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Griffith–Kelly–Sherman Correlation Inequalities:
A Useful Tool in the Theory of Error Correcting

Codes
Nicolas Macris, Member, IEEE

Abstract—It is shown that a correlation inequality of statistical
mechanics can be applied to linear low-density parity-check codes.
Thanks to this tool we prove that, under a natural assumption,
the exponential growth rate of regular low-density parity-check
(LDPC) codes, can be computed exactly by iterative methods, at
least on the interval where it is a concave function of the relative
weight of code words. Then, considering communication over a bi-
nary input additive white Gaussian noise channel with a Poisson
LDPC code we prove that, under a natural assumption, part of
the GEXIT curve (associated to MAP decoding) can also be com-
puted exactly by the belief propagation algorithm. The correlation
inequality yields a sharp lower bound on the GEXIT curve. We
also make an extension of the interpolation techniques that have
recently led to rigorous results in spin glass theory and in the SAT
problem.

Index Terms—Correlation inequalities, density evolution, gener-
alized EXIT (GEXIT) curve, growth rate, interpolation technique,
iterative decoding, low-density parity-check (LDPC) codes, spin
glasses.

I. INTRODUCTION

THERE is a deep connection between the theory of linear
error correcting codes and statistical mechanics of random

spin systems (spin glasses). This connection was first uncovered
by Sourlas [1] and was later applied to various coding schemes
such as convolutional, turbo, low-density parity-check (LDPC)
codes. In particular the replica method of spin glass theory, has
been applied to LDPC ensembles and its intimate connection to
density evolution equations and belief propagation algorithms
has been recognized [2]–[4]. Giving a sound mathematical basis
to the results of the replica method has been a long standing
problem of spin glass theory, but recently progress in this direc-
tion has been accomplished by Guerra, which resulted in the so
called interpolation techniques for the Sherrington–Kirkpatrick
spin model [5]–[7]. These interpolation techniques have been
succesfully applied to the satisfiability (SAT and XORSAT)
problems [8], [9] and LDPC codes [10].

In statistical mechanics a very powerful tool is often pro-
vided by correlation inequalities: in this paper we demonstrate
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that this is also the case in coding. The correlation inequali-
ties that we investigate in the context of coding are the Grif-
fith–Kelly–Sherman (GKS) inequalities [15]. These have been
known since a long time in the context of ferromagnetic non-
random Ising type models and have been extended recently to
the situation of spin glasses provided a certain “gauge sym-
metry” is present [16]. It will become clear later that this sym-
metry is implied by memoryless channel symmetry.

Instead of investigating the most general situation, here we
limit ourselves to two special LDPC ensembles. We study two
different problems: one concerns the exponential growth rate for
regular codes; while the other one pertains to communication
through a noisy channel. For each problem we demonstrate that:
1) the GKS inequalities are applicable, and 2) appropriate quan-
tities can be calculated exactly by message passing algorithms.
Let us stress that from the point of view of spin glass theory 2)
amounts to show the exactness of the replica symmetric solution
in a suitable range of parameters (along the so-called Nishimori
line).

A summary of the present work has appeared in [17].

A. Growth Rate of Regular LDPC Codes

We study the growth rate of regular codes with arbitrary vari-
able node degree and even check node degree . Our main re-
sult rests on an unproven assumption (called H1 in Section III)
which is however very natural in statistical mechanics of spin
systems, namely that a grand canonical free energy can be rep-
resented as the Legendre transform of a canonical one. The main
result states that under this assumption, if on a certain interval
the growth rate is a concave function of the relative weight of
the codewords, then at least on part of that interval iterative mes-
sage passing methods are exact (Theorem 3.3).

This is achieved through upper and lower bounds on the
growth rate. For the upper bound we use the known fact that the
combinatorial growth rate [27], [28] is an upper bound which
happens to be sharp. For irregular ensembles it is known [29],
[30] that such a bound is not sharp and this is essentially why
we limit ourselves to regular codes. To obtain the lower bound
we remark that the weight enumerator is the partition function
of a ferromagnetic spin model so that the GKS inequality
applies (see Lemma 3.1, at this point we need an even degree
for the check nodes).

One would like to extend the main result to all values of the
relative weight (i.e., to go beyond the concave region). Indeed
numerical examples show that the curvature changes from con-
cave to convex before the point where the growth rate vanishes
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(see, for example, Fig. 3), and therefore our result does not, un-
fortunately, allow for a rigorous computation of the typical min-
imum distance of the code ensemble (except for the trivial case
where the left degree is equal to ). We hope that our analysis
is a first step toward this goal. Second, it would obviously be
desirable to have a proof of assumption H1.

B. GEXIT Curves

We consider the problem of communication with a Poisson
LDPC code through a binary input additive white Gaussian
noise channel (BIAWGNC). We prove that a ”Generalized
EXIT curve”—defined as the derivative of the conditionnal
entropy with respect to the inverse square noise—and denoted
GEXIT, can be computed exactly by message passing algo-
rithms at least for some range of noise values (Theorem 3.6).
Here this result is conditional on an assumption (called H2
in Section III) which basicaly means that there are a finite
set of noise values where the “number of density evolution
fixed points can jump” and away from these “singularities” the
replica symmetric functionnal is a differentiable function of the
noise.

Such a result has been derived recently for the binary era-
sure channel (BEC) [20]–[22] by a combination of the notion of
physical degradation and the area theorem [23].

Here we first prove a sharp lower bound to the GEXIT curve
thanks to the GKS inequalities extended to random spin systems
with channel symmetry (Lemma 3.4). This was in fact claimed
in [21] (and proved by physical degradation for the binary sym-
metric channel), and then proved in full generality recently1 in
[11].

Next we prove a lower bound on the conditional entropy by
adapting the interpolation method, as presented in [8], [9] for the
SAT and XORSAT problems, to the case of LDPC codes. This
case has been treated recently [10] for standard irregular ensem-
bles ensembles having a generating function for the check node
degree distribution satisfying a certain convexity requirement
(for example if the checks have regular degree then it has to be
even). One of our contributions is to prove the bound in the case
of a Poisson distribution for the variable nodes and check nodes
with any even or odd degree.

