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Abstract: We consider a random Schrödinger operator in an external magnetic field.
The random potential consists of delta functions of random strengths situated on the
sites of a regular two-dimensional lattice. We characterize the spectrum in the lowest
N Landau bands of this random Hamiltonian when the magnetic field is sufficiently
strong, depending onN . We show that the spectrum in these bands is entirely pure point,
that the energies coinciding with the Landau levels are infinitely degenerate and that the
eigenfunctions corresponding to energies in the remainder of the spectrum are localized
with a uniformly bounded localization length. By relating the Hamiltonian to a lattice
operator we are able to use the Aizenman–Molchanov method to prove localization.

1. Introduction

Recently there has been progress in the theory of Anderson localization for two dimen-
sional continuous models of an electron moving in a random potential and a uniform
magnetic field ([1–4]). In these works it is established that the states at the edges of the
Landau bands are exponentially localized and the corresponding energies form a pure
point spectrum. However, the nature of the generalized eigenfunctions of the Schrödinger
operator for energies near the centre of the Landau bands has not been established.A first
step towards the resolution of this problem was made in [5] for a Hamiltonian restricted
to the first Landau band with a random potential consisting of point impurities with
random strength and located on the sites of a square lattice. There it was shown that, for
a sufficiently strong magnetic field, all the eigenstates are localized except for a single
energy at the centre of the band. This energy is an infinitely degenerate eigenvalue with
probability one.

In the present paper we extend the results of [5] to a similar model where the restriction
to the lowest Landau band is removed. The technique used here is different and yields

? This work was partially supported by the Forbairt (Ireland) International Collaboration Programme 1997.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147925884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


368 T. C. Dorlas, N. Macris, J. V. Pulé

much stronger results. Formally the Hamiltonian of the electron is given by

H = H0 +
∑

n

vnδ(r − n), (1.1)

where

H0 = 1

2
(−i∇ − A(r ))2 , (1.2)

A(r ) = 1
2(r × B) andvn, the strengths of the impurities which are located on the sitesn

of a two-dimensional square lattice, are i.i.d. random variables. It is well known that the
definition of Hamiltonians with point scatterer in more than one dimension is delicate
and requires a renormalization procedure. This is the subject of Sect. 2.

The main results of this paper are the following. LetEn = (n+ 1
2)B,n = 0,1,2, . . . ,

be the Landau levels corresponding to the kinetic part,H0, of the Hamiltonian. Given
an integerN , there existsB0(N) such that forB > B0(N), the spectrum is completely
characterized for energiesE < EN . We show that forn = 0,1,2, . . . N−1, the Landau
levelsEn are infinitely degenerate eigenvalues ofH with probability one. All other
energies in this part of the spectrum correspond to exponentially localized eigenfunctions
with a localization length which is uniformly bounded as a function of the energy. Thus
the localization length does not diverge at the centres of the bands when the magnetic
field is strong enough, at least for the lower bands. Our analysis breaks down for energies
greater thanEN and in fact we expect a different behaviour for high energies.

There is an extensive literature on the problem of point scatterers with a magnetic field,
but it appears that little is known on the rigorous level for the two-dimensional random
case considered here. For the periodic case, that is, when all thevn’s are identical, we
refer the reader to the review [6] and the references therein. The case when the potential
is periodic in thex-direction and random in they-direction has been discussed recently
in [7]. Finally the density of states for models similar to ours with a restriction to the
first Landau level has been computed analytically in [8] (see also [9] which deals with
the existence of Lifshitz tails). The infinite degeneracy of the Landau levels had already
been noticed in various ways in the past ([10,8,11]). For example in [8] it appears as a
delta function in the density of states of the first level. The result suggests that it is in
factmacroscopic, in other words, there is a positive density per unit volume. Our results
characterize completely the rest of the spectrum and also give information about the
localization length.

Let us say a few words about the method used to arrive at these results. The scatterers
in (1.1) are similar to rank one perturbations of the kinetic energy so that by using the
resolvent identity one can express the Green’s function corresponding toH in terms of the
Green’s function of the kinetic energy and a matrix which contains all the randomness.
Thus the problem is reduced completely to the study of this random matrix which
has random elements on the diagonal and rapidly decaying non-random off-diagonal
elements. It turns out that the method invented by Aizenman and Molchanov [12] is
very well suited to study the decay of eigenvectors of this matrix. These eigenvectors are
related by an explicit formula to the eigenfunctions ofH in such a way that exponential
decay of the former implies exponential decay of the latter. In fact it follows from the
structure of the random matrix that, in the strong magnetic field regime, the off-diagonal
elements are much smaller than the diagonal elements, and this is true even for energies
near the band centres. Therefore our problem is analagous to the high disorder regime
in the usual Anderson model and this is the reason why we have access to the whole
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spectrum. It is instructive to discuss the physical implications of our results in the context
of the quantum Hall effect. A basic ingredient used to explain the occurrence of plateaux
in the Hall conductivity is the localization of electrons due to the random potential. This
has been established in a mathematically precise way in [13] (see also [14]), by assuming
the existence of localized states. Usually it is difficult to obtain quantitative results on the
localization length. The Network Model of Chalker and Coddington [15] and numerical
simulations [10] suggest that it is finite except at the band centres where it diverges like
|E−En|−ν with ν ≈ 2·35 for the first fewn’s. In the Network Model one must work with
smooth equipotential lines of the random potential so that it is difficult to compare to our
situation. The model in this paper has been treated numerically only in a regime where
the magnetic length, which is of the order ofB−1/2, is much greater than the average
spacing between impurities. The regime covered by our analysis is such that the magnetic
length is smaller than the average spacing between impurities, and we prove that there is
no divergence in the localization length at least for the first few bands. One might think
that this means that there is no quantum Hall effect in this regime. However this is not
the case because the energy at the band centre is an infinitely degenerate eigenvalue. One
can compute explicitly the eigenprojector associated to each degenerate eigenvalue and
check that the corresponding Chern number is equal to unity [16]. From this result and the
equivalence between Hall conductivity and Chern number, when the Fermi level lies in
the region of localized states or in a spectral gap, we conclude that the Hall conductivity
takes a non-zero quantized value equal to the number of Landau levels below the Fermi
energy. This has been made mathematically precise in [13] (see also [14] and [17]).

The picture which emerges out of the combination of our analytical results with those
of simulations is that in the present model one has to distinguish at least two regimes. In
the first one, the magnetic length is much greater than the spacing between impurities:
the localization length diverges and there is no degenerate eigenvalue at the band centres.
In the second the magnetic length is much smaller than the spacing between impurities:
the localization length does not diverge and there is a degenerate eigenvalue at the band
centres.Whether there exists one or more intermediate regimes or not is an open question.
It is instructive to note that in the model studied in [8], it turns out that, at the level of the
density of states, one must also distinguish between various regimes, more than two in
fact. Finally, we wish to stress that the quantized Hall plateaux exist in both regimes and
that an interesting open question is whether the different behaviour of the localization
length is reflected in the transition between two successive Hall plateaux.

The paper is organized as follows. In Sect. 2 we give the precise definition of the
model and the Hamiltonian and also collect useful Green’s function identities. Our main
theorem (Theorem 2.2) is stated at the end of this section. The infinite degeneracy of
the firstN(B) Landau levels is proved in Sect. 3 and the spectrum is characterized as
a set. The connection between generalized eigenfunctions ofH and eigenvectors of the
random matrix is established in Sect. 4. Finally, the Aizenman–Molchanov method is
applied in Sect. 5, where the proof of our main theorem is completed. The appendices
contain more technical material.

2. Definition of the Hamiltonian

In this section we define our Hamiltonian. It is well known that Hamiltonians withδ-
function potentials in dimensions greater than one require renormalization. This was
first done rigorously in [11]. The magnetic field case was developed in [6]. We refer the
reader also to [18] though this does not deal explicitly with the case of a magnetic field.
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Letωn,n ∈ Z[i] ≡ {n1+in2 : (n1, n2) ∈ Z2}, the Gaussian integers, be i.i.d. random
variables. We shall assume that their distribution is given by an absolutely continuous
probability measureµ0 whose support is an intervalX = [−a, a] with 0< a < ∞. We
require thatµ0 is symmetric about the origin and that its densityρ0 is differentiable on
(−a, a) and satisfies the following condition:

sup
ζ∈(0,a)

ρ′
0(ζ )

ρ0(ζ )
< ∞. (2.1)

These conditions onµ0 can be weakened, but we have chosen the above because they
allow us to check the regularity of the distribution of 1/ωn, in the sense of [12] very
simply. We let� = XZ[i] andP = ∏

n∈Z[i] µ0. Form ∈ Z[i], let τm be the measure
preserving automorphism of� defined by

(τmω)n = ωn−m. (2.2)

The group{τm : m ∈ Z[i]} is ergodic for the probability measureP.
Let H = L2(C) and letH0 be the operator onH defined by

H0 = (1/8κ)(−i∇ − A(z))2 − 1/2, (2.3)

whereA(z) = (−2κIz,2κRz). Hereκ = B/4 andH0 is the same as the Hamiltonian
in (1.2) apart from the multiplicative constant 1/8κ and the shift by 1/2 which are
inserted for convenience so that the Landau levels coincide with the set of non-negative
integers,N0. Let Hm be the eigenspace corresponding to themth Landau level of the
HamiltonianH0 defined in (2.3) and letPm be the orthogonal projection ontoHm. The
projectionPm is an integral operator with kernel

Pm
(
z, z′

) = Lm(2κ|z− z′|2)P0
(
z, z′

)
, (2.4)

whereLm is the Laguerre polynomial of orderm and

P0
(
z, z′

) = 2κ

π
exp[−κ|z− z′|2 − 2iκz ∧ z′], (2.5)

with z ∧ z′ = RzIz′ − IzRz′, Rz andIz being the real and imaginary parts ofz
respectively.

