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Abstract: We consider a random Schrédinger operator in an external magnetic field.
The random potential consists of delta functions of random strengths situated on the
sites of a regular two-dimensional lattice. We characterize the spectrum in the lowest
N Landau bands of this random Hamiltonian when the magnetic field is sufficiently
strong, depending oN. We show that the spectrum in these bands is entirely pure point,
that the energies coinciding with the Landau levels are infinitely degenerate and that the
eigenfunctions corresponding to energies in the remainder of the spectrum are localized
with a uniformly bounded localization length. By relating the Hamiltonian to a lattice
operator we are able to use the Aizenman—Molchanov method to prove localization.

1. Introduction

Recently there has been progress in the theory of Anderson localization for two dimen-
sional continuous models of an electron moving in a random potential and a uniform
magnetic field ([1-4]). In these works it is established that the states at the edges of the
Landau bands are exponentially localized and the corresponding energies form a pure
point spectrum. However, the nature of the generalized eigenfunctions of the Schrodinger
operator for energies near the centre of the Landau bands has not been established. A first
step towards the resolution of this problem was made in [5] for a Hamiltonian restricted
to the first Landau band with a random potential consisting of point impurities with
random strength and located on the sites of a square lattice. There it was shown that, for
a sufficiently strong magnetic field, all the eigenstates are localized except for a single
energy at the centre of the band. This energy is an infinitely degenerate eigenvalue with
probability one.

Inthe present paper we extend the results of [5] to a similar model where the restriction
to the lowest Landau band is removed. The technique used here is different and yields
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much stronger results. Formally the Hamiltonian of the electron is given by

H=Ho+ ) wnd(r —n), (1.1)
n

where
Ho = % (—iV —A®))?, (1.2)

Alr) = %(r x B) andwvp, the strengths of the impurities which are located on the sites

of a two-dimensional square lattice, are i.i.d. random variables. It is well known that the
definition of Hamiltonians with point scatterer in more than one dimension is delicate
and requires a renormalization procedure. This is the subject of Sect. 2.

The main results of this paper are the following. Egt= (n+ %)B, n=0,12 ...,
be the Landau levels corresponding to the kinetic pgt,of the Hamiltonian. Given
an integerN, there existBg(N) such that forB > Bg(N), the spectrum is completely
characterized for energigs < Exn. We show thatfor = 0,1, 2,... N —1, the Landau
levels E,, are infinitely degenerate eigenvalues fwith probability one. All other
energies in this part of the spectrum correspond to exponentially localized eigenfunctions
with a localization length which is uniformly bounded as a function of the energy. Thus
the localization length does not diverge at the centres of the bands when the magnetic
field is strong enough, at least for the lower bands. Our analysis breaks down for energies
greater tharEy and in fact we expect a different behaviour for high energies.

There is an extensive literature on the problem of point scatterers with a magnetic field,
but it appears that little is known on the rigorous level for the two-dimensional random
case considered here. For the periodic case, that is, when ali'thare identical, we
refer the reader to the review [6] and the references therein. The case when the potential
is periodic in thex-direction and random in thg-direction has been discussed recently
in [7]. Finally the density of states for models similar to ours with a restriction to the
first Landau level has been computed analytically in [8] (see also [9] which deals with
the existence of Lifshitz tails). The infinite degeneracy of the Landau levels had already
been noticed in various ways in the past ([10,8,11]). For example in [8] it appears as a
delta function in the density of states of the first level. The result suggests that it is in
fact macroscopic, in other words, there is a positive density per unit volume. Our results
characterize completely the rest of the spectrum and also give information about the
localization length.

Let us say a few words about the method used to arrive at these results. The scatterers
in (1.1) are similar to rank one perturbations of the kinetic energy so that by using the
resolventidentity one can expressthe Green's function correspondihimtierms of the
Green'’s function of the kinetic energy and a matrix which contains all the randomness.
Thus the problem is reduced completely to the study of this random matrix which
has random elements on the diagonal and rapidly decaying non-random off-diagonal
elements. It turns out that the method invented by Aizenman and Molchanov [12] is
very well suited to study the decay of eigenvectors of this matrix. These eigenvectors are
related by an explicit formula to the eigenfunctiongbfn such a way that exponential
decay of the former implies exponential decay of the latter. In fact it follows from the
structure of the random matrix that, in the strong magnetic field regime, the off-diagonal
elements are much smaller than the diagonal elements, and this is true even for energies
near the band centres. Therefore our problem is analagous to the high disorder regime
in the usual Anderson model and this is the reason why we have access to the whole
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spectrum. Itis instructive to discuss the physical implications of our results in the context
of the quantum Hall effect. A basic ingredient used to explain the occurrence of plateaux
in the Hall conductivity is the localization of electrons due to the random potential. This
has been established in a mathematically precise way in [13] (see also [14]), by assuming
the existence of localized states. Usually it is difficult to obtain quantitative results on the
localization length. The Network Model of Chalker and Coddington [15] and numerical
simulations [10] suggest that it is finite except at the band centres where it diverges like
|E—E,|~" withv ~ 2.35for the first fews’s. In the Network Model one must work with
smooth equipotential lines of the random potential so that it is difficult to compare to our
situation. The model in this paper has been treated numerically only in a regime where
the magnetic length, which is of the order Bf /2, is much greater than the average
spacing between impurities. The regime covered by our analysis is such that the magnetic
length is smaller than the average spacing between impurities, and we prove that there is
no divergence in the localization length at least for the first few bands. One might think
that this means that there is no quantum Hall effect in this regime. However this is not
the case because the energy at the band centre is an infinitely degenerate eigenvalue. One
can compute explicitly the eigenprojector associated to each degenerate eigenvalue and
checkthatthe corresponding Chern number is equal to unity [16]. From this result and the
equivalence between Hall conductivity and Chern number, when the Fermi level lies in
the region of localized states or in a spectral gap, we conclude that the Hall conductivity
takes a non-zero quantized value equal to the number of Landau levels below the Fermi
energy. This has been made mathematically precise in [13] (see also [14] and [17]).

The picture which emerges out of the combination of our analytical results with those
of simulations is that in the present model one has to distinguish at least two regimes. In
the first one, the magnetic length is much greater than the spacing between impurities:
the localization length diverges and there is no degenerate eigenvalue at the band centres.
In the second the magnetic length is much smaller than the spacing between impurities:
the localization length does not diverge and there is a degenerate eigenvalue at the band
centres. Whether there exists one or more intermediate regimes or notis an open question.
Itis instructive to note that in the model studied in [8], it turns out that, at the level of the
density of states, one must also distinguish between various regimes, more than two in
fact. Finally, we wish to stress that the quantized Hall plateaux exist in both regimes and
that an interesting open question is whether the different behaviour of the localization
length is reflected in the transition between two successive Hall plateaux.

The paper is organized as follows. In Sect. 2 we give the precise definition of the
model and the Hamiltonian and also collect useful Green’s function identities. Our main
theorem (Theorem 2.2) is stated at the end of this section. The infinite degeneracy of
the first N (B) Landau levels is proved in Sect. 3 and the spectrum is characterized as
a set. The connection between generalized eigenfunctiodsanfd eigenvectors of the
random matrix is established in Sect. 4. Finally, the Aizenman—Molchanov method is
applied in Sect. 5, where the proof of our main theorem is completed. The appendices
contain more technical material.