Generalized EXIT curves have been introduced recently in
[21]. The first one denoted GEXIT is simply the derivative of
the Shannon conditional entropy (of the input conditioned on
the output) with respect to the channel entropy (or the noise pa-
rameter). In the special case of the BEC it is shown [20], with
the help of the Area Theorem, that this is the same as the usual
EXIT curve (defined as the average entropy of the th input bit
conditionned on the output bits except the th one). For more
general channels it turns out that the usual EXIT and GEXIT
curves are numericaly very close. This GEXIT curve is said to
be associated to MAP decoding because it involves the knowl-
edge the probability distribution of the input conditionned on
the output. In [11], [21] the authors define other “Generalized

1let us note that in the present paper the GEXIT is defined through a deriva-
tive with respect to the inverse noise in contrast to [11], [21] where it is defined
through a derivative with respect to the noise itself. As a consequence inequal-
ities are reversed. The method of correlation inequalities can also be extended
to general symmetric channels [12], [13].

EXIT” curves associated to iterative decoding such as belief
propagation. Moreover they provide a general bound stating that
the MAP GEXIT curve always stays below the iterative one. Our
result says that for the Poisson code ensemble GEXIT curves as-
sociated to MAP decoding and to belief propagation decoding
are equal for some range of noise values. This range corresponds
to noise values below the first discontinuity (if there is one).
Note that here the curves do not trivialy vanish in this range be-
cause the Poisson ensemble does not have a MAP threshold. On
the other hand, for “good” codes in that same range the EXIT
curves typicaly vanish and a statement such as that of Theorem
3.6 would be of limited interest. However, a generalization of the
intermediate lemmas and techniques would still be of interest.

C. Two Useful Identities

Another feature of this work is the use of two identities re-
lating derivatives of the conditionnal entropy and bit correla-
tions (Lemma 3.7). The first one is also closely related, but
slightly different, to the relationship between mutual informa-
tion and MMSE [24]. The second identity appears to be new
in this context to the best of our knowledge. From the point
of view of statistical mechanics it is a kind of fluctuation the-
orem: the left-hand side is a kind of “suceptibility” while the
right-hand side is a kind of “correlation function.” Because of
these two identities which rely on a Gaussian channel, our result
on GEXIT curves is limited to the Gaussian case. However we
think that it is much more general and support for this conjec-
ture comes from the fact that it is already known in the case of
a BEC. We believe the above results should extend to general
memoryless symmetric channels.

The paper is organized as follows: in Section II we formulate
the problems to be studied in the language of spin systems, in
Section III we state our main results and in Section IV we review
and adapt the GKS inequalities. Sections V–VII are dedicated to
the proofs of the main results. The proofs of some intermediate
results are presented in the appendices.

II. LDPC CODES AS RANDOM SPIN SYSTEMS

We consider two ensembles of codes, namely the regular
LDPC and Poisson LDPC ensembles.

The regular ensemble is defined in a standard way through
random bipartite graphs: the Tanner or factor graphs of the codes
[25], [26]. We have variable nodes of degree labeled

connected to check nodes of degree labeled
. The constraint must be satisfied and the

design rate is fixed . This ensemble of graphs is
endowed with the uniform probability distribution.

In the Poisson ensemble we first fix a design rate
and a number of variable nodes. The number of check nodes

is a Poisson random variable of mean . There are
edges emanating from each check node and each edge is con-
nected with uniform probability to a variable node. Given ,

the probability that a variable node has degree is

. In the limit where this tends to a Poisson dis-
tribution of mean . Clearly, the Poisson ensemble as
defined here does not provide a good code since there is a finite
probability that a variable node is unconstrained. However from
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a technical point of view this ensemble is sufficiently simple that
progress can be made toward rigorous results.

Each graph in the ensemble has an adjacency ma-
trix whose matrix elements are equal to the number of
edges ( ) connecting nodes and . Code words

satisfy parity-check constraints

In the “spin” language of statistical mechanics each bit is rep-
resented as a “spin” taking values . The code
words then satisfy the constraints

where denotes the set of variable nodes that are adjacent
to the check node . It will be convenient to use the notation

where is any subset of . Then,
given a factor graph and its associated code, is a code word
if and only if

(1)

A. Exponential Growth Rate

In terms of spin variables the relative weight of a code word
is

It will be convenient to define

so that .
We introduce the number of codewords with relative weight
(for a given code in the ensemble LDPC )

(2)

and the generating function or weight enumerator

(3)
In the language of statistical mechanics these two objects can
be interpreted as partition functions of a spin system with a hard
core interaction. The former (2) is the partition function in the
“canonical ensemble” with fixed “magnetization per spin” ,
while the later (3) is the partition function in the “grand canon-
ical ensemble” with fixed “magnetic field” . By hard core in-
teraction we mean the fact that the constraint (1) can be viewed
as a Gibbs weight

(4)

where the “Hamiltonian”

(5)

has infinitely large coupling constants
. The representation (4), (5), although not really nec-

essary, will prove insightful in Section IV.
The growth rate of a code

is nothing else but the “canonical potential or free energy.” The
“grand canonical potential” (also called “pressure” or ”free en-
ergy” depending on the interpretation; we adopt the later termi-
nology) is the logarithm of the weight enumerator,

(6)

We will be interested in upper and lower bounds for the ex-
pected value over the code ensemble LDPC .
For the upper bound we simply use Jensen’s inequality

(7)

and the fact that the combinatorial growth rate on the right-hand
side can be evaluated exactly [27], [28]. For the lower bound we
will use a GKS inequality to estimate the expected value of the
free energy . This then yields a bound for the growth
rate through a Legendre transform. Indeed for large from (3)
and (6) we expect

(8)

and therefore

(9)

where is the concave hull of . Thus an estimate for
can be translated into an estimate for . It turns out

that is not concave on the whole interval
so the estimate applies only on the restricted portion
where the function is equal to its concave envelope.

Note that in the heuristic (8),(9) we identify and
with their expectation over the code ensemble because of the
concentration phenomenon. A proof of concentration for these
quantities is still an open problem, although a weak form of it
for the growth rate has been obtained in [14].