Forλ ∈ C\N0, letGλ0 = (H0−λ)−1, the resolvent ofH0 atλ.Gλ0 has kernel (cf. [6])

Gλ0(z, z
′) = 0(−λ)P0(z, z

′)U(−λ,1,2κ|z− z′|2), (2.6)

where

U(a,1, ρ) = − 1

0(a)

[
M(a,1, ρ) ln ρ +

∞∑
r=0

(a)r

r! ρ
r{ψ(a + r)− 2ψ(1 + r)}

]

(2.7)

is the logarithmic solution of Kummer’s equation ([19, Chap. 13]):

ρ
d2U

dρ2 + (1 − ρ)
dU

dρ
− aρ = 0. (2.8)
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Here0 is the Gamma function,ψ(a) = 0′(a)/0(a) is the Digamma function,

(a)r = a(a + 1)(a + 2) . . . (a + r − 1), (a)0 = 1, (2.9)

and

M(a,1, ρ) =
∞∑
r=0

(a)r

r! ρ
r (2.10)

is Kummer’s function.
Let M = l2(Z[i]) and forλ ∈ C \ N0, defineUλ : H → M by

〈n|Uλφ〉 = (Gλ0φ)(n). (2.11)

From the bounds in Propositions 6.1 and 6.2 in Appendix A one can see thatUλ is a
bounded operator. Its adjointU∗

λ : M → H is given by

(U∗
λ ξ)(z) =

∑
n∈Z[i]

Gλ̄0(z, n)〈n|ξ〉. (2.12)

Forλ ∈ C \ N0 let

cλn = 2κ

π

(
ψ(−λ)− 2π

ωn

)
(2.13)

and define the operatorsDλ, Aλ andMλ onM as follows.Dλ is diagonal and

〈n|Dλ|n〉 = cλn, (2.14)

〈n|Aλ|n′〉 =
{

0 if n = n′
Gλ0(n, n

′) if n 6= n′, (2.15)

and

Mλ = Dλ − Aλ. (2.16)

Note thatDλ is a closed operator on the domain

D(Dλ) = {ξ ∈ M :
∑
n∈Z[i]

|cλn|2|〈n|ξ〉|2 < ∞}, (2.17)

andAλ is bounded, thereforeMλ is closed onD(Mλ) = D(Dλ). Note also that(Mλ)∗ =
Mλ̄ and that forλ ∈ R,Mλ is self-adjoint. Forλ ∈ C \ N0 such that 0/∈ σ(Mλ) let

0λ = (Mλ)−1. (2.18)

To define our HamiltonianH we use the following lemma:

Lemma 2.1. For eachκ > 0, there existsλκ ∈ C \ R such that0 /∈ σ(Mλκ ) and

|〈n|0λκ |n′〉| ≤ K(κ)e−κ|n−n′| 1
2
. (2.19)
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Proof. Let λ = −r(1 + i), with r > 0. By Proposition 6.1 in Appendix A, we have for
n, n′ ∈ Z[i], n 6= n′,

|Gλ0(n, n′)| ≤ Cr,κe
−κ|n−n′|2, (2.20)

where

Cr,κ = Cκ

{
1

r
+ e−(2κr)

1
2
(1 + | ln(2κ)|)

}
, (2.21)

C < ∞ being a constant. Therefore||Aλ|| ≤ Cr,κ ||S||, whereS is the operator with
matrix

〈n|S|n′〉 = e−κ|n−n′|2. (2.22)

Let 0̃λ = (Dλ)−1, then

||Aλ0̃λ|| ≤ π

2κ

Cr,κ

|Iψ(−λ)| ||S|| < 1/2, (2.23)

if r is large enough. Note that by (6.3.18) in [19]

lim
r→∞ Iψ(−λ) = π/4. (2.24)

Then
∑∞
k=1(A

λ0̃λ)k converges and consequentlyMλ is invertible,

0λ = 0̃λ(I +
∞∑
k=1

(Aλ0̃λ)k) (2.25)

and||I +∑∞
k=1(A

λ0̃λ)k|| ≤ 2. Clearly

〈n|Aλ0̃λ|n′〉 =
{

0 for n = n′
1
cλ
n′
Gλ0(n, n

′) if n 6= n′. (2.26)

Thus

|〈n|Aλ0̃λ|n′〉| ≤ Br,κe
−κ|n−n′|2 ≤ Br,κe

−κ|n−n′| 1
2
, (2.27)

whereBr,κ = π
2κ

Cr,κ
|Iψ(−λ)| . Now, there exists a constantc0 < ∞ such that forκ > 1 (see

Lemma 3.3 in [5]), ∑
n′′∈Z[i]

e−κ|n−n′′| 1
2
e−κ|n′′−n′| 1

2 ≤ c0e
−κ|n−n′| 1

2
. (2.28)

This bound, together with (2.27), gives

|〈n|(Aλ0̃λ)k|n′〉| ≤ ck−1
0 Bkr,κe

−κ|n−n′| 1
2
, (2.29)

and thus from (2.25)

|〈n|0λ|n′〉| ≤ Ke−κ|n−n′| 1
2 (2.30)

if c0Br,κ <
1
2. ut
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Forλ ∈ C \ N0, we have the formula ([19] 6.3.16)

ψ(−λ) = −γ −
∞∑
m=0

(λ+ 1)

(m+ 1)(m− λ)
, (2.31)

whereγ is Euler’s constant. Thus ifλ1, λ2 ∈ C \ N0,

ψ(−λ1)− ψ(−λ2) = (λ2 − λ1)

∞∑
m=0

1

(m− λ1)(m− λ2)
. (2.32)

On the other hand we have

G
λ1
0 G

λ2
0 =

∞∑
m=0

Pm

(m− λ1)(m− λ2)
, (2.33)

and thus

(G
λ1
0 G

λ2
0 )(n, n) =

∞∑
m=0

Pm(n, n)

(m− λ1)(m− λ2)
= 2κ

π

∞∑
m=0

1

(m− λ1)(m− λ2)
. (2.34)

Therefore

〈n|Mλ1 −Mλ2|n〉 = 2κ

π
{ψ(−λ1)− ψ(−λ2)} = (λ2 − λ1)(G

λ1
0 G

λ2
0 )(n, n). (2.35)

On the other hand, forn 6= n′, using the resolvent identity, we get

〈n|Mλ1 −Mλ2|n′〉 = G
λ2
0 (n, n

′)−G
λ1
0 (n, n

′) = (λ2 − λ1)(G
λ1
0 G

λ2
0 )(n, n

′). (2.36)

Therefore combining the two identities (2.35) and (2.36) we obtain

Mλ1 −Mλ2 = (λ2 − λ1)Uλ2U
∗̄
λ1
. (2.37)

It is clear from this equation thatUλ2U
∗̄
λ1

= Uλ1U
∗̄
λ2

.

Note thatH0 is essentially self-adjoint onS(C) ([20, Theorem X.34]). DefineVκ :
S(C) → H by Vκ = U ∗̄

λκ
0λκ T , where〈n|T ψ〉 = ψ(n). Let

D(H) = {φ = ψ + Vκψ : ψ ∈ S(C)}, (2.38)

and forφ ∈ D(H)
Hφ = H0ψ + λκVκψ. (2.39)

This definition implies that(H − λκ)φ = (H0 − λκ)ψ , and therefore sinceH0 is
essentially self-adjoint onS(C), Ran(H − λκ) is dense inH. Let ψ ′ ∈ S(C) and let
ψ = ψ ′ + (λ̄κ − λκ)G

λκ
0 U

∗
λκ
0λ̄κ T ψ ′. Thenψ ∈ S(C) andT ψ = Mλκ0λ̄κ T ψ ′. Note
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that 0 /∈ σ(Mλ̄κ ) and|〈n|0λ̄κ |n′〉| = |〈n′|0λκ |n〉| ≤ K(κ)e−κ|n−n′| 1
2 . Letφ = ψ+Vκψ .

Then

(H − λ̄κ )φ = (H0 − λ̄κ )ψ + (λκ − λ̄κ )Vκψ

= (H0 − λ̄κ )ψ
′ − (λκ − λ̄κ )G

λκ
0 (H0 − λ̄κ )U

∗
λκ
0λ̄κ T ψ ′

+(λκ − λ̄κ )Vκψ
′ − (λκ − λ̄κ )

2VκG
λκ
0 U

∗
λκ
0λ̄κ T ψ ′

= (H0 − λ̄κ )ψ
′ − (λκ − λ̄κ )U

∗̄
λκ
0λ̄κ T ψ ′ + (λκ − λ̄κ )Vκψ

′

−(λκ − λ̄κ )
2U ∗̄

λκ
0λκUλκU

∗
λκ
0λ̄κ T ψ ′

= (H0 − λ̄κ )ψ
′ − (λκ − λ̄κ )U

∗̄
λκ
0λ̄κ T ψ ′ + (λκ − λ̄κ )Vκψ

′

−(λκ − λ̄κ )U
∗̄
λκ
0λκ (Mλ̄κ −Mλκ )0λ̄κ T ψ ′

= (H0 − λ̄κ )ψ
′.

