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Abstract— We consider a multicast configuration with
two sources, and translate the network code design prob-
lem to vertex coloring of an appropriately defined graph.
This observation enables to derive code design algorithms
and alphabet size bounds, as well as establish a connection
with a number of well-known results from discrete mathe-
matics that increase our insight in the different trade-offs
possible for network coding.

I. INTRODUCTION

Network coding is an emerging area in coding
theory which attempts to make connections between
algebraic tools used in coding and information
transmission on communication graphs. The min-
cut, max-flow theorem states that a source node can
send a commodity through a network to a sink node
at the rate determined by the flow of the min-cut
separating the source and the sink. By min-cut we
refer to the minimum number of edges we need
to remove to disconnect the source and the sink.
Recently, Ahleswede et al. [1] have shown that if
the nodes in the network can decode and re-encode
incoming bits, the min-cut rate can be also achieved
in multicasting to several sinks. Shortly afterwards
Li et al. [2] showed that linear coding suffices to
achieve the optimal rate.

This area is expected to attract research interest
and have a significant impact on network manage-
ment and design. Indeed, preliminary studies show
that network coding may increase the achievable
multicast throughput by significant amounts. Thus
deployment of network coding could help better ex-
ploit shared resources such as Internet connections
or wireless bandwidth.

Moreover, from a theoretical point of view, this
is a very attractive interdisciplinary study area that
poses interesting questions across diverse areas such
as information theory [1], [3], algorithms [4], [5],
algebra and coding theory [6], and graph theory [2].
In this paper we continue this trend by establishing
connections with coloring problems for graphs.

We restrict our attention to a multicast configura-
tion with

�����
sources. Some of the results extend

in higher dimension (
�����

sources) as is discussed
in [7]. Moreover, algorithms for

�����
sources can

be used as a basis to develop suboptimal algorithms
for the case

���	�
.

We start by relating the network code design
problem to the problem of coloring an appropriately
defined graph. A crucial step in facilitating the
connection is the subtree decomposition method.
Since this method is interesting in its own, it is
described first. With this starting point, we propose
code design algorithms, derive alphabet size bounds,
and apply a number of well-known results from
discrete mathematics to increase our insight into
network coding.

The paper is organized as follows. Section II
describes our notation and reviews the subtree de-
composition. Section III establishes the connection
with coloring. Sections IV, V, and VI discuss com-
binatorial results.

II. SUBTREE DECOMPOSITION

The subtree decomposition can be thought of
as keeping only the “sufficient information” of the
underlying graph structure that is necessary for the
network code design. The main idea is that we can
“group together” the parts of the network through
which the same information flows. Thus, starting
from an arbitrary graph, we map it to a graph with
a much smaller number of edges and vertices, and
still retain all the necessary information for the code
design.

A. Subtree Graph

Consider an acyclic directed graph 
 ����������
with unit capacity edges that models a communica-
tion network. Let

�
unit rate information sources����� ��������� �����

located on the same vertex simul-
taneously multicast information to  receivers�"!#� ��������� !%$&�

. Assume that the min-cut between the
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source and each receiver is greater or equal to
�

(min-cut condition).
In linear network coding through each edge �

of 
 flows a linear combination of the sources.
We refer to the vector of linear coefficients � � � �
as the coding vector associated with edge � . The
coding vector of an output edge of a node lies in
the linear span of the coding vectors of the node’s
input edges. The network code design problem is to
select a coding vector for each edge of the network
so that each receiver has a full-rank system of linear
equations to solve. Throughout this discussion we
use the example in Fig. 1, which is an example of a
network topology with two sources multicasting to
the same set of three receivers.

S2S1

A B C

D

G

H K

F

E

Receiver 3

Receiver 2

Receiver 1

Fig. 1. Topology with two sources �������	��
� and three receivers����	������� .