We end this paragraph by stressing that (3) is the partition
function of a random spin system (or spin glass). Here random
refers to the fact that the underlying graph is sampled uniformly
from an ensemble LDPC . The coupling constants are
“ferromagnetic” meaning that in (5); in the context
of coding as in (3). If furthermore we say
that the spin system is ferromagnetic. We will need later the
notation for the Gibbs average associated to this spin
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system. More precisely the Gibbs average of any observable
is defined as

B. Conditional Entropy and EXIT Curves

Assume communication through a noisy binary input memo-
ryless channel with output alphabet and transition probability
density . The input is a code word
from LDPC , and the output be-
longs to .

Suppose now that a code word is sent
through the channel. Denoting expectations with respect to the
probability density

of the observed output as , the Shannon conditional entropy
of the input given the output is

(10)

We will assume that the channel is symmetric: as verified below
this implies that (10) does not depend on .
We will prove lower and upper bounds on the later quantity and
also on its derivative with respect to the inverse noise parameter
(genericaly called ) namely the “Generalized EXIT curve” as-
sociated to MAP decoding

(11)

We will now rewrite (10) in the language of statistical me-
chanics, and thereby recognize that it is nothing else than the
Gibbs entropy of a random spin system. For the case where the
code words are uniformly distributed, i.e.

(12)

and a memoryless channel, Bayes formula yields

(13)

where the normalization factor is

In terms of the log-likelihood ratios

(14)

and of the spin variable ,

Thus (13) becomes

(15)
where

(16)

These are the Gibbs measure and the partition function of a finite
random spin system. By random we mean that the code is taken
from the ensemble LDPC and the log-likelihood ratios

(or ”magnetic fields”) have a distribution induced by (14)

It will also be useful later to think of (15) and (16) in hamiltonian
terms: in other words the hard parity-check constraint can be
replaced by a Gibbs weight as in (4).

Let us now specialize the discussion to symmetric
channels for which the transition probability satisfies

. In this case the spin system
described above posseses an important symmetry group of
so called “gauge transformations.” One observes that for a
given code the Gibbs measure (15) is invariant under the
transformations

where is any code word. These transformations form a group
and are local in the sense that each spin is multiplied by a
dependent (phase) factor: one says that the spin system has a
gauge symmetry. The symmetry of the channel and (14) implies

It is therefore clear that the conditional entropy does not depend
on the input word: indeed we can choose so
that (10) remains the same except that now is with respect
to . In other words for symmetric memoryless
channels we may assume that the input word is the all code-
word. In the sequel, it is appropriate to replace the notation
by . In the particular case of the BIAWGNC with inverse
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square noise , assuming the all input code word, is with
respect to

The conditional entropy can be related to the free energy of
the spin system. Indeed substitution of (15) into (10) easily leads
to

(17)

where is the Gibbs average with respect to the measure (15).
More precisely for any

In the case of the Gaussian channel the second term in (17)
becomes very simple (see [3] for a proof)

(18)

III. MAIN RESULTS

In this section we formulate our main results. These state that
under natural hypothesis the growth rate and the GEXIT curve
of LDPC codes are (in some range of parameters) rigorously
given by the fixed point solutions of the density evolution equa-
tions associated to iterative message passing algorithms. In the
language of statistical mechanics this amounts to say that the
replica symmetric solution is exact for the two LDPC ensem-
bles considered in this paper. For the reader familiar with spin
glass theory we remark that the Gibbs measures of interest here
are defined on the Nishimori line where it is a priori known that
the gauge symmetry precludes the breaking of replica symmetry
(see, for example, [19], [3] for further discussion of this point
in the context of coding).

A. Growth Rate for the Regular Ensemble

Here we restrict ourselves to the ensemble
with even. Then the growth rate (resp the free energy) is an
even function of (resp ) so that all the discussion will be
limited to , , without loss of generality.

Consider the density evolution equations

(19)

with the initial condition , , ( ) and the
associated fixed point equation

(20)

These are written in the “difference domain”: a check node of
degree receives messages and transmits a message
to a variable node; a variable node of degree receives
messages and transmits an message to a check node.

Fig. 1. l = 5, k = 10 code. Vertical axis is h, horizontal axis is !. h (!)
between 0 and! = 0:71;! (h) increases from 0 to h = 0:71 and jumps to
! (h) = 1 for h > h . Full curve h (!). The Maxwell plateau at height
h = 0:43 separates two equal areas A = A .

In Section V we will prove that the sequence (respectively,
) is increasing and tends toward the smallest solution of (20),

greater than the initial condition. We call this particular fixed
point .

It is useful to notice that (20) gives the critical points of the
function (sometimes called “replica symmetric free energy”)

(21)

The value of (21) at the particular fixed point is
defined as the “iterative free energy,”

(22)

This definition is made here in order to stress that we look only
at the particular fixed point reached by density evolution with
initial condition , . The “iterative magneti-
zation” (the average relative weight given ) is

(23)

Our first application of a GKS inequality is
Lemma 3.1: Take a regular LDPC ensemble with

even. Then for all the weight enumerator satisfies

Remark 3.1: This lemma can be extended to irregular code
ensembles provided the degrees of variable and check nodes are
bounded, or their probabilities decay fast enough. It also extends
to the situation where is odd but .

It turns out that is increasing as a function of so
that the equation has at most one solution .
More precisely one should distinguish here the ensembles
LDPC and LDPC with . For ,

is a continuous curve and is defined for every ;
moreover is continuous and differentiable. For on
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Fig. 2. Code l = 5, k = 10. Equilibrium free energy f(h) goes from 0 to h = 0:43 where it is nondiffrentiable, and then is equal to h for h > h . The iterative
free energy has a branch from 0 to h = 0:71 where it has a jump discontinuity and is equal to h for h > h .

the other hand is monotone increasing for ,
has a unique jump discontinuity with a vertical slope at and
is equal to for (see Fig. 1 for the ensemble).
Thus when , is defined for . The
iterative free energy has a jump discontinuity at , a value
above which it is simply linear (see Fig. 2).

From the above formulas it is possible to check that (23) and
(22) are related. Namely, the total derivative of the iterative free
energy is equal to the iterative magnetization at points where it
is differentiable, but differs from it by a Dirac function at the
jump discontinuity (for ). For ,

Once is known, the iterative growth rate can be calcu-
lated as

(24)

For (24) gives the full iterative growth rate for all . But
for this expression is defined only on the interval .
In order to define iterative quantities for all one may plot the
parametric curve

This yields the full iteratite curve (see Fig. 1). The
part of the curve corresponding to comes from an un-
stable fixed point solution of (20). The iterative growth rate for

is then obtained from the same formulas as above ap-
plied to this unstable fixed point. We call the full iterative growth
rate which is defined for all (see Fig. 2). We will also

need , the concave hull of , obtained by drawing
a tangent to passing through the point . The
tangency point is (see Fig. 3). It is possible to see that neces-
sarily because is the inflexion point of . We
define as the unique solution of (for , we
have and ).