2. Definition of the Hamiltonian

In this section we define our Hamiltonian. It is well known that Hamiltonians w4th

function potentials in dimensions greater than one require renormalization. This was
first done rigorously in [11]. The magnetic field case was developed in [6]. We refer the
reader also to [18] though this does not deal explicitly with the case of a magnetic field.
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Letw,,n € Z[i] = {n1+in2 : (n1, n2) € Z2}, the Gaussian integers, bei.i.d. random
variables. We shall assume that their distribution is given by an absolutely continuous
probability measurgo whose support is an intervdl = [—a, a] with 0 < a < co. We
require thaiug is symmetric about the origin and that its dengigyis differentiable on
(—a, a) and satisfies the following condition:

£o(¢)
ce(0,a) PO(L)

2.1)

These conditions opg can be weakened, but we have chosen the above because they
allow us to check the regularity of the distribution ofdd,, in the sense of [12] very
simply. We let@ = X%l andP = [T,z #o. Form € Z[i], let 7,, be the measure
preserving automorphism 6f defined by

(Thw),, = Wp—m- (22)

The group{z,, : m € Z[i]} is ergodic for the probability measufe
Let# = L%(C) and letHy be the operator o defined by

Ho = (1/8k)(—iV — A(z))> — 1/2, (2.3)

whereA(z) = (—2«Zz,2«Rz). Herexk = B/4 andHjp is the same as the Hamiltonian

in (1.2) apart from the multiplicative constant8 and the shift by 12 which are
inserted for convenience so that the Landau levels coincide with the set of non-negative
integersNo. Let H,, be the eigenspace corresponding to/#{& Landau level of the
HamiltonianHy defined in (2.3) and leP,, be the orthogonal projection ont,,. The
projectionP,, is an integral operator with kernel

Py (2.7) = Ln(2|z — ZPP)Po (2. 7)., (2.4)
whereL,, is the Laguerre polynomial of order and
/ 2 12 . /
Py (z,z) = ;exp[—fdz—z |©—2ikz AN 7], (2.5)
with z A 7/ = RzZ7 — IzR7/, Rz andZz being the real and imaginary parts of

respectively.
Fora € C\No, letGh = (Ho— )1, the resolvent offp at1. G§ has kernel (cf. [6])

Gy(z,2) = T(=W) Po(z, 2HU (=1, 1, 2|z — 21, (2.6)
where
1 — (@),
Ua,1,p) = —% |:M(a, Lplnp+ Z 7,0 (Wa+r)—2¢y1+ r)}i|
r=0 "~

2.7
is the logarithmic solution of Kummer’s equation ([19, Chap. 13]):

d?U du
-~ +@1-p)— —ap =0. 2.8
P i +@1—-p) o (2.8)
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HereT is the Gamma functiony (a) = I''(a)/ T (a) is the Digamma function,

(@, =a@+D@+2...a+r-1, (ao=1, (2.9)
and
— (@
M(a, 1, p) = ; — (2.10)

is Kummer’s function.
Let M = [%(Z[i]) and forx € C \ Ny, defineU;, : # — M by

(n|Us¢) = (GEp)(n). (2.11)

From the bounds in Propositions 6.1 and 6.2 in Appendix A one can seé&thata
bounded operator. Its adjoibt’ : M — H is given by

Ui = Y. G minls). (2.12)
neZlil
Fori € C\ Ng let
2 2
== (w(—k) —~ —) (2.13)
T Wy
and define the operator¥*, A* andM* on M as follows.D* is diagonal and
(n|D*|n) = c}, (2.14)
0 ifn=n'
A*n'y = 2.1

and
M* = D* — A%, (2.16)
Note thatD* is a closed operator on the domain

DD ={geM: Y |chPlnlE) < oo}, (2.17)
neZli]

andA* is bounded, therefor®f* is closed orD(M*) = D(D*). Note also thatM*)* =
M* and that for. € R, M”* is self-adjoint. Fon € C \ Ng such that 0¢ o (M?*) let

r = w1 (2.18)
To define our Hamiltoniai! we use the following lemma:

Lemma 2.1. For eachx > 0, there exists., € C \ R such thai ¢ o (M*«) and

1
[(n|T* )| < K (i) <In="12 (2.19)
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Proof. Let A = —r(1+ i), with » > 0. By Proposition 6.1 in Appendix A, we have for
n, n € Z[il,n #n',

Gh(n, n)| < Cpee =P (2.20)
0 s

where

1 1
Cri =Ck {- +e @M% (14 In(2/<)|)} , (2.21)
r

C < oo being a constant. TherefofpA*|| < C,.||S||, whereS is the operator with
matrix

(n|Sln'y = e~<In=n'?, (2.22)
Let[™ = (D*)~1, then
~ C
AT < Z 219 < 12, 2.23
Il ||_2K|Iw(—x)||| Il <1/ (2.23)
if  is large enough. Note that by (6.3.18) in [19]
lim Ty (—x) = /4. (2.24)
r—00

Then) 72, (A*T*)k converges and consequendly” is invertible,

I =TI+ ) (ATH (2.25)
k=1

and||I + Y2, (A*TH¥|| < 2. Clearly

P forn =n'
Thus
1
|| A*TH )| < Bye I < B, e~ 112 (2.27)
Cr,x

whereB, , = %\Iw——fl)l Now, there exists a constadit < oo such that fok > 1 (see
Lemma 3.3 in [5]),

1 1 1
_ _a"M2 _ "_, 13 _ _ 3
§ : e K|ln—n"| e K|n"—n"| < coe K|ln—n'| ) (228)
n” eZli]

This bound, together with (2.27), gives

1
|(nI(A*TE ') < g~ Bf e 12, (2.29)
and thus from (2.25)

1
[(n|T*n')| < Ke*In—"12 (2.30)

if coBry < % O
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Fori € C\ Np, we have the formula ([19] 6.3.16)

o0

_ A+21
V(1) =—-y— r;)m, (2.31)

wherey is Euler’s constant. Thus if1, A2 € C \ Np,

Y(=11) — ¥ (—A2) = (A2 — A1) Z — Al)(m ) (2.32)

On the other hand we have

[e.e]

P
GGy = i , 2.33
00 mzzow—xlxm—xz) (239

and thus

o]

A A2 B Pu(n,n) 2%
(G0 )(n’n)_mX:;(m—M)(m—?»z) " xl)(m w23

m=0

Therefore
(n|M** — M*2|n) = i—“{vf(—xl) — ¥(=22)} = (2 = M)(GG GgA) (n, m).  (2.35)
On the other hand, for # n’, using the resolvent identity, we get
(n|M* — M*2|n') = Gg2(n, n') — Ggt(n, n') = (A2 — MGG (n, ). (2.36)
Therefore combining the two identities (2.35) and (2.36) we obtain
MM — M2 = (o — 1)U U3 (2.37)
It is clear from this equation th‘ﬂsz;*l = UMUX*Z'

Note thatHp is essentially self-adjoint o§(C) ([20, Theorem X.34]). Defin&/, :
S(C) — HbyV, =U* I'«T, where(n|Ty) = ¥ (n). Let