For a given graph G, the associated line graph� � 
 � is the graph with vertex set
� � 
 � in which

two vertices are joined if and only if they are
adjacent as edges in 
 . The line graph for the
example in Fig. 1 is depicted in Fig. 2.
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Fig. 2. Line graph that illustrates the coding points ��� and � �
and the subtree decomposition.

Without loss of generality we may assume that

the line graph contains a node corresponding to
each of the

�
sources. We refer to these nodes as

source nodes. Each node with a single input edge
merely forwards its input symbol to its output edges.
Each node with two or more input edges performs
a coding operation (linear combination) on its input
symbols, and forwards the result to all of its output
edges. We refer to these last nodes as coding points.
We also refer to the node corresponding the last
edge of the path

� �"! � !$# �
, as the receiver node for

receiver
!%#

and source
�"!

. For a configuration with�
sources and  receivers there exist

�  receiver
nodes. For example, in Fig. 2,

� �&
and

� ')(
are

source nodes, *,+ and 
.- are coding points, and&0/
, - /

, -21 , +31 , + � and
( �

are receiver
nodes.

We partition the line graph into a disjoint union
of subsets 4 ! so that the following properties hold:

1) each 4 ! contains exactly one source node or
a coding point, and

2) every other node belongs to the 4 ! containing
its first ancestral coding or source node.

It is easy to see that the above conditions imply the
following:
5 each 4 ! is a tree because the only nodes with

two or more input edges in the line graph are
the coding points,5 the same linear combination of source symbols
flows through all the nodes that belong to the
same 4 ! .

We shall call the subset 4 ! a source subtree if it
starts with a source node or a coding subtree if it
starts with a coding point. Fig. 2 shows the four
subtrees

� 4 � � 4 ' � 4"6 � 487 � of the network in Fig. 1;
4 � and 4 ' are source subtrees, 4"6 and 487 are coding
subtrees.

For the network code design problem, we only
need to know how the subtrees are connected and
which receiver nodes are in each 4 ! , whereas the
structure of the network inside a subtree does not
play any role. Thus we can contract each subtree to
a node and retain only the edges that connect the
subtrees, to get the subtree graph 9 .

Indeed, all nodes inside each 4 ! share the same
coding vector, which we denote by � � 4 ! � . Thus, the
network multicast problem is reduced to assigning
an
�

-dimensional coding vector � � 4 ! � to each sub-
tree 4 ! , which will be observed by all receivers that
have receiver nodes contained in 4 ! , so that each
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receiver has a full-rank system of linear equations to
solve. We refer to an assignment of coding vectors
that achieves this goal as a valid network code.

The subtree graph for our example network of
Fig. 1 is shown in Fig. 3. The receiver nodes
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Fig. 3. Subtree Graph.

corresponding to source-receiver pairs inside each
subtree are represented pictorially in Fig. 3. An
example of a valid network code is

� � 4 � ����������� � � 4 ' � ���	�
��� � � 4 6 � �������� � � 4 7 �����	�������
The fact that the min-cut condition is satisfied
for every user imposes structural properties on the
subtree graph. More specifically,
5 for each receiver

!%#
, the

�
receiver nodes,

corresponding to the last edges on the paths� � ! � ! # �
,
������� �

, belong to distinct subtrees.
Thus,5 each subtree contains at most  receiver nodes.

In particular, we see that the number of subtrees is
at least

�
.

B. Minimal Subtree Graphs and Their Properties

We define minimal subtree graphs as:
Definition 1: A subtree graph is called minimal

with the min-cut property if removing any edge
would violate the min-cut condition for at least one
receiver.
We can think of minimal subtree graphs as graphs
where no subtree can be assigned the same coding
vector as one of its parents.

Minimal subtree graphs have structural proper-
ties, that follow directly from the Definition 1. Here
we present the properties that we are going to use
in our discussion. Proofs can be found in [7].

Lemma 1: Consider a minimal subtree graph.

