [r ]. If an acceptor has
not cast a vote at round r , then bAa [r ] equals special value none. To ease
the design of our algorithms, we force acceptors to vote only for v-mappings
that have at least one element of their domain mapped to a non-Nil value.
A v-mapping that satisfies this constraint is called a valued v-mapping. The
complete definition of a ballot array is given below.

Definition 8 (Ballot Array) A ballot array bA is a mapping that assigns
to each acceptor a a round b̂Aa and to each acceptor a and round r a value
bAa [r ] that is a v-mapping or equals none, such that for every acceptor a:

• The set of rounds m with bAa [m] 6= none is finite,

• bAa [r ] = none for all rounds r > b̂Aa , and

• bAa [r ] is either none or a valued v-mapping for all rounds r.

As mentioned in Section 4.1, a v-mapping is learned depending not only
on the votes cast by acceptors but also on the Nil values proposed by pro-
posers. Because of that, we define another data structure we call a proposal
array. A proposal array represents a history of proposals made by proposers
at different rounds. It keeps, for every proposer p and round r , the (possi-
bly Nil) value p has proposed at round r , or special value none if p has not
proposed at round r .

Definition 9 (Proposal Array) A proposal array pA is a mapping that
assigns to each proposer p and round r a value pAp [r ] that is either a pro-
posable value, special value Nil , or special value none.
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In fact, proposal arrays are important only for their Nil proposals be-
cause these proposals are used to define a chosen v-mapping, that is, a
v-mapping that can be safely learned by a learner without jeopardizing con-
sistency. Before we give a formal definition for a chosen v-mapping, though,
we have to introduce the operator NilExtension(v ,P), which we refer to as
the Nil -extension of v for P where v is a v-mapping and P is a set of pro-
posers. This operator returns none if v equals none; otherwise, it is defined
as v-mapping w satisfying the three conditions below:

1. Dom(w) = Dom(v) ∪ P

2. ∀p ∈ Dom(w) ∩Dom(v) : w(p) = v(p)

3. ∀p ∈ Dom(w) \Dom(v) : w(p) = Nil

Intuitively, NilExtension(v ,P) extends v by mapping each proposer in P \
Dom(v) to Nil . A different but equivalent definition of this operator appears
in TLA+ module PaxosConstants in Section D.

We say that a v-mapping v is chosen at some round r in pair 〈bA, pA〉,
where bA is a ballot array and pA is a proposal array, iff there is a quorum
Q of acceptors and a (possibly empty) set P of collision-fast proposers for
r that have proposed Nil at round r such that, for every acceptor a in Q , v
is a prefix of the NilExtension of the v-mapping a has accepted at round r
for P . For completeness, we define that none is not a prefix or an extension
of any v-mapping.

Definition 10 (Chosen at) A v-mapping v is chosen at round r in 〈bA, pA〉,
where bA is a ballot array and pA is a proposal array, iff there exists a set
P of collision-fast proposers for r and a quorum Q such that:

• ∀p ∈ P : pAp [r ] = Nil

• ∀q ∈ Q : v v NilExtension(bAa [r ],P)

A v-mapping v is chosen in 〈bA, pA〉 iff it is chosen at some round r in
〈bA, pA〉.

We say that a v-mapping v is choosable at some round r if it is possible
to extend the voting history represented by bA and the proposal array pA so
that v satisfies the condition above to be considered chosen at r in 〈bA, pA〉.

Definition 11 (Choosable at) A v-mapping v is choosable at round r in
pair 〈bA, pA〉, where bA is a ballot array and pA is a proposal array, if, and
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only if, considering P to be the set of proposers p such that pAp [r ] is either
Nil or none, there exists a quorum Q such that v v NilExtension(bAa [r ],P)
for every acceptor a in Q with b̂Aa > r.

We say that a v-mapping is safe at some round in a pair 〈bA, pA〉, where
bA is a ballot array and pA is a proposal array, if it extends all v-mappings
that are choosable at lower-numbered rounds in 〈bA, pA〉. We also say that
a a pair 〈bA, pA〉 is safe if all v-mappings that acceptors have voted for in
bA are safe at the rounds they were accepted in 〈bA, pA〉.

Definition 12 (Safe at) A v-mapping v is safe at round r in 〈bA, pA〉,
where bA is a ballot array and pA is a proposal array, iff w v v for every
round k < r and every v-mapping w that is choosable at k. A pair 〈bA, pA〉
is safe iff for every acceptor a and balnum k, if bAa [k ] 6= none then it is
safe at k in 〈bA, pA〉.

The proposition below states that if a pair of ballot and proposal arrays
is safe, then all its chosen v-mappings are compatible.

Proposition 1 Let bA be a ballot array and pA be a proposal array, if
〈bA, pA〉 is safe, then the set of values that are chosen in 〈bA, pA〉 is com-
patible.

Proof: By the definition of Consistency, it suffices to
Assume: 1. 〈bA, pA〉 is safe

2. v-mapping v is chosen at round r in 〈bA, pA〉
3. v-mapping w is chosen at round s ≥ r in 〈bA, pA〉

Prove: v and w are compatible.
1. Choose a quorum Qv and set Pv of collision-fast proposers for r such that

• ∀p ∈ Pv : pAp [r ] = Nil

• ∀q ∈ Qv : v v NilExtension(bAa [r ],Pv )

Proof: This follows from proof assumption 2 and the definition of chosen
at.

2. Choose a quorum Qw and set Pw of collision-fast proposers for s such
that

• ∀p ∈ Pw : pAp [r ] = Nil

• ∀q ∈ Qw : v v NilExtension(bAa [r ],Pw )

Proof: This follows from proof assumption 3 and the definition of chosen
at.
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3. Case: r = s
3.1. Choose an acceptor a in Qv ∩Qw

Proof: a exists by the Quorum Requirement (Assumption 1).
3.2. v v NilExtension(bAa [r ],Pv ∪ Pw )

3.2.1. v v NilExtension(bAa [r ],Pv )
Proof: By steps 1 and 3.1.

3.2.2. NilExtension(bAa [r ],Pv ) v NilExtension(bAa [r ],Pv ∪ Pw )
Proof: By the definition of Nil -extension.

3.2.3. Q.E.D.
3.3. w v NilExtension(bAa [r ],Pv ∪ Pw )

3.3.1. w v NilExtension(bAa [r ],Pw )
Proof: By steps 2 and 3.1.

3.3.2. NilExtension(bAa [r ],Pw ) v NilExtension(bAa [r ],Pv ∪ Pw )
Proof: By the definition of Nil -extension.

3.3.3. Q.E.D.
3.4. Q.E.D.

Proof: By steps 3.2 and 3.3 and the definition of compatible.
4. Case: r < s

4.1. v is choosable at r in 〈bA, pA〉
Proof: By the definition of choosable, any v-mapping chosen at
some round is also choosable at it.

4.2. Choose any acceptor a in Qw

Proof: The Quorum Requirement implies that quorums cannot be
empty.

4.3. v v bAa [s]
Proof: By the fact that 〈bA, pA〉 is safe (proof assumption 1).

4.4. w v NilExtension(bAa [s],Pw )
Proof: By Step 2.

4.5. Q.E.D.
Proof: Step 4.3 and the definition of Nil -extension imply that v v
NilExtension(bAa [s],Pw ). Step 4.4, and the definition of compatible
complete the proof.

5. Q.E.D.
Proof: All cases were considered since r ≤ s according to proof assump-
tion 3.

We define a pair 〈bA, pA〉 to be conservative iff all v-mappings accepted
by any acceptors a and b at the same round are compatible and if the v-
mapping accepted by b maps some proposer not mapped by the v-mapping
accepted by a, then this proposer is mapped to the value it has proposed
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for that round.

Definition 13 (Conservative) A pair 〈bA, pA〉 is conservative iff for ev-
ery round r and all acceptors a and b, if bAa [r ] and bAb [r ] are different
from none, then the two conditions below hold:

• bAa [r ] and bAb [r ] are compatible and

• ∀p ∈ Dom(b) \Dom(a) : bAb [r ][p] = pAp [r ].

Below we present the definition of operator ProvedSafe(Q , r , bA), which
returns a v-mapping that is proved to be safe at round r in 〈bA, pA〉 for
any proposal array pA based only on the votes of acceptors in Q , given that
〈bA, pA〉 is safe and conservative, and, for every acceptor a in Q , b̂Aa ≥ r .
In the definition below, we let Proposer be the set of all proposers.

Definition 14 (ProvedSafe) For any round r, quorum Q, and ballot ar-
ray bA, let:

• KS ∆= {i ∈ RNum | (i < r) ∧ (∃a ∈ Q : bAa [i ] 6= none])}

• k ∆= Max (KS )

• AS ∆= {a ∈ Q : bAa [k ] 6= none}

• G ∆= {bAa [k ] : a ∈ S}

If KS = {}, then ProvedSafe(Q , r , bA) is defined to equal ⊥; otherwise,
ProvedSafe(Q , r , bA) is defined to equal NilExtension(tG ,Proposer), where
Proposer is the set of all proposers.

The proposition below states that the value returned by ProvedSafe(Q , r , bA)
is indeed safe at r in 〈bA, pA〉 if 〈bA, pA〉 is safe and conservative and, for
every acceptor a in Q , b̂Aa ≥ r .

Proposition 2 For any round r, quorum Q, ballot array bA, and proposal
array pA, if

• 〈bA, pA〉 is safe,

• 〈bA, pA〉 is conservative, and

• b̂Aa ≥ r for all a ∈ Q,

then ProvedSafe(Q , r , bA) is safe at r in 〈bA, pA〉.
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Assume: There exist round r , quorum Q , ballot array bA, and proposal
array pA such that:
1. 〈bA, pA〉 is safe
2. 〈bA, pA〉 is conservative
3. ∀a ∈ Q : b̂Aa ≥ r

Prove: ProvedSafe(Q , r , bA) is a v-mapping safe at r in 〈bA, pA〉
Let: KS be the set KS in the definition of ProvedSafe for Q ,r , and bA.
1. Case: KS is empty

1.1. No v-mapping v is choosable at a round s < r in 〈bA, pA〉
Proof: By the definition of choosable at, it suffices to
Let: P be the set {p ∈ Proposer : pAp [s] = Nil}
Assume: There exist v-mapping v , round s < r , and quorum Qv

such that v v NilExtension(bAa [s],P), for every acceptor
a in Qv with b̂Aa > s

Prove: FALSE
1.1.1. Choose any acceptor a ∈ Qv ∩Q

Proof: Such acceptor exists because of the Quorum Require-
ment (Assumption 1).

1.1.2. b̂Aa > s
Proof: Since a belongs to Q , proof assumption 3 states that
b̂Aa ≥ r , and the assumption of step 1.1 states that r > s.
As a result, b̂Aa > s.

1.1.3. v 6v NilExtension(bAa [s],P)
Proof: By the definition of KS , if KS is empty, then bAa [s]
must equal none, otherwise KS would have s as an element.
By definition, any Nil -extension of none equals none and no
v-mapping is a prefix of none.

1.1.4. Q.E.D.
Proof: Steps 1.1.2 and 1.1.3 and the fact that a belongs to
Qv given by step 1.1.1 contradict the assumption of step 1.1.

1.2. Q.E.D.
Proof: By step 1.1, any v-mapping is safe at r in bA. Therefore,
⊥, which is the value returned by ProvedSafe(Q , r , bA), is safe too.

2. Case: KS is not empty
2.1. Choose round k and sets AS and G so that they satisfy the defini-

tions of k , AS and G in the definition of ProvedSafe for Q ,r , and
bA.
Proof: k exists since KS is not empty. AS and G exist because k
exists.

2.2. AS and G are not empty.
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Proof: Given that k belongs to KS , there is at least one acceptor
a in Q such that bAa [k ] 6= none.

2.3. G is compatible.
Proof: All elements of G are v-mappings accepted by acceptors in
Q at round k . These v-mappings are guaranteed to be compatible
because bA is assumed to be conservative (proof assumption 2).

2.4. NilExtension(tG ,Proposer) is safe at r in bA
Proof: By the definition of safe at, it suffices to
Assume: There exist v-mapping w and round s < r such that w is

choosable at s in bA
Prove: w v NilExtension(tG ,Proposer)
2.4.1. Case: s < k

2.4.1.1. Choose a ∈ AS
Proof: a exists by step 2.2, which states that AS is
not empty.

2.4.1.2. w v bAa [k ]
Proof: By the definition of AS , bAa [k ] 6= none.
Since bA is safe (proof assumption 1), any v-mapping
choosable at a round lower-numbered than k , includ-
ing w given that step 2.4.1 considers only the case
where s < k , must be a prefix of bAa [k ].

2.4.1.3. bAa [k ] v tG
Proof: By the definition of G and least upper bound,
and the fact that a ∈ AS (step 2.4.1.1).

2.4.1.4. Q.E.D.
Proof: Steps 2.4.1.2 and 2.4.1.3, and the fact that
v is a partial order relation over v-mappings imply
that w v tG . Moreover, by the definition of Nil -
extension, tG v NilExtension(tG ,Proposer). Since
v is a partial order relation over v-mappings, w v
NilExtension(tG ,Proposer).

2.4.2. Case: s ≥ k
Let: P be the set {p ∈ Proposer : pAp [s] = Nil}
2.4.2.1. Choose Qw such that w v NilExtension(bAa [s],P)

for every acceptor a in Qw with b̂Aa > s
Proof: Qw exists by the definition of choosable and
the assumption of step 2.4.

2.4.2.2. Choose a ∈ Q ∩Qw

Proof: a exists by the Quorum Requirement.
2.4.2.3. bAa [s] 6= none
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Proof: Proof assumption 3 states that b̂Aa ≥ r and
the assumption of step 2.4 states that r > s; there-
fore b̂Aa > s. Steps 2.4.2.1 and 2.4.2.2 imply that
w v NilExtension(bAa [s],P), which is not possible if
bAa [s] = none.

2.4.2.4. s = k
Proof: If s > k , and given that s < r by the assump-
tion of step 2.4, then step 2.4.2.3 above contradicts
the definition of k since a belongs to Q , s > k and
bAa [s] 6= none.

2.4.2.5. w v NilExtension(bAa [k ],P)
Proof: Steps 2.4.2.1, 2.4.2.2, and 2.4.2.4.

Let: P− ∆= P \Dom(bAa [k ])
2.4.2.6. No v-mapping in G maps a proposer in P− to a value

different from Nil
Proof: Assume, for the sake of contradiction, that
there is a v-mapping in G that maps an element p of
P− to something different from Nil . Since 〈bA, pA〉
is conservative and p /∈ Dom(bAa [k ]), pAp [k ] must
equal the mapped value, which contradicts the defi-
nition of P .

2.4.2.7. NilExtension(bAa [k ],P) v NilExtension(tG ,Proposer)
Proof: Steps 2.4.2.3 and 2.4.2.4 imply that a ∈ AS
and, therefore, bAa [k ] ∈ G . The definition of a Nil -
extension and step 2.4.2.6 complete the proof.

2.4.2.8. Q.E.D.
Proof: By steps 2.4.2.5 and 2.4.2.7, and the transi-
tivity of v.

2.4.3. Q.E.D.
2.5. Q.E.D.

Proof: Directly, since NilExtension(tG ,Proposer) is the value re-
turned by ProvedSafe(Q , r , bA) in case KS is not empty.

3. Q.E.D.
Proof: Since KS is defined to be a set, all cases are being covered.

A.2 Abstract Collision-fast Paxos

Our proof of correctness starts with an abstract algorithm that can be more
easily proved correct. It is based upon the following variables:
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learned An array of v-mappings, where learned [l ] is the v-mapping currently
learned by learner l . Initially, learned [l ] = ⊥ for all learners l .

proposed The set of proposed values. It initially equals the empty set.

bA A ballot array. It represents the current state of the voting. Initially,
b̂Aa = 0 and bAa [r ] = none for every acceptor a and round r .

pA A proposal array. It represents the proposal history. Initially, pAp [r ] =
none for every proposer p and round r .

minTried An array of v-mappings, where minTried [r ] is either a v-mapping
or equal to none, for every round r . Initially, minTried [0] = ⊥ and
maxTried [r ] = none for all r > 0.

The Abstract Collision-fast Paxos algorithm satisfies the following in-
variants, which, as we prove next, imply the properties Nontriviality and
Consistency of M-Consensus.

minTried Invariant For every round r , if minTried [r ] 6= none, then

1. minTried [r ] is proposed.

2. minTried [r ] is safe at r in 〈bA, pA〉.
3. If minTried [r ] 6= ⊥, then minTried [r ] is valued and complete.

bA Invariant For all acceptors a and rounds r , if bAa [r ] 6= none, then

1. minTried [r ] v bAa [r ].

2. bAa [r ] is a valued and proposed v-mapping.

3. If minTried [r ] = ⊥ then ∀p ∈ Dom(bAa [r ]) : bAa [r ](p) = pAp [r ];
otherwise, bAa [r ] = minTried [r ].

pA Invariant For all proposers p and rounds r , if pAp [r ] 6= none, then
pAp [r ] is either Nil or a proposed value.

learned Invariant For every learner l :

1. learned [l ] is a nontrivial proposed v-mapping.

2. learned [l ] is the lub of a finite set of v-mappings chosen in 〈bA, pA〉.

Proposition 3 The learned invariant implies the Nontriviality property of
M-Consensus.
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Proof: By part 1 of the learned invariant.

Proposition 4 Invariants minTried, bA, and learned imply the Consis-
tency property of M-Consensus.

Proof: By the definition of Consistency, it suffices to assume that invariants
bA and learned are true, and prove that, for every pair of learners l1 and
l2, learned [l1] and learned [l2] are compatible. The proof is divided into four
steps, presented below:
1. 〈bA, pA〉 is safe.