Therefore Ran(H − λ̄κ ) is dense inH andH is essentially self-adjoint onD(H).
Forλ ∈ C \ N0 such that 0/∈ σ(Mλ), define

Gλ ≡ Gλ0 + U ∗̄
λ
0λUλ. (2.40)

One can check using the resolvent identity and identity (2.37) that ([6], see also [18])

Gλ(H − λ)φ = φ, (2.41)

so that

Gλ = (H − λ)−1. (2.42)

We now state the main theorem of this paper. (a) is proved in Lemma 3.2, (c) in Lemma
3.1 and (b) and (d) in Theorem 5.8.

Theorem 2.2. (a) The spectrum ofH contains bands around the Landau levelsN0 and
an interval extending from−∞ to a finite negative point. For eachN ∈ N there
existsκ0 > 0 such that forκ > κ0, with probability one,

(b) σcont(H) ∩ (−∞, N) = ∅,
(c) if m ∈ N0 ∩ (−∞, N), thenm is an eigenvalue ofH with infinite multiplicity,
(d) if λ ∈ σ(H) ∩ (−∞, N) \ N0, is an eigenvalue ofH and the corresponding eigen-

function isφλ, then for any compact subsetB of C,
∫
B

|φλ(z − z′)|2dz′ decays
exponentially inz with exponential length less than or equal to2/κ.

3. The Spectrum

In this section we study the spectrum of the Hamiltonian. We first show that the Landau
levels are still infinitely degenerate eigenvalues.We then prove that the spectrum contains
bands around the Landau levels and an infinite interval in the negative half-line.

Let {Uz : z ∈ C} be the family of unitary operators onH corresponding to the
magnetic translations:

(Uzf )
(
z′
) = e2iκz∧z′f

(
z+ z′

)
. (3.1)
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These satisfyUz1Uz2 = e2iκz2∧z1Uz1+z2. Forn ∈ Z[i],
UnG

λ (ω)U−1
n = Gλ (τnω) . (3.2)

The ergodicity of{τm : m ∈ Z[i]} and Eq. (3.2) together imply that the spectrum
of H(ω) and its components are non random (see for example [21], Theorem V.2.4).
We shall first prove that almost surely the lower Landau levels are infinitely degenerate
eigenvalues for largeκ. This lemma is a generalization of similar results in [5] and [22].
The main idea of the proof is to construct states inHm which vanish at all the impurity
sites, so that they are also eigenfunctions ofH . These states involve the entire function in
(3.4) which vanishes at all the points ofZ[i] and consequently grows likeeA|z|2 for large
|z|. The condition that the states are square integrable then requires that the magnetic
field be sufficiently large in order to compensate this growth by the factore−κ|z|2.

Lemma 3.1. For eachN ∈ N, there existsκ0(N) > 0, such that forκ > κ0, with
probability one, each Landau levelm, withm ≤ N , is infinitely degenerate.

Proof. The elements of the spaceH0 are of the form

φ(z) = ψ(z)e−κ|z|2, (3.3)

whereψ is an entire function and, of course,φ ∈ L2(C). Let

ψ0(z) = z
∏

n∈Z[i]\{0}
(1 − z

n
)e

z
n
+ z2

2n2 . (3.4)

Thenψ0 is an entire function with zeros at all the points ofZ[i]. It follows from the theory
of entire functions (see [23, 2.10.1]) that there existsA > 0 such that|ψ0(z)| ≤ eA|z|2.
Fork ∈ N0, let

φ0,k(z) = zkψ0(z)e
−κ|z|2, (3.5)

then, if κ > A, φ0,k ∈ H0 and sinceVκφ0,k = 0, Hφ0,k = 0. Also if for M ∈ N0,∑M
k=0 bkφ0,k = 0, then

∑M
k=0 bkz

k = 0 for z /∈ Z[i]. Therefore
∑M
k=0 bkz

k ≡ 0 and
thus thebk ’s are zero implying that theφ0,k ’s are linearly independent. So theφ0,k ’s
form an infinite linearly independent set of eigenfunctions ofH with eigenvalue 0. For
the higher levels we modify this argument with the use of the creation and annihilation

operators for the HamiltonianH0, a∗ anda, defined bya∗ = (1/
√

2κ)

(
−∂
∂z

+ κz̄

)

anda = (1/
√

2κ)

(
∂

∂z̄
+ κz

)
.

These operators satisfy the commutation relation[a, a∗] = 1. Also if φ ∈ Hm then
a∗φ ∈ Hm+1 andaφ ∈ Hm−1 except whenm = 0, in which caseaφ = 0. Form ≤ N

andk ∈ N0, let

φ̃m,k(z) = zk (ψ0(z))
m+1 e−κ|z|2, (3.6)

then, ifκ > A(N + 1), φ̃m,k ∈ H0. Now letφm,k = (a∗)mφ̃m,k. Thenφm,k ∈ Hm and
φm,k(n) = 0 for all n ∈ Z[i] sinceφ̃m,k has a zero of order greater thanm at each point
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of Z[i]. Therefore sinceVκφm,k = 0,Hφm,k = mφm,k. Moreover since[a, a∗] = 1 and
aφ̃m,k = 0, amφm,k = m!φ̃m,k. So, if forM ∈ N0,

∑M
k=0 bkφm,k = 0, then

M∑
k=0

bkφ̃m,k = (m!)−1am

(
M∑
k=0

bkφm,k

)
= 0. (3.7)

This means that
∑M
k=0 bkz

k = 0 for z /∈ Z[i] and as form = 0 it follows that theφm,k ’s
form an infinite linearly independent set of eigenfunctions ofH with eigenvaluem. ut

In the case of one impurity of strengthω at the origin, the Green’s function is given
by

Gλ = Gλ0 + 1

cλ
Gλ0(·,0)Gλ0(0, ·), (3.8)

where

cλ = 2κ

π

(
ψ(−λ)− 2π

ω

)
. (3.9)

It is clear that in this case the spectrum consists of Landau levels and the values ofλ

for whichcλ = 0. For smallω the latter correspond to points close to the Landau levels
and in the case ofω > 0, there is another point which is negative and of the order of
exp(2π/|ω|). In the next lemma we shall show that in our case these points are also in

-4 -3 -2 -1 1 2 3 4

-4

-2

2

4

Fig. 3.1.λ 7→ ψ(−λ)

the spectrum in the sense that the spectrum of our Hamiltonian contains bands around
the Landau levels and an interval extending from−∞ to a finite negative point.
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Let Y = {2π/x : x ∈ X \ {0}}.
Lemma 3.2. With probability one

−ψ−1 (Y ) ⊂ σ(H(ω)). (3.10)

Proof. It is sufficient to prove that for eachλ ∈ −ψ−1 (Y ) and for allε > 0, there
exists�′ with P(�′) > 0 andψ ∈ H with ‖ψ‖ = 1 such that for allω ∈ �′,
‖ (Gλκ (ω)− (λ− λκ)

−1)ψ‖ < ε. Let 〈v|n〉 = δn0 and letψ = CU ∗̄
λ
v, whereC−2 =

(2κ/π)
∑∞
m=0(m− λ)−2. Note thatψ(z) = CGλ0(z,0) and‖ψ‖ = 1 by (2.34). Then(

Gλκ−(λ− λκ)
−1)ψ

=
(
G
λκ
0 + U ∗̄

λκ
0λκUλκ + (λκ − λ)−1

)
ψ

= (λκ − λ)−1C
(
(λκ − λ)G

λκ
0 U

∗̄
λ

− U ∗̄
λκ
0λκ (Mλκ −Mλ)+ U ∗̄

λ

)
v

= (λκ − λ)−1C
(
U ∗̄
λκ

− U ∗̄
λ

− U ∗̄
λκ

+ U ∗̄
λκ
0λκMλ + U ∗̄

λ

)
v

= (λκ − λ)−1CU ∗̄
λκ
0λκMλv.

By using (2.37) we get

‖
(
Gλκ (ω)− (λ− λκ)

−1
)
ψ‖2 = C2|λ− λκ |−2 (Iλκ)−1 I〈Mλv, 0λκMλv〉

≤ 2C2|λ− λκ |−2|Iλκ |−1‖Mλv‖ ‖0̃λ̄κMλv‖
by (2.25). ChooseR such that

∑
|n|>R |Gλ0(n,0)|2 < δ, and let

�′ = {ω : |cλ0| < δ, min|n|≤R,n6=0
|cλκn | > 1/δ}. (3.11)

Sinceψ(−λ) ∈ Y and 0 is in the support ofµ, P(�′) > 0. We have

〈n|Mλv〉 =
{
cλ0, if n = 0
−Gλ0(n,0), if n 6= 0.

(3.12)

Therefore

‖Mλv‖2 ≤ δ2 +
∑
n6=0

|Gλ0(n,0)|2 (3.13)

and

‖0̃λ̄κMλv‖2 = |cλ0|2|cλκ0 |−2 +
∑
n6=0

|cλκn |−2|Gλ0(n,0)|2

≤ δ2(π/2κ)2|Iψ(−λκ)|−2 + δ2
∑

|n|≤R
|Gλ0(n,0)|2

+ (π/2κ)2|Iψ(−λκ)|−2
∑

|n|>R
|Gλ0(n,0)|2

≤ δ2(π/2κ)2|Iψ(−λκ)|−2 + δ2
∑
n6=0

|Gλ0(n,0)|2

+ δ(π/2κ)2|Iψ(−λκ)|−2.