5 For all valid assignments of coding vectors the
vectors assigned to the parents of any given
subtree are linearly independent.5 Each coding subtree has at least

�
and at most�

parent subtrees.5 Assume a coding subtree has � parents, �
children and contains � receiver nodes. Then� � ����� . For example, for � ���

, ����� , that
is, a coding subtree with no children contains
at least as many receiver nodes as parents.5 In a minimal configuration with

� � �
sources

each coding subtree contains at least two re-
ceiver nodes.

III. CONNECTION WITH COLORING

Coding vectors for networks with
�

sources live
in the

�
dimensional space � �� . Since in network

coding, we only need to ensure that the coding
vectors assigned to the subtrees having receivers
in common be linearly independent, it is enough
to consider only the vectors in the projective space�! � �#"�� �%$ �

defined as follows:
Definition 2: The projective

���&"'� �
-space over� � is the set of

�
-tuples of elements of � � , not all

zero, under the equivalence relation given by�)( � �����*( � �,+-�/.0( � �����1.0( � ���2.43�5� �6.&7 � � �
For networks with two sources, it is sufficient to
consider the points on the projective space of di-
mension 1, i.e., the projective line

�! �8� �*$ �
�	�9��� �����:�����

and
���:; ! �

for
�<���=��$>" � �

(1)

where
;

is a primitive element of �
�
. Any two

different points on the projective line
�! �?� �*$ �

form
a basis for � '� . Geometric objects that have that
property are known as arcs. In combinatorics, arcs
correspond to vectors in general position:

Definition 3: Set @ of vectors in � �� are said to
be general position if any

�
vectors in @ are linearly

independent.
Lemma 2: ([8, Chapter 11]) Let A � � �%$ � denote

the maximum number of points in general position
in an

�
-dimensional space over a finite field

/ �
where

$
is a prime power and

� � � . Then

A � � � � �%$ ���B$ � � �
A � � �%$ � � $ � � � C � � �

To conclude, to design a network code for
� ���

sources, we need to assign a
�
-dimensional coding

vector over
/ �

to each subtree. Without loss of
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generality, we can restrict the coding vectors we
employ to belong to the set of vectors in general
position described by Eq. (1).

We can equivalently think of the
$ � �

vectors
in Eq. (1) as colors, and require that every receiver
observes two different colors. Thus we can relate the
problem of designing a network code to the problem
of vertex coloring of a suitably defined graph � that
we describe in the following.

Let 9 be a minimal subtree graph with
C � �

number of vertices (subtrees);
C " �

is the number
of coding subtrees. Let � be a graph with

C
vertices,

each vertex corresponding to a different subtree in
9 . We connect two vertices in � with an edge when
the corresponding subtrees cannot be allocated the
same coding vector.

More specifically, if two subtrees have a receiver
node in common, they cannot be allocated the
same coding vector. We connect the corresponding
vertices in � with an edge which we call receiver
edge. Similarly, if two subtrees have a common
child, from Lemma 1 they cannot be allocated the
same coding vector. We connect the corresponding
vertices in � with an edge which we call a flow
edge. Fig. 4 plots � for our example subtree graph.
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Fig. 4. Graph 
 and the associated graph � . Next to each receiver
edge in graph � we denote the corresponding receiver.

A coloring is an assignment of colors to the
vertices of � such that no two adjacent vertices have
the same color. Thus, designing a valid netword
code is equivalent to identifying a coloring for � .

IV. ALGORITHMS FOR CODING

In the previous section we established that for the� ���
case, the algorithms for network code design

are equivalent to algorithms for coloring the graph

� . Thus, we can traslate all algorithms for coloring
of � to algorithms for designing a network code for
the corresponding minimal subtree graph 9 . In the
following we briefly discuss some straightforward
approaches.

Case 1: no information

Given the number of receivers  , we can upper
bound the number of vertices of � as follows.

Lemma 3: For a multicast configuration with  
receivers, the graph � has at most  � � vertices.