Proof: This follows from part 1 of the bA invariant, part 2 of the
minTried invariant, the fact that the extension of a safe v-mapping is
also safe by definition, and the definition of a safe ballot array (Defini-
tion 12).

Let: S = {v : v is chosen in 〈bA, pA〉}
2. S is compatible.

Proof: By step 1 and Proposition 1.
3. For every learner l , learned [l ] v tS .

Proof: This is true by part 2 of the learned invariant and the definition
of least upper bound, which implies that if set S is compatible, then the
lub of S is equal to or extends the lub of any subset of S .

4. Q.E.D.
Proof: By step 3 and the definition of compatible c-structs.

Abstract Multicoordinated Paxos has six atomic actions, described be-
low. A complete specification of the algorithm in TLA+ is given in Section D.

Propose(V ) for any value V . It is enabled iff V /∈ proposed and sets proposed
to proposed ∪ {V }.

JoinRound(a, r) for any acceptor a and round r . It is enabled iff b̂Aa < r
and sets b̂Aa to r .

StartRound(r ,Q) for any round r and quorum Q of acceptors. It is enabled
iff

• minTried [r ] = none and

• ∀a ∈ Q : r ≤ b̂Aa .

It sets minTried [r ] to ProvedSafe(Q , r , bA).

Suggest(p, r ,V ) for proposer p, round r , and (possibly Nil) value V , where
p is a collision-fast proposer of r . It is enabled iff
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• pAp [r ] = none and

• either (i)minTried [r ] /∈ {⊥,none} and V = minTried [r ](p), (ii)V
is a proposed value, or (iii)V = Nil and there is a collision-fast
proposer q of r such that pAq [r ] /∈ {Nil ,none}.

It sets pAp [r ] to V .

ClassicVote(a, r , v) for acceptor a, round r , and v-mapping v . Let P−

be the subset of collision-fast proposers of r such that p ∈ P ⇐⇒
pAp [r ] = none, and let MaxT equal the v-mapping that maps each
proposer q in Proposer \ P− to pAq [r ] if q is collision-fast for r or to
Nil otherwise. This action is enabled iff

• b̂Aa ≤ r ,

• v is a valued v-mapping,

• minTried [r ] 6= none,

• v v MaxT , if minTried [r ] = ⊥, or v = minTried [r ], othewise,
and

• either bAa [r ] = none or bAa [r ] < v .

It sets b̂Aa to r and bAa [r ] to v .

AbstractLearn(l , v) for any learner l and v-mapping v . It is elabled iff v is
chosen in 〈bA, pA〉 and sets learned [l ] to learned [l ] t v .

The following proposition proves that the algorithm also satisfies the
Stability property of Generalized Consensus.

Proposition 5 Abstract Multicoordinated Paxos satisfies the Stability prop-
erty of Generalized Consensus.

Proof: For any learner l , the only action that changes the value of learned [l ]
is AbstractLearn(l , v). Since, by the definition of lub, this action can only
extend the value of learned [l ], Stability is ensured.

It is easy to verify that the algorithm’s actions keep the type invariant of
the variables it uses. The most complicated case concerns the ballot array
bA, updated by actions JoinRound(a, r) and ClassicVote(a, r , v). How-
ever, action JoinRound(a, r) only increases the value of b̂Aa and action
ClassicVote(a, r , v) sets bAa [r ] to v , where r always equals b̂Aa after the
action is executed. These changes to bA keep it a ballot array according to
the definition.
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It remains to prove that the abstract algorithm satisfies the invariants
minTried , bA, pA, and learned . For the sake of simplicity, however, we
use some extra notation in the proof. When analyzing the execution of an
action, we use ordinary expressions such as exp to represent the value of
that expression before the action is executed, and we let exp′ be the value
of that expression after the action execution.

Proposition 6 Abstract Multicoordinated Paxos satisfies the invariants
minTried, bA, pA, and learned.

Proof: The invariants are trivially satisfied in the initial state. Therefore,
it suffices to assume that the invariants are true and prove that, for every
action α, they remain true if α is executed. We do that in the following,
analyzing case by case.

1. Case: Action Propose(V ) is executed, where V is a non-Nil value.
Proof sketch: Action Propose(V ) only changes variable proposed , which
is the set of proposed values, and does that by adding a new element to
it. Invariant conditions that do not refer to this set are obviously pre-
served. The others are kept true since the set proposed only increases and
v-mappings composed of proposed values remain composed of proposed
values.

2. Case: Action JoinRound(a, r) is executed, where a is an acceptor and
r is a round number.

Proof sketch: Action JoinRound(a, r) only changes b̂Aa , setting it to
r , which is bigger than b̂Aa . Invariant conditions that do not refer to
b̂Aa are obviously preserved. It remains to check that safe or chosen v-
mappings in 〈bA, pA〉 are kept safe or chosen in 〈bA′, pA′〉. The definition
of chosen does not involve b̂Ae for any acceptor e. The definition of safe
is based upon the definition of choosable at, which does refer to b̂Ae , but
implies that a v-mapping w that is choosable at round k in 〈bA′, pA′〉 is
also choosable at k in 〈bA, pA〉. By the definition of safe, this implies
that a value x that is safe at round s in 〈bA, pA〉 is also safe at s in
〈bA′, pA′〉.

3. Case: Action StartRound(r ,Q) is executed, where r is a round and Q
is a quorum of acceptors.

Proof sketch: Action StartRound(r ,Q) changes minTried [r ] from none
to ProvedSafe(Q , r , bA). The action does not change the other vari-
ables.The bA invariant implies that the pair 〈bA, pA〉 is conservative,
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which ensures that ProvedSafe(Q , r , bA) is safe at r in 〈bA, pA〉. More-
over, the bA invariant states that all accepted v-mappings are proposed
and valued, which guarantees that ProvedSafe(Q , r , bA) is either ⊥ or a
proposed, valued, and complete v-mapping by the definition of ProvedSafe(Q , r , bA).
All these things imply that the action preserves the minTried invariant.
It preserves the bA invariant because it does not change bA and bAe [r ]
is ensured to equal none, for any acceptor e, by the bA invariant itself.
The other invariants are obviously preserved because the variables they
refer to do not change.

4. Case: Action Suggest(p, r ,V ) is executed, where p is a collision-fast
proposer for round r and V is either a proposed value or Nil .

Proof sketch: This action only changes pAp [r ] from none to V and
clearly keeps all invariants.

5. Case: Action ClassicVote(a, r , v) is executed, where a is an acceptor, r
is a round number, and v is a v-mapping.

Proof sketch: The definition of choosable at implies that if a value is
choosable at round s in 〈bA′, pA′〉, then it is chossable at s in 〈bA, pA〉.
This fact, by the definition of safe at, implies that a value that is safe at
round s in 〈bA, pA〉 is necessarily safe at s in 〈bA′, pA′〉. This, together
with the fact that no variable but bA is updated by this action, implies
that the action preserves invariants minTried , pA, and learned . As for
the bA invariant, there are two cases to consider. If minTried [r ] 6= ⊥,
then this action sets bAa [r ] to minTried [r ], which is ensured to be valued,
safe, and complete. In this case, the bA invariant is clearly preserved.
Now, let us assume minTried [r ] = ⊥ and check if the action preserves the
bA invariant with respect to bAa [r ], which is the only entry of bA changed
in this action. Condition 1 of the bA invariant is trivially true because
minTried [r ] = ⊥. Condition 2 is true because MaxT is proposed by the
pA invariant and v is ensured to be valued by the action’s pre-condition.
Condition 3 is ensured by the definition of MaxT .

6. Case: Action AbstractLearn(l , v) is executed, where l is a learner and v
is a v-mapping.

Proof sketch: Action AbstractLearn(l , v) only changes variable learned ,
which is the array of learned v-mappings, and does that by extending one
entry to the lub of it with a chosen v-mapping. Invariants maxTried and
bA are obviously preserved. The first part of the learned invariant is pre-
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served because of the pA invariant and the fact that v-mappings accepted
by acceptors are both proposed and valued. The second part is obviously
preserved.

A.3 Distributed Abstract Collision-fast Paxos

As an intermediate step in our proof, we introduce a distributed version of
the abstract algorithm in the previous section. This algorithm is based on
the same variables as the previous algorithm plus a variable msgs, used to
simulate a message passing system by holding the messages sent between
agents. Variable initialization is done as before for the common variables,
and msgs is set to {〈“2S”, 0,⊥〉} initially, which implies that a 2S message for
round 0 is implicitly sent when the algorithm starts. Message duplication
is implemented by never taking messages out of set msgs, which would
permanently enable actions that depend on an existing message. Since we
are proving only safety, we do not have to implement the loss of messages
because a message loss would only imply that some actions would not be
executed.

The distributed abstract algorithm is described in terms of the following
actions. Its formal specification in TLA+ is given in the appendix section D.

Propose(V ) for any value V . It is enabled iff V /∈ proposed . It sets proposed
to proposed ∪ {V } and adds message 〈“propose”,V 〉 to msgs.

Phase1a(c, r) executed by coordinator c, for round r . The action is enabled
iff minTried [r ] = none. It sends the message 〈“1a”, r〉 to acceptors
(adds it to msgs).

Phase1b(a, r) executed by acceptor a, for round r . The action is enabled
iff

• b̂Aa < r and

• 〈“1a”, r〉 ∈ msgs

It sets b̂Aa to r and adds message 〈“1b”, r , a, bAa〉 to msgs.

Phase2Start(r) for round r . The action is enabled iff:

• minTried [r ] = none and

• There exists a quorum Q such that for all a ∈ Q , there is a
message 〈“1b”, r , a, ρ〉 in msgs, for some ρ.
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Let v = ProvedSafe(Q , r , β), where β is any ballot array such that, for
every acceptor a in Q , β̂a = r and there exists message 〈“1b”, r , a, ρ〉
in msgs with ρ = βa . This action sets minTried [r ] to v and adds
message 〈“2S”, r , v〉 to msgs.

Phase2Prepare(p, r) executed by proposer p, for round r . It is enabled iff:

• pAp [r ] = none and

• There exists message 〈“2S”, r , v〉 in msgs with v 6= ⊥

It sets pAp [r ] to v(p).

Phase2a(p, r ,V ) executed by proposer p, for round r and (possibly Nil)
value V . The action is enabled iff:

• p is a collision-fast proposer of r ,

• pAp [r ] = none,

• 〈“2S”, r ,⊥〉 ∈ msgs, and

• either 〈“propose”,V 〉 ∈ msgs or V = Nil and there exists a
message 〈“2a”, r , 〈q ,U 〉〉 in msgs with U 6= Nil .

This action sets pAp [r ] to V and adds message 〈“2a”, r , 〈p,V 〉〉 to
msgs.

Phase2b(a, r , v) executed by acceptor a, for round r and v-mapping v . It
is enabled iff b̂Aa ≤ r and either one of the following conditions hold:

a) bAa [r ] = none and message 〈“2S”, r , v〉 exists in msgs, where
v 6= Nil , or

b) message 〈“2a”, r , 〈p,V 〉〉 exists in msgs, where V 6= Nil , and
either one of the two following conditions hold:

b1) bAa [r ] = none and v = NilExtension(⊥•〈p,V 〉,P), where P
is the set of all proposers that are not collision-fast for round
r , or

b2) bAa [r ] 6= none and v = bAa [r ] • 〈p,V 〉.

The action sets b̂Aa to r and bAa [r ] to v , and adds message 〈“2b”, r , a, v〉
to msgs.

Learn(l , v) executed by learner l , for v-mapping v . It is enabled iff there
exist round r , quorum Q , and set P of collision-fast proposers for r
such that the two conditions below hold:
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• ∀p ∈ P : 〈“2a”, r , 〈p,Nil〉〉 ∈ msgs and

• ∀a ∈ Q : 〈“2b”, r , a, u〉 ∈ msgs, where v v u.

It sets learned [l ] to learned [l ] t v .

The distributed abstract algorithm implements the the non-distributed
version in the sense that all behaviors of the former are also behaviors of
the latter.

Proposition 7 Distributed Abstract Collision-fast Paxos implements the
Abstract Collision-fast Paxos specification.

Proof sketch: The initial state of both algorithms with respect to their
shared variables is exactly the same. As a result, to prove this proposition we
must only show that every action in the distributed algorithm implements
an action of the non-distributed algorithm with respect to the variable states
before and after the action is taken [1]. In the following we analyze each
action of the distributed version.

Propose(V ) This action clearly implements the action with the same name
in the non-distributed algorithm. The only difference has to do with
variable msgs which is not present in the non-distributed version.

Phase1a(c, r) This action changes only variable msgs, and implements a
no-action (stuttering) step in the non-distributed algorithm, since it
keeps the rest of the state the same as before.

Phase1b(a, r) This action clearly implements action JoinRound of the non-
distributed algorithm. It is more restrictive, though, since it requires
a “1b” message for r to be present in msgs.

Phase2Start(r) This action implements action StartRound of the non-distributed
algorithm. Let Q be the quorum of action Phase2Start ; the reception
of the “1b” messages for round r coming from acceptors a in Q im-
plies that every acceptor a ∈ Q has set b̂Aa to r . Since b̂Aa is never
decreased, we can conclude that b̂Aa ≥ r for every acceptor a in Q , as
required by action StartRound . By the definition of ProvedSafe and
the fact that the vectors sent in the “1b” messages are consistent with
the current state of bA, one can easily verify that ProvedSafe(Q , r , β)
returns exactly the same value as ProvedSafe(Q , r , bA).

Phase2Prepare(p, r) This action implements Suggest(p, r ,V ) when minTried [r ]
is different from⊥ (identified by the “2S” message) and V = minTried [r ](p).
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Phase2a(p, r ,V ) This action implements Suggest(p, r ,V ) when minTried [r ]
equals ⊥ (identified by the received “2S” message). Notice that V is
either a proposed value (received in a “propose” message) or it equals
Nil but other collision-fast proposer q for round r has set pAq [r ] to a
non-Nil value, a situation identified by a “2a” message.

Phase2b(a, r , v) This action implements ClassicVote(a, r , v). There are
three cases to consider:

• bAa [r ] = none and message 〈“2S”, r , v〉 (v 6= Nil) exists in msgs,
where v 6= Nil .
In this case, minTried [r ] = v and the implementation of ClassicVote(a, r , v)
is easily verified.

• message 〈“2a”, r , 〈p,V 〉〉 (V 6= Nil) exists in msgs, bAa [r ] =
none, and v = NilExtension(⊥• 〈p,V 〉,P), where P is the set of
all proposers that are not collision-fast for round r .
In this case, since a “2a” message was sent and it is only sent
by a collision-fast proposer of r when minTried [r ] = ⊥, we can
infer that p is a collision-fast proposer of r and minTried [r ] = ⊥.
By the definition of MaxT in ClassicVote, it is easy to see that
v satisfies the pre-condition of this action. The rest of the action
implementation is easily checked.

• message 〈“2a”, r , 〈p,V 〉〉 (V 6= Nil) exists in msgs, bAa [r ] 6=
none, and v = bAa [r ] • 〈p,V 〉.
Once again, the existence of a “2a” message for round r implies
that p is collision-fast for r and minTried [r ] = ⊥. Notice that no
value pAp [r ] can change after it is set to something different from
none and the same happens with minTried [r ]. Since entry bAa [r ]
is only changed by a Phase2b(a, r , v) action, by the definition
of MaxT it is easy to see that bAa [r ] v MaxT . Given that
v = bAa [r ] • 〈p,V 〉, it also follows from the definition of MaxT
that v v MaxT .

Learn(l , v) This action implements action AbstractLearn(l , v) by the defini-
tion of a chosen v-mapping and the fact that “2a” and “2b” messages
reflect stable changes, in the sense that no further changes can happen,
to entries in pA and bA respectively.
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A.4 Collision-fast Paxos

To prove correctness of algorithm presented in Section 4.1, we first add the
following history variables to the algorithm presented in the previous section.

prnd An array of round numbers, where prnd [p] represents the current
round of proposer p. Initially 0.

pval An array of v-mappings, where pval [p] represents the v-mapping fast-
proposed by proposer p on round prnd [p] or none, if p has not fast-
proposed in that round. Initially none.

crnd An array of round numbers, where crnd [c] represents the current
round of coordinator c. Initially 0.

cval An array of v-mappings, where cval [c] represents the latest v-mapping
sent by coordinator c in a phase “2S” message for round crnd [c]. Ini-
tially ⊥ for the coordinator of round 0 and none for all the others.

rnd An array of round numbers, where rnd [a] is the current round of ac-
ceptor a, that is, the highest-numbered round a has heard of. Initially
0.

vrnd An array of round numbers, where vrnd [a] is the round at which ac-
ceptor a has accepted the latest v-mapping. Initially 0.

vval An array of v-mappings, where vval [a] is the v-mapping acceptor a has
accepted at vrnd [a] or none. Initially none.

msgs2 Counterparts of the messages sent by the original protocol, but built
with the values of history variables. Initially {〈“2S”, 0,⊥〉}.

Propose(V ) for any value V . It is enabled iff V /∈ proposed . It sets proposed
to proposed ∪ {V } and adds message 〈“propose”,V 〉 to msgs and
msgs2 .

Phase1a(c, r) executed by coordinator c, for round r . The action is enabled
iff minTried [r ] = none. It sets crnd [c] to r and cval [c] to none, and
adds a message 〈“1a”, c,m〉 to msgs and msgs2 .

Phase1b(a, r) executed by acceptor a, for round r . The action is enabled
iff

• b̂Aa < r and
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• 〈“1a”, r〉 ∈ msgs

It sets b̂Aa to r and rnd [a] to r and adds the message 〈“1b”, r , a, bAa〉
to msgs and “1b”r,a,vrnd[a],vval[a] to msgs2 .