Thus‖ (Gλκ (ω)− (λ− λκ)
−1)ψ‖ < ε if δ is small enough.ut

In the next section we relate the generalized eigenvectors ofH with those ofMλ.
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4. Generalized Eigenfunctions ofH

In this section we show that a generalized eigenfunction ofH with eigenvalueλ, say,
which is not a Landau level, is related in a simple way to an eigenvectorv of Mλ with
eigenvalue zero. Furthermore ifv decays then so does the corresponding eigenfunction.
Since this reduces the problem to a lattice problem, it makes it possible for us to use the
Aizenman–Molchanov method.

Proposition 4.1. If φ is a generalized eigenfunction ofH with eigenvalueλ /∈ N0,
thenv = 0λκUλκ φ is a generalized eigenvector ofMλ with eigenvalue zero andφ =
(λ− λκ)U

∗
λ v. Moreover ifv decays exponentially, then for any compact subsetB of C,∫

B
|φ(z− z′)|2dz′ decays exponentially inz.

Proof. Supposeφ is a generalized eigenvector ofH with eigenvalueλ. Then

Gλκφ = (λ− λκ)
−1φ (4.1)

or

G
λκ
0 φ + U ∗̄

λκ
0λκUλκ φ = (λ− λκ)

−1φ. (4.2)

Thus

UλG
λκ
0 φ + UλU

∗̄
λκ
0λκUλκ φ = (λ− λκ)

−1Uλφ. (4.3)

UsingUλG
λκ
0 = (λ− λκ)

−1(Uλ − Uλκ ), we get

UλU
∗̄
λκ
0λκUλκ φ = (λ− λκ)

−1Uλκφ, (4.4)

which by (2.37) can be written in the form

Mλ0λκUλκ φ = 0. (4.5)

Therefore ifv = 0λκUλκ φ,

Mλv = 0. (4.6)

From (4.2) we get

(λ− λκ)G
λκ
0 φ + (λ− λκ)U

∗̄
λκ
v = φ. (4.7)

Thus

(λ− λκ)G
λ
0G

λκ
0 φ + (λ− λκ)G

λ
0U

∗̄
λκ
v = Gλ0φ. (4.8)

By using the resolvent identity we can write this as

U∗
λ v = G

λκ
0 φ + U ∗̄

λκ
v, (4.9)

and thereforeφ = (λ− λκ)U
∗
λ v by (4.7). From Propositions 6.1 and 6.2 in Appendix A

we get forλ /∈ N0,

|Gλ0(z, z′)| < Ce−
κ
2 |z−z′|2(1 + 1B(0,1/

√
2κ)(|z− z′|)| ln |z− z′||), (4.10)
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whereC depends onλ andκ. From the equation

φ(z) = (λ− λκ)
∑
n∈Z[i]

Gλ0(z, n)〈n|v〉, (4.11)

we get, assuming〈n|v〉 ≤ C′e−α|n|, that

|φ(z)| ≤ |λ− λκ |C′ ∑
n∈Z[i]

|Gλ0(z, n)|e−α|n|

≤ C′′ ∑
n∈Z[i]

e−
κ
2 |z−n|2e−α|n|

+ C′′ ∑
n∈Z[i]

e−
κ
2 |z−n|2e−α|n|1B(0,1/√2κ)(|z− n|)| ln |z− n||

= S1 + S2.

Now

S1 ≤ C′′ ∑
|n−z|≥1

e−
κ
2 |z−n|e−α|n| + C′′eαe−α|z|

≤ C′′e−β|z| ∑
n∈Z[i]

e−β|n| + C′′eαe−α|z|,

whereβ = 1
4 min(κ,2α). Thus,S1 ≤ C′′′e−β|z|. Similarly

S2 ≤ C′′′e−β|z| ∑
n∈Z[i]

e−β|n|1B(0, 1√
2κ
)(|z− n|) ln |z− n||. (4.12)

Therefore

|φ(z)|2 ≤ Ce−2β|z|(1 + 3
∑
n∈Z[i]

e−β|n|1B(0,1/√2κ)(|z− n|)| ln |z− n||2). (4.13)

LetB ⊂ C be compact and letR = sup{|z| : z ∈ B}. Then forz′ ∈ B,

|φ(z− z′)|2 ≤ Ce2βRe−2β|z|(
1 + 3

∑
n∈Z[i]

e−β|n|1B(0, 1√
2κ
)(|z− z′ − n|)| ln |z− z′ − n||2

)
.

(4.14)

Therefore∫
B

|φ(z− z′)|2dz′ ≤ Ce2βRe−2β|z|(|B| + 3
∑
n∈Z[i]

e−β|n|
∫

|z′|< 1√
2κ

| ln |z′||2). (4.15)

ut
We do not dwell on the existence of the generalized eigenfunctions. It suffices to say

that the arguments of Theorem II.4.5 in [21] can be used withe−tH replaced byGλκ
since from the bound in Lemma 2.1 and the bounds in Appendix A for|Gλ0(z, z′)| it
follows that

sup
z

∫
C

|Gλκ0 (z, z
′)|2dz′ < ∞. (4.16)

The same bounds guarantee also thatv is a generalized eigenvector ofMλ. In the next
section we apply the Aizenman–Molchanov method to the lattice operatorMλ.
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5. An Application of the Aizenman–Molchanov Method

In this section we apply the Aizenman–Molchanov method toMλ, whereλ is not a
Landau level. The main ingredient in this method is the Decoupling Principle forτ -
regular measures. We start by stating this principle, not in its full generality but in the
form in which it will be used here.

Definition. A measureµ on R is said to beτ -regular, withτ ∈ (0,1], if there exists
ν > 0 andC < ∞ such that

µ([x − δ, x + δ]) ≤ Cδτµ([x − ν, x + ν]) (5.1)

for all x ∈ R and0< δ < 1.

Lemma 5.1 (A Decoupling Principle). Let µ be a τ -regular measure and let∫ |u|εµ(du) < ∞ for someε > 0. Then for all0 < s < min(τ, ε) there existsξs ,
a positive, increasing function onR+ with ξs(0) > 0 satisfying

lim
x→∞

ξs(x)

x
= 1, (5.2)

such that for allη, a andb ∈ C,∫
|u− η|s |au+ b|−sµ(du) ≥ (ξs(|η|))s

∫
|au+ b|−sµ(du). (5.3)

Letµ(A) = µ0({ω : 1/ω ∈ A}). In Appendix B we shall show thatµ is 1-regular and∫ |u|εµ(du) < ∞ for all ε < 1. Thus the inequality (5.3) is valid for alls ∈ (0,1).
As in [12] we use this lemma to obtain an exponential bound on〈n|0λ(z)|0〉, where
0λ(z) = (Mλ − z)−1. This bound then allows us to apply the results of [24] to deduce
that the spectrum ofMλ in a neighbourhood of the origin consists of eigenvalues and
that the corresponding eigenvectors decay exponentially. We then combine this result
with Proposition 4.1 to translate it into a statement about the properties of the spectrum
of H .

It is convenient here to introduce a notation for the intervals between the Landau
levels. We letI0 = (−∞,0) andIN = (N − 1, N) for N ∈ N.

Lemma 5.2. For all N ∈ N0, for all s ∈ (1
2,1) and for allγ < s there existsκ0(N, s) <

∞ such that for allκ > κ0(N, s), for all λ ∈ (−∞, N) \ N0 and for all z ∈ C with
Iz 6= 0 and|Rz| ≤ 1,

E{
∑
n∈Z[i]

|〈n|0λ(z)|0〉|seγ κ|n|} ≤ 1/{2κ(ξs(0))s}. (5.4)

Proof. The starting point is the following equation: Forz /∈ R,∑
n′∈Z[i]

〈n|Mλ − z|n′〉〈n′|0λ(z)|n′′〉 = δnn′′ . (5.5)

This becomes using (2.16)

(cλn − z)〈n|0λ(z)|n′′〉 −
∑
n′ 6=n

Gλ0(n, n
′)〈n′|0λ(z)|n′′〉 = δnn′′ . (5.6)
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Now we taken 6= n′′ and 0< s < 1 to get

|cλn − z|s |〈n|0λ(z)|n′′〉|s = |
∑
n′ 6=n

Gλ0(n, n
′)〈n′|0λ(z)|n′′〉|s

≤
∑
n′ 6=n

|Gλ0(n, n′)|s |〈n′|0λ(z)|n′′〉|s .

Thus

E{|cλn − z|s |〈n|0λ(z)|n′′〉|s} ≤
∑
n′ 6=n

|Gλ0(n, n′)|sE{|〈n′|0λ(z)|n′′〉|s}. (5.7)

Now

E{|cλn − z|s |〈n|0λ(z)|n′′〉|s} = ẼnEn{|cλn − z|s |〈n|0λ(z)|n′′〉|s}, (5.8)

whereEn is the expectation with respect toωn andẼn is with respect to all otherωn′ ’s.
Let

〈n′|Mλ
n |n′′〉 = 〈n′|Mλ|n′′〉 − (4κ/ωn)δnn′δnn′′ . (5.9)

ThenMλ
n is independent ofωn and using the resolvent identity

〈n|0λ(z)|0〉 = A

1 + (4κ/ωn)B
, (5.10)

whereA = 〈n|(Mλ
n − z)−1|0〉 andB = 〈n|(Mλ

n − z)−1|n〉. Then

En{|cλn − z|s |〈n|0λ(z)|0〉|s}
= En

{ |cλn − z|s
|1 + (4κ/ωn)B|s

}
|A|s

≥ (4κ)s
∫ |u− η|s

|1 + 4κuB|s µ(du)|A|s ,

whereu = 1/ωn and 2πη = ψ(−λ) − π
2κ E, E being the real part ofz. Thus by

Lemma 5.1,

En{|cλn − z|s |〈n|0λ(z)|0〉|s} ≥ (4κ)s(ξs(|η|))sEn |A|s
|1 + cλnB|s

= (4κ)s(ξs(|η|))sEn{|〈n|0λ(z)|0〉|s}.
Using (5.7) this gives

(4κ)s(ξs(|η|))sE{|〈n|0λ(z)|0〉|s} ≤
∑
n′ 6=n

|Gλ0(n, n′)|sE{|〈n′|0λ(z)|0〉|s} (5.11)

or

E{|〈n|0λ(z)|0〉|s} ≤ (1/4κ)s(ξs(|η|))−s
∑
n′ 6=n

|Gλ0(n, n′)|sE{|〈n′|0λ(z)|0〉|s}. (5.12)
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Let γ > 0 and define

4(s) = E{
∑
n∈Z[i]

eγ κ|n||〈n|0λ(z)|0〉|s}. (5.13)

Then

4(s) = E{|〈0|0λ(z)|0〉|s} +
∑
n6=0

eγ κ|n|E{|〈n|0λ(z)|0〉|s}

≤ E{|〈0|0λ(z)|0〉|s}
+(1/4κ)s(ξs(|η|))−s

∑
n6=0

∑
n′ 6=n

eγ κ|n||Gλ0(n, n′)|sE{|〈n′|0λ(z)|0〉|s}.