DH)={¢p =9+ V¥ : ¥y €SO}, (2.38)

and for¢ € D(H)
H¢ = Hoyr + A V. (2.39)
This definition implies thal H — A,)¢ = (Ho — i)Y, and therefore sincély is

essentially self-adjoint o8(C), Ran(H — ) is dense ir{. Lety" € S(C) and let
¥ =¥ + (G — MGy Ui T Ty’ Theny € S(C) andTy = M*<T*Ty'. Note
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_ _ 1
that0¢ o (M*) and|(n|T* |n')| = |(n/|T* |n)| < K ()e *I"="12 Letd = ¥ + V).
Then

(H — %0)¢ = (Ho — h)¥ + (e — R Vi

= (Ho— %)W — (e — K G (Ho — R) U5 T Ty
0w = ROVl — (e — 22V GR UL T Ty

= (Ho— L)V = (ue = ROUE T Ty + e — R Vi
— O = R)PUZ TR U, UE T Ty

= (Ho = %)V’ — O = ROUE THTY + e = R Vi)
— (e = RQUZ T (MM — MP)T Ty

= (Ho — b))V

Therefore RatH — 1) is dense ir{ and H is essentially self-adjoint ob (H).
Forx e C \ Ng such that 0¢ o (M%), define

G* = Gg+ UiT U, (2.40)
One can check using the resolvent identity and identity (2.37) that ([6], see also [18])
G*(H — Mg = ¢, (2.41)
so that
G*=H-0"1 (2.42)

We now state the main theorem of this paper. (a) is proved in Lemma 3.2, (c) in Lemma
3.1 and (b) and (d) in Theorem 5.8.

Theorem 2.2. (a) The spectrum aof contains bands around the Landau levélsand
an interval extending from-oco to a finite negative point. For eacN € N there
existscg > 0 such that fore > kg, with probability one,

(b) ocont(H) N (=00, N) =0,

(c) if m € Ng N (—o0, N), thenm is an eigenvalue off with infinite multiplicity,

(d) if A € 0(H) N (=00, N) \ Np, is an eigenvalue off and the corresponding eigen-
function is¢;, then for any compact subsét of C, [, |¢;.(z — 2/)|?dz’ decays
exponentially ing with exponential length less than or equal2tc.

3. The Spectrum

In this section we study the spectrum of the Hamiltonian. We first show that the Landau
levels are still infinitely degenerate eigenvalues. We then prove that the spectrum contains
bands around the Landau levels and an infinite interval in the negative half-line.

Let {U, : z € C} be the family of unitary operators i corresponding to the
magnetic translations:

U.f) () = 2 f (2 + 7). (3.1)
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These satisfy/,, U,, = e?*2"1y,_ | .. Forn € Z[i],
U,G* () Ut = G (o) . (3.2)

The ergodicity of{t,, : m € Z[i]} and Eqg. (3.2) together imply that the spectrum

of H(w) and its components are non random (see for example [21], Theorem V.2.4).
We shall first prove that almost surely the lower Landau levels are infinitely degenerate
eigenvalues for large. This lemma is a generalization of similar results in [5] and [22].
The main idea of the proof is to construct state{ip which vanish at all the impurity
sites, so that they are also eigenfunction&of hese states involve the entire functionin

(3.4) which vanishes at all the points#ffi] and consequently grows liké2I* for large
|z|. The condition that the states are square integrable then requires that the magnetic

field be sufficiently large in order to compensate this growth by the factdi!”.

Lemma 3.1. For each N € N, there existsc(N) > 0, such that forc > ko, with
probability one, each Landau level, withm < N, is infinitely degenerate.

Proof. The elements of the spaé& are of the form

$(2) = ¥ (e, (3.3)
wherey is an entire function and, of coursg,e L2(C). Let
7. 1422
Yo =z [[a—yerTa?. (3.4)
neZ[i1\{0}

Thenyrg is an entire function with zeros at all the points4f]. It follows from the theory

of entire functions (see [23, 2.10.1]) that there exists 0 such thatyo(z)| < eAl?”.
Fork € Np, let

Pox(2) = X Po)e P, (3.5)

then, ifk > A, ¢or € Ho and sinceViepor = 0, Hpox = 0. Also if for M € Np,

S ¥ o bedor = 0, theny M o bizk = 0 for z ¢ Z[i]. Therefored ;" ,bxz* = 0 and

thus theby’s are zero implying that theg ;'s are linearly independent. So tiig x's

form an infinite linearly independent set of eigenfunctiongfofvith eigenvalue 0. For

the higher levels we modify this argument with the use of the creation and annihilation

9
operators for the Hamiltoniafy, a* anda, defined bya™ = (1/+/2) <_8_ + /(Z)
z

d
anda = (1/v2«) (? + KZ).
Z
These operators satisfy the commutation relatior™] = 1. Also if ¢ € H,, then
a*¢ € Hyy1 andag € H,,—1 except whemn = 0, in which casei¢p = 0. Form < N
andk € Np, let

i (z) = X Wolz))" T eI, (3.6)

then, ifk > AN + 1), ¢n.x € Ho. Now letg,, x = (a*)"ém.i. Theng,, r € H,, and
¢m.x(n) =0foralln € Z[i] sinceq?m,k has a zero of order greater tharat each point
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of Z[i]. Therefore sSinc&, ¢, xk = O, H Pk = mepy, k. MOreover sincga, a*] = 1 and
aqgm,k =0,a"¢mi = m!qgm,k. So, if for M € Ny, Z]iw:o bkdm ik =0, then

M _ M
D bk i = (mhHta" (Z bk¢m,k) =0. 3.7)
k=0 k=0

This means thaz,i‘”:o brzk = 0forz ¢ Z[i] and as forn = 0 it follows that thep,, 1's
form an infinite linearly independent set of eigenfunctiongiofvith eigenvaluen. 0O

In the case of one impurity of strengthat the origin, the Green’s function is given
by

G =G+ %Gé(, 0)G§(0, ), (3.8)
where
= % (w(—x) — 2—”) ) (3.9)
T w

It is clear that in this case the spectrum consists of Landau levels and the values of
for which ¢* = 0. For smalk the latter correspond to points close to the Landau levels
and in the case ab > 0, there is another point which is negative and of the order of
exp(2r/|wl). In the next lemma we shall show that in our case these points are also in

A\al

Fig. 3.1. — ¥ (—A)

the spectrum in the sense that the spectrum of our Hamiltonian contains bands around
the Landau levels and an interval extending frewno to a finite negative point.
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LetY ={27/x : x € X \ {O}}.
Lemma 3.2. With probability one
—y 1Y) C o (H(w)). (3.10)

Proof. It is sufficient to prove that for each € —y~1(Y) and for alle > 0, there
exists Q' with P(2') > 0 andy € #H with ||y| = 1 such that for allw € @/,
I (G* (@) — (A — k)" ¥l < €. Let (v|n) = 8,0 and lety = CU%v, whereC~? =

(/7)Y _o(m — 2)~2. Note thaty (z) = CGg(z, 0) and||v|| = 1 by (2.34). Then
(GM6 — o))y
= (Gb +U; T U, + G =)y
= (e —N)LC ((AK — ) GYUS = UE T (M — M*) + U;) v
= G — 07 (UF = UF = UF 4+ U T M+ UF )
= (e =N LCUS T MM,
By using (2.37) we get
1(G™ @) = 6. = 2072 W1 = C2Ph = 2 2 @20 T(M 0, T M)
< 2C2|h — ke A The LM o) [T Mo
by (2.25). Choose such thaf}", _ » 1G§(n. 0)|% < 8, and let