Phase2Start(r) executed by the coordinator c of round r , for round r . The
action is enabled iff:

• minTried [r ] = none and

• There exists a quorum Q such that for all a ∈ Q , there is a
message 〈“1b”, r , a, ρ〉 in msgs, for some ρ.

Let v = ProvedSafe(Q , r , β), where β is any ballot array such that, for
every acceptor a in Q , β̂a = r and there exists message 〈“1b”, r , a, ρ〉
in msgs with ρ = βa . This action sets minTried [r ] and cval [c] to v ,
crnd [c] to r , and adds message 〈“2S”, r , v〉 to msgs and msgs2.

Phase2Prepare(p, r) executed by proposer p, for round r . It is enabled iff:

• pAp [r ] = none and

• There exists message 〈“2S”, r , v〉 in msgs

If v 6= ⊥, it sets pAp [r ] and pval [p] to v(p), and prnd [p] to r . Other-
wise, if v equals ⊥, pval [p] is set to none and prnd [p] to r .

Phase2a(p, r ,V ) executed by proposer p, for round r and (possibly Nil)
value V . The action is enabled iff:

• p is a collision-fast proposer of r ,

• pAp [r ] = none,

• 〈“2S”, r ,⊥〉 ∈ msgs, and

• either 〈“propose”,V 〉 ∈ msgs or V = Nil and there exists a
message 〈“2a”, r , 〈q ,U 〉〉 in msgs with U 6= Nil .

This action sets pAp [r ] and pval [p] to V and adds message 〈“2a”, r , 〈p,V 〉〉
to msgs and msgs2 .

Phase2b(a, r , v) executed by acceptor a, for round r and v-mapping v . It
is enabled iff b̂Aa ≤ r and either one of the following conditions hold:

a) bAa [r ] = none and message 〈“2S”, r , v〉 exists in msgs, where
v 6= Nil , or
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b) message 〈“2a”, r , 〈p,V 〉〉 exists in msgs, where V 6= Nil , and
either one of the two following conditions hold:

b1) bAa [r ] = none and v = NilExtension(⊥•〈p,V 〉,P), where P
is the set of all proposers that are not collision-fast for round
r , or

b2) bAa [r ] 6= none and v = bAa [r ] • 〈p,V 〉.

The action sets b̂Aa , rnd [a], and vrnd [a] to r , bAa [r ] and vval [a] to
v , and adds message 〈“2b”, r , a, v〉 to msgs and msgs2 .

Learn(l , v) executed by learner l , for v-mapping v . It is enabled iff there
exist round r , quorum Q , and set P of collision-fast proposers for r
such that the two conditions below hold:

• ∀p ∈ P : 〈“2a”, r , 〈p,Nil〉〉 ∈ msgs and

• ∀a ∈ Q : 〈“2b”, r , a, u〉 ∈ msgs, where v v u.

It sets learned [l ] to learned [l ] t v .

Variables prnd , pval , crnd , cval , rnd , vrnd , vval , and msgs2 appear in
no pre-condition and, therefore, are clearly history variables satisfying con-
ditions H1-5 of [1]. This implies that the resulting algorithm is equivalent to
(i.e., accepts the same behaviors as) the previous one without such variables.
The following invariants can be easily proved for this new algorithm:

InvDA1: crnd [c] = k ⇒ ∀j > k : c is coordinator of j : minTried [j ] =
none

InvDA2: minTried [crnd [c]] = cval [c]

InvDA3: rnd [a] = b̂Aa

InvDA4: vrnd [a] = k ⇐⇒ ∧ bAa [k ] 6= none
∧ ∀j > k : bAa [j ] = none

InvDA5: vval [a] = bAa [vrnd [a]]

InvDA6: prnd [p] = k ⇒ ∀j > k : pAp [j ] = none

InvDA6.5: pval [p] = pAp [prnd [p]]

InvDA7: 〈“1a”,m〉 ∈ msgs ⇐⇒ 〈“1a”,m〉 ∈ msgs2
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InvDA8: 〈“1b”,m, ρ〉 ∈ msgs ⇐⇒ 〈“1b”,m, vval , vrnd〉 ∈ msgs2, where
vrnd is the highest balnum k such that ρ[k ] 6= none and vval equals
ρ[vrnd ].

InvDA9: 〈“2S”,m, v〉 ∈ msgs ⇐⇒ 〈“2S”,m, v〉 ∈ msgs2

InvDA10: 〈“2a”,m, v〉 ∈ msgs ⇐⇒ 〈“2a”,m, v〉 ∈ msgs2

InvDA11: 〈“2b”,m, v〉 ∈ msgs ⇐⇒ 〈“2b”,m, v〉 ∈ msgs2

We can use these invariants to rewrite the pre-conditions of the previous
algorithm’s actions in the following way:

Propose(V ) for any value V . It is enabled iff V /∈ proposed . It sets proposed
to proposed ∪ {V } and adds message 〈“propose”,V 〉 to msgs and
msgs2 .
The action remains the same.

Phase1a(c, r) executed by coordinator c, for round r . The action is enabled
iff

• c is the coordinator of round r and

• crnd [c] ≤ r .

It sets crnd [c] to r and cval [c] to none, and adds a message 〈“1a”, c,m〉
to msgs and msgs2 .
By invariant InvDA1.

Phase1b(a, r) executed by acceptor a, for round r . The action is enabled
iff

• rnd [a] < r and

• 〈“1a”, r〉 ∈ msgs2

It sets b̂Aa and rnd [a] to r , and adds the message 〈“1b”, r , a, bAa〉 to
msgs and “1b”r,a,vrnd[a],vval[a] to msgs2 .
By invariants InvDA3 and InvDA7.

Phase2Start(r) executed by the coordinator c of round r , for round r . The
action is enabled iff:

• crnd [c] = r

• cval [c] = none and
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• There exists a quorum Q such that for all a ∈ Q , there is a
message 〈“1b”, r , a, vval , vrnd〉 in msgs2.

Let v = ProvedSafe(Q , r , β), where β is any ballot array such that, for
every acceptor a in Q , β̂a = r and there exists message 〈“1b”, r , a, vrnd , vval〉
in msgs2 with βavrnd = vval and βaor = none for any round or 6=
vrnd . This action sets minTried [r ] and cval [c] to v , crnd [c] to r , and
adds message 〈“2S”, r , v〉 to msgs and msgs2.
By invariants InvDA2 and InvDA8. ProvedSafe(Q , r , β) still gives the expected
result because it only uses the latest values accepted by each acceptor, the only
value in β.

Phase2Prepare(p, r) executed by proposer p, for round r . It is enabled iff:

• prnd [p] ≤ r and

• There exists message 〈“2S”, r , v〉 in msgs2

If v 6= ⊥, it sets pAp [r ] and pval [p] to v(p), and prnd [p] to r . Other-
wise, if v equals ⊥, pval [p] is set to none and prnd [p] to r .
By invariants InvDA6, Inv6.5, and InvDA9. If v 6= ⊥, then this action implements
its previous version. Otherwise, it implements a stuttering step of its previous
specification.

Phase2a(p, r ,V ) executed by proposer p, for round r and (possibly Nil)
value V . The action is enabled iff:

• prnd [p] = r

• p is a collision-fast proposer of r ,

• pval [r ] = none,

• 〈“2S”, r ,⊥〉 ∈ msgs2, and

• either 〈“propose”,V 〉 ∈ msgs2 or V = Nil and there exists a
message 〈“2a”, r , 〈q ,U 〉〉 in msgs2 with U 6= Nil .

This action sets pAp [r ] and pval [p] to V and adds message 〈“2a”, r , 〈p,V 〉〉
to msgs and msgs2 .
By invariants InvDA6 and InvDA6.5. Since it is more restrictive than its previous
version (requires the prior action to execute), and the other pre-conditions are
equivalent, the action implements its previous version.

Phase2b(a, r , v) executed by acceptor a, for round r and v-mapping v . It
is enabled iff rnda ≤ r and either one of the following conditions hold:
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a) vrnd [a] < r ∨ vval [a] = none and message 〈“2S”, r , v〉 exists in
msgs2, where v 6= Nil , or

b) message 〈“2a”, r , 〈p,V 〉〉 exists in msgs2, where V 6= Nil , and
either one of the two following conditions hold:

b1) vrnd [a] < r ∨ vval [a] = none and v = NilExtension(⊥ •
〈p,V 〉,P), where P is the set of all proposers that are not
collision-fast for round r , or

b2) vrnd [a] = r ∧ vval [a] 6= none and v = vval [a] • 〈p,V 〉.

The action sets b̂Aa , rnd [a], and vrnd [a] to r , bAa [r ] and vval [a] to
v , and adds message 〈“2b”, r , a, v〉 to msgs and msgs2 .
By invariants InvDA4, InvDA5, InvDA9, InvDA10, and because rnd [a] ≥ vrnd [a]
(By InvDA3, InvDA4 and the definition of ballot array).

Learn(l , v) executed by learner l , for v-mapping v . It is enabled iff there
exist round r , quorum Q , and set P of collision-fast proposers for r
such that the two conditions below hold:

• ∀p ∈ P : 〈“2a”, r , 〈p,Nil〉〉 ∈ msgs2 and

• ∀a ∈ Q : 〈“2b”, r , a, u〉 ∈ msgs2, where v v u.

It sets learned [l ] to learned [l ] t v .
By invariant InvDA11.

The resulting algorithm now has variables bA, pA, minTried and msgs
as history variables, since they do not appear on any action’s pre-condition
and are only updated. This algorithm is, therefore, equivalent to one that
does not contain such variables, which we present below.

Propose(V ) for any value V . It is enabled iff V /∈ proposed . It sets proposed
to proposed ∪ {V } and adds message 〈“propose”,V 〉 to msgs2 .

Phase1a(c, r) executed by coordinator c, for round r . The action is enabled
iff

• c is the coordinator of round r and

• crnd [c] ≤ r .

It sets crnd [c] to r and cval [c] to none, and adds a message 〈“1a”, c,m〉
to msgs2 .
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Phase1b(a, r) executed by acceptor a, for round r . The action is enabled
iff

• rnd [a] < r and

• 〈“1a”, r〉 ∈ msgs2

It sets rnd [a] to r and adds the message “1b”r,a,vrnd[a],vval[a] to
msgs2 .

Phase2Start(r) executed by the coordinator c of round r , for round r . The
action is enabled iff:

• crnd [c] = r

• cval [c] = none and

• There exists a quorum Q such that for all a ∈ Q , there is a
message 〈“1b”, r , a, vval , vrnd〉 in msgs2.

Let v = ProvedSafe(Q , r , β), where β is any ballot array such that, for
every acceptor a in Q , β̂a = r and there exists message 〈“1b”, r , a, vrnd , vval〉
in msgs2 with βavrnd = vval and βaor = none for any round or 6=
vrnd . This action sets cval [c] to v , crnd [c] to r , and adds message
〈“2S”, r , v〉 to msgs2.

Phase2Prepare(p, r) executed by proposer p, for round r . It is enabled iff:

• prnd [p] ≤ r and

• There exists message 〈“2S”, r , v〉 in msgs2

If v 6= ⊥, it sets pval [p] to v(p), and prnd [p] to r . Otherwise, if v
equals ⊥, pval [p] is set to none and prnd [p] to r .

Phase2a(p, r ,V ) executed by proposer p, for round r and (possibly Nil)
value V . The action is enabled iff:

• prnd [p] = r

• p is a collision-fast proposer of r ,

• pval [r ] = none,

• 〈“2S”, r ,⊥〉 ∈ msgs2, and

• either 〈“propose”,V 〉 ∈ msgs2 or V = Nil and there exists a
message 〈“2a”, r , 〈q ,U 〉〉 in msgs2 with U 6= Nil .

46



This action sets pval [p] to V and adds message 〈“2a”, r , 〈p,V 〉〉 to
msgs2 .

Phase2b(a, r , v) executed by acceptor a, for round r and v-mapping v . It
is enabled iff rnda ≤ r and either one of the following conditions hold:

a) vrnd [a] < r ∨ vval [a] = none and message 〈“2S”, r , v〉 exists in
msgs2, where v 6= Nil , or

b) message 〈“2a”, r , 〈p,V 〉〉 exists in msgs2, where V 6= Nil , and
either one of the two following conditions hold:

b1) vrnd [a] < r ∨ vval [a] = none and v = NilExtension(⊥ •
〈p,V 〉,P), where P is the set of all proposers that are not
collision-fast for round r , or

b2) vrnd [a] = r ∧ vval [a] 6= none and v = vval [a] • 〈p,V 〉.

The action sets rnd [a] and vrnd [a] to r , vval [a] to v , and adds message
〈“2b”, r , a, v〉 to msgs2 .

Learn(l , v) executed by learner l , for v-mapping v . It is enabled iff there
exist round r , quorum Q , and set P of collision-fast proposers for r
such that the two conditions below hold:

• ∀p ∈ P : 〈“2a”, r , 〈p,Nil〉〉 ∈ msgs2 and

• ∀a ∈ Q : 〈“2b”, r , a, u〉 ∈ msgs2, where v v u.

It sets learned [l ] to learned [l ] t v .

The algorithm presented in Section 4.1 is a stricter implementation of
the algorithm above, which can be easily verified by simply comparing their
actions. This concludes the proof that Collision-Fast Paxos satisfies the
safety requirements of M-Consensus.

B The Liveness of Collision-fast Paxos

We now prove that the extended Collision-fast Paxos algorithm presented
in Section 4.2 satisfies the Liveness property of M-Consensus, given that its
liveness condition is eventually satisfied.

Proposition 8 If there exist proposer p, learner l , coordinator c, and quo-
rum Q, such that LA(p, l , c,Q) holds from some time t0 on, then eventually
learned [l ] is complete.
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Proof: The proof is divided into following steps:
1. No coordinator other than c executes any action after t0

Proof sketch: The extended algorithm states that coordinators only
execute actions if they believe to be the leader and the definition of
LA(p, l , c,Q) states that only c believes to be the leader after t0.

2. There is a time t1 ≥ t0 after which crnd [c] does not change
Proof sketch: crnd [c] can only be changed by action Phase1a. In the
extended algorithm, though, this can only happen if c receives a special
message informing about a higher-numbered round already started or if
not all collision-fast proposers for crnd [c] are in activep[c]. As for the
first condition, step 1 implies there is only a finite number of (possibly
higher-numbered) rounds started before t0. As for the second one, the
definition of LA states that activep[c] contains only nonfaulty processes
after t0 and no element is taken out of the set. In the extended algorithm,
if c starts a new round r after t0, it is guaranteed that its collision-fast
proposers are in activep[c], which makes sure the second condition will
not trigger the execution of action Phase1a more than once after t0.

3. There is a time t2 ≥ t1 after which action Phase2Start(c, crnd [c]) will
have been executed
Proof sketch: Let us assume, for the sake of contradiction, that c
never executes action Phase2Start(c, crnd [c]). By step 2 and the ex-
tended algorithm’s specification, coordinator c keeps re-sending the “1a”
message for round crnd [c] to all acceptors. Acceptors in Q do not crash
after t0 by the definition of LA and must receive such messages. If they
all execute action Phase1b for round crnd [c], then they will keep re-
sending their 1b messages and c will eventually execute Phase2Start ,
contradicting our assumption. Therefore, there must be an acceptor
a ∈ Q such that rnd [a] > crnd [c], which prevents the execution of ac-
tion Phase1b(a, crnd [c]). However, in the extended algorithm a would
send an infinite number of special messages to c, indicating that a round
higher than crnd [c] has been started and this would eventually lead c
to execute action Phase1a for a higher-numbered round, contradicting
step 2.

4. From t2 on, cval [c] does not change
Proof sketch: By steps 2 and 3 and the algorithm’s specification.

5. Eventually l learns a complete v-mapping
By step 4, there are two cases to consider after t2:
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5.1. Case: cval [c] = ⊥

5.1.1. From t2 on, prnd [q ] ≤ crnd [c] for any proposer q such that q
does not crash after t2
Proof sketch: Assume prnd [q ] > crnd [c] after t2, for some
proposer q that does not crash after t2. In the extended algo-
rithm, by steps 2 and 3, coordinator c keeps sending the “2S”
message for round crnd [c] to the set of proposers. As a result,
q will keep replying to c with special messages indicating that
a round higher-numbered than crnd [c] has been started and
this will force c to start an even higher-numbered round. This
contradicts step 2.

5.1.2. There is a time t3 ≥ t2 after which all proposers q that do not
crash after t3 will have executed action Phase2Prepare(q , crnd [c])
and set prnd [q ] to crnd [c] and pval [q ] to none
Proof sketch: By steps 2 and 3, coordinator c keeps sending
the “2S” message for round crnd [c] and, by step 5.1.1 and the
definition of action Phase2Prepare, every nonfaulty proposer
q must eventually execute action Phase2Prepare(q , crnd [c])
based on this “2S” message. By the action’s definition, prnd [q ]
is set to crnd [c] and, since the message carries v-mapping ⊥
(as the value for cval [c]), pval [q ] is set to none.