Thus

4(s) ≤ E{|〈0|0λ(z)|0〉|s}
+ (1/4κ)s(ξs(|η|))−s

∑
n′

∑
n6=n′
eγ κ|n−n′||Gλ0(n, n′)|seγ κ|n′|,E{|〈n′|0λ(z)|0〉|s}

so that

4(s) ≤ E{|〈0|0λ(z)|0〉|s} + (1/4κ)s sup
n′

∑
n6=n′ eγ κ|n−n

′||Gλ0(n, n′)|s
(ξs |η|))s 4(s). (5.14)

Let

F(s, λ) = (1/4κ)s sup
n′

∑
n6=n′ eγ κ|n−n

′||Gλ0(n, n′)|s
(ξs(|η|))s . (5.15)

If F(s, λ) < 1/2 then

4(s) ≤ E{|〈0|0λ(z)|0〉|s}
1 − F(s, λ)

≤ 2E{|〈0|0λ(z)|0〉|s}. (5.16)

But

〈0|0λ(z)|0〉 = 〈0|(Mλ
0 − z)−1|0〉

1 + cλ0〈0|(Mλ
0 − z)−1|0〉 (5.17)

so that

|〈0|0λ(z)|0〉| = 1

4κ|b + 1/ω0| , (5.18)

whereb is independent ofω0. Using this and Lemma 5.1 witha = 1 andη = −b, we
get

E0{|〈0|0λ(z)|0〉|s} ≤ 1/(4κξs(0))
s, (5.19)

and therefore

E{|〈0|0λ(z)|0〉|s} ≤ 1/(4κξs(0))
s . (5.20)
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This proves (5.4). To prove thatF(s, λ) < 1/2, first assume thatλ ∈ IN with N ∈ N.
By Proposition 6.2, we have

|Gλ0(n, n′)| ≤ (Cκ)N+1NN |0(−λ)||n− n′|2Ne−κ|n−n′|2 (5.21)

for n 6= n′, andλ ∈ IN ,N ∈ N. Therefore∑
n6=n′

eγ κ|n−n′||Gλ0(n, n′)|s ≤ (Cκ)(N+1)sNNs |0(−λ)|s
∑
n6=0

eγ κ|n||n|2Nse−κs|n|2.

(5.22)

Let γ < α < s. Using the boundseγ κxe−ακx2 ≤ e−(α−γ )κ for x ≥ 1,
x2Nse−κ(s−α)x2/2 < (2sN/(s − α)κ)Ns for x ≥ 1 and∑

n∈Z[i]
e−t |n|2 ≤ K(t), (5.23)

whereK(t) = (
1 + e−t/4 + (π/t)1/2

)2
for t > 0 (see Lemma 2.1 in [5]), we get∑

n6=n′
eγ κ|n−n′| |Gλ0(n, n′)|s

≤ (K(κ(s − α)/2)− 1) (CN+1κ)s(2sN2/(s − α))Ns |0(−λ)|se−(α−γ )κ .

Thus

F(s, λ) ≤
(
K

(
κ(s − α)

2

)
− 1

)
(CN+1/4)s(2sN2/(s − α))Nse−(α−γ )κ

∣∣∣∣0(−λ)ξs(|η|)
∣∣∣∣
s

.

(5.24)

Now since forN ∈ N, the limits limλ→N |0(−λ)/ψ(−λ)| and
limλ→N−1 |0(−λ)/ψ(−λ)| are finite, we have forλ ∈ IN ,

|0(−λ)| ≤ CN(1 + |ψ(−λ)|) ≤ CN(1 + (π/2κ)+ 2π |η|). (5.25)

Therefore∣∣∣∣0(−λ)ξs(|η|)
∣∣∣∣ ≤ CN

(
[{1 + (π/2κ)}/ξs(0)] + 2π sup

x∈R0

{x/ξs(x)}
)
. (5.26)

Thus there existsκ(N1, s) < ∞ such that for allκ > κ0(N1, s), F(s, λ) < 1/2 for all
λ ∈ (0, N1) \ N.

Forλ ∈ I0 we have by Proposition 6.1

|Gλ0(n, n′)| ≤ (Cκ)
1

|λ|e
−κ|n−n′|2, (5.27)

and therefore

∑
n6=n′

eγ κ|n−n′||Gλ0(n, n′)|s ≤ (K(κ(s − α))− 1) (Cκ)s
(

1

|λ|
)s
e−(α−γ )κ , (5.28)
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and thus

F(s, λ) ≤ (K(κ(s − α))− 1) (C/4)se−(α−γ )κs
(

1

|λ|ξs(|η|)
)s
. (5.29)

Therefore by the same argumentF(s, λ) < 1/2 for all λ ∈ I0 if κ is large enough.ut
We have from Theorems 8 and 9 in [24] that if for allE ∈ (−1,1) and a.e.ω,

lim
ε↓0

∑
n∈Z[i]

|〈n|0λ(E + iε)|0〉|2 < ∞, (5.30)

thenσcont(M
λ) ∩ (−1,1) = ∅ for a.e.ω. If, furthermore, for a.e. pair(ω,E), ω ∈ �

andE ∈ (−1,1),

lim
ε↓0

|〈n|0λ(E + iε)|0〉| < Cω,Ee
−m(E)|n|, (5.31)

then with probability one, the eigenvectorsvλE ofMλ with eigenvalueE ∈ (−1,1) obey

|〈vλE |n〉| < Dω,Ee
−m(E)|n|. (5.32)

We shall use the results of [24], Lemma 5.2 and Proposition 4.1 to prove the following
lemma.

Lemma 5.3. For eachN ∈ N there existsκ0 > 0 such that forκ > κ0, for each
λ ∈ (−∞, N) \ N0 with probability one, ifλ is a generalized eigenvalue ofH with
corresponding generalized eigenfunctionφλ, then for any compact subsetB of C,∫
B

|φλ(z− z′)|2dz′ decays exponentially inz with exponential length less than or equal
to 2/κ.

Proof. From Lemma 5.2 we have for allλ ∈ (−∞, N) \ N0, z ∈ C with Iz 6= 0 and
|Rz| ≤ 1,

E

{[ ∑
n∈Z[i]

|〈n|0λ(z)|0〉|2e2γ κ|n|/s]s/2} ≤ E

{ ∑
n∈Z[i]

|〈n|0λ(z)|0〉|seγ κ|n|
}

≤ 1/{(2κ)(ξs(0))s}. (5.33)

Now for a.e. pair(ω,E), ω ∈ � andE ∈ (−1,1), limε↓0〈n|0λ(E + iε)|0〉 exists.
Therefore by Fatou’s Lemma,

E

{[ ∑
n∈Z[i]

lim
ε↓0

|〈n|0λ(E+iε)|0〉|2e2γ κ|n|/s]s/2}

≤ E

{
lim inf
ε↓0

[ ∑
n∈Z[i]

|〈n|0λ(E + iε)|0〉|2e2γ κ|n|/s]s/2}

≤ lim inf
ε↓0

E

{[ ∑
n∈Z[i]

|〈n|0λ(E + iε)|0〉|2e2γ κ|n|/s]s/2}

≤ 1/{(2κ)(ξs(0))s}. (5.34)



Landau Hamiltonian with Delta Impurities 385

Thus (5.30) and (5.31) are satisfied. Therefore ifλ is a generalized eigenvalue ofH with
corresponding generalized eigenfunctionφλ, then by Proposition 4.1,vλ = 0λκUλκ φλ
is a generalized eigenvector ofMλ with eigenvalue 0 and must satisfy

|〈vλ|n〉| < Dωe
−2γ κ|n|/s . (5.35)

Then again by Proposition 4.1, for any compact subsetB of C,
∫
B

|φλ(z−z′)|2dz′ decays
exponentially inz with exponential length less than or equal to max(s/(2γ κ),2/κ). If
we chooseγ = s/2, then max(s/(2γ κ),2/κ) = 2/κ. ut

By Fubini’s Theorem, we can deduce from Lemma 3.5 the result about the decay of
eigenfunctions with probability one and a.e.λ with respect to Lebesgue measure and
therefore with probability oneσac(H) ∩ (−∞, N) = ∅. However to be able to make a
statement aboutσcont(H) we have to replacea.e. λ with respect to Lebesgue measure
with a.e. λ with respect to the spectral measure of H(ω). We do this in Lemma 5.7 by
using the ideas of [25] and the following four lemmas.