Q ={w: |l <8, min

A
“| > 1/8}. 3.11
Nl 1 > 1/8) (3.11)

Sincey (=) € Y and O is in the support of, P(Q') > 0. We have

% ifn=0

M vy = |0 ! 3.12

(M) {—Gg(n,O), if n 0. (3.12)
Therefore
M ]2 < 8%+ ) 1GG(n, )2 (3.13)
n#0
and
1T M |12 = |e5Pleg |72+ Y lep | 721G(n, 0)?
n#0

< 8%/ 2%\ TP (—1) 2 + 82 ) 1Gh(n, 0)2

[n|<R

+ (/20T (=272 ) 1Gp(n, )
[n|>R
< 8%(m/20)* [T (— 1) 2 + 82 ) |Gh(n. 0))2
n#0
+ 80 /22| Ty (= 1) | 72,
Thus|| (G* (@) — ( — L) ") ¥l < € if & is small enough. O
In the next section we relate the generalized eigenvectaks\with those ofM*.
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4. Generalized Eigenfunctions ofH

In this section we show that a generalized eigenfunctioH afith eigenvaluex, say,

which is not a Landau level, is related in a simple way to an eigenveadn/* with
eigenvalue zero. Furthermorevilecays then so does the corresponding eigenfunction.
Since this reduces the problem to a lattice problem, it makes it possible for us to use the
Aizenman—Molchanov method.

Proposition 4.1. If ¢ is a generalized eigenfunction &f with eigenvaluer ¢ Ny,
thenv = '« U, _¢ is a generalized eigenvector 8f* with eigenvalue zero ang =
(A = L) U;v. Moreover ifv decays exponentially, then for any compact sulsset C,

[ploz— z)|%dz’ decays exponentially in

Proof. Supposep is a generalized eigenvector Hf with eigenvalue.. Then

G = (O — a1 (4.1)
or
Gl 9+ U3 TP Uy 0 = 0.— 1), “2)
Thus
UAGé"d) + U)»U)T'K MU = (A — )T “3)

UsingU, G = (A — &) XUy — Us,), we get
UpUET* Uy ¢ = (0 — 1) T Us 0, (4.4)

which by (2.37) can be written in the form

M*T* U, ¢ = 0. (4.5)
Therefore ifv = T*U; ¢,
M*v = 0. (4.6)
From (4.2) we get
(= 2)Gg P+ (= h)UE v =¢. (4.7)
Thus
(0 = MGG D + (= 1)GHUE v = G (4.8)

By using the resolvent identity we can write this as
A
Uiv = G ¢+U;‘—Kv, (4.9)

and thereforeg = (A — A,)U; v by (4.7). From Propositions 6.1 and 6.2 in Appendix A
we get fori ¢ Np,

_K,_2
1G5z, )l < Ce 2@+ 1561, /ey (12 = Z/DlIn |z = 1)), (4.10)
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whereC depends on andx. From the equation
$(@) =0 —n) Y Giz.m)(nv), (4.11)

neZlil
we get, assuming|v) < C’e~*"l, that

@) < k= xelC" Y 1Gh m)le M

neZfil
<c” Z ¢~ 5la=nl? g=aln|
nelli]
+ 7Y e a1 e (2 — DIz — nl
neZli]
= S1+ So.
Now
S <’ Z e~ 2limnlgalnl 4 o1 e —alz]
[n—z|>1
< CTe PRI Y ol 4 (el
neZli]

whereg = 7 min(k, 2). Thus,$1 < C”e~Pl. Similarly

Sp < C"e PRy e MLy 1 (12— nhintz = nl|. (4.12)
. Ve
neZli]
Therefore
@7 < Ce Pl A+3 Y ey 00 me(z—nhlinjz—nl?).  (4.13)
neZli]

Let B C C be compact and lek = suf|z| : z € B}. Then forz’ € B,

lp(z — 2)|? < Ce?PRe=2PL

<1+3 > e Mo 1, (e =2 —nhlin Iz—z/—n||2), (4.14)
U
neZlil
Therefore
[ 16— < e s 43 Y [ iz, (39
' neZli] |Z’|<\/7
[}

We do not dwell on the existence of the generalized eigenfunctions. It suffices to say
that the arguments of Theorem 11.4.5 in [21] can be used wit replaced byG*«
since from the bound in Lemma 2.1 and the bounds in Appendix AG@(z, it
follows that

sup / G (z, 2)[%dZ < o0. (4.16)
z JC

The same bounds guarantee also thiata generalized eigenvector &f*. In the next
section we apply the Aizenman—Molchanov method to the lattice opev&tor
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5. An Application of the Aizenman—Molchanov Method

In this section we apply the Aizenman—Molchanov methodab, wherex is not a
Landau level. The main ingredient in this method is the Decoupling Principle-for
regular measures. We start by stating this principle, not in its full generality but in the
form in which it will be used here.

Definition. A measurew on R is said to ber-regular, witht € (0, 1], if there exists
v > 0andC < oo such that

u(x =8, x +8]) < C8"u([x —v,x +v)) (5.1)
forall x e Rand0 < § < 1.

Lemmab5.1 (A Decoupling Principle). Let © be a t-regular measure and let
J lul¢u(du) < oo for somee > 0. Then for all0 < s < min(z, €) there exists;,
a positive, increasing function dR, with &(0) > 0 satisfying

lim 5@ =1, (5.2)
xX—>00 X
such that for ally, « andb € C,
/ lu —nl*lau + b u(du) > (& (nl))* / lau + b| ™" ju(du). (5.3)

Let u(A) = wo({w : 1/w € A}). In Appendix B we shall show that is 1-regular and
[ |uln(du) < oo for all € < 1. Thus the inequality (5.3) is valid for all € (0, 1).
As in [12] we use this lemma to obtain an exponential boundmh*(z)|0), where
I'*(z) = (M* — z)~1. This bound then allows us to apply the results of [24] to deduce
that the spectrum aff” in a neighbourhood of the origin consists of eigenvalues and
that the corresponding eigenvectors decay exponentially. We then combine this result
with Proposition 4.1 to translate it into a statement about the properties of the spectrum
of H.

It is convenient here to introduce a notation for the intervals between the Landau
levels. We letly = (—o0,0) andly = (N — 1, N) for N € N.

Lemma5.2. Forall N € N, forall s (%, 1) andforally < sthere existgg(N, s) <
oo such that for allc > «ko(N, s), for all » € (—oo, N) \ Ng and for all z € C with
Zz #0and|Rz| < 1,

E{ > [(nIT*(@)[0) e "} < 1/{2« (5,(0))*)}. (5.4)
nellil
Proof. The starting point is the following equation: Fo# R,
3" nlM — 2y (0 T @) ") = Sy (5.5)
n’'€Z[i]
This becomes using (2.16)

(ch = DnIT @) = Y Gon, 0 IT*@)[n") = Sy (5.6)
n'#n
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Now we taken # n” and O< s < 1to get

ey = 2l [T @In ") =1 Y G ') (' |IT* @) ")

n'#n
< Y 1Gsm, n) I [T @) "))
n'#n
Thus
E{lcj — z[*[(n[T*(@)n") '} < Y 1GGn, n)E{| (n'|T(2)[n") ). (5.7)
n'#n
Now
E{lcy — zI°|(nIT* () In") '} = By Ba{lc) — zI°|(nIT* () [n") '}, (5.8)

whereE, is the expectation with respectdg andE,, is with respect to all othep,’'s.
Let

(' |MyIn"y = (0| M*n") — (4K /@n) Sy S (5.9)
ThenM?* is independent ab, and using the resolvent identity

A

2 -
(n|I'"*(2)10) = 15 (/o B’

(5.10)

whereA = (n|(M} — 2)71|0) andB = (n|(M} — z)"|n). Then

Eu{let — 21" |(nIT*(2)[0)°}

A I8
—5 et
|1+ (4k/wn) B|*
lu —nl°

> 4e) | ————
= () |1+ 4xuB|*

p(du)|Al°,
whereu = 1/w, and 2rn = ¥ (—1) — - E, E being the real part of. Thus by
Lemmab.1,
|AI*
"1+ kB
= (4)* E (D) En{|(nT*(2)|0)]°}.