5.1.3. There is a time t4 after which some collision-fast proposer q for
round crnd [c] will have executed action Phase2a(q , crnd [c],V ),
where V is a proposed value
Proof sketch: By steps 5.1.1 and 5.1.2 and the definition of
LA, each collision-fast proposer of crnd [c] is eventually pre-
pared to execute action Phase2a for round crnd [c] triggered
by a “propose” or “2a” message. Since a “2a” message is only
sent by action Phase2a, some “propose” message must trigger
the first execution of action Phase2a for round crnd [c]. The
existence of such a “propose” message is guaranteed by steps
5.1.1 and 5.1.2 since they ensure that proposer p (from the
definition of LA) will eventually keep sending its “propose”
message to some collision-fast proposer of round crnd [c]. Be-
cause the first Phase2a action executed for round crnd [c] is
necessarily triggered by a “propose” message, its parameter
V is a proposed value by the action’s definition.
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5.1.4. From t4 on, rnd [a] ≤ crnd [c] for any acceptor a such that a
does not crash after t2
Proof sketch: Assume rnd [a] > crnd [c] after t4, for some
acceptor a that does not crash after t4. By steps 5.1.1 and
5.1.3 and the definition of LA, at least one nonfaulty collision-
fast proposer of crnd [c] will eventually keep sending a “2a”
message for round crnd [c] to a. As a result, a will keep send-
ing notification messages to c indicating that a round higher-
numbered than crnd [c] has been started. This would force c
to start a new higher-numbered round, contradicting step 2.

5.1.5. There is a time t5 ≥ t4 after which all collision-fast proposers
of round crnd [c] will have executed action Phase2a for round
crnd [c]
Proof sketch: Assume there is a collision-fast proposer q
for round crnd [c] such that q never executes action Phase2a
for round crnd [c]. By steps 5.1.1 and 5.1.2 and the definition
of LA, q is eventually prepared to execute action Phase2a for
round crnd [c] triggered by a “propose” or “2a” message. By
steps 5.1.1 and 5.1.3, at least one nonfaulty collision-fast pro-
poser of crnd [c] will eventually keep sending a “2a” message
for crnd [c] to q , which must eventually trigger its execution
of action Phase2a for round crnd [c]. This contradicts our ini-
tial assumption that q does not execute action Phase2a for
crnd [c].

5.1.6. There is a time t6 ≥ t5 after which, if action Phase2a(q , crnd [c],V )
has been executed for any proposer q and non-Nil value V ,
then all acceptors in Q will have executed action Phase2b for
round crnd [c] triggered by the “2a” message sent by q
Proof sketch: By step 5.1.1, if action Phase2a(q , crnd [c],V )
is executed, q will keep sending “2a” messages to the accep-
tors. By step 5.1.4, acceptors will be able to execute action
Phase2a for any “2a” message for round crnd [c] with non-
Nil values. Since LA ensures that all collision-fast proposers
of crnd [c] are nonfaulty, the “2a” message from q will be
eventually received by the acceptors in Q (also nonfaulty by
LA) and trigger the execution of a Phase2a action for round
crnd [c].

5.1.7. Q.E.D.
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Proof sketch: After t6, by steps 5.1.6 and 5.1.4, acceptors
in Q keep sending “2b” messages to the learners with the
same v-mapping v . By the definition of action Phase2b, v
maps each proposer that is not collision-fast for crnd [c] to
Nil . Moreover, according to step 5.1.6 and the definition of
action Phase2b, v maps each proposer q that is collision-fast
for r and has executed action Phase2a(q , crnd [c],V ), where
V 6= Nil , to V . All other proposers are not mapped by v . Ac-
cording to steps 5.1.1 and 5.1.5, proposers that have executed
action Phase2a for round crnd [c] and value Nil keep sending
their “2a” messages to the learners. The “2b” messages from
the acceptors and the “2a” messages from the collision-fast
proposers allow l to eventually learn a complete v-mapping.

5.2. Case: cval [c] 6= ⊥

5.2.1. cval [c] is complete
By the definition of action Phase2Start and the fact that
cval [c] 6= ⊥.

5.2.2. From t2 on, rnd [a] ≤ crnd [c] for any acceptor a such that a
does not crash after t2
Proof sketch: Assume rnd [a] > crnd [c] after t2, for some
acceptor a that does not crash after t2. By steps 2 and 3, co-
ordinator c keeps sending the “2S” message for round crnd [c]
to the set of acceptors. In the extended algorithm, though, a
will keep replying to c with special messages indicating that
a round higher-numbered than crnd [c] has been started and
this would force c to start an even higher-numbered round,
which contradicts step 2.

5.2.3. Eventually all acceptors a in Q execute action Phase2b(a, r)
and set vrnd [a] to crnd [c] and vval [a] to cval [c]
Proof sketch: By steps 2 and 3, coordinator c keeps sending
the “2S” message for round crnd [c] and, by step 5.2.2, all ac-
ceptors in Q must eventually execute action Phase2b(a, crnd [c])
based on this “2S” message.

5.2.4. Q.E.D.
Proof sketch: By steps 5.2.2 and 5.2.3, all acceptors in Q
will eventually keep sending “2b” messages for round crnd [c]
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with a complete v-mapping, that is, cval [c]. Learner l will
eventually receive such messages and learn this complete v-
mapping.

6. Q.E.D.

C Collision-fast Atomic Broadcast

In this section we prove that our atomic broadcast protocol indeed satisfies
the safety and liveness properties stated in Section 2. We start by presenting
the complete specification of the protocol and then proceed with the proofs.

C.1 Collision-Fast Atomic Broadcast

In Section 5.2, we have presented our Collision-Fast Atomic Broadcast al-
gorithm. This protocol uses infinitely many Collision-Fast Paxos instances
(Section 4.2), each of them identified by a natural number i and referred as
CFP(i) in the protocol. Actions and variables specific of an instance i are
identified by the prefix CFP(i)! (instead of the superscript of Section 5.2).
The protocol forces the Collision-Fast Paxos instances to execute the same
rounds at the same time. As a consequence, some of their variables, namely,
proposed , rnd , prnd , crnd , and activep, are always equal. Intead of keep-
ing multiple copies of these variables, we let all instances share the same
copy (and drop the prefix CFP(i)! to simplify the notation). The protocol
introduces no other variable.

All actions of the algorithm execute the homonymous action either in one
of the Collision-Fast Paxos instances, or in all of them at once in a composed
manner. All composed actions pre-conditions are defined only over shared
variables and, therefore, either all actions in the composition are enabled or
all are disabled. The only exception is action Phase1a.

Action CFP(i)!Phase1a, for some Collision-Fast Paxos instance i , has
one pre-condition over CFP(i)!msgs. We define NewPhase1a as a replace-
ment to CFP(i)!Phase1a that changes the said pre-condition to be satisfied
if true for CFP(j )!msgs, for any instance j . NewPhase1a and the other
actions of the algorithm are defined bellow.

Propose(V ) Executed to propose a message V . It is the composition of
action CFP(i)!Propose(V ) for all Collision-Fast Paxos instances i .
Logically, each instance sends the message 〈“propose”,V 〉. Since they
are all the same, they can be replaced by a single message valid for all
Collision-Fast Paxos instances.
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NewPhase1a(i , c, r) Executed by coordinator c to start round r in instances
i. The action executes iff:

• c believes itself to be the leader,

• c is the coordinator of round r ,

• crnd [c] ≺ r ,

• either c received some special message informing of a round j
(r > j > crnd [c]) was initiated in any M-Consensus instance, or
the set of collision-fast proposers of round crnd [c] is not a subset
of activep[c].

The action sets crnd [c] to r and CFP(i)!cval [i ] to none, and sends a
message 〈“1a”, r〉 in this instance.

Phase1a(c, r) Executed by coordinator c to start round r . It is the compo-
sition action NewPhase1a(i , c, r) for all Collision-Fast Paxos instances
i , where action NewPhase1a(i , c, r) is defined previously. Logically,
each instance sends its own “1a” message but, since they are all equal,
a single message is sent instead.

Phase1b(a, r) Executed by acceptor a on round r when it receives the mes-
sage 〈“1a”, r〉. It is the composition of action CFP(i)!Phase1b(a, r)
for all Collision-Fast Paxos instances i . Each instance sends its own
“1b” message but they are all bundled together in a single composite
message.

Phase2Start(c, r) Executed by the coordinator c of round r when it re-
ceives a composite “1b” message. It is the composition of action
CFP(i)!Phase2Start(c, r) for all Collision-Fast Paxos instances i . c
sends a “2S” message in each instance, but these messages are bundled
together in a single physical message. Since only a finite number of in-
stances send “2S” messages different from 〈“2S”, r ,⊥〉, the composite
message has a finite size.

Phase2Prepare(p, r) Executed by proposer p when it receives a compos-
ite “2S” message for round r . It is the composition of the actions
CFP(i)!Phase2Prepare(p, r) of all Collision-Fast Paxos instances i .

Phase2a(p, r ,V ) Executed by proposer p to fast-propose message V on
round r . It is executed iff p has not fast-proposed V on any Collision-
Fast Paxos instance before. The action proposes V on the smaller
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Collision-Fast Paxos instance i it is allowed to propose (those instances
j such that CFP(j )!pval [p] = none); it does so by executing action
CFP(i)!Phase2a(p, r ,V ).

Phase2b(a, r) Executed by acceptor a to accept some v-mapping on some
instance i . It does so by executing action CFP(i)!Phase2b(a, r).

Learn(l , v) Executed by learner l to learn the v-mapping v in some Collision-
Fast Paxos instance i . The action executes CFP(i)!Learn(l , v).

The sequence of messages delivered by a learner l , delivered [l ], is a func-
tion of the v-mappings learned by l . To define delivered [l ] properly, we
assume a total order <P , on the set of proposer agents, and a function
RP (e,S ), that gives the rank of an element e of a set S with respect to the
other elements in S , according to the order <P (e.g., RP (3, {3, 1, 5}) = 2).
The recursive definition of delivered is as follows.

delivered [l ] ∆=
let defSet(m, s) ∆=

{p ∈ Dom(m) :
∧m[p] 6= Nil
∧ ¬∃i ∈ 1..Len(s) : s[i ] = m[p]
∧ ∀q ∈ Dom(m) : q <P p ⇒ m[q ] 6= m[p]
∧ ∀q ∈ Proposer : q <P p ⇒ q ∈ Dom(m)}

defSeq(m, s) ∆= 〈e1, e2, . . . , en〉 :
∧ n = |defSet(m, s)|
∧ ∀p ∈ defSeq(m, s) : RP (p, defSet(m, s)) = i ⇔ ei = m[p]

deliver(l , i , s) ∆=
if Domain = Dom(xlearned [i ][l ])
then deliver(l , i + 1, s ◦ defSeq(xlearned [i ][l ], s))
else s ◦ defSeq(xlearned [i ][l ], s)

in deliver(l , 0, 〈〉)
Informally, for each learner l an iteration over the M-Consensus instances,
from 0 to the smaller one l has not learned a complete mapping yet, builds
the sequence delivered [l ]. In each instance, the iteration proceeds over pro-
posers, ascendingly in the total order <P , adding the mapped value of each
proposer to the sequence if it has not been added before. For the instance
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with incomplete v-mapping, the iteration proceeds only until a non-mapped
proposer is found.

C.2 Safety

In the previous section we described the all the actions of Collision-Fast
Atomic Broadcast. As aforementioned, except for one action, all the others
simply execute the actions of its Collision-Fast Paxos instances. The excep-
tion is action Phase1a, that executes NewPhase1a instead of the Phase1a
of Collision-Fast Paxos, defined in Section 4. However, comparing the two
definitions, it is easy to see that the first is in fact a more restricted version
of the latter, and therefore implements it. The proposition below formally
states this property.

Proposition 9 For any Collision-Fast Paxos instance i, coordinator c, and
round r, NewPhase1a(i , c, r) implements CFP(i)!Phase1a(c, r).

Assume: There exist a natural number i , a coordinator c and a round
number r such that NewPhase1a(i , c, r) is enabled.

Prove: CFP(i)!Phase1a(c, r) is enabled.

Proof: Since all pre-conditions of CFP(i)!Phase1a(c, r) are also present
in NewPhase1a(i , c, r) and they are all satisfied by assumption, the action
CFP(i)!Phase1a(c, r) must also be enabled.

Proposition 9 implies that all Collision-Fast Paxos instances used in
Collsion-Fast Atomic Broadcast satisfy their safety properties. Before show-
ing that Collision-Fast Atomic Broadcast also satisfies its safety properties,
we prove some properties of the delivered variable.

Proposition 10 At the initial state, delivered [l ] = 〈〉, for any learner l .

Proof: Since Init clearly implies the initial state of the M-Consensus in-
stances, for any learner l and instance i , CFP(i)!learned [l ] = ⊥; by the
definition of delivered , delivered [l ] = 〈〉.

Proposition 11 For any learner l , delivered [l ] never contains any dupli-
cate.

Proof: The proposition is a direct consequence of the definition of defSet
in delivered , that excludes proposers mapped to repeated values. Since only
the values mapped by proposers in defSet are added to delivered [l ], for any
learner l , delivered [l ] has no duplicates.
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Proposition 12 For any learner l , delivered [l ] contains only broadcast mes-
sages.

Proof: The initial state of Collision-Fast Atomic Broadcast clearly implies
the initial state of all of its M-Consensus instances. These instances therefore
satisfy the Nontriviality property of M-Consensus.
From the Nontriviality property of M-Consensus, any value V 6= Nil in
the decided mapping of an instance must have been proposed in that in-
stance. By the specification of Collision-Fast Atomic Broadcast, a message
is broadcast in Collision-Fast Atomic Broadcast by proposing it in all of
its M-Consensus instances in action Propose; this is the only action that
proposes something. Therefore, any value V 6= Nil decided in one of these
instances must be a broadcast message.
By the definition of delivered , for any learner l , delivered [l ] is formed by
non-Nil values decided in some M-Consensus instance. Hence, it is formed
by proposed values/broadcast messages.

Proposition 13 For any learner l , delivered [l ] contains only broadcast mes-
sages and no duplicates.

Proof: The proposition is true in the initial state, as trivially implied by
proposition 10. Properties 11 and 12 imply the proposition in the subsequent
states.

Proposition 14 For any learner l , if delivered [l ] = s at some time, then
s v delivered [l ] at all later times.

Proof: For some learner l , let k be the smallest instance for which l learned
an incomplete v-mapping at some point in time t . For all instances i < k , l
has learned a complete v-mapping for i (i.e., CFP(i)!learned [l ] is complete).
Because of the Stability property of M-Consensus, for any instances i < k
at any instant t ′ > t , CFP(i)!learned [l ] will equal its value at instant t . As
for instance k , CFP(k)!learned [l ] at time t will be a prefix of its value at
time t ′.
By its definition, delivered [l ] is built by an ascending iteration over the
instances i , 0 ≤ i ≤ k . For each instance i , the procedure iterates over the
proposers p that have been mapped to some value in CFP(i)!learned [l ], in
the ascending order defined by <P , and appends V = CFP(i)!learned [l ][p]
to the sequence being created if V is not in the sequence yet. On instance k ,
the iteration proceeds until the bigger proposer q for which all the smaller
proposers have been mapped.
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Given the determinism in the iteration and the observations in the first
paragraph, the construction of delivered [l ] at any instant t ′ > t will proceed
over instances 0 to k − 1 and then in instance k exactly as at the instant t ,
building the same sequence, and then possibly extend it with other values
mapped in k and bigger instances. Hence, delivered [l ] at instant t is a prefix
of delivered [l ] at any instant t ′ > t .

Proposition 15 For any pair of learners l1 and l2, either delivered [l1] v
delivered [l2] or delivered [l2] v delivered [l1].

Proof: For any two learners l1 and l2 let ki , i ∈ {1, 2}, be the smallest
M-Consensus instance for which li has not learnt a complete v-mapping.
Without loss of generality, let l1 and l2 be such that length of delivered [l1]
is smaller or equal to the length of delivered [l1]. Clearly, k1 ≤ k2.
By the Consistency property of M-Consensus, for all instances k ≤ k1,
CFP(k)!learned [l1] = CFP(k)!learned [l2]. Therefore, by the definition of
delivered , they induce the same prefix pre-k in delivered [l1] and delivered [l2].
So it is now enough to show that the values in CFP(k1)!learned [l1], that com-
plement pre-k to delivered [l1], are also a prefix of the complement of pre-k
to delivered [l2].
Let defSeti equal defSet , as in the definition of delivered , when evaluating
defined(CFP(ki)!learned [li ]). Because the length of delivered [l1] is smaller or
equal to the length of delivered [l2], |defSet1| ≤ |defSet2| and, by implication,
defSet1 ⊆ defSet2. Hence, all values mapped in CFP(k1)!learned [l1] that are
in delivered [l1] are also in delivered [l2], and the first is a sub-sequence of the
latter.

C.3 Liveness

In this section we prove that messages broadcast using the Collision-Fast
Atomic Broadcast protocol are eventually delivered. In other words, we
want to prove the following proposition.

Proposition 16 For any proposer p and learner l , if p, l and a quorum
of acceptors are nonfaulty and p broadcasts a message m, then eventually
delivered [l ] contains m.

Assume: There is a proposer p, a learner l , a coordinator c, a quorum Q ,
and a time t0 after which LA(p, l , c,Q) always holds.

Prove: Every message broadcast by p is eventually delivered by l
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Proof: Let c0 be the coordinator such that, at time t0, crnd [c0] is bigger
than crnd [d ] for any other coordinator d . No message with a round number r
bigger than crnd [c0] could have been sent at instant t0 (otherwise, crnd [d ] >
crnd [c0], for the coordinator d of round r at instant t0).
1. Prove: No coordinator other than c executes any action after t0.

By the definition of LA(p, l , c,Q), after t0, no coordinator except for c
will ever believe itself to be to leader again. Since this is a pre-condition
for all coordinator actions, none will be executed after t0.

2. Prove: there is a time t1 > t0 after which crnd [c] does not change.
The value of crnd [c] is only changed by executing action NewPhase1a
for c. By its defintion, this action can be executed only when c receives a
special message informing about a round numbered higher than crnd [c]
already started, or if the set of collision-fast proposers for round crnd [c]
is not a subset of activep[c].
Step 1 implies there is just a finite number of (possibly higher-numbered)
rounds started before t0 and that could satisfy the first condition. As
for the second condition, the definition of LA states that activep[c] con-
tains only correct processes after t0 and no element is taken out of the
set. Therefore, if c starts a new round r after t0, it is guaranteed that
its collision-fast proposers are in activep[c], which makes sure the sec-
ond condition will not trigger the execution of action NewPhase1a and,
consequently, Phase1a for a higher-numbered round.

