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Abstract
We consider communication over binary input memoryless symmet-
ric channels with low density parity check codes. The relationship
between maximum a posteriori and belief propagation decoding is in-
vestigated using a set of correlation inequalities that first appeared in
statistical mechanics of gaussian spin glasses. We prove bounds on
generalized EXIT functions, that are believed to be tight, and discuss
their relationship with the ones obtained by the interpolation method.

Keywords. Low-density parity-check codes, belief propagation, EXIT
curve, spin glasses, correlation inequalities.

1 Introduction

We consider communication with binary linear codes across a family of
binary-input memoryless output-symmetric (BMS) channels that are ordered
by physical degradation. This family is described by a transition probability
pε

Y |X(y|x) depending on one parameter ε ≥ 0, where x ∈ {0, 1} and y belongs
to the output alphabet Y . We will think of ε as a noise level with ε = 0
meaning zero noise. Ordering by physical degradation means that if ε > ε′

there exists a symmetric channel qY |Y ′ such that

pε
Y |X(y|x) =

∑
y′∈Y

qY |Y ′(y|y′)pε′

Y ′|X(y′|x) (1.1)
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We assume throughout that pε
Y |X(x|y) is differentiable with respect to ε. The

superscript ε will be dropped for ease of notation except when necessary.
Suppose that we choose a codeword uniformly at random from a binary

linear code of block length n, and that we observe the output Y1, ..., Yn = Y n.
The Extrinsic Information Transfer (EXIT) curve1 is defined as

h(ε) =
1

n

n∑
i=1

H(Xi|Y n\Yi)) (1.2)

Since the channel is symmetric and the prior distribution on the codewords
is uniform, the result does not depend on the input word and there is no loss
in generality to suppose that the input is the all zero codeword. From now on
we stick to this convention. When communication takes place over the binary
erasure channel (BEC), with 0 < ε < 1, it was shown [3] that the area under

the curve (1.2) is equal to the rate of the binary linear code:
∫ 1

0
dεh(ε) =

r. This has been exploited to give bounds on the MAP thresholds, εMAP

of LDPC code ensembles [5]. Since for the BEC (1.2) is proportional to
the bit error probability under MAP decoding it is always smaller than the
corresponding quantity calculated with a belief propagation decoder: h(ε) ≤
hBP (ε). Thus by looking at the area under the iterative curve and matching
it to the code rate one can compute an upper bound ε̄MAP to the MAP
threshold (i.e εBP < εMAP < ε̄MAP ). In fact much more is true: ε̄MAP

agrees with the results of replica calculations [4]. Replica calculations are
expected to be exact in this context so one should have that εMAP = ε̄MAP

and also that above εMAP the two EXIT curves, associated to MAP and
BP decoding, should be equal. This equality has been proven recently, at
least for some LDPC ensembles satisfying a special condition, in the work of
Measson, Montanari, and Urbanke [7]. These authors show that this equality
has a very nice connection with Maxwell’s construction of first order phase
transitions.

The picture that has emerged for the BEC channel should be valid for
general channels. One reason to believe this is that the replica calculations,
although mathematically uncontrolled, are the same on any channel and
absence of replica symmetry breaking can be argued to be correct at least
on general symmetric channels. This point of view is adopted in [6], [8] and
is the motivation to introduce Generalized EXIT curves that satisfy an area
theorem by construction. Although the usual MAP and BP EXIT curves
are related by a simple inequality for general channels (this follows from the
data processing inequality), there is no area theorem like in the case of the

1The present definition differs from the original one in [1]. Here we follow [2].
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BEC. One would like to have Generalized EXIT functions that satisfy at the
same time the area theorem and a simple inequality. This may then give
an operational way to compute upper bounds on the MAP threshold. One
may even be more optimistic and look for functions that are equal above the
MAP threshold, so that one would have an operational way to compute this
treshold exactly.

The Generalized EXIT curve associated to MAP decoding (MAP GEXIT)
is defined so that it satisfies an ”area theorem” by construction. It is given by
the derivative of the conditional Shannon entropy with respect to the noise
parameter, i.e

g
(n)
MAP(ε) =

1

n

d

dε
H(Xn|Y n) (1.3)

There are at least three motivations for making such a definition. First,
for the special case of the BEC channel this reduces to (1.2). Second this
quantity satisfies an ”area theorem” by construction. Third it is closely
related to quantities of statistical mechanics (such as the free energy) for
which the replica method is expected to be exact.

Let us give an alternative expression for (1.3) which will be useful to
motivate the definition of the Belief Propagation GEXIT curve. Given that
the all zero codeword is the input fed into the channel the observations are
described by i.i.d random variables Y1, ..., Yn whose common distribution is
pY |X(y|0). The distribution of the log-likelihood ratio li = ln p(yi|0)

p(yi|1) will be

denoted by c(li). The later depends on ε and is differentiable. We introduce
the notation Zn\i for (Z1, ..., Zn)\Zi. Consider the marginals of the extrinsic
a posteriori distribution i.e pXi|Y n\i(xi|yn\i), or equivalently the associated
extrinsic log-likelihood ratios

Li = ln
pXi|Y n\i(0|yn\i)

pXi|Y n\i(1|yn\i)
(1.4)

One has

g
(n)
MAP (ε) =

1

n

n∑
i=1

Eln\i

[∫ +∞

−∞
dli

dc(li)

dε
ln(1 + e−li−Li)

]
(1.5)

The BeliefPropagation GEXIT curve is defined by a similar expression
where instead of a MAP decoder we take a belief propagation decoder. In
other words for each bit i one computes the extrinsic (that is setting li = 0)
soft bit estimate with d iterations of the belief propagation decoder, call it
∆d

i , and the associated likelihood variable, call it L
(d)
i . These are related

through ∆d
i = tanh

L
(d)
i

2
. The BP GEXIT curve is defined as
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g
(n,d)
BP (ε) =

1

n

n∑
i=1

Eln\i

[∫ +∞

−∞
dli

dc(li)

dε
ln(1 + e−li−Λ

(d)
i )

]
(1.6)

In the next section we give a selfcontained derivation of (1.5) and also
show several alternative representations for (1.5) and (1.6).