Proof: For
��� �

each receiver contributes two
receiver nodes. For a minimal subtree graph each
coding subtree contains at least two receiver nodes,
and at least one of the source subtrees contains one
receiver node. Since there exist exactly

�
source

subtrees and at most  " �
coding subtrees, � has

at most  � � vertices.
Thus, if we use an alphabet of size

$ �  , we
have  � �

available colors and we can assign to
each vertex of � a different color. The correspond-
ing algorithm (on the minimal subtree graph) would
be to sequentially visit each subtree and assign to
it one of the unused colors. This is a completely
decentralized algorithm, since the color assigned
to a subtree does not depend on the overall graph
structure.

One of the main advantages of decentralized
codes is that they do not have to be changed with
the growth of the network as long as its subtree
decomposition remains the same. In some cases
even the codes which are not decentralized can
remain the same, and the subtree decomposition
method shows us how to ensure that. For more
information, see [7].

Moreover, note that if we are employing a set&
of coding vectors over a finite field

/
, and we

need to increase the number of coding vectors to
accomodate additional users, we can always add
coding vectors to the set

&
from an extension field

of
/

, and operate over the extension field.

Case 2: partial information

Having some information about the structure of
the underlying graph can help reduce the number
of colors employed and design new algorithms. The
authors in [3] have derived alphabet size bounds in
this direction. For example, if we know the number
of vertices of � , we can use this number to upper
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bound the number of colors we need in the previous
algorithm.

Similarly, we may know what is the maximum
number of receiver nodes inside a subtree, that
is, what is the maximum number of receivers that
observe the same coding vector. For the graph � ,
this quantity corresponds to � � � � , where � � � � is
defined as the maximum degree of its vertices, and
the degree � ! of vertex

�
is the number of edges

adjacent to it.
The greedy coloring algorithm ([9], pg.98) se-

quentially visits the vertices of the graph and col-
ors each vertex with a color not already used to
color any of its neighbors. This algorithm uses a
maximum of � � � � � � colors. Thus, the maximum
alphabet size required would be

$ � � � � � .

V. ALPHABET SIZE BOUND

In the previous section we discussed algorithms
where we have partial or no information about
the underlying graph structure. If we have perfect
knowledge of the graph structure we can calculate
the exact number of colors we need. For example,
if no network coding is required, a binary alphabet
is sufficient. In this section we calculate an upper
bound on the alphabet size a particular configuration
may require.

We prove that an alphabet size proportional to�  is always sufficient for any configuration with
two sources and  receivers, that is, we will never
need a larger alphabet size. This upper bound is
tight in that there exist configurations that achieve it.
The best previous result upper-bounded the required
alphabet size by  [4].

To prove that an alphabet of size
$

is sufficient,
we can equivalently prove (Lemma 2) that � � $ � �
colors are sufficient to construct a coloring for � .

Lemma 4: For a minimal configuration with
C �

�
, every vertex

�
in � has degree at least two, that

is, � ! ��� ��� � for some � � � .
Proof:

1) Source subtrees: If
C � �

, the two source
subtrees have exactly one child which shares
a receiver with each parent. If

C ���
, the two

source subtrees have at least one child which
shares a receiver or a child with each parent.

2) Coding subtrees: Each coding subtree has two
parents. Since the configuration is minimal it
cannot be allocated the same coding vector

as any of its parents.This implies that in �
there should exist edges between a subtree and
its parents, that may be either flow edges, or
receiver edges, and the corresponding vertex
has degree at least two.

Lemma 5: ([10], chapter � ) Every � -chromatic
graph has at least � vertices of degree at least � " � .

Theorem 1: For any minimal configuration with��� �
sources and  receivers, we can employ

alphabet �
�

of size$��	��
 �  "����� � ��� ��� (2)

This bound is tight, that is, there exist configurations
that achieve it.