The first theorem can now be formulated.

Theorem 3.2: Let be the smallest convex function
above . For , for and

for . When , . The
satisfies for all

Moreover for and for
.

One expects that the limit of also exists, but the
foregoing estimates are not strong enough to prove this. We de-
fine the growth rate as

(25)

The next theorem relies on the natural assumption.
1) Hypothesis H1: .

Theorem 3.3: Under hypothesis H1, for a regular ensemble
LDPC with even, we have

for all .
We end this paragraph with a few informal comments in order

to put these results into a broader perspective. The underpin-
ning of this theorem is the Van der Waals picture of first order
phase transitions [33]. A similar picture has been uncovered and
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Fig. 3. Code (l = 5; k = 10). Full iterative growth rate g (!).The curve g (!) goes from 0 to ! = 0:71 where the concavity is lost. Theorem III-A holds
up to ! = 0:4 obtained by the Maxwell construction.

studied in detail in [21] in the context of communication through
a BEC. The singularity of the free energy at corresponds to
the plateau , or equivalently to the discontinuity of

at . The value can be found from the “Maxwell con-
struction”: one draws the plateau such that the two areas and

become equal. This statement is equivalent to the equality

In order to check this equality we note that the left-hand side is
equal to

and the right-hand side to

The following fact is equivalent to the equality of areas:
can be found on the graph of by drawing the tangent
passing through . From the point of view of the Van
der Waals theory the part of the curve on corresponds
to a metastable state in the sense that the iterative free energy
for is the continuation of the left branch of the Gibbs
free energy (see Fig. 3) and is lower than the right linear
branch (lower because here we have defined the free energy as
minus the “physical” free energy for convenience). The part of
the curve on can be obtained from the unstable fixed
point solution of (20) and corresponds to a state which is un-
stable from the thermodynamic point of view [34], because on
this interval is not concave. The precise interpretation of

stable, metastable and unstable states in the context of the code
ensemble is for the moment unclear. For communication over a
BEC [21] the authors discuss an interpretation of these states in
terms of the complexity of decoding algorithms.

B. GEXIT Curves and Conditional Entropy for the Poisson
Ensemble

Our notation will be as follows: is the expectation with
respect to some random variable , which can be the log-like-
lihood variable (14), the degree of variable nodes ( is Poisson
with mean ), likelihood variables and which are
passed from variable to check nodes and vice versa. We will
also need the probability densities and of and .

Here it is convenient to write the density evolution equations
associated to the iterative decoder in the “likelihood domain.” A
check node of degree receives messages
and transmits the message to a variable node; a variable node
of degree receives messages and transmits
the message to a check node. The messsages are (half) log-
likelihood ratios that can be interpreted as the “cavity magnetic
fields” of spin glass theory

(26)

(27)

The sequence generated by the initial condition ,
converges (in a weak sense) to a limit proba-

bility measure. A proof of this fact, based on physical degrada-
tion, can be found in [22]. Here, for completeness, we give in
Appendix IV a similar proof based on the GKS inequality. This
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limit probability measure, whose formal density we write ,
, satisfies a fixed point equation given by (26)–(27) with

the superscripts , , replaced by . We will not make
explicit use of this later fact, so its proof will be ommitted.

A simple calculation with functional derivatives shows that
the solutions of the fixed point equations are the critical points
of a functional (a “replica symmetric” free energy)

(28)

By definition the “iterative free energy” is

(29)

and the “iterative GEXIT curve” (associated to a belief propa-
gation decoder) is

(30)
The argument for the existence of (30) is in the proof of Lemma
(6.1). Concerning the existence of the limit in (29) the argument
is a bit longer and is given in Appendix V. As we will show
in Section VII there is a simple relation between the “iterative
GEXIT curve” and the replica symmetric free energy

(31)

Our second application of a GKS inequality is

Lemma 3.4: Assume communication with a Poisson
LDPC code through a BIAWGNC with inverse square
noise . For all ,

(32)

Remark 3.2: This lemma can be extended to the situation
of irregular codes as long as the degrees of variable and check
nodes is bounded, or their probabilities decay fast enough. More
recntly it has been proven for general channels again by corre-
lation inequalities [12], [13]. As explained in the introduction
such bounds have been derived earlier by physical degradation
for the BSC [21], and proven in full generality more recently
[11] by the data processing inequality.

Extending the interpolation method [8]–[10] to any value of
for a Gaussian channel we prove

Lemma 3.5: Assume communication with a Poisson
LDPC code through a BIAWGNC with inverse square
noise . For all

(33)

Remark 3.3: In fact one first proves a sharper bound, see
Corollary 6.3. This bound can be derived directly from (32) for

where is defined below.
For general LDPC ensembles one cannot exclude that

has jump discontinuities for some set of values of (see the
previous paragraph where this happens to ). For
we have formally

(34)

In this formula the partial derivative is with respect to the
dependence of . This motivates the natural assumption

1) Hypothesis H2: There exist at most a discrete set
of discontinuities of . For ,

the left and right derivatives ,
exist and,

(35)

In order to formulate our next result we make the definition

(36)

where the limit will be shown to exist for .

Theorem 3.6: Assume H2 and communication through a BI-
AWGNC with the ensemble LDPC . For the
limit (36) exists and we have

(37)

If the set of discontinuities is empty the equalities hold for all .

Remark 3.4: The theorem follows by combining Lemmas 3.4
and 3.5. For both lemmas essentialy give the same
information so that we are able to deduce equality only for

. For “good” generic LDPC ensembles we expect the iterative
free energy to be discontinuous and the EXIT curves vanish in
the low noise regime ( ). However for the present case of a
Poisson degree distribution of variable nodes the MAP threshold
is at zero noise due to the finite fraction of unchecked nodes, and
the EXIT curves are non trivial even at low noise.