If the code is chosen uniformly at random from an LDPC ensemble one
can prove concentration of (1.5) and (1.6) on their expectation value over
the code ensemble [7]. This then gives an efficient way to compute the BP-

GEXIT curve. Let a
(d)
DE(Λ) the density of Λ

(d)
i computed by the method of

density evolution. As n → +∞, (1.6) concentrates on∫ +∞

−∞
dΛa

(d)
DE(Λ)

∫ +∞

−∞
dl

dc(l)

dε
ln(1 + e−l−Λ) (1.7)

The main theme of this paper is to use correlation inequalities from sta-
tistical mechanics in order to prove:

Theorem 1.1. Consider communication over a family of BMS(ε) channels
that are ordered by physical degradation, using a LDPC(λ, ρ, n) code ensem-
ble with bounded node degrees. For any sequence of LDPC(λ, ρ, n) codes of
increasing block lengths,

lim sup
n→+∞

EC[g
(n)
MAP (ε)] ≤ lim

d→∞

∫ +∞

−∞
dΛa

(d)
DE(Λ)

∫ +∞

−∞
dl

dc(l)

dε
ln(1+e−l−Λ) (1.8)

where the limit on the right hand side exists.

Such bounds have already been used in [6], [8] and a detailled proof using
other methods has been presented recently [9]. The correlation inequali-
ties that we employ here are a slight extension of a class of Griffiths-Kelly-
Sherman (GKS) like inequalities for gaussian spin glasses on their Nishimori
line [11]. In the special case of the BEC it is sufficient to use the standard
GKS [10] inequalities discovered in the framework of ferromagnetic spin sys-
tems. For a BIAWGNC one can directly use the inequalities in the form
of [11]. Correlation inequalities are often a powerful tool of statistical me-
chanics and it is an interesting fact that they also apply to error correcting
codes. They were employed by the author to give bounds on the growth rate
of LDPC codes and also to prove the above theorem in the special case of a
gaussian channel [15], [16].

The bound (1.8) is closely related to a bound on the conditional entropy
itself that has been obtained by the interpolation method [12]. This relation-
ship is discussed in section 5.
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There are at least two reasons to believe that it is a sharp bound for ε >
εMAP (here we assume for simplicity that the GEXIT curves have only one
threshold). For the BEC and under some condition on the LDPC ensemble
the equality has been established [8]. Second, if one computes the MAP
GEXIT curve by the replica symmetric method one finds the r.h.s, and the
replica symmetric method is believed to be exact in the present context2

In section 2 we derive various representations for the GEXIT curves from
the point of view of the underlying spin system. In section 3 we state the main
correlation inequality and prove theorem (1.1). A discussion of the binary
erasure and gaussian channels is the object of section 4 and the relationship
with interpolation bounds is examined in section 5. Finally in section 6
we conclude with a version of Theorem 1.1 that is valid for each particular
instance of a code. We also briefly discuss the close connection between
correlation inequalities and the method of physical degradation in section
6. Streamlined proofs of generalized Nishimori identities and correlation
inequalities are reported in the appendices.

The main results of this work have been announced in [20].

2 MAP and BP EXIT functions from the spin

system perspective

Let us first define general Gibbs measures over a set of Ising spin assignments
σn = (σ1, ..., σn) ∈ {−1, +1}n. Consider a fixed bipartite factor (or Tanner)
graph. There are n variable nodes denoted by latin lower case letters (i,j,...)
and m check nodes denoted by upper case letters (A, B,...). We identify
a check node A with the subset A ⊂ {1, ..., n} of variable nodes that are
connected to A. Thus a factor graph is defined by a certain collection C of
subsets of {1, ..., n}. The Gibbs measures that will interest us are of the form

µC(σ
n) =

1

ZC
exp(−HC(σ

n)), ZC =
∑
σn

exp(−HC(σ
n)) (2.1)

where the hamiltonian (or cost) function is

HC(σ
n) = −

∑
A∈C

JA(σA − 1)−
n∑

i=1

hiσi, σA =
∏
i∈A

σi (2.2)

Here the coefficients JA and hi are real numbers. Note that the single spin
terms may be associated to additional degree one check nodes but for us it

2Because the underlying spin system is dilute and gauge invariant.
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is more convenient to separate them out from the other terms. Expectations
with respect to the Gibbs measure are denoted by 〈−〉C. More precisely for
any X ⊂ {1, ..., n},

〈σX〉C =
∑
σn

σXµC(σ
n), σX =

∏
i∈X

σi (2.3)

In the communications problem the a posteriori distribution pXn|Y n(xn|yn)
can be viewed as a Gibbs measure of a random spin system. Indeed using
Bayes rule for a memoryless channel and assuming a uniform prior over the
code words

pXn|Y n(xn|yn) =
1C(x

n)
∏n

i=1 pY |X(yi|xi)∑
xn 1C(xn)

∏n
i=1 p(yi|xi)

(2.4)

Now set σi = (−1)xi , and observe that

pY |X(y|x) = p(y|0)e−
l
2 e

l
2
σ (2.5)

and also that the check node constraints become

1C(x
n) =

∏
A∈C

1

2
(1 + σA) = lim

{JA→+∞,A∈C}

∏
A∈C

eJA(σA−1) (2.6)

Then (2.4) becomes equal to

1

ZC

∏
A∈C

1

2
(1 + σA)

n∏
i=1

e
li
2

σi , ZC =
∑

σn∈{+1,−1}n

∏
A∈C

1

2
(1 + σA)

n∏
i=1

e
li
2

σi (2.7)

Obviously this is of the form (2.1) provided:

a) the collection C is identical with the check node constraints of the code
and the associated coefficients JA = +∞,

b) the coefficients hi are related to channel outputs by hi = li
2
.

The Gibbs measure defined by the a posteriori distribution is random in
the sense that the channel outputs are random i.i.d with distribution c(l).
Furthermore there is also another source of randomness, namely the code
which is sampled from an ensemble. The MAP estimate of the i-th bit is

sign[pXi|Y n(0|yn)− pXi|Y n(1|yn)] = sign〈σi〉C (2.8)

The soft estimate of the bit is simply di = 〈σi〉C, i.e the magnetization at node
i. This depends on all observations ln. Later on we will need the extrinsic
soft bit estimate

Di = pXi|Y n\i(0|yn\i)− pXi|Y n\i(1|yn\i) = 〈σi〉C,li=0 (2.9)
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There the Gibbs average is computed for li = 0.
The Gibbs entropy of the spin system is

−
∑
σn

µC(σ
n) ln µC(σ

n) (2.10)

and its average over the channel outputs is nothing else than the Shannon
conditional entropy H(Xn|Y n). Simple algebra shows that

H(Xn|Y n) = Eln

[
−

∑
σn

µC(σ
n) ln µC(σ

n)

]
= Eln [ln ZC]−

n∑
i=1

Eln

[
li
2
〈σi〉C

]
(2.11)

Furthermore channel symmetry implies [17],[4]

Eln
[ li
2
〈σi〉C

]
= Eli

[ li
2

]
=

∫ +∞

−∞
dlc(l)

l

2
(2.12)

Therefore the evaluation of the Shannon conditional entropy reduces to that
of the average free energy Eln [ln ZC] of the corresponding spin system.