Ep{lck — 2" [(nIT*(2)|0)|*} > (d)* (&5 (In)°E

Using (5.7) this gives
(40 & (D) B (nT*@)I0)'} < Y 1GH(, n)PE{|(n T @101} (5.11)
n'#n
or

E((nIT*@)I0)°) < (1/40)° & (D)™ 3 1G5, n)PE( (0 |T*@)I0)). (5.12)
n'#n
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Lety > 0 and define

E(s) =E{ ) e"M|(nI*(2)|0)'}. (5.13)
neZli]
Then
E(s) = E{[OIT*()[0)['} + Y " " E{| (n|T*(2)[0) [}
n#0
< E{|(0IT*(2)|0) '}
+A/4) E(D) YD e MG, ) E{| (0T (2)0) ).
n#0n'#n
Thus

E(s) < E{(0IT* ()|0) [}
+ (/%) E )™ Y Y e I NGE o, n) e I E(1(n I (2)10) )

n' n#n'
so that

Y €N GG (0, 1S
Z(s). 5.14
&1)* (). (314)

E(s) < E{|(0IT*(2)|0)|*} + (1/4«)* sup

Let

Zn;&n’ e)/l(|l’l—n’| |Gé(l’l, n/)ls

F(s, %) = (1/4c)* : 5.15
(5, 2) = (47407 sup &) (5.15)
If F(s,A) <1/2then
. _ E(OIr*@I0)°} s
E(s) < T(s,)\) < 2E{[{0IT"*(2)10)|"}. (5.16)
But
(OIT*(2)[0) = M5 — 9710 (5.17)
1+ c401(M§ — 2)7110) '
so that
1
A _
[(OIT*(2)]|0)| = b 1 Lol Taol’ (5.18)

whereb is independent obg. Using this and Lemma 5.1 witlh= 1 andn = —b, we
get

Eof (OIT*(2)[0) '} < 1/(4k£,(0))*, (5.19)
and therefore

E{[{OIT*(2)|0)°} < 1/(4c&(0))°. (5.20)
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This proves (5.4). To prove thdt(s, A) < 1/2, first assume that € Iy with N € N,
By Proposition 6.2, we have

G, n)| < (CONFINN | (=) — n' [PV P (5.21)
forn #£n’, andi € Iy, N € N. Therefore
Z g)/lcln—n’||G6(n’ n/)ls < (CK)(N+1)SNNS|F(—)\.)|S ZEVK|H||H|ZNS€_KSM|2.

n#n’ n#0
(5.22)

Let y < a < s. Using the boundse?<¥e-o<® < o=@=1* for x > 1,
x2Ns g=k(s—a)x?/2 (2sN /(s — a)x)Ns for x > 1 and

3 e < k), (5.23)

neZfil

whereK (t) = (L+e /4 + (yr/t)l/z)2 fort > 0 (see Lemma 2.1 in [5]), we get

!’
Z eyf(\n—nl IGé(n,n')P

n#n’
< (K(k(s —)/2) = 1) (CN ) 2sN?/ (s — )V [T (=) [Fe™ @)%,
Thus
F(S, )\‘) < <K (K(S _ a)) _ 1) (CN+1/4)S(2SN2/(S _ a))Nse—(Cl—y)K M .
2 &s(Inl)
(5.24)
Now since forN € N, the limits lim,_, 5 |T'(—A) /¥ (—X)| and
lim_ n_1|T(=A)/¥(—1)| are finite, we have fok € Iy,
IT(=M)] = CyQA+ ¥ (=M)]) < Cn(L+ (T/26) + 2 |n]). (5.25)
Therefore
'(—1)
< Cn {1+ (m/26)}/65(0)] + 2 sup{x/&s(x)} ] . (5.26)
&(nD xeRg
Thus there exists (N1, s) < oo such that for alk > xg(N1, s), F(s, ) < 1/2 for all
A € (0, Np) \ N.
For A € Ip we have by Proposition 6.1
|Gg(n, n")| < (Cie) L P (5.27)

2]

and therefore

Y e UG, I < (K k(s — @) — 1) (Cio)* (%) eT @, (5.28)
n#n’
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and thus

1 S
F(s, ) < (K(k(s — ) — 1) (C/4)S e~ @1 <—) ) 5.29
(5,4) = (Kk(s —a)) =D (C/D’e s g (D) (5.29)

Therefore by the same argumdnts, A) < 1/2 for all » € Iy if « is large enough.o

We have from Theorems 8 and 9 in [24] that if for &lle (—1, 1) and a.ew,

Ii?g 2 |(n|TH(E +i€)|0)? < oo, (5.30)
€
nellil

thenocon(M*) N (=1, 1) = ¢ for a.e.w. If, furthermore, for a.e. paifw, E), v € Q
andE € (-1, 1),

|i5r(1) |(n|T*(E +i€)|0)| < C pe ™ENN (5.31)
€

then with probability one, the eigenvectars of M* with eigenvalueE € (—1, 1) obey
|(vgn)| < Dy pe™ "B, (5.32)

We shall use the results of [24], Lemma 5.2 and Proposition 4.1 to prove the following
lemma.

Lemma 5.3. For eachN € N there existscg > 0 such that forc > «q, for each

A € (—o0, N) \ Np with probability one, ifs is a generalized eigenvalue &f with
corresponding generalized eigenfunctigr, then for any compact subsé of C,
[ 1z — 7)|%dz’ decays exponentially inwith exponential length less than or equal
to 2/k.

Proof. From Lemma 5.2 we have for all € (—oo, N) \ Ny, z € C with Zz £ 0 and
IRzl <1,

E{[ Z |(n|r‘)~(z)|o)|262wc\n|/s]s/2} < E{ Z |(n|F)"(Z)|O)|SeV’(|”|}

neZli] neZlil
< 1/{(2¢)(&5(0))°}. (5.33)

Now for a.e. pair(w, E), » € Q andE € (—1,1), lim¢o(n|["*(E + i€)|0) exists.
Therefore by Fatou's Lemma,
f A . 2 2yk|n|/s s/2
]E{[ 3 i {17 (E-+i€)10) e ] }

neZli]

< Efimint [ 3 i & + o022 )

neZli]

s/2
< liminf B{[ HE + iR
= liminf E{ 3 (nT(E +i)[0)%

nelli]

=< 1/{(2)(&5(0)° ). (5.34)
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Thus (5.30) and (5.31) are satisfied. Therefobeiff a generalized eigenvalue Bfwith
corresponding generalized eigenfunctign then by Proposition 4.4y = T'*< U, _¢;
is a generalized eigenvector &f* with eigenvalue 0 and must satisfy

—2y«|nl/s
w . .
[(va|n)| < Dye (5.35)

Then again by Proposition 4.1, for any compact SuBseftC, |, |¢;.(z—z')|?dz’ decays
exponentially inz with exponential length less than or equal to ax2y«), 2/«). If
we choosey = s5/2, then maxs/(2y«), 2/k) = 2/k. O

By Fubini’'s Theorem, we can deduce from Lemma 3.5 the result about the decay of
eigenfunctions with probability one and aiewith respect to Lebesgue measure and
therefore with probability oneac(H) N (—oco, N) = . However to be able to make a
statement aboutcon( H) we have to replace.e. 1 with respect to Lebesgue measure
with a.e. A with respect to the spectral measure of H (w). We do this in Lemma 5.7 by
using the ideas of [25] and the following four lemmas.