We state the first lemma without proof.

Lemma 5.4. Let {fn} be a total countable subset of normalized vectors of a Hilbert
spaceH andH a self-adjoint operator onH with spectral projectionsE( · ). Letcn > 0,∑
n cn < ∞ andν = ∑

n cnµn, whereµn = (fn,E( · )fn). Thenν(A) = 0 implies
thatE(A) = 0.

Lemma 5.5. For eachN ∈ N0, there exists an open setJN ⊂ C, containingIN , such
that forκ sufficiently large with probability one,Mλ is invertible for allλ ∈ JN \ IN .

Proof. Let λ ∈ IN and|ε| < 1, ε 6= 0. Let

〈n|X|n′〉 =
{
cλ+iεn if n = n′,
−Gλ0(n, n′) if n 6= n′. (5.36)

Then||Xξ || ≥ 2κ
π

|Iψ(−(λ+ iε))|||ξ ||. ThereforeX is invertible and

||X−1|| ≤ π

2κ

1

|I(ψ(−(λ+ iε))| . (5.37)

Let

〈n|Y |n′〉 =
{

0 if n = n′
−iε(Gλ0Gλ+iε0 )(n, n′) if n 6= n′ (5.38)

so that

Mλ = X + Y = X(1 +X−1Y ). (5.39)

From Proposition 6.2 inAppendixA we have forλwith Rλ ∈ IN ,N ∈ N, and|Iλ| ≤ 1,

|Gλ0(z, z′)| ≤ CNκNN |0(−Rλ)|(1 + ln(2κ|z− z′|2) (5.40)

for 2κ|z− z′|2 < 1 and

|Gλ0(z, z′)| ≤ CNκN2N |0(−Rλ)|e− κ
2 |z−z′|2 (5.41)
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for 2κ|z− z′|2 ≥ 1.
Therefore ifλ ∈ IN ,N ∈ N, |ε| < 1, κ > 2 andn, n′ ∈ Z[i] with n 6= n′,

|(Gλ0Gλ+iε0 )(n, n′)| ≤ C2Nκ2|0(−λ)|2N3N

×
{∫

2κ|z−n|2<1
dz(1+ln(2κ|z− n|2)e− κ

2 |z−n′|2

+
∫

2κ|z−n′|2<1
dz(1+ln(2κ|z− n′|2)e− κ

2 |z−n|2

+NN

∫
dze−

κ
2 |z−n|2e−

κ
2 |z−n′|2}

≤ 2πC2Nκ|0(−λ)|2N3Ne−
κ
8 |n−n′|2

{∫ 1

0
(1+ln r2)rdr+NNe−

κ
8

}

≤ 2C2Nκ2|0(−λ)|2N4Ne−
κ
8 |n−n′|2

≤ e−
κ
32C2N |0(−λ)|2N4Ne−

1
8 |n−n′|2 (5.42)

if κ is large enough. Therefore

||Y || ≤ εe−
κ
32C2N |0(−λ)|2||T ||, (5.43)

whereT is the operator with matrix〈n|T |n′〉 = e−1/8|n−n′|2. Now takeλ ∈ (N−1, N−1
2]

and|ε| < λ−N+1. In this interval

|0(−λ)| ≤ aN

(λ−N + 1)
. (5.44)

On the other hand by [19] 6.3.16

Iψ(−(λ+ iε)) = −ε
∞∑
k=0

1

(λ− k)2 + ε2 . (5.45)

Therefore

|Iψ(−(λ+ iε))| = |ε|
∞∑
k=0

1

(λ− k)2 + ε2 >
|ε|

(λ−N + 1)2 + ε2

>
|ε|

2(λ−N + 1)2
. (5.46)

Thus

||X−1Y || ≤ ||X−1||||Y || ≤ π

4κ
a2
NC

2Ne−
κ
32 ||T || < 1 (5.47)

if κ is sufficiently large. ThusMλ+iε is invertible. We can use the same argument if
λ ∈ [N − 1

2, N) and|ε| < N − λ.
Using the bounds in Proposition 6.1, a similar calculation to the above gives for

λ ∈ I0,

||Y || ≤ εe−
κ
32C2N |λ|−2||T ||. (5.48)
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Then using the inequality

|Iψ(−(λ+ iε))| > |ε|
|λ|2 + ε2 , (5.49)

we can show thatMλ+iε is invertible if |ε| < |λ|. ut
Lemma 5.6. For n ∈ Z[i] and λ ∈ JN \ IN , let φλn = cλ,nU

∗
λ0

λ|n〉, wherecλ,n =
||U∗

λ0
λ|n〉||−1 so that||φλn || = 1. Then if[a, b] ⊂ IN , the set{φλn : n ∈ Z[i], λ ∈

(JN \ IN) ∩ Q[i]} is total inE([a, b])H.

Proof. Forn ∈ Z[i] andλ ∈ JN let φ̃λn = U∗
λ |n〉. Then ifλ ∈ JN \ IN ,

φ̃λn =
∑
n′∈Z[i]

c−1
λ,n′ 〈n′|Mλ|n〉φλn′ . (5.50)

Also if λ → λ′ thenφ̃λn → φ̃λ
′
n . Therefore it is sufficient to prove that the set{φ̃λn : n ∈

Z[i], λ ∈ In} is total. We do this by showing that the orthogonal complement of this set
is in the orthogonal complement ofE([a, b])H.

Let f ∈ H and suppose that(φ̃λn, f ) = 0 for all n ∈ Z[i] and allλ ∈ [a, b]. Then
since(Gλ0f )(n) = (φ̃λn, f ), G

λf = Gλ0f . ThereforeE([a, b])Gλf = E([a, b])Gλ0f
and thus

sup
λ∈[a,b]

||E([a, b])Gλf || ≤ sup
λ∈[a,b]

||Gλ0||||f || < ∞. (5.51)

Letµ1(A) = (f,E([a, b] ∩ A)f ). Then

||E([a, b])Gλf ||2 =
∫

[a,b]
µ1(dλ

′)
|λ− λ′|2 . (5.52)

Let xi = a + (b − a)i/M, i = 0, . . . ,M andλi = 1
2(xi + xi+1). Then∫

[a,b]
µ1(dλ

′)
|λ′ − λi |2 ≥

∫
[xi ,xi+1]

µ1(dλ
′)

|λ′ − λi |2 ≥ 4M2

(b − a)2
µ1([xi, xi+1]). (5.53)

Therefore

sup
λ∈[a,b]

∫
[a,b]

µ1(dλ
′)

|λ′ − λ|2 ≥ 4M2

(b − a)
µ1([xi, xi+1]) (5.54)

for all i, and so

sup
λ∈[a,b]

∫
[a,b]

µ1(dλ
′)

|λ− λ′|2 ≥ 4M2

(b − a)2

1

M

M∑
i=0

µ1([xi, xi+1] ≥ 4M

(b − a)2
µ1([a, b]).

(5.55)

SinceM is arbitrary supλ∈[a,b] ||E([a, b])Gλf || = ∞ unlessµ1([a, b]) = 0. But
µ1([a, b]) = ||E([a, b])f ||2. ut

LetF be theσ -algebra generated by{ωn′ : n′ ∈ Z[i]} and letFn be the subσ -algebra
generated by{ωn′ : n′ 6= n}. Let BN be the Borel sets ofIN .
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Lemma 5.7. Let B 7→ E(B) be the spectral measure ofH andA ∈ ∩n∈Z[i](Fn ⊗
BN). If for a.e λ ∈ IN with respect to Lebesgue measureE {1A( · , λ)} = 0, then
E {E({λ : ( · , λ) ∈ A})} = 0.

Proof. If for a.eλwith respect to Lebesgue measureE {1A( · , λ)} = 0, then by Fubini’s

TheoremE

{∫
IN
dλ1A( · , λ)

}
= 0.

Let3 be a bounded subset ofZ[i] and letH3 be defined in the same way asH with
M replaced byM3 = l2(3). By the same argument as in Proposition 4.1λ /∈ N0 is an
eigenvalue ofH3 if and only if there existsv ∈ M3 such thatMλ

3v = 0, whereMλ
3

is the restriction ofMλ to M3. Then the corresponding eigenfunction isU∗
λ v. Since in

the intervalIN , ψ is bijective it is clear that there are|3| eigenvalues inIN .
Let λ1, . . . , λ|3| be the eigenvalues inIN , say, and letv1, . . . , v|3| be the corre-

sponding vectors such thatMλk
3 vk = 0. Letun = 1/ωn. Then forn ∈ 3 we get

dλk

dun
= − |〈vk|n〉|2

||U∗
λk
vk|| . (5.56)

If Mλk
3 vk = 0 and〈vk|n〉 = 0 for a particular value ofun thenMλk

3 vk = 0 for all values
of un. We shall see later that we can ignore these eigenvalues.