2.1 MAP GEXIT curve

Let us first derive identity (1.5) for the MAP-GEXIT function. Differentiat-
ing (2.11),

d

dε
H(Xn|Y n) =

n∑
i=1

Eln\i

[∫ +∞

−∞
dli

dc(li)

dε
(ln ZC −

li
2
)

]
(2.13)

and using

e
li
2

σi = (1 + σi tanh
li
2
) cosh

li
2

=
e

li
2

2

1 + σi tanh li
2

1 + tanh li
2

(2.14)

we can rewrite the free energy as (for any i)

ln
ZC

ZC,li=0

=
li
2
− ln 2 + ln

1 + 〈σi〉C,li=0 tanh li
2

1 + tanh li
2

(2.15)

Note that since ln ZC,li=0 does not depend on li and
∫ +∞
−∞ c(l) = 1,∫ +∞

−∞
dli

dc(li)

dε
(ln ZC,li=0 − ln 2) = 0 (2.16)
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Thus we obtain

g
(n)
MAP (ε) =

1

n

n∑
i=1

Eln\i

[∫ +∞

−∞
dli

dc(li)

dε
ln

(
1 + 〈σi〉C,li=0 tanh li

2

1 + tanh li
2

)]
(2.17)

To obtain the expression in terms of the extrinsic log-likelihood ratio we note
that 〈σi〉C,li=0 = Di = tanh Li

2
which leads to (1.5).

An alternative form expresses it in terms of the soft bit MAP estimate
di = 〈σi〉C. Using again (2.14) it is easily seen that

〈σi〉C =
〈σi〉C,li=0 + tanh li

2

1 + 〈σi〉C,li=0 tanh li
2

(2.18)

and inverting this equation leads to

g
(n)
MAP (ε) = − 1

n

n∑
i=1

Eln\i

[∫ +∞

−∞
dli

dc(li)

dε
ln

(
1− 〈σi〉C tanh li

2

1− tanh li
2

)]
(2.19)

2.2 BP-EXIT curves

Let us begin with a description of the belief propagation decoder in the
likelihood domain. Initial messages from variable to check nodes are set to
channel observations l

(0)
i→C = li, i = 1, ..., n. For t = 0, ..., d, messages from

check to variable nodes are updated as

u
(t+1)
C→i = 2 tanh−1

( ∏
j∈C\i

tanh
l
(t)
j→C

2

)
(2.20)

and from variable to check nodes

l
(t+2)
i→A = li +

∑
C∈V (i)\A

u
(t+1)
C→i (2.21)

Here V (i) is the set of checks connected to variable node i. The soft BP bit
estimate after iteration d (d is even) is

δ
(d)
i = tanh

λ
(d)
i

2
= tanh

1

2
(li +

∑
C∈V (i)

u
(d−1)
C→i ) (2.22)

The extrinsic BP estimate of the i-th bit does not take into account the
observation li. This means that we define the extrinsic likelihood for the i-th
bit at iteration d as,

Λ
(d)
i =

∑
C∈V (i)

u
(d−1)
C→i (2.23)
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Note that this definition is consistent with the message passing decoder de-
scribed above because the messages involved in the computational graph of
node i do not depend on li except for the last iteration. The extrinsic soft
bit BP estimate is simply

∆
(d)
i = tanh

Λ
(d)
i

2
(2.24)

For a fixed factor graph these quantities have distributions that are induced
by c(l). The belief propagation decoder just described can then be used in
order to compute the expression (1.6) for the BP-EXIT curve.

For completeness we give here two alternative representations of (1.6)
in the difference domain. The relationship between δi and ∆i follows by
expanding the tanh in (2.22) (and is similar to (2.18))

δi =
∆i + tanh li

2

1 + ∆i tanh li
2

(2.25)

Then using (2.24) and (2.25) we get the expressions

g
(n,d)
BP (ε) =

n∑
i=1

Eln\i

[∫ +∞

−∞
dli

dc(li)

dε
ln(

1 + ∆
(d)
i tanh li

2

1 + tanh li
2

)

]

= −
n∑

i=1

Eln\i

[∫ +∞

−∞
dli

dc(li)

dε
ln(

1− δ
(d)
i tanh li

2

1− tanh li
2

)

]
(2.26)

3 Correlation inequalities and their applica-

tion

Originaly the GKS inequalities where derived for deterministic ferromagnetic
spin systems (all JA ≥ 0 and hi ≥ 0). Remarkably it was shown recently
[11] that they can be extended to a class of random spin systems where JA

and hi are all independent gaussian random variables with equal mean and
variance. These inequalities where exploited recently in [15], [16] in the case
of a gaussian channel where they directly apply.

Here we adapt, generalize and present streamlined proofs of these in-
equalities for general output-symmetric channels. The key feature is channel
symmetry which implies that for any reasonable function g,

Eli [g(−li)] = Eli [g(li)e
−li ], i = 1, ...n (3.1)



10

In the statistical physics literature this is known as Nishimori’s condition
(translated as a condition on the hi). When it is satisfied spin averages obey
remarkable identities known as Nishimori identities [17]. In appendix A we
give a simple proof of the following generalized version of these identities.
Take any hamiltonian of the form (2.2) with JA = +∞ and hi = li

2
satis-

fying (3.1) For any collection of subsets X1, ..., Xl ⊂ {1, ..., n} and integers
m1, ...,ml,

Eln

[
〈σX1〉m1

C ...〈σXl
〉ml
C

]
= Eln

[
〈σm1

X1
...σml

Xl
〉C〈σX1〉m1

C ...〈σXl
〉ml
C

]
(3.2)

An immediate application is the analog of the first GKS inequality obtained
by taking one set X1 and m1 = 1,

Eln [〈σX1〉C] = Eln [〈σX1〉2C] ≥ 0 (3.3)

The following correlation inequality is the analog of the second GKS in-
equality. The proof is presented in appendix B.

Theorem 3.1. [Monotonicity under check node erasure.] Fix a linear
code and its asociated factor graph C. Take any check node B ∈ C and
consider the factor graph C\B obtained by removing the check node B together
with its outgoing edges. Consider the Gibbs measures 〈−〉C and 〈−〉C\B. For
any subset X ⊂ {1, ..., n} and any integer m we have

Eln [〈σX〉mC ] ≥ Eln [〈σX〉mC\B] (3.4)

Remarks. This inequality states that we can start with the left hand
side and form a monotone decreasing sequence by successively erasing check
nodes. We will apply this inequality for the spin system with li = 0 for a
given i. Then it becomes Eln\i [〈σX〉mC ] ≥ Eln\i [〈σX〉mC\B].

