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Abstract— This paper compares bit v.s. symbol
interleaving for parallel-concatenated trellis-coded
turbo codes, employing the turbo encoder structure
proposed in [1]. To compare systems optimized with
the same techniques, the paper extends the turbo-
encoder design procedure proposed in [2] to bit-
interleaved systems. We discuss a method to jointly
design the multiple required interleavers for the bit-
interleaved system, and a procedure to select con-
stituent encoders that can take advantage of the in-
terleaver structure to achieve a low error floor.

Simulation results for the designed bit-interleaved
system show better performance than bit-interleaved
performance reported in the literature. The symbol-
interleaved system though achieves an earlier conver-
gence, especially with an increased number of decoder
iterations, but at the cost of a slightly higher error
floor.

I. INTRODUCTION

The purpose of this paper is to compare bit v.s.
symbol interleaving for parallel-concatenated trellis-
coded turbo codes (PCTCM), with constituent en-
coders of rate

�����
,
�����

.
The turbo encoders for trellis-coded modula-

tion proposed in the literature employ either bit-
interleaving, where

�
bit interleavers keep the bit-

streams separate [1], or symbol interleaving [3], [4],
[2], where the

�
binary inputs are treated as one sym-

bol over the extension field	�
������� .
The performance difference among these turbo

encoders does not allow a fair comparison between
bit and symbol interleaving since each approach in-
cludes additional design choices, such as the con-
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Fig. 1. Symbol-interleaved� bits/sec/Hz PCTCM turbo
code with rate����� constituent encoders
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Fig. 2. Bit-interleaved� bits/sec/Hz PCTCM turbo code
with rate ����� constituent encoders

stituent encoder, interleaver, and iterative decoding
implementation.

In [2] a careful turbo encoder design for symbol-
interleaving achieved a performance advantage over
the symbol and bit interleaved systems previously
reported in the literature. The turbo encoder struc-
ture in [2], combined the bit-interleaved encoder
structure in [1] with a symbol interleaver. Fig. 1
and 2 show an example of the bit and symbol in-
terleaved turbo code in [1] and [2] respectively, that
employ � PSK modulation in connection with rate� ���

constituent encoders, each with� ��� � system-
atic and � �

parity outputs.

This paper extends the design procedure proposed
in [2] to the initial bit-interleaved system in [1],
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which makes possible comparison of bit vs. symbol
interleaving in two systems that are optimized by the
same techniques and employ the same basic struc-
ture. Moreover, the performance of the designed
bit interleaved system is compared to previously re-
ported bit-interleaved results in the literature.

The turbo encoder design consists of two com-
ponents, the interleaver design and the constituent
encoder design, which are examined in Sections II
and III respectively. More specifically, Section II
proposes to jointly design the multiple interleavers
required for a bit-interleaved system, and presents a
semi-random interleaver construction method. Sec-
tion III investigates a method to select the con-
stituent encoders that leads to a lower error floor.
Section IV presents simulation results, and Section
V concludes the paper.

II. M ULTIPLE INTERLEAVER DESIGN

The role of the interleaver is to lower the error
floor, as is called the flattening of the bit error rate
curve turbo codes exhibit for moderate to high val-
ues of SNR. The error floor depends upon the free
distance of the turbo code. The error events with
small number of inputs typically determine the free
distance, thus the interleaver is designed to avoid
them.

An interleaver of length! is completely de-
scribed by a mutually exclusive and collectively ex-
haustive listing of the integers from

�
to ! . Define" �$#%� to be the integer in the#'&)( position in the list.

The input symbol in position# before interleaving is
in position

" �$#%� after interleaving.
The spread interleaver is described in [5] as a

semi-random interleaver based on the random selec-
tion without replacement of! integers from

�
to !

under the following constraint.

Constraint 1 Reject the #'&)( randomly selected inte-
ger

" �$#%� if there exists *+,# , such that
- +,#/.0*132/465 " �$#7�8. " �9*:��5;132 �=< (1)

An extension of the spread interleaver [2], [6]
takes into account multiple error events, by impos-

ing two additional constraints on the interleaver con-
struction

Constraint 2 Reject the #>&)( randomly selected inte-
ger

" �$#7� if there exist *�? � ?A@B+C# , such that

- +C#/.0*1CD/4 5 " �$#%�8. " � � ��5;1ED �- +F5 � .G@H5;1ED/4 5 " �9*I�8. " �J@'��5I1ED ��<
Constraint 3 Reject the # &)( randomly selected inte-
ger