We see from Eq. (5.56) that eachλk is a monotonic decreasing function ofun.
Moreover asun → ±∞, theλk ’s become identical, except the value ofλk corresponding
to thevk which tends to|n〉 and this latter value ofλk decreases fromN to N − 1
(respectively−∞ if N = 0) asun increases from−∞ to +∞. Therefore

∑
k

∫ ∞

−∞
f (λk)

dλk

dun
dun = −

∫
IN

f (λ)dλ. (5.57)

Let ψk = U∗
λk
vk

||U∗
λk
vk || so thatHλψk = λkψk. Let λ ∈ JN \ IN andn ∈ Z[i]. ForB ⊂ IN

let µn,λ3 (B) = (φλn,E3(B)φ
λ
n), whereE3 is the spectral measure ofH3. Then for3

sufficiently large,

µ
n,λ
3 (B) =

∑
λk∈B

|(φλn, ψk)|2

= ||0λ|n〉||−2
∑
λk∈B

1

|λ− λk|2
|〈n|vk〉|2
||U∗

λk
vk||2

= −||0λ|n〉||−2
∑
λk∈B

1

|λ− λk|2
dλk

dun
. (5.58)

Note that if〈n|vk〉 = 0 then the corresponding term in (5.58) is absent. Also ifλk is
degenerate, we can choose the corresponding orthogonal set of eigenvectors so that only
one satisfies〈n|vk〉 6= 0. Therefore there is only one term corresponding to suchλk in
the sum (5.58). From (5.58) and (5.57) we get∫ ∞

−∞
dunµ

n,λ
3 (B) = ||0λ|n〉||−2

∫
B

dλ′

|λ− λ′|2 , (5.59)
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and thus ∫ ∞

−∞
dunρ(un)µ

n,λ
3 (B) ≤ ||0λ|n〉||−2||ρ||∞

∫
B

dλ′

|λ− λ′|2 . (5.60)

If µn,λ(B) = (φλn,E(B)φ
λ
n) then by the weak convergence ofµn,λ3 toµn,λ we have the

bound (5.60) forµn,λ. By Kotani’s argument [26], we have that

E

{∫
IN

dµn,λ(λ′)1A( · , λ′)
}

= 0.

By Lemmas 5.4 and 5.6 we get thatE {E({λ : ( · , λ) ∈ A})} = 0. ut
By combining Lemmas 5.3 and 5.7 we obtain our final theorem.

Theorem 5.8. For eachN ∈ N there existsκ0 > 0such that forκ > κ0, with probability
one,σcont(H) ∩ (−∞, N) = ∅, and if λ ∈ σ(H) ∩ (−∞, N) \ N0, is an eigenvalue
of H and the corresponding eigenfunction isφλ, then for any compact subsetB of C,∫
B

|φλ(z− z′)|2dz′ decays exponentially inz with exponential length less than or equal
to 2/κ.
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6. Appendix A. Bounds for the Green’s Function

In this appendix we shall obtain bounds on the Green’s functionGλ0(z, z
′). Our basic

tools are the the integral representation ([19, 13.2.5])

0(a)U(a, b, ρ) =
∫ ∞

0
dte−ρt ta−1(1 + t)b−a−1, (6.1)

which is valid forRa > 0 andρ > 0 and the recurrence relation ([19, 13.4.18])

U(a, b, ρ) = ρU(a + 1, b + 1, ρ)− (b − a − 1)U(a + 1, b, ρ). (6.2)

We first obtain bounds for|Gλ0(z, z′)| whenRλ < 0.

Proposition 6.1. There exists a constantC < ∞, such that forRλ ∈ I0,

|Gλ0(z, z′)| ≤ Cκe−κ|z−z′|2
{

1

|Rλ| + e−
√

2κ|Rλ||z−z′| (1 + | ln
(
2κ|z− z′|2

)
|
)}
,

(6.3)

if 2κ|z− z′|2 ≤ 1, and

|Gλ0(z, z′)| ≤ Cκ

|Rλ|e
−κ|z−z′|2, (6.4)

if 2κ|z− z′|2 > 1.
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Proof. Let λ = x + iy with x < 0. Then from (6.1) we get

|0(−λ)U(−λ,1, ρ)| ≤
∫ ∞

0
dte−ρt t |x|−1(1 + t)−|x|

=
∫ 1

0
dte−ρt t |x|−1(1 + t)−|x| +

∫ ∞

1
dte−ρt t |x|−1(1 + t)−|x|

≤
∫ 1

0
dt t |x|−1 +

∫ ∞

1
dt
e−ρt

t

(
t

1 + t

)|x|

≤ 1

|x| +
∫ ∞

1
dt
e−(ρt+

|x|
2t )

t
. (6.5)

If ρ ≤ 1, we have

|0(−λ)U(−λ,1, ρ)| ≤ 1

|x| +
∫ ∞

1
dt
e− 1

2ρt e− 1
2 (ρt+ |x|

t
)

t

≤ 1

|x| + e−(ρ|x|) 1
2

∫ ∞

1
dt
e− 1

2ρt

t

= 1

|x| + e−(ρ|x|) 1
2

∫ ∞
1
2ρ

dt
e−t

t

≤ 1

|x| + e−(ρ|x|) 1
2

∫ 1

1
2ρ

dt

t
+ e−(ρ|x|) 1

2

∫ ∞

1
dt
e−t

t

≤ 1

|x| − e−(ρ|x|) 1
2 ln(ρ/2)+ e−(ρ|x|) 1

2

∫ ∞

1
dte−t

= 1

|x| + e−(ρ|x|) 1
2 | ln(ρ/2)| + e−(ρ|x|) 1

2

e
.

Thus,

|0(−λ)U(−λ,1, ρ)| ≤ C

{
1

|x| + (1 + | ln ρ|) e−(ρ|x|) 1
2

}
. (6.6)

If ρ > 1, we have

|0(−λ)U(−λ,1, ρ)| ≤ 1

|x| +
∫ ∞

1
dt
e−(t+

|x|
2t )

t

≤ 1

|x| +
∫ ∞

1
dt
e− 1

2 t e− 1
2 (t+ |x|

t
)

t

≤ 1

|x| + e−|x| 1
2

∫ ∞

1
dte−

1
2 t

= 1

|x| + 2e−|x| 1
2
.
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Therefore,

|0(−λ)U(−λ,1, ρ)| ≤ C

|x| . (6.7)

Inserting the inequalities (6.6) and (6.7) into (2.6) we get Proposition 6.1.ut
Now we shall obtain bounds forRλ > 0.

Proposition 6.2. There exists a constantC < ∞, such that forRλ ∈ IN ,N ∈ N,|Iλ| ≤
1,

|Gλ0(z, z′)| ≤ κCNNN |0(−Rλ)|(1 + | ln(2κ|z− z′|2)|)e−κ|z−z′|2, (6.8)

if 2κ|z− z′|2 ≤ 1, and

|Gλ0(z, z′)| ≤ (Cκ)N+1NN |0(−Rλ)||z− z′|2Ne−κ|z−z′|2, (6.9)

if 2κ|z− z′|2 > 1.

Let λ = x + iy. We shall prove that ifN − 1< x < N , N ∈ N0, b ∈ N andρ > 1,
then

|U(−λ, b, ρ)| ≤ 2b+N−1ρx(b +N + |y|)N
∣∣∣∣0(−x)0(−λ)

∣∣∣∣
+ e−(ρ−2)(ρ + |y| + 1)N

(b +N)!
|0(N − λ)| .

(6.10)

We shall do this by induction onN . We first prove (6.10) forN = 0 by using (6.1) which
gives

|0(−λ)U(−λ, b, ρ)| ≤
∫ 1

0
dte−ρt t−(x+1)(1+t)b+x−1+

∫ ∞

1
dte−ρt t−(x+1)(1+t)b+x−1

= I1+I2.
We now takeρ > 1, −1< x < 0 andb ≥ 1. ForI1, sincet < 1, we get

I1 ≤ 2b−1
∫ 1

0
dte−ρt t−(x+1) = 2b−1ρx

∫ ρ

0
dte−t t−(x+1)

≤ 2b−1ρx
∫ ∞

0
dte−t t−(x+1) = 2b−1ρx0(−x).

On the other hand, usingt > 1, we get

I2 =
∫ ∞

1
dte−(ρ−1)t e−t t−(x+1)(1 + t)b+x−1

≤ e−(ρ−1)
∫ ∞

1
dte−t t−(x+1)(1 + t)b+x−1

≤ e−(ρ−1)
∫ ∞

1
dte−t (1 + t)b−1.
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Therefore

I2 ≤ e−(ρ−1)
∫ ∞

2
dse−s+1sb−1 ≤ e−(ρ−2)

∫ ∞

0
dse−ssb−1

= e−(ρ−2)0(b) ≤ e−(ρ−2)b!.
(6.11)

Thus we have

|0(−λ)U(−λ, b, ρ)| ≤ 2b−1ρx0(−x)+ e−(ρ−2)b! (6.12)

for ρ > 1 and−1< x < 0, or

|U(−λ, b, ρ)| ≤ 2b−1ρx
∣∣∣∣0(−x)0(−λ)

∣∣∣∣+ e−(ρ−2) b!
|0(−λ)| . (6.13)

Suppose that (6.10) is true forN − 1 < x < N . Then by using the recurrence rela-
tion (6.2), we get forN < x < N + 1,

|U(−λ, b, ρ)|
≤ ρ

{
2b+Nρ(x−1)(b +N + |y| + 1)N

∣∣∣∣0(−x + 1)

0(−λ+ 1)

∣∣∣∣
+e−(ρ−2)(ρ + |y| + 1)N

(b +N + 1)!
|0(N − λ+ 1)|

}

+|b + λ− 1|
{
2b+N−1ρ(x−1)(b +N + |y|)N

∣∣∣∣0(−x + 1)

0(−λ+ 1)

∣∣∣∣
+e−(ρ−2)(ρ + 1 + |y|)N (b +N)!

|0(N − λ+ 1)|
}
.

The identity0(x + 1) = x0(x) gives∣∣∣∣0(−x + 1)

0(−λ+ 1)

∣∣∣∣ =
∣∣∣x
λ

∣∣∣ ∣∣∣∣0(−x)0(−λ)
∣∣∣∣ ≤

∣∣∣∣0(−x)0(−λ)
∣∣∣∣ .