We are now ready to prove our main result.

Proof of theorem 1.1 The most convenient representation for us is expression
(2.17). If we consider the average over the code ensemble, by symmetry we
have

EC[g
(n)
MAP (ε)] = EC,ln\1

[∫ +∞

−∞
dl1

dc(l1)

dε
ln

(
1 + 〈σ1〉C,l1=0 tanh l1

2

1 + tanh l1
2

)]
(3.5)
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Expanding the logarithm we obtain

EC[g
(n)
MAP (ε)] =

∞∑
m=0

(−1)m

m

(
1− EC,ln\1 [〈σ1〉mC,l1=0]

)
×

∫ +∞

−∞
dl

dc(l)

dε
(tanh

l1
2

)m (3.6)

Using (3.2) with X1 = {1} and m1 = 2p− 1 we see that

EC,ln\1 [〈σ1〉2p−1
C,l1=0] = EC,ln\1 [〈σ1〉2p

C,l1=0] (3.7)

Also, applying such an identity to a spin system with the simple Hamiltonian
H(s) = l

2
s we have∫ +∞

−∞
dlc(l)

(
tanh

l

2

)2p−1
=

∫ +∞

−∞
dlc(l)

(
tanh

l

2

)2p
(3.8)

Then the sum (3.6) becomes

EC[g
(n)
MAP (ε)] =

∞∑
p=1

( 1

2p
− 1

2p− 1

)(
1− EC,ln\1 [〈σ1〉2p

C,l1=0]

)
×

∫ +∞

−∞
dl

dc(l)

dε

(
tanh

l

2

)2p
(3.9)

Now consider node 1 and its neighborhood T (d)
1 of depth d, where d is an

even integer. More precisely, n ∈ T (d)
1 (where n is a variable or a check node)

if and only if the length of the shortest path from 1 to n is at most equal to
d. The correlation inequality of theorem 3.1 can be used to show

Eln\1 [〈σ1〉C,l1=0] ≥ Eln\1 [〈σ1〉T (d)
1 ,l1=0

] (3.10)

Indeed, let C
(d)
1 denote the check nodes and V

(d)
1 the variable nodes in the

complement of T (d)
1 . Theorem 3.1 implies

Eln\1 [〈σ1〉C,l1=0] ≥ Eln\1 [〈σ1〉C\C(d)
1 ,l1=0

] (3.11)

Now the Gibbs average 〈−〉C\C(d)
1 ,l1=0

contains the free spin terms3

∑
σi,i∈V

(d)
1

∏
i∈V

(d)
1

e
li
2

σi =
∏

i∈V
(d)
1

2 cosh
li
2

(3.12)

3One can think of them as nodes of zero degree
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in both the denominator and the numerator. These terms cancel which means
〈σ1〉C\C(d)

1 ,l1=0
= 〈σ1〉T (d)

1 ,l1=0
and we get (3.10). Next we use an important

observation of Richardson and Urbanke [2]. Namely that if the channel family
is ordered by physical degradation,∫ +∞

−∞
dl

dc(l)

dε

(
tanh

l

2

)2p ≤ 0 (3.13)

Now taking into account 1
2p
− 1

2p−1
< 0, (3.10), (3.13) and summing the

expansion of the logarithm we get

EC[g
(n)
MAP (ε)] ≤ EC,ln\1

[∫ +∞

−∞
dl1

dc(l1)

dε
ln

1 + 〈σ1〉T (d)
1 ,l1=0

tanh l1
2

1 + tanh l1
2

]
(3.14)

The virtue of LDPC ensembles with bounded (say by k) node degrees is that

with high probability, namely 1 − O(k4d

n
), T (d)

1 is a tree. On a tree it is
possible to compute exactly the average 〈σ1〉T (d)

1 ,l1=0
and one finds that

〈σ1〉T (d)
1 ,l1=0

= ∆
(d)
1 (3.15)

where ∆
(d)
1 is computed by the message passing procedure on the tree T (d)

1 :

the initial condition l
(0)
i→C = li is applied to leaf nodes and messages are passed

until one reaches the root node 1. Therefore

EC[g
(n)
MAP (ε)] ≤

(
1−O(

k4d

n
)
)
EC,ln\1

[∫ +∞

−∞
dl1

dc(l1)

dε
ln

1 + ∆
(d)
1 tanh l1

2

1 + tanh l1
2

]
+O(

k4d

n
)

(3.16)

The first term on the r.h.s is the probability that T (d)
1 is a tree times the

expectation conditionned to that event and the second term comes from the
probability that T (d)

1 is not a tree. Note that the expectation on the right
hand side is independent of n since it involves quantities defined on random

trees T (d)
1 . The density of ∆

(d)
1 = tanh

Λ
(d)
1

2
, can be inferred from the BP

message passing equations on the trees, and satisfies the density evolution
equations. Let us call a

(d)
DE(Λ) the density of Λ

(d)
1 given by density evolution.

We then consider the limit as n →∞ for d fixed on both sides, and express
the right hand side in terms of the extrinsic log-likelihood ratio (2.24),

lim sup
n→+∞

EC[g
(n)
MAP (ε)] ≤

∫ +∞

−∞
dΛa

(d)
DE(Λ)

∫ +∞

−∞
dl

dc(l)

dε
ln(1 + e−l−Λ) (3.17)

Now it remains to check that the limit of the r.h.s when d → +∞ exists.
This is again an easy consequence of theorem 3.1. Indeed consider trees of
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depth d and d + 2. The correlation inequality applied to tree graphs implies
that ∆

(d+2)
1 ≥ ∆

(d)
1 . Thus considering again the expansion of the logarithm

in (3.16) we conclude that the r.h.s of (3.17) is an increasing sequence. Since
it is bounded it converges and this completes the proof of the theorem.

4 Binary erasure and gaussian channels

In the case of BEC and BIAWGNC most expressions can be simplified and
the proofs are more transparent. The purpose of this section is to briefly
discuss these simplifications.