" �$#7� if there exist *�? � ?A@%?HKG? � +C# , such that:

- +,#L.0*M1CN 4 5 " �$#%�O. " � � ��5P1EN �- +Q5 � .G@A5P1CN�4 5 " �9*:�8. " �$KR��5I1,N �- +Q5 KS. � 5I1CN�4 5 " � � �T. " �J@���5I1,N �

Bit-interleaved systems for high spectral effi-
ciency typically employ

�U�V�
parallel bit inter-

leavers, as for example in Fig.1. The above criteria
can be applied to individually create each required
interleaver independently. However, to avoid error
events with inputs that span different interleavers,
the same design criteria can be applied across the
interleavers, in a joint multiple interleaver design.

We propose to sequentially design the inter-
leavers, where each new interleaver has to satisfy
not only constraints applied on itself, but also con-
straints with respect to the already constructed inter-
leavers.

Let
"XW

, Y � � <�<�< � denote the
�

different inter-
leavers, and assume that the@;. � , @ ���

interleavers
are already constructed. The first constraint can be
applied across the interleavers to create the

"�Z
inter-

leaver as

Constraint 4 For the @ �[�
interleaver, the # &)( ran-

domly selected integer
"�Z �$#%� must be rejected if there

exists * and
"XW

, YR+\@ , such that

- +F5 #T.0*]5P1^2/4'_ 5 "�Z �$#7�8. "XW �9*:��5�132 � _ <
(4)

The extension is straightforward for the second and
third constraints.
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High values of2 , D , and N help the interleaver
to avoid more error events and thus achieve a lower
error floor [7], but make more difficult to identify an
interleaver that satisfies them. We propose a semi-
random interleaver construction technique that al-
lows interleavers that achieve substantial values of
2 , D , and N in practice.

A. Construction Procedure

A uniform interleaver of length! is created
by randomly selecting without replacement integers
from

�
to ! with equal probability. For a semi-

random interleaver the randomly selected integers
need to satisfy a set of constraints. This subsec-
tion presents a technique for constructing such in-
terleavers.

The generation of a length! interleaver consists
of ! steps, where each step selects an integer for
the respective position. At the#'&)( step of the inter-
leaver generation the interleaver contains#`. �

as-
signed numbers and there exist!a.b#�c � unassigned
numbers. Randomly select one of the!\.�#dc � unas-
signed numbers with equal probability, for example
number* . Check if placing number* at interleaver
position # violates any of the imposed constraints.
If it does not violate any constraints, then continue
with the next step#:c � . The procedure described up
to this point was proposed by Divsalar et al. [5]. We
extend it as follows:

If * does violate a constraint, try to place it in be-
tween two other previously assigned indices. Uni-
formly choose one of the# candidate positions and
check if placing * there violates any of the con-
straints. Continue until either all previously assigned
assigned indices have been examined or a suitable
position is found. If there does not exist an appro-
priate position, repeat for a number selected among
the unassigned and not already examined!,.e# num-
bers

�
,
�gf� * .

III. C ONSTITUENT ENCODER DESIGN

Let hIi denote the minimum output weight for in-
put Hamming weight equal toj . Typically in the

literature, the constituent encoders are required to
have infiniteh;4 and optimized for effective distance
h � [8]. Because many encoders achieve the optimal
h � , a more refined search may examine the distance
for additional small input weights such ashlk , h�m etc.

This method to assess the performance examines
only the minimum output weight, and does not take
into account how the output weight varies with the
error event length.

However, to achieve a low error floor using the
interleaver designed in Section II, it is important
that the output weight increases with the error event
length, so that further dispersing the inputs may lead
to increased output weight. More specifically, for
semi-random interleavers constructed to satisfy spe-
cific constraint parameters (see Sec. II), the free dis-
tance of the overall turbo encoder depends on the
minimum output weight of small input-weight error
events with length greater than the constraint param-
eters.

The typical approach for turbo code design se-
lects constituent encoders and then designs the inter-
leaver(s) specifically tailored to the constituent en-
coders. In this paper we propose a reversed proce-
dure. First, for a specific interleaver length identify
a semi-random interleaver that satisfies constraints
with as high parameters2on , Don , Npn ([2], [9]) as pos-
sible. Consider one interleaver, since the extension
to a set of jointly designed interleavers is straightfor-
ward.

Let h iAq Z denote the minimum output weight for
error events with input weight equal toj and error
event length greater than@ . To calculateh iHq Z it is
sufficient to calculate the output distance for error
events of length up to@]c3� _ , whereK is the num-
ber of memory elements for the encoder.