We stress that here there is no restriction on the values of .
Although the result is restricted to the Gaussian channel it is
probably more general. If we knew a priori that (35) holds for
all the theorem would follow easily from the lower bound on
the GEXIT curve (Lemma 3.4), and formula (31). Indeed if the
equality in assumption H2 holds for every then [see (7.9)]

(38)

So the area under the iterative EXIT curve is equal to
which is also the area under the GEXIT curve. Since one curve
is above the other, they must be equal. Note that if we do not
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assume continuity, the two members of the equality in H2 may
differ by Dirac distributions for which destroy the above
argument. This makes the proof of theorem 3.6 considerably
more complicated.

As an application we give an estimate of the GEXIT curves
in the low noise regime (i.e., ). Retaining only the term

in (30) we obtain

As a particular application of a GKS inequality we will see (Sec-
tion VII) that

For a Gaussian channel

Thus, in the low noise regime

C. Two Useful Identities

Let us finaly state two identities that play an important role.
The first is combined with GKS to prove Lemma 3.4, while the
second is used in the Proof of Theorem 3.6.

Lemma 3.7: For a BIAWGNC and any linear code

(39)

(40)

This lemma is proved in Appendix I where we also discuss
closely related formulas for bit and block error probabilities
under ML decoding. These do not rely on the specific choice
of the LDPC ensembles and are valid for any linear code in

. The first identity is an instance of the relationship between
mutual information and MMSE discussed in a different con-
text by [24] (see also [21]). Note that the MMSE identity of
[24] would involve instead of ; it turns out that for
a symmetric channel the expected value of theses two quanti-
ties are equal (see the next section). The second identity appears
to be new: in particular it suggests that the correlation function

decays as .

IV. GKS INEQUALITIES

In this section, we briefly review the GKS inequalities which
are the main tool from which we will obtain the lower bounds.
In general, the GKS inequalities express the positivity of cer-
tain correlations or equivalently the monotonicity of first and

second derivatives of the free energy. The classical GKS in-
equalities [15] pertain to nonrandom ferromagnetic (positive
coupling constants) spin systems. Although in the deterministic
case they break down as soon as negative couplings are intro-
duced, it turns out, quite surprisingly, that they are still true for
expected values when couplings are random (with both signs)
provided their distribution satisfies a certain symmetry condi-
tion (of which channel symmetry is a special case). The setting
is given by a general spin Hamiltonian

(41)

and the associated Gibbs averages

A. Classical GKS Inequalities

We give the general statement and then specialize to the
weight distribution problem. Suppose for all in the
sum (41) (in other words the system is ferromagnetic). The first
GKS inequality states that for any

(42)

In particular it implies that for any

The second GKS inequality states that for any pair of sets

(43)

In particular, this implies that

(44)

In the weight enumerator problem, for a given code, the
Hamiltonian (5) is of the form(41) with , for

and for . Therefore the
GKS ineuqlities will be valid as long as and .
For finite we can trivially take the limit so that
they remain valid in the case of the hard core constraint which
is really the case of interest. In fact the condition is
necessary only for odd. Indeed when is even the code word
constraint (1) are invariant under , so that
we are allowed to replace by .

B. GKS Inequality for Random Spin Systems

These have been derived recently in [16]. The formulation
given here is slightly different but equivalent. The setting is now
given by the Hamiltonian (41) where are iid variables with
a probability distribution satisfying

(45)
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for some function . In the rest of the paper, it will be useful to
keep in mind that (45) is equivalent to the class of ”symmetric
distributions” [22], [32] defined by

The expectation with respect to (45) will be denoted . As
first shown by Nishimori [18], [19] when combined with gauge
invariance of (41), condition (45) implies a host of exact identi-
ties (called Nishimori identities). Here we just state the identities
that we will need latter on. For any subsets , of
we have

(46)

(47)

(48)

(49)

In Appendix II, we give a proof of a general identity which con-
tain all the above and many others as special cases. Although the
method is standard we have not found such a general identity in
the litterature.

In order to state the GKS inequalities a further assumption
is needed, namely that some subset of are Gaussian with
mean and variance both equal to . Here the mean and
variance are adjusted so that (45) is satisfied. Then using the
Nishimori identities, it is shown in [16]

(50)

and

(51)
Let us discuss how this formalism can be applied to the

random spin system defined by (15), (16). The first observation
is that, remarkably, channel symmetry translates into (45) for
the probability distribution of the log-likelihood variables (14).
Thus for , we set (and if
the channel is Gaussian). Second, for , we
take independent and identically distributed (i.i.d.) Gaussian
variables , with . We have

Taking the expectation with respect to all variables

(52)

For any fixed we have

Moreover the ratio under the integral in (52) is bounded above
by

Therefore, from dominated convergence, we obtain

The last formula implies that since the Nishimori identities
(46), (47), (49) apply for finite, they also apply to the spin
system associated to a code in LDPC (or for that matter
any LDPC). Moreover, in the case of a Gaussian channel with
noise parameter , the probability distribution of the log-like-
lihoods is a Gaussian with mean and variance equal to : this
means that we can apply the GKS inequalities (50) and (51) for
finite . Taking the limit we conclude that the GKS
inequalities also apply to any element of an LDPC ensemble. In
particular if the channel is Gaussian

(53)

As will be shown later this is directly related to the monotonicity
of the GEXIT curves.

V. PROOF OF THEOREM 3.3

We begin with the upper bounds which follow easily from re-
sults in the litterature. The combinatorial (or “annealed”) growth
rate has been computed exactly using combinatorial methods
[27], [28]. For regular codes

(54)

Because of Jensen’s inequality this provides immediately a
sharp upper bound (this is not true for irregular codes [29],
[30])

(55)

Note that in fact Gallager’s original upper bound [27]

(56)

is sufficient to obtain (55). This bound (together with Jensen)
gives also a sharp estimate for the free energy. Indeed

which implies

(57)
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The last equality can be checked by explicit computation. This
computation shows that for , and for ,

if , while if .
We now proceed to prove the lower bounds. Consider

LDPC and its associated Tanner graph. The distance be-
tween two nodes is defined as the minimal number of edges
needed to connect the two nodes. Given some fixed variable
node, say , we define the neighborhood of depth , denoted

, as the set of variable and check nodes which are at a dis-
tance less or equal to from . It is convenient to take even.
Tanner graphs of LDPC codes have the important property of
being locally tree like. In [31], it is proven that there exists a nu-
merical constant such that the probability that is a
tree satisfies

is a tree (58)

Our first application of the GKS inequality is the proof of
Lemma 5.1.