4.1 BEC and classical GKS inequality

As shown here it turns out that a simpler correlation inequality of Griffiths-
Kelly-Sherman (GKS) pertaining to non-random spin systems applies di-
rectly. The output alphabet is 0, e, 1, with the corresponding log-likelihood
ratios l(0) = +∞, l(e) = 0, l(1) = −∞. Thus c(l) = (1 − ε)δ+∞(l) + εδ0(l).
The MAP and BP GEXIT curves become

g
(n)
MAP (ε) =

1

n

n∑
i=1

Eln\i [ln(1 + e−Li)] (4.1)

and

g
(n,d)
BP (ε) =

1

n

n∑
i=1

Eln\i [ln(1 + e−Λ
(d)
i )] (4.2)

Here it is more convenient to use the expression (2.19) which becomes

g
(n)
MAP (ε) = − 1

n

n∑
i=1

Eln\i

[
ln

1

2

(
1 + 〈σi〉C,li=0

)]
(4.3)

where

〈σ1〉C,li=0 =
1

Z

∑
σn

σi

∏
A∈C

1

2
(1 + σA)

∏
j∈Ec\i

1

2
(1 + σi) (4.4)

with Z the obvious normalisation factor and E the set of erased bits and
Ec the set of received 0’s (known bits). Obviouly this corresponds to a spin
system defined by the hamiltonian (2.2) with JA = +∞ and li = 0 if i ∈ E
and li = +∞ if i ∈ Ec. This spin sytem belongs to the class of ferromagnetic
systems which are those for which all coefficients of the Hamiltonian are
positive. For such systems we have [10]
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Theorem 4.1. [Griffiths-Kelly-Sherman] Given the hamiltonian (2.2) if
all coeeficients JA and hi are non negative then for any X ⊂ {1, ..., n} 〈σX〉C
is non negative and is an increasing function of each coefficient.

Therefore for each individual instance of the channel outputs

〈σi〉C,li=0 ≥ 0, 〈σi〉C,li=0 ≥ 〈σi〉C\B,li=0, anyB ∈ C (4.5)

An immediate application yields

EC[g
(n)
MAP (ε)] ≤ −EC,ln\1

[
ln

1

2
(1 + 〈σ1〉T (d)

1 ,l1=0
)
]

(4.6)

where T (d)
1 is a neighborhood of depth d for variable node 1. Then, proceeding

exactly as in section 3 we obtain the final estimate

lim sup
n→+∞

EC[g
(n)
MAP (ε)] ≤ lim

d→+∞

∫ ∞

−∞
dΛa

(d)
DE(Λ) ln(1 + e−Λ) (4.7)

For the BEC channel the right hand side can be computed exactly in terms
of the degree distributions of the specific LDPC ensemble (see [2] for explicit
formulas). Finaly let us remark that the inequality (4.7) is equivalent to the
well known fact that the MAP decoder is better than the BP (or any other)
decoder. Indeed from (4.1)

ε

ln 2
EC[g

(n)
MAP (ε)] = εPr(L1 = 0|l1 = 0) = εPr(L1 + l1 = 0|l1 = 0)

= εPr(L1 + l1 = 0|l1 = 0) + (1− ε)Pr(L1 + l1 = 0|l1 = +∞)

= Pr(L1 + l1 = 0) = P
(n)
MAP (ε) (4.8)

and similarly

ε

ln 2

∫ ∞

−∞
dΛa

(d)
DE(Λ) ln(1 + e−Λ) = P

(n,d)
BP (ε) (4.9)

4.2 BIAWNG channel

It is in this case that the statistical mechanical formulation is most transpar-
ent because the MAP-GEXIT curve takes a very simple form

g
(n)
MAP (ε) =

σ−3

n

n∑
i=1

Eln [1− di] =
σ−3

n

n∑
i=1

Eln [1− 〈σi〉C] (4.10)

where σ−2 is the signal to noise ratio. We remark that this formula is ana-
log to the relationship between mutual information and MMSE for gaussian
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channels [18], [6]. The difference is that here the alphabet is binary and we
have a Nishimori identity, Eln [〈σi〉C] = Eln [〈σi〉2C], so that

Eln [1− 〈σi〉C] = Eln [〈σ2
i 〉C − 〈σi〉2C] (4.11)

This being said let us show how to obtain (4.10). For a BIAWGNC with
signal to noise ratio σ−2 we have

c(li) =
1√

8πσ−2
e−

(li−2σ−2)2

8σ−2 (4.12)

and
dc(li)

dσ
= −4σ−3(− ∂

∂li
+

∂2

∂l2i
)c(li) (4.13)

Replacing this expression in the formulas for the MAP-GEXIT curve one
gets (4.10) after some calculus.

However there is a simpler calculation starting directly from (2.11). First
of all we note that (2.12) is equal to σ−2. Thus using (4.13) and integration
by parts

d

dσ
H(Xn|Y n) = −4σ−3

n∑
i=1

Eln

[( ∂

∂li
+

∂2

∂l2i

)
ln ZC

]
− 2σ−3 (4.14)

The definition of Gibbs averages implies

∂

∂li
ln ZC =

1

2
〈σi〉C,

∂2

∂l2i
ln ZC =

1

4
(〈σ2

i 〉C − 〈σi〉2C) =
1

4
(1− 〈σi〉2C) (4.15)

Replacing these identities in (4.14) and using the Nishimori identity we im-
mediately obtain (4.10).

In order to get the bound on the GEXIT curve we apply theorem 3.1,

EC[g
(n)
MAP (ε)] = σ−3EC,ln [1− 〈σ1〉C] ≤ σ−3EC,ln [1− 〈σ1〉T (d)

1
] (4.16)

If the neighborhood of node 1, namely T (d)
1 , is a tree the Gibbs average can

be computed recursively

〈σ1〉T (d)
1

= tanh
1

2
(l1 + Λ

(d)
1 ) (4.17)

Since the graph is a tree with high probability, we can proceed as in section
3 to get the final result

lim sup
n→+∞

EC[g
(n)
MAP (ε)] ≤ lim

d→+∞
σ−3

∫ +∞

−∞
dΛa

(d)
DE(Λ)

∫ +∞

−∞
dlc(l) tanh

1

2
(l + Λ)

(4.18)
One may check that for the gaussian channel the right hand side of (1.8) and
(4.18) are the same.
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5 Relationship with Bounds from Interpola-

tion Method

It turns out that the bounds discussed in this paper are closely related to the
ones obtained by the interpolation methods. This is interesting in its own
rigth but also means that correlation inequalities might be used to approach
in a rigorous way other problems where the replica method is successful. Here
the discussion will remain at a formal level due to some technicalities.