Identify the set of encoders (for example using the
search space proposed in [2], [10]) with infiniteh 4
that achieve the highesth � , and have goodhlk , h�m dis-
tance properties. The set of such encoders is usually
large. Among them, the encoders with the largest
h � q rts , h � q uts and h � q vTs distance lead to a higher over-
all free distance with the selected interleaver, and
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thus a lower error floor.
An additional good property of a constituent en-

coder is that the output weight increases with the
error event length, for small input weights. This
implies that small input weight error events do not
contain a zero-input zero-output loop, which can be
checked for example by examining whetherh � q �Hw +
h � q � wyx;z . The codes presented in the simulation re-
sults were designed with this procedure.

IV. SIMULATION RESULTS

This section provides simulation results for
�

bits/sec/Hz employing{ � -QAM � �}|~� -PAM and
� bits/sec/Hz employing� -PSK.

Table I contains in octal notation codes identified
through exhaustive search, for the� -PAM reordered
labeling � - � � � {R� �g�:� , optimized for squared
Euclidean distance. The encoder polynomials are as
described in [2]. Fig. 3 plots the performance for a

�
-

bits/sec/Hz/ turbo code employing� -PAM with the
first encoder in Table I. The encoder employed four
interleavers of length

� ? -�� { bits each, designed ac-
cording to the procedure described in Section II with
parameters (2 ,D ,N , 2o_ )=(

� -
,
�
,
�
, � - ). The same plot

shows the performance of the bit-interleaved sys-
tem in [1] and the symbol-interleaved system in [2].
The proposed bit-interleaved encoder performs bet-
ter than the encoder in [1], and has a lower error floor
than the symbol-interleaved system in [2]. How-
ever, the symbol-interleaved system converges ear-
lier. Symbol interleaving imposes less constraints
on the iterative decoding, as argued in [2].

Fig. 4 plots for � bit/sec/Hz and � -PSK (la-
beling � - � � � { � � �:�

), the perfor-
mance with bit-interleaving and constituent en-
coders � - �P� ? - {I? - ��� ? - � �I? - � �:? - �:? - � �
and the performance with symbol-interleaving in
[2]. The four bit interleavers of length� � -�- were
designed with parameters (2 ,D ,N , 2�_ )=( � - ,� ,- , � - ).
Again the symbol-interleaved system converges ear-
lier. Fig. 5 shows that the designed bit-interleaved
system performs better than the bit-interleaved sys-
tem in [1].
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Fig. 3. � bits/sec/Hz/ turbo code employing� -PAM.
Capacity ������� dB. Constrained Capacity�l� � dB. In-
terleaver length�l�����t� symbols. Input block size�l�%�t������� bits.
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TABLE I
ENCODERS FOR����� PAM= ��� QAM

�
encoder polys

1 � - �P� ? - � ? - � ? - ��� ? - � �P? - � � ? - � �
2 � - � � ? - � ? - �:? - ��� ? - � � ? - � ? - � �
3 � - � � ? - � - ? - � �I? - � � ? - � �:? - � �P? - � �
4 � - ���:? - �I? - � ? - �:? - � - ? - �I? - � �
5 � - � � ? - �I? - � ? - �:? - � {I? - � {P? - � �
6 � - ���:? - � ? - � - ? - ��� ? - � {I? - �t� ? - � �� h � hlk h � q � h � q�4>�
1 1.14(4) 0.38(7) 1.143 1.9
2 1.14(4) 0.38(7) 1.143 1.9
3 1.14(4) 0.38(7) 1.143 1.9
4 1.14(4) 0.38(4) 1.143 1.9
5 1.14(4) 0.38(4) 1.143 1.9
6 1.14(4) 0.38(4) 1.143 1.9� h � q � � h � q kH� hlk�q � hlk�q�4>�
1 2.67 3.42 0.76 1.14
2 2.67 3.42 0.76 1.14
3 2.67 3.42 0.76 1.14
4 2.67 4.19 0.76 1.14
5 2.67 4.19 0.76 1.14
6 2.67 4.19 0.76 1.14

V. CONCLUSIONS

We presented a method to select constituent en-
coders and jointly design the interleavers for a bit-
interleaved trellis-coded modulated turbo encoder.
The designed system performs better than the bit-
interleaved approach in [1]. However, a symbol-
interleaved system optimized with the same tech-
niques [2] can converge earlier at the cost of a
slightly higher error floor.
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