Proof: Assume that our graph � has
C

nodes
and chromatic number � � � � � � � C

. Let � �C " � , where � is a nonnegative integer.
We are going to count the degree of the vertices

in � in two different ways:
1) Required degree to have chromatic number �

and a minimal configuration with
C

nodes.
From Lemmas 4 and 5, we can lower bound
the sum of the degree of the vertices of � as�

� ! ��� � � "�� � � ��� ��� � � � (3)

for some � � � .
2) Provided degree from the flow edges and the

receiver edges. We have  receivers and
C "��

coding subtrees, which implies that we have
 receiver edges and

C " �
flow edges. Thus�

� ! � � �  � C " � � ��� �  ��� ��� " � � �
(4)

From Equations (3) and (4) we get that

 � � � � "�� �� " � � � ����� � (5)

This equation provides a lower bound on the number
of receivers we need in order to have chromatic
number � . Solving for

$ � � " � to get the bound
for � � �

.
If � ���

then
C � � and � is a complete graph

with
C � � � $ � �

vertices and
� � � � � ������� � �'

edges. We can construct such a configuration with
 � ������� � �' " � � � receivers and � "�� flow edges.
Thus the bound is tight.
This bound offers a benchmark to evaluate the
performance of different labeling algorithms with
respect to the employed alphabet size.
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VI. APPLICATION OF OTHER RESULTS

Once the connection with coloring is realized,
a number of combinatorial results can be readily
applied. We present here some of the most exciting
ones, and refer the interested reader to (chapter 7,
[11]) and [12] and the references therein.

A. Min-cut alphabet-size trade-off

The bound in Eq. (2) expresses the connection
between required alphabet size and maximum pos-
sible number of users to accomodate. An underlying
assumption of this bound is that the min-cut towards
each user is exactly equal to the number of sources.
We would expect that, if the min-cut towards some
or all of the users is greater than the number of
sources, a smaller alphabet size would be possible.

For the special case where the subtree graph is a
bipartite graph, we can readily apply the following
result.

Consider a set of points � and a family
/

of
subsets of � . A coloring of the points � is legal
if no subset of

/
is monochromatic. If a family

admits a legal coloring with
$

colors then it is called$
-colorable.

Theorem 2: (Erdös 1963) Let F be a family of
sets each of size at least � . If � / ��� $�� � �

then
/

is
$
-colorable.

In our case, � is the set of coding subtrees, � is
the min-cut from the sources to each receiver, and
each subset of

/
corresponds to the subtrees that a

receiver observes. We want to find a coloring such
that each receiver observes at least

�
different colors,

i.e. has a basis of the
�
-dimensional space. Theorem

2 tells us that by increasing the min-cut � we can
accomodate the same number of users  � � / � with
a smaller alphabet size (alphabet size=

$6"��
).

An algorithm for identifying a legal
$
-coloring

can be found for example in [13].

B. Almost good codes

Again we consider the case where the subtree
graph is bipartite. Assume that a legal coloring does
not exist. The question here is, what is the maximum
number of legally colored subsets that we can have.

Theorem 3: (chapter 19, [12]) For every � -
uniform family

/
there exists a

$
-coloring of its

points which colors at most � / � $ � � � of the sets of/
monochromatically.

A family of sets is � -uniform if all its members
have size � . Thus if we have � / � �  receivers,
the min-cut to each receiver is � , and we use an
alphabet of size

$ " �
, at most  $ � � � receivers will

not be able to decode.

C. Structural Information

As discussed in Section IV, if we have some
information about the structure of the underlying
graph we should be able to derive bounds that
apply to specific configurations. Again there is also
a number of results in extremal combinatorics, such
as the following theorem.

Theorem 4: (Erdös-Lovasz 1975) If every mem-
ber of a � -uniform family intersects at most

$�� � 6
other members, then the family is

$
-colorable.

Thus if the min-cut to each receiver is � , and every
coding subtree is observed by at most

$ � � 6 � �
receivers, then it is sufficient to use an alphabet of
size

$ � � , irrespective of the number of receivers.

VII. CONCLUSIONS

In this paper we established a connection between
network coding and coloring, used this connection
to propose code design algorithms and alphabet size
bounds, and pointed out a number of interesting
results applicable in the area.
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