Therefore

|U(−λ, b, ρ)|
≤ 2b+Nρx

{
(b +N + |y| + 1)N + |b + λ− 1|

2ρ
(b +N + |y|)N

} ∣∣∣∣0(−x)0(−λ)
∣∣∣∣

+ e−(ρ−2)(ρ + |y| + 1)N
(b +N + 1)!

|0(N − λ+ 1)|
{
ρ + |b + λ− 1|

b +N + 1

}

≤ 2b+N(b +N + |y| + 1)Nρx
{

1 + |b + λ− 1|
2ρ

} ∣∣∣∣0(−x)0(−λ)
∣∣∣∣

+ e−(ρ−2)(ρ + |y| + 1)N+1 (b +N + 1)!
0(N − λ+ 1)

.

Therefore since 2≤ b+N + |y| + 1 and|b+ λ− 1| ≤ b+N + |y| we get the required
bound

|U(−λ, b, ρ)| ≤ 2b+Nρx(b +N + |y| + 1)N+1
∣∣∣∣0(−x)0(−λ)

∣∣∣∣
+ e−(ρ−2)(ρ + 1)N+1 (b +N + 1)!

0(N − λ+ 1)
.
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This gives the following bound on the Green’s function for 2κ|z−z′|2 ≥ 1 andN−1<
x < N and|y| ≤ 1,

|Gλ0(z, z′)| ≤ 2κ

π
e−κ|z−z′|2|0(−λ)|

×
{
(2κ)x(2(2 +N))N |z− z′|2x

∣∣∣∣0(−x)0(−λ)
∣∣∣∣

+e2(2 + 2κ|z− z′|2)N (N + 1)!
|0(N − λ)|e

−2κ|z−z′|2}. (6.14)

From (6.14) we get forN − 1< x < N with N ∈ N0,

|Gλ0(z, z′)| ≤ (Cκ)N+1NN |0(−x)||z− z′|2Ne−κ|z−z′|2, (6.15)

since|0(−λ)| ≤ |0(−x)| and0(N − λ) is bounded below.
We shall prove, again by induction, that forN − 1 < x < N , N ∈ N0, b ∈ N and

ρ ≤ 1,

|U(−λ, b, ρ)| ≤ 2N+4(b +N)!
∣∣∣∣0(−x)0(−λ)

∣∣∣∣ (1 + | ln ρ|)
ρb−1 . (6.16)

We first prove (6.16) forN = 0. From (6.7) we have forρ ≤ 1, andx < 0,

|0(−λ)U(−λ,1, ρ)| ≤ 1

|x| + 1

e
+ | ln ρ|. (6.17)

Thus

|U(−λ,1, ρ)| ≤
∣∣∣∣0(−x)0(−λ)

∣∣∣∣
{

1

|x|0(−x) + 1

e0(−x) + 1

0(−x) | ln ρ|
}
. (6.18)

Since−1< x < 0,0(−x) > 1 and|x|0(−x) = 0(−x + 1) > (e − 1)/e, this gives

|U(−λ,1, ρ)| ≤
∣∣∣∣0(−x)0(−λ)

∣∣∣∣
{
e2 + e − 1

e2 − e
+ | ln ρ|

}
(6.19)

≤ (2 + | ln ρ|)
∣∣∣∣0(−x)0(−λ)

∣∣∣∣ ≤ 24
∣∣∣∣0(−x)0(−λ)

∣∣∣∣ (1 + | ln ρ|).

Now we takeb ≥ 2,

|0(−λ)U(−λ, b, ρ)| ≤
∫ ∞

0
dte−ρt t−(x+1)(1 + t)b+x−1

= 1

ρb−1

∫ ∞

0
dte−t t−(x+1)(ρ + t)b+x−1

≤ 1

ρb−1

∫ ∞

0
dte−t t−(x+1)(1 + t)b+x−1,

sinceb + x − 1 ≥ 0. Thus we have forb ≥ 2, and−1< x < 0,

|0(−λ)U(−λ, b, ρ)| ≤ 1

ρb−10(−x)U(−x, b,1). (6.20)
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By inserting the bound obtained from (6.12) by lettingρ tend to 1,

0(−x)U(−x, b,1) ≤ 2b−10(−x)+ eb!, (6.21)

into this inequality we get

|U(−λ, b, ρ)| ≤ 1

ρb−1

{
2b−1 + eb!

0(−x)
} ∣∣∣∣0(−x)0(−λ)

∣∣∣∣ ≤ 24b!
∣∣∣∣0(−x)0(−λ)

∣∣∣∣ (1 + | ln ρ|)
ρb−1 .

(6.22)

We can combine this with the inequality (6.19) to get forb ∈ N, −1< λ < 0 andρ < 1,

|U(−λ, b, ρ)| ≤ 24b!
∣∣∣∣0(−x)0(−λ)

∣∣∣∣ (1 + | ln ρ|)
ρb−1 . (6.23)

Using the recurrence relation (6.2) and the induction hypothesis we get forN < λ <

N + 1,

|U(−λ, b, ρ)| ≤ ρ

{
≤ 2N+4(b +N + 1)!

∣∣∣∣0(−x + 1)

0(−λ+ 1)

∣∣∣∣ (1 + | ln ρ|)
ρb

}

+|b + λ− 1|2N+4(b +N)!
∣∣∣∣0(−x + 1)

0(−λ+ 1)

∣∣∣∣ (1 + | ln ρ|)
ρb−1

≤ 2N+4(b +N)!
∣∣∣∣0(−x + 1)

0(−λ+ 1)

∣∣∣∣ (1 + | ln ρ|)
ρb−1 (b +N + 1 + |b + λ− 1|)

≤ 2N+5(b +N + 1)!
∣∣∣∣0(−x)0(−λ)

∣∣∣∣ (1 + | ln ρ|)
ρb−1 . (6.24)

In particular withb = 1, (6.16) gives forN − 1< x < N andρ ≤ 1,

|U(−λ,1, ρ)| ≤ 2N+4(N + 1)!
∣∣∣∣0(−x)0(−λ)

∣∣∣∣ (1 + | ln ρ|). (6.25)

This gives us the required bound on the Green’s function forN − 1 < x < N , and
2κ|z− z′|2 ≤ 1,

|Gλ0(z, z′)| ≤ 2κ

π
|0(−x)|2N+4(N + 1)!(1 + | ln(2κ|z− z′|2)|)e−κ|z−z′|2

≤ κCNNN |0(−x)|(1 + | ln(2κ|z− z′|2)|)e−κ|z−z′|2. (6.26)

7. Appendix B. Regularity of µ

Definition. A probability measureµ on R is said to beτ -regular, withτ ∈ (0,1], if
there existsν > 0 andC < ∞ such that

µ([x − δ, x + δ]) ≤ Cδτµ([x − ν, x + ν]) (7.1)

for all x ∈ R and0< δ < 1.
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Note that it is equivalent to requiring that there existsν > 0 andC < ∞ such that

µ([x − δ, x + δ]) ≤ Cδτµ([x − ν, x + ν]) (7.2)

for all x ∈ R and 0< δ < ν. We shall prove this withτ = 1. Recall that the probability
measureµ0 has support is an interval[−a, a] with a < ∞. µ0 is symmetric about
the origin and that its densityρ0 is differentiable on(−a, a) and satisfies the following
condition:

A ≡ sup
ζ∈(0,a)

ρ′
0(ζ )

ρ0(ζ )
< ∞. (7.3)

If B ⊂ R, µ(B) = µ0({ω : 1/ω ∈ B}) and the density ofµ, ρ, is given by

ρ(x) = ρ0(1/x)

x2 . (7.4)

Since in our caseµ is symmetric about the origin, it is sufficient to prove (7.2) forx ≥ 0.
Also it is easy to see that the following condition is sufficient for (7.2) withτ = 1.
There exists ν > 0 and C < 0 such that

ρ(x + t ′) ≤ Cρ(x + t) (7.5)

for all x ∈ R+, −ν ≤ t ′ ≤ t ≤ ν.
Then

µ([x − δ, x + δ]) = δ

ν

∫ ν

−ν
ρ(x + δ

ν
t)dt

≤ δ(C + 1)

ν

∫ ν

0
ρ(x + δ

ν
t)dt

≤ δ(C + 1)C

ν

∫ ν

0
ρ(x + t)dt

= δ(C + 1)C

ν
µ([x, x + ν]). (7.6)

Let b = 1/a. If 0 ≤ x ≤ b − t ′, thenρ(x + t ′) = 0. If x > b − t ′, then

ln ρ0(1/(x + t ′))− ln ρ0(1/(x + t)) = t − t ′

(x + t)(x + t ′)
ρ′

0(ζ )

ρ0(ζ )
, (7.7)

whereζ ∈ (1/(x + t),1/(x + t ′)). Thus

ln ρ0(1/(x + t ′))− ln ρ0(1/(x + t)) ≤ max(0,
2Aν

b2 ). (7.8)

Therefore, withC′ = exp(max(0, 2Aν
b2 )),

ρ0(1/(x + t ′)) ≤ C′ρ0(1/(x + t)). (7.9)

But (
x + t

x + t ′

)2

≤
(
b + 2ν

b

)2

. (7.10)
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Thus the inequality (7.5) is satisfied withC = C′ ( b+2ν
b

)2
. Finally note that∫

|x|εµ(dx) =
∫

|x|−ερ0(x)dx < ∞ (7.11)

for all ε < 1 sinceρ0 is continuous at the origin.
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