3. Q.E.D.
Proof: By the steps 1 and 2, by the time t1 c will have started a round
r bigger than any other started and will not start any bigger one. More-
over, all collision-fast proposers of r are correct and accessible. For each
Collision-Fast Paxos instance, this situation is equivalent to the one in
which its Phase1a has been successfully executed for r and LA(p, l , c,Q)
holds. As we have shown in Section B, Collision-Fast Paxos satisfy the
liveness property of M-Consensus under these conditions.
Hence, all Collision-Fast Paxos instances in the atomic broadcast proto-
col satisfy such property. Therefore, if p proposes a message V , it will
eventually be seen by some collision-fast proposer q (not necessarily dif-
ferent from p) of round r . q will eventually fast-propose V in the first
instance for which it has not fast-proposed yet. The “2a” message it
generates will eventually trigger the termination of the instance and have
l learn V .
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D TLA+ Modules

D.1 M-Consensus

module MConsensus
constants Proposer , Learner , Value, Nil , none

instance VMapping with Domain ← Proposer

variables proposed , learned

TypeInv asserts a type invariant; the assertion that TypeInv is always true is a property
of (implied by) the specification

TypeInv ∆= ∧ proposed ⊆ Value
∧ learned ∈ [Learner → ValMap]

Init is the initial predicate.

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]

IsProposed(m) ∆= ∀ p ∈ Dom(m) : m[p] ∈ (proposed ∪ {Nil})

IsTrivial(m) ∆= m = [p ∈ Proposer 7→ Nil ]

We now define the two actions of proposing a value and learning a mapping. The Learn
action sets learned [l ] to a mapping extending its present value.

Propose ∆= ∧ ∃ v ∈ Value :
proposed ′ = proposed ∪ {v}
∧ unchanged 〈learned〉

Learn(l) ∆= ∧ ∃ v ∈ ValMap :
∧ IsProposed(v)
∧ ∀ l2 ∈ Learner : AreCompatible(v , learned [l2])
∧ ¬IsTrivial(LUB({learned [r ] : r ∈ Learner}) t v)
∧ learned ′ = [learned except ![l ] = @ t v ]

∧ unchanged 〈proposed〉

Next is the complete next-state action; Spec is the complete specification.

Next ∆= Propose ∨ ∃ l ∈ Learner : Learn(l)

Spec ∆= Init ∧2[Next ]〈proposed , learned〉
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We now define the three safety properties as temporal formulas and assert that they and
the type-correctness invariant are properties of the specification.

Nontriviality ∆= ∀ l ∈ Learner :
2(IsProposed(learned [l ]) ∧ ¬IsTrivial(learned [l ]))

Stability ∆= ∀ l ∈ Learner :
2(∃ v ∈ ValMap : learned [l ] = v ⇒ 2(v v learned [l ]))

Consistency ∆= 2( ∧ IsCompatible({learned [l ] : l ∈ Learner})
∧ ¬IsTrivial(LUB({learned [r ] : r ∈ Learner})))

theorem Spec ⇒ (2TypeInv) ∧Nontriviality ∧ Stability ∧ Consistency

D.2 Atomic Broadcast

module ABcast
extends Sequences, Naturals

constants Proposer , Learner , Value

variables broadcast , delivered

TypeInv asserts a type invariant; the assertion that TypeInv is always true is a property
of (implied by) the specification

TypeInv ∆= ∧ broadcast ⊆ Value
∧ delivered ∈ [Learner → Seq(Value)]

Init is the initial predicate.

Init ∆= ∧ broadcast = {}
∧ delivered = [l ∈ Learner 7→ 〈〉]

s1 v s2 ∆=
∧ Len(s1) ≤ Len(s2)
∧ ∀ i ∈ 1 . . Len(s1) : s1[i ] = s2[i ]

We now define the two actions of broadcasting a value and learning a sequence. The Learn
action sets learned [l ] to a sequence extending its present value.

Broadcast ∆= ∧ ∃m ∈ Value :
broadcast ′ = broadcast ∪ {m}

∧ unchanged 〈delivered〉

Learn(l) ∆= ∧ ∃ v ∈ broadcast :
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∧ ¬∃ i ∈ 1 . . Len(delivered [l ]) :
delivered [l ][i ] = v

∧ ∀ l2 ∈ Learner :
∨ delivered [l ] ◦ 〈v〉 v delivered [l2]
∨ delivered [l2] v delivered [l ]

∧ delivered ′ = [delivered except ![l ] = @ ◦ 〈v〉]
∧ unchanged 〈broadcast〉

Next is the complete next-state action; Spec is the complete specification.

Next ∆= Broadcast ∨ ∃ l ∈ Learner : Learn(l)

Spec ∆= Init ∧2[Next ]〈broadcast , delivered〉

We now define the three safety properties as temporal formulas and assert that they and
the type-correctness invariant are properties of the specification.

Nontriviality ∆= ∀ l ∈ Learner :
2(delivered [l ] ∈ Seq(broadcast))

Stability ∆= ∀ l ∈ Learner :
2(∃ s ∈ Seq(Value) : delivered [l ] = s
⇒ 2(s v delivered [l ]))

Consistency ∆= ∀ l1, l2 ∈ Learner :
2( ∨ delivered [l1] v delivered [l2]
∨ delivered [l2] v delivered [l1])

theorem Spec ⇒ (2TypeInv) ∧Nontriviality ∧ Stability ∧ Consistency

D.3 Value Mappings

module VMapping
This module defines constants and operators for dealing with value mappings.

local instance FiniteSets The FiniteSets module defines the operation Len

We declare the sets Domain and Value as parameters.

constants Domain, Value, Nil , none

Nil is a no-value used to map an element in Domain to nothing.

Nil
∆
= choose n : n /∈ Value

assume Nil /∈ Value
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ValMap defines the set of all valid value mappings. It is composed of any function that
maps a subset of the domain to values or Nil .

ValMap ∆= union {[PS → Value ∪ {Nil}] : PS ∈ subset Domain}

none is defined to be something that is not a ValMap

none
∆
= choose n : n /∈ ValMap

assume none /∈ ValMap
assume none 6= Nil
assume none /∈ Value

We define Bottom to be the “empty” ValMap, that is, a ValMap function whose domain
is the empty set. In TLA, a function with empty domain is defined to be equal to the
empty sequence, which allows the simplification below. We use Bottom instead of ⊥.

Bottom ∆= 〈〉

For simplicity, Dom(f ) is defined to be the domain of function f .

Dom(f ) ∆= domain f

A SingleMap maps a single domain element to a Value or Nil .

SingleMap ∆= [p : Domain, v : Value ∪ {Nil}]

SM (p, v) defines a SingleMap from domain element p to value v .

SM (p, v) ∆= [p 7→ p, v 7→ v ]

The basic operation over a ValMap is vm • sm. It agregates a SingleMap to a ValMap. It
is well-defined only if vm is a ValueMap and sm is a SingleMap.

vm • sm ∆= [p ∈ Dom(vm) ∪ {sm.p} 7→
if p ∈ Dom(vm) then vm[p]

else sm.v ]

ValMap is a c-struct and admits all existing operators for c-structs. We define them
in the following specifically for the ValMap type, which allows many simplifications and
optimizations.

A ValMap v is a prefix of a ValMap w (v v w) if it can be extended to w by a sequence of
• applications with single mappings. This can be verified in a simplified way by checking
if the domain of v is a subset of the domain of w and for every element in the domain of
v , its mapped value in v is equal to its mapped value in w . If v v w , we say that v is a
prefix of w or that w extends v . We extend the definition of v v w so that it is true if
both v and w equals none.

v v w ∆= ∨ ∧ v 6= none
∧ w 6= none
∧Dom(v) ⊆ Dom(w)
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∧ ∀ e ∈ Dom(v) : v [e] = w [e]
∨ ∧ v = none
∧ w = none

A ValMap v is a strict prefix of a Valmap w (v < w) if it is a prefix of w and it is different
from w .

v < w ∆= (v v w) ∧ (v 6= w)

GLB(T ) is the greatest lower bound of a set of value mappings. It is a ValMap u that is
a prefix to all ValMaps in T but is not a prefix of any other ValMap that is also a prefix
of all ValMaps in T . It is more simply defined as a function that maps each element
that belongs to the domain intersection of all mappings and whose mapped value in all
mappings is the same to its mapped value in all value mappings.

GLB(T ) ∆= let witness ∆= choose f ∈ T : true
CInter ∆= {p ∈ Dom(witness) :

∀ f ∈ T : ∧ p ∈ Dom(f )
∧ f [p] = witness[p]}

in [p ∈ CInter 7→ witness[p]]

v u w is defined to be the greatest lower bound for the set {v , w}

v u w ∆= GLB({v , w})

A ValMap v is defined to be compatible with a ValMap w if they are both prefixes of a
ValMap u. It is equivalent to verifying if their common domain elements are mapped to
the same values.

AreCompatible(v , w) ∆= ∀ e ∈ Dom(v) ∩Dom(w) : v [e] = w [e]

A set of ValMaps is compatible if its elements are pairwise compatible.

IsCompatible(S ) ∆= ∀ v , w ∈ S : AreCompatible(v , w)

LUB(T ) is the least upper bound of a set of value mappings. It is a ValMap u that extends
all ValMaps in T but does not extend any other ValMap that also extends all ValMaps
in T . It is more simply defined as a function that maps each element that belongs to the
domain of any of the mappings to its mapped value on any of the mappings whose domain
it belongs to. It is only well-defined if T is a set of compatible value mappings.

LUB(T ) ∆= [p ∈ union {Dom(f ) : f ∈ T} 7→
(choose f ∈ T : p ∈ Dom(f ))[p]]

v t w is defined to be the least upper bound for the set {v , w}

v t w ∆= LUB({v , w})
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D.4 Order Relations

module OrderRelations
We make some definitions for an arbitrary ordering relation v on a set S . The module
will be used by instantiang v and S with a particular operator and Set.

constants S , v

We define IsPartialOrder to be the assertion that v is an (irreflexive) partial order on a
set S , and IsTotalOrder to be the assertion that it is a total ordering of S .

IsPartialOrder ∆=
∧ ∀ u, v , w ∈ S : (u v v) ∧ (v v w)⇒ (u v w)
∧ ∀ u, v ∈ S : (u v v) ∧ (v v u) ⇒ (u = v)

IsTotalOrder ∆=
∧ IsPartialOrder
∧ ∀ u, v ∈ S : (u v v) ∨ (v v u)

We now define the glb (greatest lower bound) and lub (least upper bound) operators.
To define GLB , we first define IsLB(lb, T ) to be true iff lb is a lower bound of T , and
IsGLB(lb, T ) to be true iff lb is a glb of T . the value of GLB(T ) is unspecified if T has
no glb. The definition for upper bounds are analogous.

IsLB(lb, T ) ∆= ∧ lb ∈ S
∧ ∀ v ∈ T : lb v v

IsGLB(lb, T ) ∆= ∧ IsLB(lb, T )
∧ ∀ v ∈ S : IsLB(v , T )⇒ (v v lb)

GLB(T ) ∆= choose lb ∈ S : IsGLB(lb, T )

v u w ∆= GLB({v , w})

IsUB(ub, T ) ∆= ∧ ub ∈ S
∧ ∀ v ∈ T : v v ub

IsLUB(ub, T ) ∆= ∧ IsUB(ub, T )
∧ ∀ v ∈ S : IsUB(v , T )⇒ (ub v v)

LUB(T ) ∆= choose ub ∈ S : IsLUB(ub, T )

v t w ∆= LUB({v , w})

D.5 Paxos Constants

module PaxosConstants
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This module defines the parameters and data structures for our algorithms.

extends FiniteSets

RNum is the set of round numbers and � defines an ordering relation amongst the set
of rounds. The module also has as a parameter an initial round number called Zero.

constants RNum, � , Zero

We assume � is a total ordering of the set RNum of round numbers.

assume let PO ∆= instance OrderRelations with S ← RNum, v ← �
in PO !IsTotalOrder

We define i ≺ j to be true iff i � j for two different rounds i and j .

i ≺ j ∆= (i � j ) ∧ (i 6= j )

If B is a set of round numbers that contains a maximum element, then Max (B) is defined
to equal that maximum. Otherwise, its value is unspecified.

Max (B) ∆= choose i ∈ B : ∀ j ∈ B : j � i

Are parameters of this module:
- A set Proposer of proposer agents,
- A set Learner of learner agents,
- A set Acceptor of acceptor agents,
- An operator Quorum that returns the acceptor quorums of a round,
- An operator CfProposer that returns the collision-fast proposers of a round,
- And a set Value of proposable Values.

constants Proposer , Learner , Acceptor , Quorum( ), CfProposer( ), Value

Nil ∆= choose n : n /∈ Value
none ∆= choose n : n /∈ Value

The problem of MConsensus is defined in terms of a value mapping set whose Domain is
the set of proposers

instance VMapping with Domain ← Proposer

We assume that quorums are finite subsets of the acceptors and every pair of quorums
has a non-empty intersection.

QuorumAssumption ∆=
∀ i ∈ RNum :
∧Quorum(i) ⊆ subset Acceptor
∧ ∀Q ∈ Quorum(i) : IsFiniteSet(Q)
∧ ∀ j ∈ RNum :
∀Q ∈ Quorum(i), R ∈ Quorum(j ) : Q ∩ R 6= {}

assume QuorumAssumption
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Over the set of collision-fast proposers for a round i , we only assume they are a finite
subset of the proposers.

CfProposerAssumption ∆=
∀ i ∈ RNum :
∧ CfProposer(i) ∈ subset Proposer
∧ IsFiniteSet(CfProposer(i))

assume CfProposerAssumption

We say that a value mapping is valued iff at least one element of its domain is mapped
to a value ( 6= Nil). Our algorithm makes sure that acceptors will only accept valued
mappings, so that we can guarantee Nontriviality .

IsValued(m) ∆= ∃ p ∈ Dom(m) : m[p] 6= Nil

We define the Nil-extension of a valued mapping v for a set P of proposers to be the
ValMap resulting from adding to v the single mapping p → Nil , for every proposer p in
P \Dom(v).

NilExtension(v , P) ∆=
if v = none then none

else [p ∈ Dom(v) ∪ P 7→ if p ∈ Dom(v) then v [p]
else Nil ]

We define BallotArray to be the set of all ballot arrays. We represent a ballot array as a
record, where we write βa [m] as β.vote[a][m] and β̂a as β.rnd [a].

BallotArray ∆=
{beta ∈ [vote : [Acceptor → [RNum → ValMap ∪ {none}]],

rnd : [Acceptor → RNum]] :
∀ a ∈ Acceptor :
∧ IsFiniteSet({m ∈ RNum : beta.vote[a][m] 6= none})
∧ ∀m ∈ RNum :

∧ (beta.rnd [a] ≺ m)⇒ (beta.vote[a][m] = none)
∧ (beta.vote[a][m] 6= none)⇒ IsValued(beta.vote[a][m])}

We define CfPropArray to be the set of all proposal arrays.

PropArray ∆= [Proposer → [RNum → Value ∪ {Nil} ∪ {none}]]

We now formalize the definitions of chosen at, safe at, etc. We translate the English terms
into obvious operator names. For example, IsChosenAt(v , m, β, γ ) is defined to be true
iff v is chosen at m in 〈 β, γ 〉, assuming that v is a ValMap, m is a round number, β
is a ballot array, and γ is a proposal array. (We don’t care what IsChosenAt(v , m, β,
γ ) means for other values of v , m, β, and γ.) We also assert the two propositions as
theorems.

IsChosenAt(v , m, beta, gamma) ∆=
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let NilP ∆= {p ∈ CfProposer(m) : gamma[p][m] = Nil}
in ∃Q ∈ Quorum(m) :

∀ a ∈ Q : (v v NilExtension(beta.vote[a][m], NilP))

IsChosenIn(v , beta, gamma) ∆= ∃m ∈ RNum : IsChosenAt(v , m, beta, gamma)

IsChoosableAt(v , m, beta, gamma) ∆=
∃Q ∈ Quorum(m) :
let P ∆= {p ∈ Proposer : gamma[p][m] ∈ {Nil , none}}
in ∀ a ∈ Q :

(m ≺ beta.rnd [a])⇒
(v v NilExtension(beta.vote[a][m], Proposer))

IsSafeAt(v , m, beta, gamma) ∆=
∀ k ∈ RNum :

(k ≺ m)⇒ ∀w ∈ ValMap :
IsChoosableAt(w , k , beta, gamma)⇒ (w v v)

IsSafe(beta, gamma) ∆=
∀ a ∈ Acceptor , k ∈ RNum :

(beta.vote[a][k ] 6= none)⇒ IsSafeAt(beta.vote[a][k ], k , beta, gamma)

Proposition1 ∆=
∀ beta ∈ BallotArray , gamma ∈ PropArray :

IsSafe(beta, gamma)⇒
IsCompatible({v ∈ ValMap : IsChosenIn(v , beta, gamma)})

theorem Proposition1

IsConservative(beta, gamma) ∆=
∀m ∈ RNum, a, b ∈ Acceptor :
∧ beta.vote[a][m] 6= none
∧ beta.vote[b][m] 6= none
⇒ ∧AreCompatible(beta.vote[a][m], beta.vote[b][m])
∧ ∀ p ∈ Dom(beta.vote[b][m]) \Dom(beta.vote[a][m]) :

beta.vote[b][m][p] = gamma[p][m]

ProvedSafe(Q , m, beta) ∆=
if ∀ a ∈ Q , i ∈ RNum : (i ≺ m)⇒ (beta.vote[a][i ] = none)

then Bottom
else let k ∆= Max ({i ∈ RNum :

(i ≺ m) ∧ (∃ a ∈ Q : beta.vote[a][i ] 6= none)})
AS ∆= {a ∈ Q : beta.vote[a][k ] 6= none}
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G ∆= {beta.vote[a][k ] : a ∈ AS}
in NilExtension(LUB(G), Proposer)

Proposition2 ∆=
∀m ∈ RNum, beta ∈ BallotArray , gamma ∈ PropArray :
∀Q ∈ Quorum(m) :
∧ IsSafe(beta, gamma)
∧ IsConservative(beta, gamma)
∧ ∀ a ∈ Q : m � beta.rnd [a]
⇒ IsSafeAt(ProvedSafe(Q , m, beta), m, beta, gamma)

theorem Proposition2

D.6 Abstract Collision-Fast Paxos

module AbstractCFPaxos
Abstract algorithm

extends PaxosConstants

The algorithm’s variables:
- proposed: set of proposed values
- learned: array that maps each learner to its currently learned ValMap
- bA: a ballot array that keeps current round and history of votes for each acceptor.
- pA: a proposal array that keeps the history of proposals for each proposer.
- minTried : a vector with the safe initial value to be accepted at each round.

variables proposed , learned , bA, pA, minTried

The type invariant asserts that the specification preserves the types of the variables ac-
cording to the definition below.