Lemma 5.1: Recall that denotes the Gibbs average
associated to (3). We have

(59)

Proof: Using (58) and (42)

a tree a tree

not a tree not a tree

a tree

Now consider the spin system defined by Hamiltonian (41) with
, for and for .

Set for and for . We
call the associated Gibbs measure. Since we choose

even all the spins attached to variable nodes not contained in
are uncoupled so that is the magnetization of

the code restricted to the tree . The GKS inequality in the
form (44) implies that for each for which is a tree

Therefore

a tree (60)

On a tree the iterative message passing procedure to compute
is exact, and yields

a tree (61)

The reader wishing to see a similar calculation in the context of
statistical mechanics can consult the book of Baxter [35] where
the Ising model on a tree is exactly solved. The result can also
be inferred from the calculations reported in Appendix III.

To complete the proof of the lemma we have to derive the
properties of the sequence that were announced in Sec-
tion III-A. In the case of a BEC, the problem is very similar
to the present one and at this point Richardson and Urbanke
use the concept of physical degradation [22]. Here there is no
channel so there is no proper notion of physical degradation,
but GKS turns out to be a convenient tool. By GKS, for a
sequence of trees , is an increasing sequence
(as a function of even ’s). Since it is trivially bounded by 1 the
sequence converges, thus (61) implies that is an increasing
and convergent sequence also. From (19) we conclude that

is also increasing and convergent. It is easy to see that
the limit is necessarily one of the fixed point
solutions of (20); and from (60), (61)

The following argument which is exactly the same than the
one used on a BEC [22] shows how to select the right fixed
point. Suppose that for some , (this is certainly
the case for ). Then

So the limit is equal to the smallest fixed point which is greater
than the initial condition. This completes the proof of the
lemma.

Remark 5.1: Combining this lemma with (63) below, we ob-
tain Lemma 3.1.

Lemma 5.2: For ,

(62)

while for , exists and
.

Proof: By symmetry

(63)

so that (59) becomes

(64)

For we integrate this inequality from 0 to , use dom-
inated convergence and ,
(for this argument holds for all ). This yields (62). For

, we remark that , so that

This is equivalent to
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Integrating over the interval ( ) and using domi-
nated convergence

(65)

As shown by Gallager when the bound (56) implies that
the code has a linear minimum distance. More precisely there
exists a such that the probability that a code word
has relative weight is less than for
some numerical constant . From this it is easily shown that
for

We conclude the proof by taking the limit in (65).

Proof of Theorem 3.2: From (62) and (57)

Since is convex, is convex. But
is by definition the smallest convex function above

so we must have

Therefore

which proves the theorem.
With the next lemma the Proof of Theorem 3.3 is complete.

Lemma 5.3: The equation (see (23)) has at most
one solution, and for every such that the solution exists we
have

(66)

Proof: The equation

has at most one solution because is increasing: indeed by
GKS is an increasing function of (at fixed ). For
some values of the equation might not have a solution because

might be (and in practice is) discontinuous. From now on
we look at the interval of for which the (unique) solution exists
and call it . Because of Theorem 3.2

(67)

By assumption H1 the left-hand side is equal to the
convex hull of . On the other hand the right-hand side of (67)
is equal to . Thus

By definition of , is strictly concave on . There-
fore is also strictly concave on and so must be

. Thus on this interval.

VI. BOUNDS ON GEXIT AND THE CONDITIONAL ENTROPY

We begin with the lower bound on GEXIT for which the
method is similar to that of the previous section.

A. Lower Bound on the GEXIT Curve

Given a code LDPC and a specified variable
node we consider again a neighborhood . The proba-
bility that all nodes of the factor graph have a degree less than

is (for large)

Then following [31] one can show that the probability of
being a tree again satisfies an inequality of the type (58) with
replaced by .

Lemma 6.1: For a binary input symmetric channel we have

Remark 6.1: The proof below immediately extends to irreg-
ular ensembles as long as the degrees are bounded.

Proof: Proceeding as in the proof of 5.1, we get

tree

Next we construct a new Gibbs measure for a random spin
system on the tree . Take the hamiltonian (41) and set
the Gaussian coupling constants with for the
check nodes and for the variable nodes

. Now for set which means that
with probability one; and for make .

The associated Gibbs measure is denoted . The GKS
inequality in the form (51) implies that

tree tree

Therefore

is a tree (68)

On a tree the right-hand side of this inequality can be computed
exactly by iterative equations which yield (see Appendix C for
a derivation)

tree

(69)



676 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 2, FEBRUARY 2007

To complete the proof of the lemma we must show that the right-
hand side has a well defined limit. One could proceed as in [31],
[22] by using the concept of physical degradation. Here instead
we use a GKS inequality

is a tree

is a tree

Thus the right-hand side of (69) is an increasing bounded se-
quence. Hence the result of the lemma follows by taking the
limit limit on both sides of inequality (68).

The previous lemma holds for the rather general class of
symmetric channels. For the next one however, we specify a
Gaussian channel. The probability distribution of the log-like-
lihood variables is a Gaussian with mean and variance both
equal to .

Proof: of Lemma 3.4: First of all, we note that from (69)

tree

Applying GKS in the form (53) to the Gibbs average on
we conclude that is an increasing
function of ( fixed). Thus increases as a function of .

By symmetry

and because of identity (39)

This proves (32).

B. Lower Bound on the Conditional Entropy

We use an extension of the interpolation techniques recently
developed in [8] for the SAT and XORSAT problem. The case
of LDPC codes has been considered in [10] for convex (on

) generating function of the check node degree distri-
bution. In particular for regular check degree only even degree
is allowed. Here we apply the interpolation technique following
the setting of [8], [9] for Poisson LDPC and extend it to the case
covering also odd degree. This is the only paragraph where the
Poisson nature of the variable node degrees is crucialy used.