We denote the degree distributions of the LDPC ensemble from the edge
perspective as λ(x) =

∑
m λmxm−1 and ρ(x) =

∑
k ρkx

k, and from the node
perspective as Λ(x) =

∑
m Λmxm and P (x) =

∑
k Pkx

k. In terms of the

latter the design rate is r = 1 − Λ′(1)
P ′(1)

. The bounds involve a functional4 of

two probability distributions ζ(l) and ζ̂(u),

f [ζ, ζ̂; ε] = −Λ′(1)

P ′(1)
ln 2− Λ′(1)

∫
dlζ(l)

∫
duζ̂(u) ln(1 + tanh

l

2
tanh

u

2
)

+
∑
m

Λm

∫
dl′c(l′)

∫ m∏
c=1

ducζ̂(uc) ln

(
e

l′
2

m∏
c=1

(1 + tanh
uc

2
)

+ e−
l′
2

m∏
c=1

(1− tanh
uc

2
)

)
+

Λ′(1)

P ′(1)

∑
k

Pk

∫ k∏
i=1

dliζ(li) ln(1 +
k∏

i=1

tanh
li
2
)

(5.1)

We emphasize that in this expression the ε dependence enters only through
c(l′). The replica symmetric solution to the free energy is

fRS(ε) = sup
ζ∈S

f [ζ, ζ̂(ζ); ε] (5.2)

and is believed to be exact. In this last formula the supremum is taken over
the set S of “symmetric” probability distributions satisfying ζ(−l) = ζ(l)e−l

and it is understood that the conjugate variable ζ̂ is replaced by

ζ̂(u) =
∑

k

ρk

∫ k−1∏
i=1

dliζ(li)δ(u− 2 tanh−1
(k−1∏

i=1

tanh li
)
) (5.3)

More precisely we have the following conjecture:

4In the language of statistical mechanics f is a ”Landau functional” and ζ, ζ̂ the ”order
parameters”. See [19] for an introduction to these concepts.
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Conjecture. Given a sequence of LDPC(λ, ρ, n) ensembles we have

lim
n→+∞

1

n
EC[H(Xn|Y n)] = fRS(ε)−

∫ +∞

−∞
dlc(l)

l

2
(5.4)

Montanari [12] has obtained the lower bound by an application of the
interpolation method invented by Guerra and Toninelli for the Sherrington-
Kirkpatrick model [13], and further developped in [14] for dilute spin systems.
The precise statement is that LDPC(λ, ρ, n) ensembles with convex P (e.g.
for regular check node degree this degree is even)5

lim inf
n→∞

1

n
EC[H(Xn|Y n)] ≥ fRS(ε)−

∫ +∞

−∞
dlc(l)

l

2
(5.5)

The critical points of this functional are the solutions of the equations
δf
δζ

= 0 and δf

δζ̂
= 0, whose iterative version are the density evolution equations

ζ̂(d+2)(u) =
∑

k

ρk

∫ k−1∏
i=1

dliζ
(d+1)(li)δ(u− 2 tanh−1

(k−1∏
i=1

tanh li
)
) (5.6)

ζ(d+1)(l) =
∑
m

λm

∫
dl′c(l′)

∫ m−1∏
c=1

ducζ̂
(d)(uc)δ(l − l′ −

m−1∑
c=1

uc) (5.7)

with the initial condition ζ(1)(l) = c(l) and ζ̂(0)(u) = δ(u). We define the
iterative or BP free energy as

f
(d)
BP (ε) = f [ζ(d+1), ζ̂(d+2); ε] (5.8)

We have

lim
d→∞

∂

∂ε

(
f

(d)
BP (ε)−

∫ +∞

−∞
dlc(l)

l

2

)
= lim

d→∞

∫ +∞

−∞
dΛa

(d)
DE(Λ)

∫ +∞

−∞

dc(l)

dε
ln(1 + e−l−Λ) (5.9)

This was shown for the BIAWNGC in [16]. Let us briefly give the main steps
for general output symmetric channels. Using that d

dε

∫ +∞
−∞ dl′c(l′) = 0 we

5This has been extended to any P for the BEC, BIAWGNC (any noise level) and the
BSC (high noise)
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easily obtain

∂

∂ε
f [ζ, ζ̂; ε] =

∫ +∞

−∞
dl′

dc(l′)

dε

∑
m

Λm

∫ m∏
c=1

ducζ̂(uc) ln

(
e

l′
2

m∏
c=1

(1 + tanh
uc

2
)

+ e−
l′
2

m∏
c=1

(1− tanh
uc

2
)

)
=

∫ +∞

−∞
dl′

dc(l′)

dε

∑
m

Λm

∫ m∏
c=1

ducζ̂(uc) ln

(
1 + e−l′−

Pm
c=1 uc

)
+

∫ +∞

−∞
dlc(l)

l

2
(5.10)

Replacing now ζ and ζ̂ by ζ(d) and ζ̂(d) we obtain (5.9).
We claim that for almost all ε, the partial derivative in (5.9) can be

replaced by a total derivative. Indeed formaly,

d

dε
f

(d)
BP (ε) =

∂

∂ε
f [ζ(d+1), ζ̂(d+2); ε]

+

∫
dl

δf

δζ(l)
[ζ(d+1), ζ̂(d+2); ε]

∂

∂ε
ζ(d+1)(l)+

∫
du

δf

δζ̂(u)
[ζ(d+1), ζ̂(d+2); ε]

∂

∂ε
ζ(d+2)(u)

(5.11)

As long as the critical points of the functional (5.1) are unique and behave
smoothly with respect to ε one expects that the integrals tend to zero as
d → ∞. This is because the functional derivatives tend to zero and the
ε derivatives are bounded. At threshhold points however, the ε derivatives
become ”infinite” so that the integrals will have a non trivial contribution.
This justifies the claim that away from discontinuity points,

lim
d→∞

d

dε

(
f

(d)
BP (ε)−

∫ +∞

−∞
dlc(l)

l

2

)
= lim

d→∞

∫ +∞

−∞
dΛa

(d)
DE(Λ)

∫ +∞

−∞
dl

dc(l)

dε
ln(1 + e−l−Λ) (5.12)

Because of this identity we know explicitely a primitive of the BP-EXIT
function. Therefore an integration of both sides of (1.8) leads to bounds on
the average conditional entropy. To keep the discussion simple we assume
that the MAP and BP GEXIT curves each have only one discontinuity point
εMAP and εBP (of course εBP < εMAP ). Then for ε > εMAP integrating (1.8)
from ε to +∞ we get

lim inf
n→∞

1

n
EC[H(Xn|Y n)] ≥ lim

d→∞

(
f

(d)
BP (ε)−

∫ +∞

−∞
dlc(l)

l

2

)
(5.13)
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We expect that for ε > εMAP fRS(ε) = limd→+∞ f
(d)
BP (ε) so that this lower

bound is the same as the interpolation bound. On the other hand for ε < εBP

we can integrate from 0 to ε which yields

lim inf
n→∞

1

n
EC[H(Xn|Y n)] ≤ lim

d→∞

(
f

(d)
BP (ε)−

∫ +∞

−∞
dlc(l)

l

2

)
(5.14)

Combining with the interpolation bound (5.5) we find that for ε < εBP ,

lim inf
n→+∞

1

n
EC[H(Xn|Y n)] = fRS(ε)−

∫ +∞

−∞
dlc(l)

l

2

= lim
d→∞

(
f

(d)
BP (ε)−

∫ +∞

−∞
dlc(l)

l

2

)
(5.15)

This confirms the above conjecture for ε < εBP . However the content of this
equality is trivial since below the BP threshold both sides vanish.