We state the first lemma without proof.

Lemmab5.4. Let {f,} be a total countable subset of normalized vectors of a Hilbert
spaceH and H a self-adjoint operator ofi{ with spectral projection&( -). Letc, > 0,
Yoacn <ocandv =), ¢ pun, Wherep, = (fy, EC-)fn). Thenv(A) = Oimplies
thatE(A) = O.

Lemma 5.5. For eachN e Ny, there exists an open séf; c C, containingly, such
that for « sufficiently large with probability oneyf” is invertible for allx € Jy \ Iy.

Proof. LetA € Iy and|e| < 1,¢ # 0. Let

Atie if n=n'
Xin'y = | ’ 5.36
n1Xlr) {—GS(n,n/) if n £n'. ( )
Then||X&|| > %|pr(—()» +i€))||I&]]. ThereforeX is invertible and
b4 1
x4 < — — 5.37
2 |Z(Y (=(A +ie)] (5:37)
Let
(n|Y|n') = =’ (5.38)
T | —ie(GEGET Y (') ifn #E 0 '
so that
M=X+Y=X1+X"1y). (5.39)

From Proposition 6.2 in Appendix A we have fowith RA € Iy, N € N,and|ZA| < 1,
1G5z, 2)| < CVie NN D (=RMI(L + (2|2 — 217 (5.40)
for 2¢|z — 7/|> < 1 and

Gz, )| < CVieNZN D (=R e~ 217 (5.41)
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for 2c|z — /| > 1.
Therefore ifi € Iy, N € N, || < 1,k > 2 andn, n’ € Z[i]withn # n’,

(GEGE)(n, )| < C*Nic?|D(—1)|2N3N

x{/ dz(1+In(2«|z —n|2)e_%|z_”,|2
2|z—n|?2<1
+/ dz(1+In(2 |z — n'|2)e 8l
2|z—n'|2<1

1
< ZNCZNK|F(—A)|2N3N€glnn,z{/ A+Inr2)rdr+NNe s }
0

S 2CzNK2|F(_)\’)|2N4N€7%|n71’l/‘2

e~ %2 CN T (1) 2NN = 8ln—n'? (5.42)

IA

if « is large enough. Therefore
171 < ee 22N D=0 PITII, (5.43)

whereT is the operator with matrige| 7 |n') = e~2/8"=""* Nowtake. e (N—1, N-3]
andle| < A — N+1. In this interval

an

IT(=1)| < TNTD (5.44)
On the other hand by [19] 6.3.16
> 1
Ty (—(h +i€)) = —e k; e (5.45)
Therefore
. - 1 le]
¥ (=G A1) = el ]; -2+ G -N+1Z+e
-l (546)
Thus
IXYy) < IX MY < Z—Kaﬁcme—s%nTn <1 (5.47)

if « is sufficiently large. Thug/**€ is invertible. We can use the same argument if
Ae[N—3 N)andle] < N — A

Using the bounds in Proposition 6.1, a similar calculation to the above gives for
A€ I,

Y]] < ee”2C2V 072 T]). (5.48)
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Then using the inequality

lel

[Zy (—(A +ie))| > W,

(5.49)

we can show thav/*t€ is invertible if |e| < |A|. O

Lemma5.6. Forn € Z[ilandx € Jy \ Iy, let¢; = ¢, 2U;T*|n), wherec; , =
[|IU;T*n)||~1 so that||¢}]| = 1. Then if[a, b] C Iy, the set{¢} : n € Z[i], » €
(Jy \ In) NQIi]} is total iNE([a, b])H.

Proof. Forn e Z[i] andi € Jy letg} = U|n). Thenifr € Jy \ I,

Gr= > cnn|M n)g). (5.50)
n'eZli]

Also if » — A’ theng* — ¢'. Therefore it is sufficient to prove that the $¢f : n e
Z[i], » € I,} is total. We do this by showing that the orthogonal complement of this set
is in the orthogonal complement Bf[a, b])H.

Let f € H and suppose tha&;}, f) =0foralln € Z[i] and allx € [a, b]. Then
since(Gyf)(n) = (¢, f), G*f = G} f. ThereforeE([a, b))G* f = E(la, b))G5f
and thus

sup [|E([a, b)G* Il < sup [IGIlIIfIl < oc. (5.51)
r€la,b] r€la,b]

Let u1(A) = (f, E([a, b] N A) f). Then

IE(a, )G f11 =/ Hadh) (5.52)

(a.b] 1A — A%

Letx; =a+ (b—a)i/M,i =0,..., M and; = 3(x; + x;41). Then

pa(dr’) ua(dr) 4M?
/ V2= / 2= (h_ 5 a([xi, xiq1l). (5.53)
[a.b] | il [xi,xiq1] | il ( a)

Therefore

dx 4M?
sup M;I.( )2 >
rela,b] Jia,b] 1A — Al b—a)

wa([xi, xi1]) (5.54)

forall i, and so

sup
M€la,b]

/ ui(dr) . amM? 1

M ,b]).
ap) A =X12 T (b—a)?M sia([a, b))

;Hl [xi, X1l > b—a)

(5.55)

Since M is arbitrary Sup., s [|E([a, b])G* f|| = oo unlessui([a,b]) = 0. But
na(la, b]) = [|IE([a, b)) f112. O

Let F be thes-algebra generated By, : n’ € Z[i]} and letF, be the sulz-algebra
generated byw, : n’ # n}. Let By be the Borel sets affy.
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Lemma5.7. Let B — E(B) be the spectral measure &f and A € Nz, (Fn ®
By). If for a.e A, € Iy with respect to Lebesgue measlig¢ls(-,A)} = O, then
E{E({r: (-,A) € AP} =0.

Proof. If for a.e with respect to Lebesgue measiirgl, ( - , A)} = 0, then by Fubini’s
Theoremk if,N drda( - ,)\)} —0.

Let A be a bounded subset@fi] and letH, be defined in the same way &swith
M replaced byM, = I2(A). By the same argument as in Proposition 44 N is an
eigenvalue offf, if and only if there exists € M, such thatM v = 0, whereM’
is the restriction ofi/* to M 4. Then the corresponding eigenfunctiorii$v. Since in
the intervally, v is bijective it is clear that there af& | eigenvalues idy.

Let A1, ..., Aja| be the eigenvalues ifiy, say, and leby, ... , vjz| be the corre-
sponding vectors such tth\k v = 0. Letu, = 1/w,. Then forn € A we get

dhg |(vi |n) 2

= 5.56
du, U}, will (5:59)

If Mj\\"vk = 0 and(v|n) = O for a particular value af,, thenMj\" v = O for all values
of u,,. We shall see later that we can ignore these eigenvalues.