TypeInv ∆= ∧ proposed ⊆ Value
∧ learned ∈ [Learner → ValMap]
∧ bA ∈ BallotArray
∧ pA ∈ PropArray
∧minTried ∈ [RNum → ValMap ∪ {none}]

Initial state of the specification

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ bA = [vote 7→ [a ∈ Acceptor 7→ [m ∈ RNum 7→ none]],

rnd 7→ [a ∈ Acceptor 7→ Zero]]
∧ pA = [p ∈ Proposer 7→ [i ∈ RNum 7→ none]]
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∧minTried = [i ∈ RNum 7→ if i = Zero then Bottom
else none ]

Propose(V ) adds value V to the set proposed if it is not there yet.

Propose(V ) ∆=
∧V /∈ proposed
∧ proposed ′ = proposed ∪ {V }
∧ unchanged 〈learned , bA, pA, minTried〉

JoinRound(a, m) changes the current round of acceptor a to m.

JoinRound(a, m) ∆=
∧ bA.rnd [a] ≺ m
∧ bA′ = [bA except !.rnd [a] = m]
∧ unchanged 〈proposed , learned , pA, minTried〉

StartRound(m, Q) sets minTried [m] to a value safe at m in bA, according to the definition
of ProvedSafe(Q , m, bA).

StartRound(m, Q) ∆=
∧minTried [m] = none
∧ ∀ a ∈ Q : m � bA.rnd [a]
∧minTried ′ = [minTried except ![m] = ProvedSafe(Q , m, bA)]
∧ unchanged 〈proposed , learned , bA, pA〉

Suggest(p, m, V ) changes pA[p][m] from none to a value or Nil (this last, only if other
proposer has suggested a value or minTried [m][p] equals Nil).

Suggest(p, m, V ) ∆=
∧ ∨minTried [m] /∈ {Bottom, none} ∧V = minTried [m][p]
∨V ∈ proposed
∨ ∧V = Nil
∧ ∃ pv ∈ CfProposer(m) : pA[pv ][m] ∈ Value

∧ pA[p][m] = none
∧ pA′ = [pA except ![p][m] = V ]
∧ unchanged 〈proposed , learned , bA, minTried〉

ClassicVote(a, m, v) extends the vote of acceptor a for round m, changing it for value v
if the conditions below are satisfied.

ClassicVote(a, m, v) ∆=
∧ bA.rnd [a] � m
∧ IsValued(v)
∧minTried [m] 6= none
∧minTried [m] v v
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∧ let sp(p) ∆= SM (p, pA[p][m])
pS ∆= {p ∈ CfProposer(m) : pA[p][m] 6= none}
maxTried ∆= LUB({minTried [m] • sp(p) : p ∈ pS})

in v v NilExtension(maxTried , Proposer \CfProposer(m))
∧ ∨ bA.vote[a][m] = none
∨ bA.vote[a][m] < v

∧ bA′ = [bA except !.rnd [a] = m, !.vote[a][m] = v ]
∧ unchanged 〈proposed , learned , pA, minTried〉

AbstractLearn(l , v) extends learned [l} with v iff v is chosen in 〈bA, pA〉.

AbstractLearn(l , v) ∆=
∧ IsChosenIn(v , bA, pA)
∧ learned ′ = [learned except ![l ] = learned [l ] t v ]
∧ unchanged 〈proposed , bA, pA, minTried〉

Next defines the next-state relation and Spec is the complete specification.

Next ∆=
∨ ∃V ∈ Value : Propose(V )
∨ ∃ a ∈ Acceptor , m ∈ RNum : JoinRound(a, m)
∨ ∃m ∈ RNum :

∨ ∃Q ∈ Quorum(m) : StartRound(m, Q)
∨ ∃ p ∈ CfProposer(m), V ∈ Value ∪ {Nil} : Suggest(p, m, V )

∨ ∃ a ∈ Acceptor , m ∈ RNum, v ∈ ValMap : ClassicVote(a, m, v)
∨ ∃ l ∈ Learner , v ∈ ValMap : AbstractLearn(l , v)

Spec ∆= Init ∧2[Next ]〈proposed , learned , bA, pA,minTried〉

The theorems below asserts that the spec ensures the type invariant and implements the
general specification of MConsensus.

theorem Spec ⇒ 2TypeInv

MC ∆= instance MConsensus
theorem Spec ⇒ MC !Spec

D.7 Distributed Abstract Collision-Fast Paxos

module DistAbsCFPaxos
extends PaxosConstants
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The algorithm’s variables are the same as in the abstract algorithm plus msgs: set of
system messages. Since we are specifying only safety, message loss is simply implemented
by not executing actions that depend on the message, without having to take it explicitly
out of the set msgs. Moreover, duplicate messages are implemented by keeping messages
in msgs, since they could possibly trigger the same action multiple times.

variables proposed , learned , bA, pA, minTried , msgs

Msg is the set containing all possible messages by the algorithm. For clarity, we use
records instead of sequences to represent messages.

Msg ∆= [type : {“propose”}, val : Value] ∪
[type : {“1a”}, rnd : RNum] ∪
[type : {“1b”}, rnd : RNum, acc : Acceptor ,

vote : [RNum → ValMap ∪ {none}]] ∪
[type : {“2S”}, rnd : RNum, val : ValMap] ∪
[type : {“2b”}, rnd : RNum, acc : Acceptor , val : ValMap] ∪
[type : {“2a”}, rnd : RNum, val : SingleMap]

Type Invariant

TypeInv ∆= ∧ proposed ⊆ Value
∧ learned ∈ [Learner → ValMap]
∧ bA ∈ BallotArray
∧ pA ∈ PropArray
∧minTried ∈ [RNum → ValMap ∪ {none}]
∧msgs ⊆ Msg

Initial state

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ bA = [vote 7→ [a ∈ Acceptor 7→ [m ∈ RNum 7→ none]],

rnd 7→ [a ∈ Acceptor 7→ Zero]]
∧ pA = [p ∈ Proposer 7→ [i ∈ RNum 7→ none]]
∧minTried = [i ∈ RNum 7→ if i = Zero then Bottom

else none]
∧msgs = {[type 7→ “2S”, rnd 7→ Zero, val 7→ Bottom]}

Actions

Action Send(msg) implements the sending of message msg .

Send(msg) ∆= msgs ′ = msgs ∪ {msg}
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Propose(V ) executes a value proposal. In the specification we make no distinction be-
tween a proposal made by a collision-fast proposer and one made by an ordinary external
proposer. The difference lies on whether the “propose” message will be local to a processor
or not.

Propose(V ) ∆=
∧V /∈ proposed
∧ proposed ′ = proposed ∪ {V }
∧ Send([type 7→ “propose”, val 7→ V ])
∧ unchanged 〈learned , bA, pA, minTried〉

Action Phase1a(m) triggers the start of a new round m. It sends a phase “1a” message
for round m.

Phase1a(m) ∆=
∧minTried [m] = none
∧ Send([type 7→ “1a”, rnd 7→ m])
∧ unchanged 〈proposed , learned , bA, pA, minTried〉

Action Phase1b(a, m) is executed by acceptor a in response to a phase “1a” message.
The action is executed only once per round. It changes the current round of acceptor a
to m and sends a phase “1b” message containing the current voting situation of a.

Phase1b(a, m) ∆=
∧ [type 7→ “1a”, rnd 7→ m] ∈ msgs
∧ bA.rnd [a] ≺ m
∧ bA′ = [bA except !.rnd [a] = m]
∧ Send([type 7→ “1b”, rnd 7→ m, acc 7→ a, vote 7→ bA.vote[a]])
∧ unchanged 〈proposed , learned , pA, minTried〉

Action Phase2Start(m) “starts” round m. It is enabled iff the round has not been started
and a quorum of acceptors has sent phase “1b” messages for round m. It uses these “1b”
messages to pick up a safe ValMap for round m, using ProvedSafe(Q , m, beta) as defined
in module PaxosConstants. minTried [m] is set to this safe value and a phase “2S” message
is sent to inform it.

Phase2Start(m) ∆=
∧minTried [m] = none
∧ ∃Q ∈ Quorum(m) :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .rnd = m
∧msg .acc = a

∧ let 1bMsg ∆= [a ∈ Q 7→ choose msg ∈ msgs :
∧msg .type = “1b”
∧msg .rnd = m
∧msg .acc = a]
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beta ∆= [vote 7→ [a ∈ Q 7→ 1bMsg [a].vote],
rnd 7→ [a ∈ Q 7→ m]]

v ∆= ProvedSafe(Q , m, beta)
in ∧minTried ′ = [minTried except ![m] = v ]

∧ Send([type 7→ “2S”, rnd 7→ m, val 7→ v ])
∧ unchanged 〈proposed , learned , bA, pA〉

Action Phase2Prepare(p, m) is executed by proposer p, for round m. It is enabled iff
pA[p][m] is different from none and p has received a “2S” message containing a v -mapping
different from Bottom. The action sets pA[p][m] to v [p].

Phase2Prepare(p, m) ∆=
∧ pA[p][m] = none
∧ ∃ v ∈ ValMap :
∧ [type 7→ “2S”, rnd 7→ m, val 7→ v ] ∈ msgs
∧ v 6= Bottom
∧ pA′ = [pA except ![p][m] = v [p]]

∧ unchanged 〈proposed , learned , bA, minTried , msgs〉

Action Phase2a(p, m, V ) is executed by proposer p, for round m and value V . It is
enabled iff p is a collision-fast proposer for m, it has received a phase “2S” message
containing Bottom and either a “propose” or a “2a” message for m, and pA[p][m] equals
none. The action sets pA[p][m] to V if p received a 〈“propose”, V 〉 message or to Nil
otherwise (p received a phase “2a” message from another proposer). It also sends a phase
“2a” message for round m with a single mapping from p to V .

Phase2a(p, m, V ) ∆=
∧ p ∈ CfProposer(m)
∧ pA[p][m] = none
∧ [type 7→ “2S”, rnd 7→ m, val 7→ Bottom] ∈ msgs
∧ ∨ [type 7→ “propose”, val 7→ V ] ∈ msgs
∨ ∧V = Nil
∧ ∃ q ∈ CfProposer(m), U ∈ Value :

[type 7→ “2a”, rnd 7→ m, val 7→ SM (q , U )] ∈ msgs
∧ pA′ = [pA except ![p][m] = V ]
∧ Send([type 7→ “2a”, rnd 7→ m, val 7→ SM (p, V )])
∧ unchanged 〈proposed , learned , bA, minTried〉

Action Phase2b(a, m, v) is executed by acceptor a, for round m and ValMap v . It is
enabled only if m is higher than or equal to the current round of a, either v is valued and
came on a phase “2S” message or v is built out of a phase “2a” message whose value is
a mapping from a proposer to a (non-Nil) value. Moreover, the current vote of a for m
must be either none or a prefix of v . The action sets the current round of a to m and a’s
vote at m to v .
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Phase2b(a, m, v) ∆=
∧ bA.rnd [a] � m
∧ ∨ ∧ [type 7→ “2S”, rnd 7→ m, val 7→ v ] ∈ msgs

∧ IsValued(v)
∧ bA.vote[a][m] = none

∨ ∃ s ∈ SingleMap :
∧ [type 7→ “2a”, rnd 7→ m, val 7→ s] ∈ msgs
∧ s.v 6= Nil
∧ ∨ ∧ bA.vote[a][m] = none

∧ v = NilExtension(Bottom • s, Proposer \CfProposer(m))
∨ ∧ bA.vote[a][m] 6= none
∧ v = bA.vote[a][m] • s

∧ bA′ = [bA except !.rnd [a] = m, !.vote[a][m] = v ]
∧ Send([type 7→ “2b”, rnd 7→ m, acc 7→ a, val 7→ v ])
∧ unchanged 〈proposed , learned , pA, minTried〉

Action Learn is executed by learner l , for a ValMap v . Let P be the set of proposers from
which l has received phase “2a” messages with single mappings from them to Nil . The
action is enabled if there is a quorum Q of acceptors from which l has received phase “2b”
messages such that v is a prefix of the of the values in each of these messages Nil-extended
for P . The action sets learned [l ] to the lub between its previous value and v .

Learn(l , v) ∆=
∧ ∃m ∈ RNum :
∃Q ∈ Quorum(m), P ∈ subset CfProposer(m) :
∧ ∀ p ∈ P : [type 7→ “2a”, rnd 7→ m, val 7→ SM (p, Nil)] ∈ msgs
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “2b”

∧msg .rnd = m
∧msg .acc = a
∧ v v NilExtension(msg .val , P)

∧ learned ′ = [learned except ![l ] = @ t v ]
∧ unchanged 〈proposed , bA, pA, minTried , msgs〉

Next defines the next-state relation and Spec is the complete specification.

Next ∆= ∨ ∃V ∈ Value : Propose(V )
∨ ∃m ∈ RNum : Phase1a(m)
∨ ∃ a ∈ Acceptor , m ∈ RNum : Phase1b(a, m)
∨ ∃m ∈ RNum : Phase2Start(m)
∨ ∃ p ∈ Proposer , m ∈ RNum, V ∈ Value ∪ {Nil} :

Phase2a(p, m, V )
∨ ∃ a ∈ Acceptor , m ∈ RNum, v ∈ ValMap : Phase2b(a, m, v)
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∨ ∃ l ∈ Learner , v ∈ ValMap : Learn(l , v)

Spec ∆= Init ∧2[Next ]〈proposed , learned , bA, pA,minTried ,msgs〉

The theorems below asserts that the spec ensures the type invariant and implements the
general specification of MConsensus.

theorem Spec ⇒ 2TypeInv

MC ∆= instance MConsensus
theorem Spec ⇒ MC !Spec

D.8 Collision-Fast Paxos

module DistCFPaxosLiv
extends FiniteSets Standard module with basic operations for finite sets.

RNum is the set of round numbers and � defines an ordering relation amongst the set
of rounds. The module also has as a parameter an initial round number called Zero.

constants RNum, � , Zero

We assume � is a total ordering of the set RNum of round numbers. Module
OrderRelations can be found in our complete technical report.

assume let PO ∆= instance OrderRelations with S ← RNum,
v ← �

in PO !IsTotalOrder

We define i ≺ j to be true iff i � j for two different rounds i and j .

i ≺ j ∆= (i � j ) ∧ (i 6= j )

If B is a set of round numbers that contains a maximum element, then Max (B) is defined
to equal that maximum. Otherwise, its value is unspecified.

Max (B) ∆= choose i ∈ B : ∀ j ∈ B : j � i

Are parameters of this module:
- A set Proposer of proposer agents,
- A set Learner of learner agents,
- A set Coord of coordinator agents,
- An operator CoordOf that returns the coordinator of a round,
- A set Acceptor of acceptor agents,
- An operator Quorum that returns the acceptor quorums of a round,
- An operator CfProposer that returns the collision-fast proposers of a round,
- A set Value of proposable Values,
- A special value Nil not in Value,

75



- And a special value none not in Value.

constants Proposer , Learner , Coord , CoordOf ( ), Acceptor ,
Quorum( ), CfProposer( ), Value, Nil , none

assume Nil /∈ Value
assume none /∈ Value

The problem of MConsensus is defined in terms of a value mapping set whose Domain is
the set of proposers

instance VMapping with Domain ← Proposer

We make the assumption that, for every round r , r has a single coordinator responsible
for it and every coordinator is is responsible for a round higher-numbered than r .

CoordAssumption ∆=
∀ r ∈ RNum : ∧ CoordOf (r) ∈ Coord

∧ ∀ c ∈ Coord : ∃ r2 ∈ RNum : ∧ r ≺ r2
∧ c = CoordOf (r2)

assume CoordAssumption

We assume that quorums are finite subsets of the acceptors and every pair of quorums
has a non-empty intersection.

QuorumAssumption ∆=
∀ i ∈ RNum :
∧Quorum(i) ⊆ subset Acceptor
∧ ∀Q ∈ Quorum(i) : IsFiniteSet(Q)
∧ ∀ j ∈ RNum :
∀Q ∈ Quorum(i), R ∈ Quorum(j ) : Q ∩ R 6= {}

assume QuorumAssumption

Over the set of collision-fast proposers for a round i , we only assume they are a finite
subset of the proposers.