Note that this last equality also holds, and is non trivial, for LDPC(λ, ρ, n)
ensembles with no discontinuity for the GEXIT curves. An example is given
by the case of regular right degree and a Poisson left degree which was con-
sidered in [16] for the gaussian channel. These do not constitute good codes
since there are always O(n) errors, but it is an interesting theoretical result
since it confirms the above conjecture for all ε.

6 Concluding remarks

The check erasure inequality of Theorem 3.1 is valid for each fixed linear
code. This implies a version of Theorem 1.1 that holds for non-averaged
GEXIT curves. If one considers a bit dependent noise level εi one can define
g

(n,i)
MAP (ε1, ..., εn) = 1

n
d

dεi
H(Xn|Y n). This equals the i-th term of the MAP-

GEXIT formula (1.5). Analogously the i-th term of the BP-GEXIT expres-

sion (1.6) defines g
(n,d,i)
BP (ε1, ..., εn) and is computed from the BP decoder for

bit i. As before we consider a neighborhood of node i and erase all checks
outside. As long as the neighborhood of i is a tree the Gibbs average is
computed exactly by the BP decoder. Therefore with probability at least
1−O(k4d

n
) we have

g
(n,i)
MAP (ε1, ..., εn) ≤ g

(n,d,i)
BP (ε1, ..., εn) (6.1)

We wish to conclude with a few remarks about the connection between
the present approach and the method of physical degradation which we first
explain. Consider two BMS channels with transition probabilities qε1

X|Y (x|y)
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and qε2
X|Y (x|y) ordered by physical degradation ε1 < ε2. Let wε

i = qε
X|Y (0|y)−

qε
X|Y (1|y). A basic observation in [2] (chap 3) is

Ew
ε1
i

[wε1
i |w

ε2
i ] = wε2

i (6.2)

From this it follows that for any concave function F

Ew
ε1
i

[F (wε1
i )] ≤ Ew

ε2
i

[F (wε2
i )] (6.3)

An application of this result to uncoded transmission where wi = tanh li
2

immediately yields ∫ +∞

−∞
dli

dc(li)

dε

(
tanh

li
2

)2p ≤ 0 (6.4)

One may also apply (6.3) to soft bit estimates from MAP decoding namely
wi = di = 〈σi〉C. For example consider di = 〈σi〉C for a given ε and the phys-
icaly degraded version Di = 〈σi〉C,li=0 corresponding to the concatenation of
the channel with another channel which erases bit i with probability 1. Then
(6.3) yields as a special case

Eln [〈σi〉2p
C ] ≥ Eln\i [〈σi〉2p

C,li=0] (6.5)

Alternatively one may consider physical degradation as a function of the
channel parameter to obtain

d

dε
Eln [〈σi〉2p

C ] ≤ 0 (6.6)

In fact (6.5) and (6.6) are correlation inequalities that closely ressemble
(3.4). In appendix C we prove the following generalizations, by the same
methods used to prove (3.4). For any subset X ⊂ {1, ..., n} and any i =
1, ..., n

Eln [〈σX〉C] ≥ Eln\i [〈σX〉C,li=0] (6.7)

For a family of physicaly degraded channels and any subset X ⊂ {1, ..., n},

d

dε
Eln [〈σX〉C] ≤ 0 (6.8)

Acknowledgment. The author would like to thank Cyril Méasson, Henry
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useful remark.
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A The generalised Nishimori identities

We start with the left hand side of (3.2) and perform a gauge transformation.
By this we mean that we take a fixed codeword (τ1, ..., τn) ∈ C and do the
local change of variables σi → τiσi, li → τili for i = 1, ..., n. Because of
channel symmetry (3.1)

Eln

[
〈σX1〉m1

C ...〈σXl
〉ml
C

]
= Eln

[ n∏
i=1

e
li
2

(τi−1)τm1
X1

...τml
Xl
〈σX1〉m1

C ...〈σXl
〉ml
C

]
(A.1)

Next sum over all possible codewords. Denoting by |C| the number of code
words we have,

Eln

[
〈σX1〉m1

C ...〈σXl
〉ml
C

]
=

1

|C|
Eln

[
ZC

n∏
i=1

e−
li
2 〈τm1

X1
...τml

Xl
〉C〈σX1〉m1

C ...〈σXl
〉ml
C

]
=

1

|C|
∑
ρn∈C

Eln

[ n∏
i=1

e−
li
2

(ρi−1)〈τm1
X1

...τml
Xl
〉C〈σX1〉m1

C ...〈σXl
〉ml
C

]
(A.2)

Finaly we perform a second gauge transformation. For each term in the
above sum we do σi → ρiσi, τi → ρiτi, li → ρili. Again due to channel
symmetry

Eln

[
〈σX1〉m1

C ...〈σXl
〉ml
C

]
=

1

|C|
∑
ρn∈C

Eln

[ n∏
i=1

e−
li
2

(ρi−1)(ρi+1)

× 〈τm1
X1

...τml
Xl
〉C〈σX1〉m1

C ...〈σXl
〉ml
C

]
(A.3)

Since (ρi − 1)(ρi + 1) = 0 we have obtained the desired identity.