Let be an interpolation parameter, a Poisson
random variable (RV) with mean , ,

i.i.d. Poisson RV with mean .
Let be an RV distributed according to some arbitrary density

. The later distribution is a “variational parameter” which
will be adjusted later on. Consider an RV distributed according
to

In this section and are expectations with respect to
and , not to be confused with and of previous

sections. We introduce independent copies and and
define the interpolating partition function

The corresponding Gibbs measure interpolates between
the product measure (decoupled spins) and the
measure associated to an LDPC code. The average free energy
can be computed as follows:

For , the free energy of the code ensemble is easily com-
puted

Following [8], [9] the calculation of the derivative with respect
to leads to

(70)

with the remainder term

In this expression we use the shorter notation for the expec-
tation over , , , , . The numbers are computed
from as

The ”overlap parameter” is defined as

(71)

where are independent copies (or replicas) of
the spin . The average has to be understood as the in-
terpolating Gibbs measure replicated times. For example
the average of each term in(71) is

We will prove the following statement.
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Proposition 6.2: For any symmetric probability distribution
and for a Gaussian channel we have

any (72)

The proof of the proposition will clearly show that in the case of
even it is sufficient to have symmetric and any symmetric

channel. For odd we need to specify a Gaussian channel, but
we believe that this should be true also more generaly.

Corollary 6.3: Let denote the set of symmetric probability
distributions. For a Gaussian channel we have

Proof: An immediate consequence of the proposition is
that for any symmetric probability distribution the free
energy is lower bounded by . This shows the first in-
equality. Since is a symmetric probability distribution
[32] the bound holds also for and

. Because of the identity (17) we also get a lower bound
on the conditional entropy. Finally, we perform the limit

.
In order to prove Proposition 6.2 we first need to show that

the overlap parameter does not fluctuate. This is expressed as
follows.

Lemma 6.4: Recall and is the
times replicated interpolation measure. Let denote the prob-
ability distribution and fix some .
For a Gaussian channel we have that for almost every

(73)

Proof: Using

(74)

and we get

therefore from Tchebycheff inequality applied to

(75)

Let us estimate the right-hand side of (75). We notice

Thus using (74) and then the Schwarz inequality we obtain

(76)

For a Gaussian channel the identity (40) holds so that

Integrating both side against a positive test function
we get

where we have used Schwarz inequality and an integration by
parts. The identity (39) can be extended to the interpolating
system so that

Integrating over , using Fubini’s theorem on the left
to exchange the and integrals, and then using dominated
convergence we obtain

Since this is true for any positive test function we conclude that
(73) holds for almost every .



678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 2, FEBRUARY 2007

Proof of Proposition 6.3: The first step consists in com-
bining the terms in the remainder with odd and even. First
of all since is a symmetric probability distribution

(77)

(see Appendix II). A similar identity holds for the overlaps

(78)

Indeed from (71)

Symmetry of implies symmetry of . Thus the interpo-
lation measure satisfies the Nishimori identities (46)–(49) one
of which tells us that for

therefore (78) follows. With the help of (77) and (78) the terms
in the remainder can be rearranged

Clearly the sum over converges because the term in the paren-
thesis is bounded by than ; so it remains to prove that the
parenthesis is non negative. For even this easily follows from
the convexity of the function . Indeed convexity im-
plies

(79)

This is the argument used in [8]–[10].
Here we obtain that for any the slightly weaker result (72)

is true. We split the sum over in two parts and
. The fisrt sum is clearly smaller than

(80)

for some positive numerical constant. We split the second sum
over in two more sums as follows:

(81)

Since is positive we can use the convexity of the func-
tion to show that

(82)

(notice the difference between (79) and (82)) so that the first
sum in (81) is non negative. The second sum can be estimated
by

The first sum is smaller than ( a positive numer-
ical constant); and because of Lemma 6.4, for almost every-
where (a.e.) the second sum has a integral which tends to
zero as . Combining these remarks with (80) and (82)
we conclude that

VII. PROOF OF THEOREM 3.6

We first derive a consequence of Lemma 3.4

Lemma 7.1: For a Gaussian channel with inverse noise we
have

(83)

(84)

Proof: Let us first compute . Using the
identity

(85)

and an integration by parts



MACRIS: GRIFFITH–KELLY–SHERMAN CORRELATION INEQUALITIES 679

The probability distributions and , are sym-
metric [22], [32] which implies that (see Appendix B where this
is seen as a special case of a Nishimori identity)

(86)

Thus we obtain

(87)

and because of the assumption H2

(88)

To finish the proof we will now integrate the lower bound of
lemma 3.4. We first integrate from to and apply
dominated convergence, to get

For we have . Thus

(89)

For , we proceed similarly by integrating from to
. This time we must use that the conditional entropy van-

ishes as (limit of zero noise), and

This last formula follows easily by integrating the following in-
equality:

The left-hand side is an application of GKS: consider formula
(C.15) and remove all check nodes below the root of the tree.
The right-hand side is immediately obtained by retaining only
the term (unchecked nodes).

End of Proof of Theorem 3.6: From Lemma 83 and Corol-
lary 6.3, we have

and (90)

It remains to compute the total derivative as in (85)–(87)

This proves the theorem.

VIII. CONCLUSION

Correlation inequalities often provide a powerful tool in sta-
tistical mechanics of spin systems. A major aim of this paper
was to demonstrate that one of them, the GKS inequality, is
useful to analyze LDPC codes. For the regular codes it pro-
vides a way to prove a sharp lower bound on the growth rate.
For the Poisson ensemble and communication over a Gaussian
channel it yields a sharp lower bound on the the GEXIT curve.
As pointed out in the proofs of these results, GKS turns out to
be an alternative tool to physical degradation in the later case;
but can also be used when there is no channel (as in the growth
rate problem). An important issue is to clarify what is the pre-
cise connection between GKS and physical degradation. One
should also investigate if GKS and/or other correlation inequal-
ities apply to other coding schemes and channels: this is in fact
very likely in view of the intimate connection between linear
codes and spin systems.

The extension of the interpolation technique to odd degree for
check nodes works on a Gaussian channel because it relies on
identity (40). Presumably the later identity can be generalized
to other symmetric channels so that one can hope to extend the
present results to general symmetric channels. We wish to point
out that an extension to more general irregular LDPC
ensembles might also be achieved by using a version of the in-
terpolation techniques developped in [36] or [10].