CfProposerAssumption ∆=
∀ i ∈ RNum :
∧ CfProposer(i) ∈ subset Proposer
∧ IsFiniteSet(CfProposer(i))

assume CfProposerAssumption

We say that a value mapping is valued iff at least one element of its domain is mapped
to a value ( 6= Nil). Our algorithm makes sure that acceptors will only accept valued
mappings, so that we can guarantee Nontriviality .

IsValued(m) ∆= ∃ p ∈ Dom(m) : m[p] 6= Nil
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We define the Nil-extension of a valued mapping v for a set P of proposers to be the
ValMap resulting from adding to v the single mapping p → Nil , for every proposer p in
P \Dom(v).

NilExtension(v , P) ∆=
if v = none then none

else [p ∈ Dom(v) ∪ P 7→ if p ∈ Dom(v) then v [p]
else Nil ]

The algorithm’s variables are the following:
- proposed: set of proposed values
- learned: array mapping each learner to its currently learned ValMap
- rnd : array mapping each acceptor to its current round.
- vrnd : array mapping each acceptor to the last round at which it accepted something.
- vval : array mapping each acceptor a to the ValMap accepted in vrnd [a].
- prnd : array mapping each proposer to its current round.
- pval : array mapping each proposer p to the value it fast-proposed at round prnd [p].
- crnd : array mapping each coordinator to its current round.
- cval : array mapping each coordinator to the initial ValMap it has picked for round
crnd [p].

- msgs: set of messages that implements the message passing subsystem
- noncrashed : set of non-crashed agents in the system.
- amLeader : array mapping each coordinator to true or false depending on whether it
believes to be the leader or not

- activep: array mapping each coordinator to the set of proposers it currently believes
to be active.

variables proposed , learned , rnd , vrnd , vval , prnd , pval , crnd , cval ,
msgs, noncrashed , amLeader , activep

aVars ∆= 〈rnd , vrnd , vval〉
pVars ∆= 〈prnd , pval〉
cVars ∆= 〈crnd , cval〉
oVars ∆= 〈proposed , learned , noncrashed , amLeader , activep〉

Msg is the set containing all possible messages by the algorithm. For clarity, we use
records instead of sequences to represent messages.

Msg ∆= [type : {“propose”}, val : Value] ∪
[type : {“1a”}, rnd : RNum] ∪
[type : {“1b”}, rnd : RNum, acc : Acceptor ,

vrnd : RNum, vval : ValMap ∪ {none}] ∪
[type : {“2S”}, rnd : RNum, val : ValMap] ∪
[type : {“2b”}, rnd : RNum, acc : Acceptor , val : ValMap] ∪
[type : {“2a”}, rnd : RNum, val : SingleMap]

Type Invariant
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TypeInv ∆=
∧ proposed ⊆ Value
∧ learned ∈ [Learner → ValMap]
∧ rnd ∈ [Acceptor → RNum]
∧ vrnd ∈ [Acceptor → RNum]
∧ vval ∈ [Acceptor → ValMap ∪ {none}]
∧ prnd ∈ [Proposer → RNum]
∧ pval ∈ [Proposer → Value ∪ {Nil} ∪ {none}]
∧ crnd ∈ [Coord → RNum]
∧ cval ∈ [Coord → ValMap ∪ {none}]
∧msgs ⊆ Msg
∧ noncrashed ⊆ Acceptor ∪ Coord ∪ Proposer ∪ Learner
∧ amLeader ∈ [Coord → boolean ]
∧ activep ∈ [Coord → subset Proposer ]

Initial state

Init ∆= ∧ proposed = {}
∧ learned = [l ∈ Learner 7→ Bottom]
∧ rnd = [a ∈ Acceptor 7→ Zero]
∧ vrnd = [a ∈ Acceptor 7→ Zero]
∧ vval = [a ∈ Acceptor 7→ none]
∧ prnd = [p ∈ Proposer 7→ Zero]
∧ pval = [p ∈ Proposer 7→ none]
∧ crnd = [c ∈ Coord 7→ Zero]
∧ cval = [c ∈ Coord 7→ if c = CoordOf (Zero)

then Bottom
else none]

∧msgs = {}
∧ noncrashed = Acceptor ∪ Coord ∪ Proposer ∪ Learner
∧ amLeader = [c ∈ Coord 7→ if c = CoordOf (Zero)

then true
else false]

∧ activep = [c ∈ Coord 7→ Proposer ]

Agent Actions

Action Send(msg) implements the sending of message msg .

Send(msg) ∆= msgs ′ = msgs ∪ {msg}
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Propose(V ) executes a value proposal. In the specification we make no distinction be-
tween a proposal made by a collision-fast proposer and one made by an ordinary external
proposer. The difference lies on whether the “propose” message will be local to a processor
or not.

Propose(V ) ∆=
∧V /∈ proposed
∧ proposed ′ = proposed ∪ {V }
∧ Send([type 7→ “propose”, val 7→ V ])
∧ unchanged 〈aVars, pVars, cVars, learned , noncrashed , amLeader , activep〉

Action Phase1a(c, r) is executed by the coordinator c of round r as specified in the paper.
To ensure Liveness, c can only execute this action if it believes to be the leader and either
c has received a message related to a round between crnd [c] and r , or it suspects one of
the current collision-fast proposers to have failed.

Phase1a(c, r) ∆=
∧ amLeader [c]
∧ c = CoordOf (r)
∧ crnd [c] ≺ r
∧ ∨ ∃msg ∈ msgs \ [type : {“propose”}, val : Value] :

∧ crnd [c] ≺ msg .rnd
∧msg .rnd ≺ r

∨ ∧ ¬(CfProposer(crnd [c]) ⊆ activep[c])
∧ CfProposer(r) ⊆ activep[c]

∧ crnd ′ = [crnd except ![c] = r ]
∧ cval ′ = [cval except ![c] = none]
∧ Send([type 7→ “1a”, rnd 7→ r ])
∧ unchanged 〈aVars, pVars, oVars〉

Action Phase1b(a, r) is executed by acceptor a, for round r . It follows exactly what is
explained in Section 4.1.

Phase1b(a, r) ∆=
∧ [type 7→ “1a”, rnd 7→ r ] ∈ msgs
∧ rnd [a] ≺ r
∧ rnd ′ = [rnd except ![a] = r ]
∧ Send([type 7→ “1b”, rnd 7→ r , acc 7→ a,

vrnd 7→ vrnd [a], vval 7→ vval [a]])
∧ unchanged 〈vrnd , vval , pVars, cVars, oVars〉

DistProvedSafe(Q , r , 1bMsg) returns a safe initial v -mapping for round r based on the
“1b” messages for r sent by acceptors in quorum Q . It returns Bottom if no v -mapping
has been or might be chosen in a lower-numbered round or a complete v -mapping that
extends any v -mapping possibly chosen in a lower-numbered round.
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DistProvedSafe(Q , r , 1bMsg) ∆=
if ∀ a ∈ Q : 1bMsg [a].vval = none

then Bottom
else let k ∆= Max ({1bMsg [a].vrnd : a ∈ Q})

AS ∆= {a ∈ Q : ∧ 1bMsg [a].vrnd = k
∧ 1bMsg [a].vval 6= none}

S ∆= {1bMsg [a].vval : a ∈ AS}
in NilExtension(LUB(S ), Proposer)

The action Phase2Start(c, r) follows the description given in Section 4.1. However, it is
only executed if c believes to be the current leader.

Phase2Start(c, r) ∆=
∧ crnd [c] = r
∧ cval [c] = none
∧ amLeader [c]
∧ ∃Q ∈ Quorum(r) :
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “1b”

∧msg .rnd = r
∧msg .acc = a

∧ let 1bMsg ∆= [a ∈ Q 7→ choose msg ∈ msgs :
∧msg .type = “1b”
∧msg .rnd = r
∧msg .acc = a]

v ∆= DistProvedSafe(Q , r , 1bMsg)
in ∧ cval ′ = [cval except ![c] = v ]

∧ Send([type 7→ “2S”, rnd 7→ r , val 7→ v ])
∧ unchanged 〈aVars, pVars, crnd , oVars〉

Phase2Prepare(p, r) simply follows the description given in Section 4.1.

Phase2Prepare(p, r) ∆=
∧ prnd [p] ≺ r
∧ ∃ v ∈ ValMap :
∧ [type 7→ “2S”, rnd 7→ r , val 7→ v ] ∈ msgs
∧ ∨ ∧ v = Bottom

∧ pval ′ = [pval except ![p] = none]
∨ ∧ v 6= Bottom
∧ pval ′ = [pval except ![p] = v [p]]

∧ prnd ′ = [prnd except ![p] = r ]
∧ unchanged 〈aVars, cVars, oVars〉

Action Phase2a(p, r , V ) also just follows the description of Section 4.1.
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Phase2a(p, r , V ) ∆=
∧ prnd [p] = r
∧ p ∈ CfProposer(r)
∧ pval [p] = none
∧ ∨ [type 7→ “propose”, val 7→ V ] ∈ msgs
∨ ∧V = Nil
∧ ∃ q ∈ CfProposer(r), U ∈ Value :

[type 7→ “2a”, rnd 7→ r , val 7→ SM (q , U )] ∈ msgs
∧ pval ′ = [pval except ![p] = V ]
∧ Send([type 7→ “2a”, rnd 7→ r , val 7→ SM (p, V )])
∧ unchanged 〈prnd , aVars, cVars, oVars〉

The same for action Phase2b(a, r).

Phase2b(a, r) ∆=
∧ rnd [a] � r
∧ ∃ v ∈ ValMap :
∧ ∨ ∧ [type 7→ “2S”, rnd 7→ r , val 7→ v ] ∈ msgs

∧ IsValued(v)
∧ vrnd [a] ≺ r ∨ vval [a] = none

∨ ∃ s ∈ SingleMap :
∧ [type 7→ “2a”, rnd 7→ r , val 7→ s] ∈ msgs
∧ s.v 6= Nil
∧ ∨ ∧ vrnd [a] ≺ r ∨ vval [a] = none

∧ v = NilExtension(Bottom • s, Proposer \CfProposer(r))
∨ ∧ vrnd [a] = r ∧ vval [a] 6= none
∧ v = vval [a] • s

∧ vval ′ = [vval except ![a] = v ]
∧ rnd ′ = [rnd except ![a] = r ]
∧ vrnd ′ = [vrnd except ![a] = r ]
∧ Send([type 7→ “2b”, rnd 7→ r , acc 7→ a, val 7→ v ])

∧ unchanged 〈pVars, cVars, oVars〉

The Learn action is defined differently from the explanation in Section 4.1. Here, for
simplicity, we let the value being merged with learned [l ] be an action parameter.

Learn(l , v) ∆=
∧ ∃ r ∈ RNum :
∃Q ∈ Quorum(r), P ∈ subset CfProposer(r) :
∧ ∀ p ∈ P : [type 7→ “2a”, rnd 7→ r , val 7→ SM (p, Nil)] ∈ msgs
∧ ∀ a ∈ Q : ∃msg ∈ msgs : ∧msg .type = “2b”

∧msg .rnd = r
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∧msg .acc = a
∧ v v NilExtension(msg .val , P)

∧ learned ′ = [learned except ![l ] = @ t v ]
∧ unchanged 〈aVars, pVars, cVars, proposed , msgs,

noncrashed , amLeader , activep〉

Message Loss/Retransmission Actions

The following operator returns the last message sent by coordinator c

CoordLastMsg(c) ∆=
if cval [c] = none

then [type 7→ “1a”, rnd 7→ crnd [c]]
else [type 7→ “2S”, rnd 7→ crnd [c], val 7→ cval [c]]

The following operator returns the last message sent by proposer p. It is sound only
if pval [p] 6= none, crnd [CoordOf (prnd [p])] = prnd [p], and cval [CoordOf (prnd [p])] =
Bottom. This condition is true only if p has fast-proposed a value at round prnd [p].

ProposerLastMsg(p) ∆=
[type 7→ “2a”, rnd 7→ prnd [p], val 7→ SM (p, pval [p])]

The following operator returns the last message sent by acceptor a.

AcceptorLastMsg(a) ∆=
if vrnd [a] = rnd [a]

then [type 7→ “2b”, rnd 7→ rnd [a], acc 7→ a, val 7→ vval [a]]
else [type 7→ “1b”, rnd 7→ rnd [a], acc 7→ a,

vrnd 7→ vrnd [a], vval 7→ vval [a]]

LoseMsg(m) implements the loss of message m. Any message may be lost except for: - a
“propose” message: Indeed the algorithm is resilient to their loss, but implementing

retransmission of a “propose” message would make our specification needlessly more
complicated.

- the last message sent by a good coordinator that believes to be the leader
- the fast-proposal sent by a good proposer for its current round.
- the last message sent by a good acceptor.

Therefore, the algorithm only requires that such messages be always available for the
agents they were sent to.

LoseMsg(m) ∆=
∧ ¬ ∨m.type ∈ {“propose”}
∨ ∧m.type ∈ {“1a”, “2S”}
∧m = CoordLastMsg(CoordOf (m.rnd))
∧ CoordOf (m.rnd) ∈ noncrashed
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∧ amLeader [CoordOf (m.rnd)]
∨ ∧m.type ∈ {“2a”}
∧ pval [m.val .p] 6= none
∧ crnd [CoordOf (m.rnd)] = m.rnd
∧ cval [CoordOf (m.rnd)] = Bottom
∧m = ProposerLastMsg(m.val .p)
∧m.val .p ∈ noncrashed

∨ ∧m.type ∈ {“1b”, “2b”}
∧m = AcceptorLastMsg(m.acc)
∧m.acc ∈ noncrashed

∧msgs ′ = msgs \ {m}
∧ unchanged 〈aVars, cVars, pVars, oVars〉

Even though the LoseMsg(m) action above does not apply for some messages, retrans-
mission is necessary because an agent can fail, have its message lost, and then recover.
In this case it is necessary to re-send the lost message. Below you will find the actions
responsible for retransmission.

CoordRetransmit(c) ∆=
∧ amLeader [c]
∧ Send(CoordLastMsg(c))
∧ unchanged 〈aVars, cVars, pVars, oVars〉

AcceptorRetransmit(a) ∆=
∧ Send(AcceptorLastMsg(a))
∧ unchanged 〈aVars, cVars, pVars, oVars〉

ProposerRetransmit(p) ∆=
∧ pval [p] 6= none
∧ crnd [CoordOf (prnd [p])] = prnd [p]
∧ cval [CoordOf (prnd [p])] = Bottom
∧ Send(ProposerLastMsg(p))
∧ unchanged 〈aVars, cVars, pVars, oVars〉

Other Actions

Action LeaderSelection allows an arbitrary change to the values of amLeader [c], for all
coordinators c. Since this action may be performed at any time, the specifiction makes
no assumption about the outcome of leader selection. (However, progress is guaranteed
only under an assumption about the values of amLeader [c].)

LeaderSelection ∆=
∧ amLeader ′ ∈ [Coord → boolean ]
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∧ unchanged 〈aVars, cVars, pVars, proposed , learned ,
noncrashed , activep, msgs〉

Action SuspectOrTrust arbitrarily changes the values of activep[c], for all coordinators c.

SuspectOrTrust ∆=
∧ activep ′ ∈ [Coord → subset Proposer ]
∧ unchanged 〈aVars, cVars, pVars, proposed , learned ,

noncrashed , amLeader , msgs〉

Action FailOrRecover also allows an arbitrary change to the value of noncrashed .

FailOrRecover ∆=
∧ noncrashed ′ ∈ subset (Acceptor ∪ Coord ∪ Proposer ∪ Learner)
∧ unchanged 〈aVars, cVars, pVars, proposed , learned ,

amLeader , activep, msgs〉

Final Specification

CoordNext(c) specifies the execution of some action by coordinator c.

CoordNext(c) ∆=
∨ ∃ r ∈ RNum : ∨ Phase1a(c, r)

∨ Phase2Start(c, r)
∨ CoordRetransmit(c)

ProposerNext(p) specifies the execution of some action by proposer p.

ProposerNext(p) ∆=
∨ ∃ r ∈ RNum, V ∈ Value ∪ {Nil} : Phase2a(p, r , V )
∨ ProposerRetransmit(p)

AcceptorNext(a) specifies the execution of some action by acceptor a.

AcceptorNext(a) ∆=
∨ ∃ r ∈ RNum : ∨ Phase1b(a, r)

∨ Phase2b(a, r)
∨AcceptorRetransmit(a)

LearnerNext(a) specifies the execution of some action by learner l .

LearnerNext(l) ∆=
∃ v ∈ ValMap : Learn(l , v)

Next defines the next-state action of the specification.

Next ∆= ∨ ∃V ∈ Value : Propose(V )
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∨ ∃ c ∈ Coord ∩ noncrashed : CoordNext(c)
∨ ∃ p ∈ Proposer ∩ noncrashed : ProposerNext(p)
∨ ∃ a ∈ Acceptor ∩ noncrashed : AcceptorNext(a)
∨ ∃ l ∈ Learner ∩ noncrashed : LearnerNext(l)
∨ ∃m ∈ msgs : LoseMsg(m)
∨ LeaderSelection ∨ SuspectOrTrust ∨ FailOrRecover

vars ∆= 〈aVars, pVars, cVars, oVars, msgs〉

Fairness ∆=
∧ ∀ c ∈ Coord :
∧WFvars(c ∈ noncrashed ∧ CoordNext(c))
∧WFvars(c ∈ noncrashed ∧ (∃ r ∈ RNum : Phase1a(c, r)))

∧ ∀ p ∈ Proposer : WFvars(p ∈ noncrashed ∧ ProposerNext(p))
∧ ∀ a ∈ Acceptor : WFvars(a ∈ noncrashed ∧AcceptorNext(a))
∧ ∀ l ∈ Learner : WFvars(l ∈ noncrashed ∧ LearnerNext(l))

Spec ∆= Init ∧2[Next ]vars ∧ Fairness

The theorems below asserts that the spec ensures the type invariant and implements the
safety part of the MConsensus specification.

theorem Spec ⇒ 2TypeInv

MC ∆= instance MConsensus
theorem Spec ⇒ MC !Spec

LA(l , c, Q) defines the liveness assumption required by the algorithm. Since our specifi-
cation does not allow a “propose” message to be lost, LA is slightly simpler than what we
described in the paper.