We see from Eq. (5.56) that eag¢h is a monotonic decreasing function of.
Moreover as,, — +o0, thei;’s become identical, except the valuegfcorresponding
to the vy which tends tojn) and this latter value of; decreases frooV to N — 1
(respectively—cc if N = 0) asu,, increases from-oo to +oo. Therefore

> [ ro0fEaun=- [ so. (557)
k —0oQ Iy

du,

U*
Let Yy = ﬁ so thatH; ¥ = M. Leth € Jy \ Iy andn € Z[i]. For B C Iy
A

let u’j\’k(B) = (¢}, EA(B)¢}), whereE, is the spectral measure &f,. Then forA
sufficiently large,

Wi By = 3 (@ ol

M EB

_ 1 nlw)l?
= ||[*|n)|| 2
2 Ix = M2 |IUF vl 2

M EB
1 diy
=—IMm|I2y ————. 5.58
[T )] Eu—mzmn (5.58)
k

Note that if (n|vy) = 0 then the corresponding term in (5.58) is absent. Alsg, ifs
degenerate, we can choose the corresponding orthogonal set of eigenvectors so that only
one satisfiegn|vy) # 0. Therefore there is only one term corresponding to sycim

the sum (5.58). From (5.58) and (5.57) we get

/OodunMA’ (B) = [T )| /I‘;m (5.59)
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and thus

dx

m . (5.60)

oo
/ dunpun) 'y (B) < ||Fk|n)||72||p||00/l;

—00

If w*(B) = (¢, E(B)¢’) then by the weak convergence;dj\”\ to u™* we have the

n’

bound (5.60) fop.-*. By Kotani’s argument [26], we have that
E{/ dp™* ()14 ( - ,m} =0.
In

By Lemmas 5.4 and 5.6 we gettHa{E({\ : (-,A) € AD}=0. O
By combining Lemmas 5.3 and 5.7 we obtain our final theorem.

Theorem 5.8. ForeachN e Nthere existgg > Osuchthatfokx > kg, with probability
one,ccont(H) N (—oo, N) = @, and ifA € o(H) N (—o0, N) \ Np, is an eigenvalue
of H and the corresponding eigenfunctiongig, then for any compact subsstof C,

[ |$:.(z — 2)|?dz’ decays exponentially inwith exponential length less than or equal
to2/k.
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6. Appendix A. Bounds for the Green’s Function

In this appendix we shall obtain bounds on the Green’s func(ﬁé(z, Z'). Our basic
tools are the the integral representation ([19, 13.2.5])

o
T'(@)U(a,b, p) = f dte P17 Y1 4 b1, (6.1)
0
which is valid forRa > 0 andp > 0 and the recurrence relation ([19, 13.4.18])
UG,b,p)=pU(@+1b+1,p)—(b—a—1U(a+1,0b,p). (6.2)

We first obtain bounds faiG(z, z')| whenRA < 0.

Proposition 6.1. There exists a constadt < oo, such that forRA € I,
/ 1 /
|GS(Z, Z)| < Cre 172 2 {W + e~V &IRMIz=Z| <1+ |In <2K|Z — Z/|2> |>} ,
(6.3)

if 2|z — /1% < 1, and

C ,
1G§(z, 2)| < ﬁe*"'“z ) (6.4)

if 2|z — /1% > 1.
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Proof. Let A = x + iy with x < 0. Then from (6.1) we get
o0
IT(=MU (=X, 1, p)| < / dre P ¥4 4 1)~
0
1 [ee)
=/ dte P =L@ 4 1y~ +/ dte P Mm@ 4 =
0 1

1 00 —pt t x|
/ dr t¥1=1 +/ i <—>
0 1 t 1+1¢

1 o] e*(ﬂt‘l’j)
|x—|+[1 a7 (6.5)

IA

IA

If p <1, we have

IT(=VU(=A. 1 p)| = — +

1 I Lt ()
/ e
1

|x] t
1 —Lot
< i + e—(P|X|)2 /Oodte 2’
x| 1 t
—t
_ 1 ek /oodte_
B s,
1 —t
<L et / dt | —oien? /OO arf_
= " A
1 1 o0
<1 0D n(p)2) 4 e PhD? / dre-!
x| 1
(plx)?
1 1 —(p|x
= — +e P2 )In(p/2)| + ———.
|x] e
Thus,
1 ~(plx?
U2 L] < C{ =+ A+ Inple . (6.6)

If p > 1, we have

1 o0 e*(fﬁ’zf)
DU (=h L p)] < — +/ a7
1

|x] t

1 0 g3 3+ED
< — +/ d

x| J1 t

1 [
< —+e"x‘2/ dre2!

x| 1

1
1 k2

I
|
+
N
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Therefore,

C
IF=DU(=2,1,0)| < 1k (6.7)

Inserting the inequalities (6.6) and (6.7) into (2.6) we get Proposition 611.
Now we shall obtain bounds fG i > O.

Proposition 6.2. There exists a constaft < oo, suchthatfofRA € Iy, N € N,|ZA| <
1,

1Gh(z, )l < kCYNYIF(=ROIA+ [Nz — 2 P)he™ 7, (6.8)
if 2«|z — Z/|> < 1, and
1Gh(z, I < (CONPINVIP(—RY)|z — 2/ [PV e, (6.9)
if 2]z — 712 > 1.

Letr = x +iy. We shall prove thatiV —1 <x < N, N € Ng,b e Nandp > 1,
then

I'(—x)
(=)
b+ N)
IT(N = )|

|U(=2, b, p)| < 22N =10 4+ N + [y

(6.10)
+e A+ Iyl + DY

We shall do this by induction oN. We first prove (6.10) foN = 0 by using (6.1) which
gives

1 00
I (=M U (=2, b, p)| < / dre Pl (14 pb-14 f dte Pt~ O (14 )bt
0 1
= I1+1o.

We now takep > 1, —1 < x < Oandb > 1. Forly, sincet < 1, we get
1 P
Il < 2[7—1[ dte—ptt—(x-‘rl) — 2b—1px/ dte—t[—(x-i-l)
B 0 0
o0
< Zb_lpx/ dre” 1= = 2= P (y),
0
On the other hand, using> 1, we get
o0
I = / dte—(ﬂ—l)te—tt—(x+l)(l+ t)b-‘rx—l
1
o
< e—(P—l)/ dte_tt_(x+l)(l+t)b+x_1
1

o0
< e (D / dte ' (1+ b1,
1
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Therefore
o0 o
I < e_<p_1)/ dseSH1sP~1 < e_(p_z)/ dse Ssb~1
2 0 (6.11)
= e P7Ar(b) < e P Dp1,
Thus we have
I (=) U(=A, b, p)| < 271p T (=x) + e~ P2 (6.12)
forp >land—1 < x <0, or
L TED L, b
U(=r.b.p)| <27 1p" | ——= |+ P72 ———. (6.13)
'(=2) IT(=2)]

Suppose that (6.10) is true fof — 1 < x < N. Then by using the recurrence rela-
tion (6.2), we getfolV <x < N + 1,
[U(=A,b, p)l
C(—x+1)
C(—r+1
N@+N+m}
IC(N — 2+ 1|

< ,0{2b+Np(x_1)(b SNy + DY

+e™ (o + Iyl + 1)