B Proof of Theorem 3.1

Let us start with a simple proof for the case m = 1. We remark that for any
X ⊂ {1, ..., n} and any check node B,

〈σX〉C =
〈σX〉C\B + 〈σXσB〉C\B

1 + 〈σB〉C\B
(B.1)
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Expanding the denominator and grouping terms appropriately leads to

〈σX〉C = 〈σX〉C\B

+
∑
p≥0

(
〈σB〉2p

C\B〈σXσB〉C\B − 〈σB〉2p+1
C\B 〈σXσB〉C\B

− 〈σB〉2p+1
C\B 〈σX〉C\B + 〈σB〉2p+2

C\B 〈σX〉C\B
)

(B.2)

Applying (3.2) to each term in the sum yields the four identities

Eln [〈σB〉2p
C\B〈σXσB〉C\B] = Eln [〈σB〉2p

C\B〈σXσB〉2C\B]

Eln [〈σB〉2p+1
C\B 〈σXσB〉C\B] = Eln [〈σB〉2p+1

C\B 〈σXσB〉C\B〈σX〉C\B]

Eln [〈σB〉2p+1
C\B 〈σX〉C\B] = Eln [〈σB〉2p+1

C\B 〈σX〉C\B〈σXσB〉C\B]

Eln [〈σB〉2p+2
C\B 〈σX〉C\B] = Eln [〈σB〉2p+2

C\B 〈σX〉2C\B]

Taking the expectation of (B.2) and using these four identities

Eln [〈σX〉C] = Eln [〈σX〉C\B]

+
∑
p≥0

Eln

[
〈σB〉2p

C\B

(
〈σXσB〉C\B − 〈σB〉C\B〈σX〉C\B

)2]
(B.3)

Thus
Eln [〈σX〉C] ≥ Eln [〈σX〉C\B] (B.4)

The case of general m ≥ 1 can be dealt with the above method. However
this is quite cumbersome and we prefer to adapt the technique of [11] which
uses gaussian integration by parts. To this end we introduce a soft version of
the check node constraints. Let us denote by 〈−〉C,J the Gibbs average cor-
responding to the Hamiltonian (2.2) where now JA are independent gaussian
random variables with

EJ [JA] = EJ [J2
A]− EJ [JA]2 = tA (B.5)

These Gibbs averages satisfy the same Nishimori identities than (3.2) and
(see [16])

Eln [〈σX〉mC ] = lim
{tA→+∞,A∈C}

Eln,J [〈σX〉mC,J ] (B.6)

From now on we work with the soft check node constraints and will use the
tA +∞ limit to go back to the original case of interest.
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The choice of a gaussian distribution with equal mean and variance for
JA is very convenient because of the identity

∂

∂tA

e
− (JA−tA)2

2tA

2πtA
=

(
− ∂

∂JA

+
1

2

∂2

∂J2
A

)e
− (JA−tA)2

2tA

2πtA
(B.7)

and the integration by parts formula,

∂

∂tA
Eln,J [〈σX〉mC,J ] = Eln,J

[( ∂

∂JA

+
1

2

∂2

∂J2
A

)
〈σX〉mC,J

]
(B.8)

Straighforward algebra leads to

∂

∂tA
Eln,J [〈σX〉mC,J ] = mEln,J

[
〈σX〉m−1

C,J

(
〈σXσA〉C,J − 〈σX〉C,J〈σA〉C,J

− 〈σXσA〉C,J〈σB〉C,J + 〈σX〉C,J〈σA〉2C,J

)]
+

1

2
m(m− 1)Eln,J

[
〈σX〉m−2

C,J

(
〈σXσA〉2C,J

− 2〈σXσA〉C,J〈σX〉C,J〈σA〉C,J + 〈σX〉2C,J〈σA〉2C,J

)]
(B.9)

The next step is to apply (3.2) to all terms of the above expression,

∂

∂tA
Eln,J [〈σX〉mC,J ] = mEln,J

[
〈σX〉m−1

C,J

(
〈σXσA〉C,J〈σm

XσA〉C,J

− 〈σX〉C,J〈σA〉C,J〈σm
XσA〉C,J − 〈σXσA〉C,J〈σA〉C,J〈σm

X 〉C,J

+ 〈σX〉C,J〈σA〉2C,J〈σm
X 〉C,J

)]
+

1

2
m(m− 1)Eln,J

[
〈σX〉m−2

C,J 〈σm−2
X 〉C,J

(
〈σXσA〉2C,J

− 2〈σXσA〉C,J〈σX〉C,J〈σA〉C,J + 〈σX〉2C,J〈σA〉2C,J

)]
(B.10)

We notice that for even m we have

∂

∂tA
Eln,J [〈σX〉mC,J ] =

1

2
m(m− 1)Eln,J

[
〈σX〉m−2

C,J

×
(
〈σXσA〉C,J − 〈σX〉C,J〈σA〉C,J

)2]
(B.11)
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which is positive. On the other hand for odd m we have

∂

∂tA
Eln,J [〈σX〉mC,J ] =

1

2
m(m + 1)Eln,J

[
〈σX〉m−1

C,J

×
(
〈σXσA〉C,J − 〈σX〉C,J〈σA〉C,J

)2]
(B.12)

which is also positive. Thus for any m the average Eln,J [〈σX〉C,J ] is an in-
creasing function of tA, for all A. Therefore for any given check node B, the
limit of this quantity as tA → +∞ for all A ∈ C, is greater than the limit
as tA → +∞ for all A ∈ C\B and tB = 0. This is precisely the desired
inequality.

C Proof of (6.7) and (6.8)

We begin with the correlation inequality (6.7). The method is the same than
in appendix B. First we notice that

〈σX〉C =
〈σX〉C,li=0 + tanh li

2
〈σXσi〉C,li=0

1 + tanh li
2
〈σi〉C,li=0

(C.1)

Expanding the denominator and grouping terms appropriately we get

〈σX〉C = 〈σX〉C,li=0

+
∑
p≥0

((
tanh

li
2

)2p+2〈σX〉C,li=0〈σi〉2p+2
C,li=0 −

(
tanh

li
2

)2p+1〈σX〉C,li=0〈σi〉2p+1
C,li=0

+
(
tanh

li
2

)2p+1〈σXσi〉C,li=0〈σi〉2p
C,li=0 −

(
tanh

li
2

)2p+2〈σXσi〉C,li=0〈σi〉2p+1
C,li=0

)
(C.2)

Applying the Nishimori identities to all terms in the sum we finaly obtain

Eln [〈σX〉C] = 〈σX〉C,li=0+∑
p≥0

∫ +∞

−∞
dlic(li)

(
tanh

li
2

)2p+2

× 〈σi〉2p
C,li=0

(
〈σX〉C,li=0〈σi〉C,li=0 − 〈σXσi〉C,li=0

)2

(C.3)
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Obviously the sum on the r.h.s is positive and we get (6.7). For (6.8) we
have

d

dε
Eln [〈σX〉C] =

n∑
i=1

∫ +∞

−∞
dli

dc(li)

dε
Eln\i[〈σX〉C] (C.4)

Expanding and applying the Nishimori identities as above we obtain

d

dε
Eln [〈σX〉C] =

n∑
i=1

∑
p≥0

∫ +∞

−∞
dli

dc(li)

dε

(
tanh

li
2

)2p+2

× 〈σi〉2p
C,li=0

(
〈σX〉C,li=0〈σi〉C,li=0 − 〈σXσi〉C,li=0

)2

(C.5)

The result of the theorem follows because of (6.4).
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