LA(l , c, Q) ∆=
∧ {c, l} ∪Q ⊆ noncrashed
∧ proposed 6= {}
∧ ∀ c2 ∈ Coord : amLeader [c2] ≡ (c = c2)
∧ activep[c] ⊆ noncrashed
∧ ∀ r ∈ RNum :
∃ r2 ∈ RNum : ∧ r ≺ r2

∧ c = CoordOf (r2)
∧ CfProposer(r2) ⊆ activep[l ]

∧ activep[c] ⊆ activep[c]′

The theorem below asserts that the algorithm’s specification satisfies Liveness if the live-
ness assumption eventually holds forever.
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theorem ∀ l ∈ Learner :
∧ Spec
∧ ∃Q ∈ subset Acceptor :
∧ ∀ r ∈ RNum : Q ∈ Quorum(r)
∧ ∃ c ∈ Coord : 32[LA(l , c, Q)]vars

⇒ 3(domain learned [l ] = Proposer)

D.9 Collision-Fast Atomic Broadcast

module CFPaxosAbcast
This module presents the specification of an efficient collision-fast atomic broadcast algo-
rithm based on the Collision-fast Paxos algorithm for M-Consensus.

extends Naturals, Sequences Definitions concerning the natural numbers and sequences.

RNum is the set of round numbers and � defines an ordering relation amongst the set
of rounds. The module also has as a parameter an initial round number called Zero.

constants RNum, � , Zero

The definition of i ≺ j

i ≺ j ∆= (i � j ) ∧ (i 6= j )

The specification has the same parameters as the Collision-Fast Paxos algorithm.

constants Proposer , Learner , Coord , CoordOf ( ), Acceptor ,
Quorum( ), CfProposer( ), Value, Nil , none

The Atomic Broadcast algorithm is based on an infinite number of Collision-fast Paxos
(CFPaxos) instances. However, some variables such as proposed, rnd , prnd , crnd ,
noncrashed , amLeader , and activep are shared by all instances. The other variables are
implemented by arrays indexed by the instance. We represent this arrays by the original
variable name with the prefix x as it can be seen below.

variables proposed , xlearned , rnd , xvrnd , xvval , prnd , xpval ,
crnd , xcval , xmsgs, noncrashed , amLeader , activep

vars is a sequence containing all the specification variables.

vars ∆= 〈proposed , xlearned , rnd , xvrnd , xvval , prnd , xpval , crnd , xcval ,
xmsgs, noncrashed , amLeader , activep〉

CFP(i), where i is a Natural number, is the Collision-fast Paxos instance number i .

CFP(i) ∆= instance DistCFPaxosLiv with learned ← xlearned [i ],
vrnd ← xvrnd [i ],
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vval ← xvval [i ],
pval ← xpval [i ],
msgs ← xmsgs[i ],
cval ← xcval [i ]

Initial state of the specification

Init ∆= ∧ proposed = {}
∧ xlearned = [i ∈ Nat 7→ [l ∈ Learner 7→ CFP(i)!Bottom]]
∧ rnd = [a ∈ Acceptor 7→ Zero]
∧ xvrnd = [i ∈ Nat 7→ [a ∈ Acceptor 7→ Zero]]
∧ xvval = [i ∈ Nat 7→ [a ∈ Acceptor 7→ none]]
∧ prnd = [p ∈ Proposer 7→ Zero]
∧ xpval = [i ∈ Nat 7→ [p ∈ Proposer 7→ none]]
∧ crnd = [c ∈ Coord 7→ Zero]
∧ xcval = [i ∈ Nat 7→ [c ∈ Coord 7→ if c = CoordOf (Zero)

then CFP(i)!Bottom
else none]]

∧ xmsgs = [i ∈ Nat 7→ {}]
∧ noncrashed = Acceptor ∪ Coord ∪ Proposer ∪ Learner
∧ amLeader = [c ∈ Coord 7→ if c = CoordOf (Zero)

then true
else false]

∧ activep = [c ∈ Coord 7→ Proposer ]

Some actions of the algorithm have to do only with one instance of CFPaxos. For such
cases it is interesting to have an operator that keeps non-shared variables of other instances
unchanged.

InstanceUnchanged(i) ∆=
unchanged 〈xlearned [i ], xvrnd [i ], xvval [i ],

xpval [i ], xcval [i ], xmsgs[i ]〉

Action Phase1a(c, r) for instance i must be slightly changed so that a new round might
be started if there is an interfering message for a different round number in ANY of the
running instances.

NewPhase1a(i , c, r) ∆=
∧ amLeader [c]
∧ c = CoordOf (r)
∧ crnd [c] ≺ r
∧ ∨ ∃ j ∈ Nat :

∃msg ∈ xmsgs[j ] :
∧msg .type 6= “propose”
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∧ crnd [c] ≺ msg .rnd
∧msg .rnd ≺ r

∨ ∧ ¬(CfProposer(crnd [c]) ⊆ activep[c])
∧ CfProposer(r) ⊆ activep[c]

∧ crnd ′ = [crnd except ![c] = r ]
∧ xcval ′[i ] = [xcval [i ] except ![c] = none]
∧ CFP(i)!Send([type 7→ “1a”, rnd 7→ r ])
∧ unchanged 〈CFP(i)!aVars, CFP(i)!pVars, CFP(i)!oVars〉

Agent Actions

We now present the combinated actions each agent performs.

A Propose action sends a “propose” message that is valid for all the CFPaxos instances.
This is logically implemented by executing a propose action for each instance. Notice,
however, that the multiple logical “propose” messages are implemented by a single one in
practice.

Propose(V ) ∆=
∀ i ∈ Nat : CFP(i)!Propose(V )

Action Phase1a executes NewPhase1a specified above for all CFPaxos instances. It is easy
to see that, since all pre-conditions of the action are based on variables shared among all
instances, the action is enable for instance i iff it is enabled for instance j . As a result of
this action, a “1a” message is sent for each instance. In practice, a single “1a” message is
sent and it is interpreted as valid for all instances.

Phase1a(c, r) ∆=
∀ i ∈ Nat : NewPhase1a(i , c, r)

Action Phase1b(a, r) is executed when acceptor a receives the “1a” message for a higher-
numbered round than its current one. Since there is a logical message for each instance,
the Phase1b action of every instance is equally enabled and are executed. However,
different instances might generate different “1b” messages. These different logical messages
are sent on the same physical one. The size of this message can be limited because
only a finite number of (initial) instances will result on “1b” messages different from
〈“1b, r , a, Zero, none〉.
Phase1b(a, r) ∆=
∀ i ∈ Nat : CFP(i)!Phase1b(a, r)
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Action Phase2Start(c, r) is executed by the coordinator of r when it receives the com-
posite ”1b“ message of the previous action. The coordinator calculates the different ”2S“
messages for every instance. These ”2S“ messages are sent together in the same physical
one as we have done in the previous action. Recall that only a finite number of instances
will result on ”2S“ messages different from 〈”2S“, r , Bottom〉, which can be used to limit
the size of the composite ”2S“ message sent.

Phase2Start(c, r) ∆=
∀ i ∈ Nat : CFP(i)!Phase2Start(c, r)

Action Phase2Prepare(p, r) is executed by proposer p when it receives the composite ”2S“
message from the action above. The action executes Phase2Prepare for every CFPaxos
instance.

Phase2Prepare(p, r) ∆=
∀ i ∈ Nat : CFP(i)!Phase2Prepare(p, r)

Action Phase2a(p, r , V ) is executed by proposer p when it fast-proposes value V . It
executes Phase2a(p, r , V ) for some CFPaxos instance i , as long as p has not fast-proposed
the same value for a different instance. All the other instances are left unchanged.

Phase2a(p, r , V ) ∆=
∃ i ∈ Nat :
∧V /∈ {xpval [j ][p] : j ∈ Nat}
∧ CFP(i)!Phase2a(p, r , V )
∧ ∀ j ∈ Nat : j < i ⇒ xpval [j ][p] 6= none
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(j )

Action Phase2b(a, r) executes Phase2b(a, r) for some CFPaxos instance i .

Phase2b(a, r) ∆=
∃ i ∈ Nat :
∧ CFP(i)!Phase2b(a, r)
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(j )

Action Learn(l , v) executes Learn(l , v) for some CFPaxos instance i .

Learn(l , v) ∆=
∃ i ∈ Nat :
∧ CFP(i)!Learn(l , v)
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(j )

Message Loss/Retransmission Actions
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LoseMsg(m) takes into consideration the fact that messages ”1a“, ”2S“, and ”1b“ are
composite, with a logical message for every instance but with all grouped in the same
physical message. As a result, all grouped messages must be lost together. The other
sorts of message are not composite and can be lost in a single instance only.

LoseMsg(m) ∆=
∨ ∧m.type ∈ {“1a”, “2S”}
∧ ∀ i ∈ Nat :
∧ ∃m2 ∈ CFP(i)!Msg :
∧m2.type = m.type
∧m2.rnd = m.rnd
∧ CFP(i)!LoseMsg(m2)

∨ ∧m.type = “1b”
∧ ∀ i ∈ Nat :
∧ ∃m2 ∈ CFP(i)!Msg :
∧m2.type = m.type
∧m2.rnd = m.rnd
∧m2.acc = m.acc
∧ CFP(i)!LoseMsg(m2)

∨ ∧m.type ∈ {“2a”, “2b”}
∧ ∃ i ∈ Nat :
∧ CFP(i)!LoseMsg(m)
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(j )

By the way coordinator actions are grouped for all the instances, its last message is allways
of the same type and for the same round. Therefore, retransmission boils down to just
retransmitting the last message in every instance.

CoordRetransmit(c) ∆=
∀ i ∈ Nat : CFP(i)!CoordRetransmit(c)

If the last logical message of an acceptor for every instance is of type ”1b“, it means that
its last action has been a Phase1b(a, r) for some round r . In this case, it is not clear
whether the coordinator of r has received the composite ”1b“ message from a or not, so
a resends it. If it is not the case that the last logical message of a for every instance
is of type ”1b“, then a has accepted some value for its current round and this means
that the coordinator does not need its composite ”1b“ message. So, a only re-sends the
”2b“ messages for the instances at which it has accepted some value and leave the other
instances unchanged.

AcceptorRetransmit(a) ∆=
∨ ∀ i ∈ Nat :
∧ CFP(i)!AcceptorLastMsg(a).type = “1b”
∧ CFP(i)!AcceptorRetransmit(a)
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∨ ∧ ∃ i ∈ Nat : CFP(i)!AcceptorLastMsg(a).type = “2b”
∧ ∀ i ∈ Nat :

if CFP(i)!AcceptorLastMsg(a).type = “2b”
then CFP(i)!AcceptorRetransmit(a)
else InstanceUnchanged(i)

A proposer retransmission is only a single retransmission for some CFPaxos instance i .

ProposerRetransmit(p) ∆=
∃ i ∈ Nat :
∧ CFP(i)!ProposerRetransmit(p)
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(i)

Other Actions

LeaderSelection, SuspectOrTrust , and FailOrRecover just execute the actions with the
same name on some instance i and leave the other instances unchanged. These actions
actually influence all the instances because they deal with shared variables.

LeaderSelection ∆=
∃ i ∈ Nat :
∧ CFP(i)!LeaderSelection
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(i)

SuspectOrTrust ∆=
∃ i ∈ Nat :
∧ CFP(i)!SuspectOrTrust
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(i)

FailOrRecover ∆=
∃ i ∈ Nat :
∧ CFP(i)!FailOrRecover
∧ ∀ j ∈ Nat \ {i} : InstanceUnchanged(i)

Final Specification

CoordNext(c) specifies the execution of some action by coordinator c.

CoordNext(c) ∆=
∨ ∃ r ∈ RNum : ∨ Phase1a(c, r)

∨ Phase2Start(c, r)
∨ CoordRetransmit(c)
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ProposerNext(p) specifies the execution of some action by proposer p.

ProposerNext(p) ∆=
∨ ∃ r ∈ RNum, V ∈ Value ∪ {Nil} : Phase2a(p, r , V )
∨ ProposerRetransmit(p)

AcceptorNext(a) specifies the execution of some action by acceptor a.

AcceptorNext(a) ∆=
∨ ∃ r ∈ RNum : ∨ Phase1b(a, r)

∨ Phase2b(a, r)
∨AcceptorRetransmit(a)

LearnerNext(a) specifies the execution of some action by learner l .

LearnerNext(l) ∆=
∃ v ∈ CFP(0)!ValMap : Learn(l , v)

Next defines the next-state action of the specification.

Next ∆= ∨ ∃V ∈ Value : Propose(V )
∨ ∃ c ∈ Coord ∩ noncrashed : CoordNext(c)
∨ ∃ p ∈ Proposer ∩ noncrashed : ProposerNext(p)
∨ ∃ a ∈ Acceptor ∩ noncrashed : AcceptorNext(a)
∨ ∃ l ∈ Learner ∩ noncrashed : LearnerNext(l)
∨ ∃m ∈ union {xmsgs[i ] : i ∈ Nat} : LoseMsg(m)
∨ LeaderSelection ∨ SuspectOrTrust ∨ FailOrRecover

The fairness condition of the specification. We need weak fairness on the agent actions
for every instance, since this is part of the liveness requirement for a single instance of
CFPaxos.

Fairness ∆=
∧ ∀ c ∈ Coord :
∧WFvars(c ∈ noncrashed ∧ CoordNext(c))
∧WFvars(c ∈ noncrashed ∧ (∃ r ∈ RNum : Phase1a(c, r)))

∧ ∀ p ∈ Proposer , i ∈ Nat :
WFvars(p ∈ noncrashed ∧ CFP(i)!ProposerNext(p))
∧ ∀ a ∈ Acceptor , i ∈ Nat :

WFvars(a ∈ noncrashed ∧ CFP(i)!AcceptorNext(a))
∧ ∀ l ∈ Learner , i ∈ Nat :

WFvars(l ∈ noncrashed ∧ CFP(i)!LearnerNext(l))

The final specification

Spec ∆= Init ∧2[Next ]vars ∧ Fairness
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Below we define the interface mapping from the algorithm above and the specification of
Atomic Broadcast.

The set of broadcast messages is simply our set of proposed values.

broadcast ∆= proposed

We assume the set Proposer can be totally ordered by a mapping POrd that matches each
proposer to a natural number and no two proposers to the same one.

assume ∃POrd ∈ [Proposer → Nat ] :
∀ p, q ∈ Proposer : p 6= q ⇒ POrd [p] 6= POrd [q ]

POrd ∆= choose POrd ∈ [Proposer → Nat ] :
∀ p, q ∈ Proposer : p 6= q ⇒ POrd [p] 6= POrd [q ]

The array delivered that maps each learner to its learned sequence is defined below, in
terms of the instances that have already been terminated and the last partially terminated
sequence.

delivered ∆=
let defined [m ∈ ValMap, s ∈ Seq(Values)] ∆=

let defSet ∆= {p ∈ domain m :
∧m[p] 6= Nil
∧ ¬∃ i ∈ domain s : s[i ] = m[p]
∧ ∀ q ∈ domain m : POrd [q ] < POrd [p]⇒ m[q ] 6= m[p]
∧ ∀ q ∈ Proposer : POrd [q ] < POrd [p]⇒ q ∈ domain m}

in choose f ∈ [1 . . Cardinality(defSet)→ defSet ] :
∀ i , j ∈ domain f : i ≤ j ≡ POrd [f [i ]] ≤ POrd [f [j ]]

deliver [l ∈ Learner , i ∈ Nat , s ∈ Seq(Value)] ∆=
if Domain = domain xlearned [i ][l ]
then deliver [l , i + 1, s ◦ defined [xlearned [i ][l ], s]]
else s ◦ defined [xlearned [i ][l ], s]

in [l ∈ Learner 7→ deliver [l , 0, 〈〉]]

The following theorem asserts that the algorithm’s specification implements atomic broad-
cast.

AB ∆= instance ABcast
theorem Spec ⇒ AB !Spec
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LA(V , l , c, Q) defines the liveness assumption required by the algorithm. It is the same
as Collision-fast Paxos.

LA(V , l , c, Q) ∆=
∧ {c, l} ∪Q ⊆ noncrashed
∧V ∈ proposed
∧ ∀ c2 ∈ Coord : amLeader [c2] ≡ (c = c2)
∧ activep[c] ⊆ noncrashed
∧ ∀ r ∈ RNum :
∃ r2 ∈ RNum : ∧ r ≺ r2

∧ c = CoordOf (r2)
∧ CfProposer(r2) ⊆ activep[l ]

∧ activep[c] ⊆ activep[c]′

The theorem below asserts that the algorithm’s specification satisfies Liveness if the live-
ness assumption eventually holds forever.

theorem ∀ l ∈ Learner , V ∈ Value :
∧ Spec
∧ ∃Q ∈ subset Acceptor :
∧ ∀ r ∈ RNum : Q ∈ Quorum(r)
∧ ∃ c ∈ Coord : 32[LA(V , l , c, Q)]vars

⇒ 3(∃ j ∈ 1 . . Len(delivered [l ]) : delivered [l ][j ] = V )
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