(—x+1)

b A_l{zb-i-N—l (x—1) b N N|Z\V AT
b+ —1] PO+ N+ | F S

e 1y OED_

IT(N — A+ 1)|
The identityI" (x + 1) = xI'(x) gives

‘F(—x—}—l) B ‘)_c I'(—x)

C'(—A)

'(—x)
(=2

(=24 1) _x’

< ‘

Therefore

[U(=A, b, p)l
b+ —1
2p
(p— b+ N +1)! b+ A —1]
(p%p+M+DNWW—A+D& b+N+1}
b+ir—1) | (=x)
AP Hn—x)
(b+ N + 1)!
I'(N—A+1)
Therefore since 2 b+ N +|y|+1andlb+ 1 —1| < b+ N + |y| we get the required
bound
I'(—x)

(=1)
b+ N+ 1!
I'(N-A+1)

I(—x)
T(—1)

sz“Nw{w+N+¢ﬂ+nN+ (b+N+meH

+e

EZ“WG%+N+ﬂy%+DNpX{1

+e” 20+ Iyl + DM

|U(=2, b, p)| < 2PN p*(b+ N + |y| + DN

+e—(p—2)(p + 1)N+1
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This gives the following bound on the Green’s function fet2—z/|2 > 1andN — 1 <
x < N and|y| <1,

2K /
R “Ir (=)

I'(—x)
r'(=X1)
(N +1)! e_2K|1—Z/\2}.
(N —A)

From (6.14) we getfoN — 1 < x < N with N € Np,

x |(2x)X<2<2 + Nz -2 1F '

+e?2+ 2¢z — 7PV (6.14)

1G5z, ) < (C)VFINY T (—x)||z — /[N eI, (6.15)

since|l'(=A)| < [I'(—x)| andI"(N — 1) is bounded below.
We shall prove, again by induction, thatfdsf— 1 < x < N, N € Ng, b € Nand
p =<1,

F'(=x)| 1+ Inp))

_ N+4 |
U (=2 b, p)] < 2574 + N 'F(_k) - (6.16)
We first prove (6.16) fov = 0. From (6.7) we have fgs < 1, andx < 0,
1 1
MU Lp) < o+ S+ [ pl. (6.17)
Thus
[(—x) 1 1 1
-, 1 I . 6.18
Lol s ‘F(—A) {|x|r(—x> T T ”p'} (649

Since—1 <x < 0,'(—x) > 1andx|I'(—x) = T'(—x + 1) > (e — 1)/e, this gives

(- Zt+e—1
U(=1,1, p)| < ri—i; {e;ie +||np|} (6.19)
r(- r(-
5(2+"”p')‘r§—i; <2t Fi_i;‘(lﬂlnm).

Now we takeb > 2,

o0
(=) U (=2, b, p)| < f dte P 1=GD (1 bl
0

l o0
_ ﬂ/ dre~' =0 (p 4 b=l
1Y 0
1

<
pb—l

sinceb + x — 1 > 0. Thus we have fob > 2, and—1 < x < 0,

/-oo dte_tt_(x+1)(1 + t)h+x—l’
0

IT(=2)U(=A, b, p)| < pb—l_lr‘(—x)U(—x, b, 1). (6.20)



394 T. C. Dorlas, N. Macris, J. V. Pulé

By inserting the bound obtained from (6.12) by lettimgend to 1,
[(—x)U(—x,b,1) < 2’70 (=x) + eb!, (6.21)
into this inequality we get

'(—x)

' (1+1InpD
- I'(=2)

< 24bv
pb—l

1 ! '(—
Vbl = {2b—1+ i} 'ﬂ

T'(—x) | |T(=n)

22)
We can combine this with the inequality (6.19) to getdor N, —1 < A < Oandp < 1,

I(—x)
T(—1)

(1+1Inp)
b1

\U (=7, b, p)| < 2*b! ‘ (6.23)

Using the recurrence relation (6.2) and the induction hypothesis we gat feri <
N+1,

\U(=A, b, 0)| < p {5 2Vt + N + 1)!

F(—=x+1| @A+]Inpl)
F(—x+1) b }

F(—=x+1| A+ [Inp)
L(-r+1| pt71
F(=x+1D|@A+[Inp])
F(-r+1| pb-1

+b+ A — 12Y4b + N)!

§2N+4(b+N)!' (b+N+1+|b+1r—1)

['(=x)| 1+ [Inp])
2V5(h 4+ N + 1)! 6.24
< (b+N+1) ‘F(_M P! (6.24)
In particular withb = 1, (6.16) gives fotv — 1 < x < N andp < 1,
1" —_
U (=, L p)| < 2YH4N + 1)1 FE_’;; ‘ (L+1Inp)). (6.25)

This gives us the required bound on the Green’s functiol’Mor 1 < x < N, and
2|z — 712 < 1,

2 !
|GS(Z, Z/)| = ?KIF(—x)|2N+4(N +D!A+|In2k|z — Z/|2)|)€_K‘Z_Z 12

< kCVNY D (=) (L + | In2k|z — 2P |)e =17, (6.26)

7. Appendix B. Regularity of u

Definition. A probability measure: on R is said to ber-regular, witht € (0, 1], if
there existy > 0 andC < oo such that

w(x =8, x+8) <C8 u(x —v,x+v)) (7.1)

forallx e Rand0 < § < 1.
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Note that it is equivalent to requiring that there exists 0 andC < oo such that
w(lx =38, x+8) <C8"u(lx —v,x +v)) (7.2)

forallx € Rand 0< § < v. We shall prove this with = 1. Recall that the probability
measureug has support is an interv@h-a, a] with a < oo. ug is symmetric about
the origin and that its density is differentiable on—a, a) and satisfies the following
condition:

A= sup po_(<:) <00 (7.3)
¢€(0,a) 0o(¢)
If BCR, u(B)=po({w : 1/w € B}) and the density ofi, p, is given by
1
p(x) = p"(xz/x). (7.4)

Since in our casg is symmetric about the origin, it is sufficient to prove (7.2)fo¢ 0.
Also it is easy to see that the following condition is sufficient for (7.2) with 1.
There exists v > 0 and C < O such that

p(x+1) < Cp(x +1) (7.5)

forallx e Ry, —v <t <t<v.
Then
v

u(x —38,x + 48] = %/ px + %t)dt

-V

S(C+1 v )
< w/ p(x + —1)dt
v 0 v

- s(C+1C
v

s§(C+1C
= %u([x, x +v]). (7.6)

Letb=1/a. f0 <x <b—1t,thenp(x +¢)=0.1fx > b — ¢, then
- 05()

/U p(x +1)dt
0

In po(1/(x + 1)) —In po(L/(x +1)) = G IDG D 200 (7.7)

where¢ € (1/(x + 1), 1/(x +t)). Thus
Inpo(1/(x +t)) —In po(1/(x + 1)) < max(, %). (7.8)

Therefore, withC’ = exp(max(0, %)),
po(1/(x +1)) < C'po(1/(x +1)). (7.9)

But

2 2
X+t b+ 2v
. 7.1
<x+t’) S( b ) (7.10)
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Thus the inequality (7.5) is satisfied with= C’ (”7“%)2. Finally note that

/|x|€,u(dx) = / |x| "€ po(x)dx < oo (7.11)

for all ¢ < 1 sincepg is continuous at the origin.
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