Finaly let us point out that it would be desirable to improve
on the present results in order to remove assumptions H1 and
H2.

APPENDIX I
PROOF OF LEMMA 3.7

We first prove the two identities in Lemma 3.7 and then com-
ment on closely related formulas for the bit error probability.

Consider a fixed code . Because of (85), using an integration
by parts we have

Using the Nishimori identity (valid for any symmetric channel)

Thus for a fixed code and a symmetric memoryless channel

If furthermore the channel is Gaussian we have (18). Thus (17)
implies
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Using again an integration by parts the second derivative is
equal to

A straightforward computation yields

Using the four Nishimori identities of Section IV-B we obtain

which leads to

The identity (40) of the lemma now follows immediately.
Here we wish to point out a similarity between (39) and the

error probability for bit decoding. In the present setting the ML
or MAP estimate for the th bit is

In the spin language this becomes (with and
)

The average fraction of wrong bits is (for a fixed code)

Because of channel symmetry one can again show that this prob-
ability does not depend on the input word, so that we may as-
sume (with the appropriate

APPENDIX II
THE USE OF GAUGE INVARIANCE

In this Appendix, we give a streamlined proof of a general
Nishimori identity. Then we give the list of special cases that
are explicitely used in the present work.

Lemma 2.1: Consider a spin system with Hamiltonian (41)
with i.i.d. coupling constants whose distribution satisfies (45).

Then for any collection of subsets and integers

(91)

Proof: Because of (45) the left-hand side of (91) is equal
to

We make a first gauge transformation ,
which shows that the last expression is equal to

(92)
We sum over , divide by , and then insert
in the integral where is the partition function

Then (92) becomes

The last step is a second gauge transformation on each term of
the sum over : , , .
This yields the right-hand side of (91)

To obtain the first identity (46) we set and ,
for . To obtain the second (47) we take two

sets , , . For the third we
set , , and for the fourth (49)

, and , .
Finaly the identity (77) is a special case of (46) for the sim-

plest spin system consisting of a single spin ,
.

APPENDIX III
RECURSIVE EVALUATION OF GIBBS AVERAGES ON TREES

The goal is to compute quantities of the type when
the neighborhood is a tree. The computation presented
here for completeness is in fact equivalent to the methods fond
for example in [22].

We label the tree in the following way: the variable node root
is , the set of level 1 check nodes is , the set of level
2 variable nodes is , the set of level 3 check nodes
is , and so on until the set of level check
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nodes and the set of variable node leaves
. Introducing partial Gibbs weights

the statistical sum can be organized as follows:

(93)

(94)

The above sums can be performed in a recursive way by first
summing over the spins , then and so on. Let
us do explicitly the sum over level .

with

and a normalization constant (independent of the spins, but
depending on the log-likelihoods). Here and have
the usual interpretation of messages transmitted between vari-
able to check and check to variable nodes. Equations (93) and
(94) become

(95)

Now the tree has one level less and the Gibbs weight of the last
level is

with

Iterating this computation we find

where is given by the message passing equations

with the initial condition , . The proba-
bility distribution of the messages evolves according to

with the initial condition (in our case the
Gaussian distribution of log-likelihoods) and . The
average value of the spin at the root is

is tree

We end the appendix by remarking that (19) is obtained as a
special case by specifying the message passing equations to the
case of a regular tree with constant initial condition ,

. Then (dropping the and subscript)

Using ”conjugate variables” and
we get
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The initial condition is now and .

APPENDIX IV
EXISTENCE OF A LIMITING MEASURE UNDER DENSITY

EVOLUTION

We show that the sequence of probability measures ,
have a limit. It is sufficient to show for any integer

the existence of the limit

Indeed, then the moments of the random variable
all have a well defined limit and are bounded. Thus by a criterion
of Carleman, they define a unique probability measure (whose
formal density we called ). The first density evolution for
the moments

(96)

implies that the moments converge to a limit
which defines uniquely a probability measure (with formal den-
sity ).

To prove that the limit of the moments exists we use a GKS
inequality. The tree is the union of subtrees containing
the edges , . We take any one of these subtrees, call it

, and consider the sequence of such trees as increases
by two units. By GKS

is a tree

is a tree

Note that here we really invoke a slight generalization of GKS
because we consider all integer moments: this case is covered
by the results in [16]. A calculation similar to the one performed
in Appendix C shows that

is a tree

Therefore the moments form an increasing bounded sequence
which converges.

APPENDIX V
EXISTENCE OF THE LIMIT

Using the density evolution equation, the replica symmetric
free energy can be expressed in the form

(97)

We will prove that each of the two separate terms on the right-
hand side has a limit.

We start with the first one (call it ) which is more straight-
forward. Expanding the logarithm and using a Nishimori iden-
tity (see for example (77)) we find

By the results of appendix IV each term of the series has a well
defined limit as , so by dominated convergence this is
also the case for .

For the second term (call it ) the main idea is to represent
it as the “difference of two free energies.” This difference is
then related to a “magnetization” on which we can apply a GKS
argument. Consider a realization of the tree of depth ,

with root and the spin system on the tree with degree
at the root. There are subtrees rooted at the nodes of level

. We call these subtrees . Let us denote ,
the partition functions of the spin systems on

each tree. The recursive method of Appendix III leads to the
formula

is tree (98)

The next observation is that if we “delete” the check nodes of
level from the tree , we get a disconnected graph consti-
tuted of trees rooted at level plus a single point . The
free energy of the disconnected graph is for a given realization

. We can interpolate between
and the disconnected graphs by replacing the hard constraints
of level by a Gibbs weight

The interpolation parmeters are iid gaussian with mean and
variance both equal to . This adjustment makes it possible to
use Nishimori identities as well as GKS inequalities. The par-
tition function of the spin system on the tree with soft con-
straints at level is denoted by . We have

The derivative with respect to is performed using (85) and then
integrating by parts. This leads to
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Now we average over the , use the Nishimori identities to sim-
plify the right-hand side, and then average of the Tanner graphs
given that is a tree. We obtain

is tree

is tree (99)

Finaly combining this formula with (98)

is tree (100)

Now GKS tells us that the Gibbs average in the integrand is
monotone increasing as a function of (even) , thus is an
increasing sequence. That the limit exists follows by a uniform
bound most easily obtained from the formula
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