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Abstract— Within the field of multi-robot systems, multi-robot  if systematic experimentation is necessary. This linotatino-
search is one area which is currently receiving a lot of reseah tivates the use of abstracted models which uses approxinsati
attention. One major challenge within this area is to design of details of the system which have little impact on the teegde
effective algorithms that allow a team of robots to work toge¢her h tri Such del be divided into t
to find their targets. Recently, techniques have been adopde per.ormance.me res. suc .mo gs can be diae .|n 0 wo
for multi-robot search from the Particle Swarm Optimization Main categories: macroscopic, which model the robotic swar
algorithm, which uses a virtual multi-agent search to find as a whole, and microscopic, which model each robot sepa-
optima in a multi-dimensional function space. We present hee a  rately. However, within these categories, there furthdstex
multi-search algorithm inspired by Particle Swarm Optimization. multiple abstraction levels which may differ significanily

Additionally, we exploit this inspiration by modifying the Particle . : . .
Swarm Optimization algorithm to mimic the multi-robot sear ch their computational complexity. It can be very beneficiaise

process, thereby allowing us to model at an abstracted levehe @ Multiple abstraction level modeling methodology to allow
effects of changing aspects and parameters of the system &uc for easy tuning of model parameters and fast experimemtatio
as number of robots and communication range. (see for example, [2], [11], [14], [16]). However, develogi
accurate abstracted models can be a very difficult task foeso
multi-robot scenarios, as it may not be immediately obvious
Locating one or more targets within an unknown envirorwhich aspects of the system can be ignored or approximated
ment is a task well-suited to mobile robotics. Robots can lygven the targeted performance metrics.
equipped with sensors to detect targets and programmed t®article Swarm Optimization (PSO) is a promising new
explore the area in search of their goal(s). The automategtimization technique developed by James Kennedy and
nature of this approach may save a lot of time and effort &ussell Eberhart [7] [12] which models a set of potential
compared to other search methods. Robotic search is ebpecigroblem solutions as a swarm of particles searching in a
preferable when the area is either hazardous or inaccessibiitual space for good solutions. The method was inspired
to humans. Examples include locating mines for de-minirtgy the movement of flocking birds and their interactions
[1]. [8], finding victims in a disaster area [10], and plamgta with their neighbors in the group. Every particle in the
exploration [13]. swarm begins with a randomized position;) and (possibly)
Using a swarm-intelligent robotic approach in search taskandomized velocity(v;) in the n-dimensional search space,
can offer several major benefits over the single robot adterrwhere z; ; represents the location of particle indéxn the
tive. Searching can be done massively in parallel, sigmflga j-th dimension of the search space. Candidate solutions are
decreasing the time taken to locate targets and improviogtimized by flying the particles through the virtual space,
robustness against failure of single agents by redundascyvath attraction to positions in the space that yielded thstbe
well as individual simplicity. The scalability of the syste results. Each particle remembers at which position it acde
provides a simple method to further increase the rate aitslhighest performancer; ;). Every particle is also a member
robustness by adding more agents. The system is also leksome neighborhood of particles, and remembers which
prone to poor decision-making, as the swarm provides mquarticle achieved the best overall position in that neighbod
sensory and environmental information than a single rob@iven by the indexi’). This neighborhood can either be a
can. This could allow for a more informed choice, whiclsubset of the particles (local neighborhood), or all theiglas
can further increase the speed at which the swarm operatgtobal neighborhood). For local neighborhoods, the stathd
Although search has been well-explored in the past [3],qusimethod is to set neighbors in a pre-defined way (such as using
multi-robot systems for search is a more recent developmeairticles with the closest array indices as neighbors nwdul
and has not yet been studied extensively. the size of the swarm, henceforth known as a “ring topology”)
A significant amount of time is often needed to colleategardless of the particles’ positions in the search space.
experimental data with multi-robot systems. Even realistGlobal neighborhoods tend to be favored for problems where
models of the system, such as sensor- and actuator-baiseahediate convergence is desired, while local neighbadkoo
simulation, may require large quantities of computatidimé are preferable for problems with local optima where a purely
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greedy algorithm may become stuck. The equations execuseérch, it can be used to explore the effects of changing

by PSO at each step of the algorithm are: the parameters of the system using only a fraction of the
. computational resources of our realistic sensor- and tmtua
vij = w-vij+pw-rand() - (z7; - i) based microscopic model.
+ nw - rand() - (z} ; — i 5)
Ti; = Tij+vij A. Multi-Robot Search Using PSO

where w is the inertia coefficient which slows the velocity OUr PSO-inspired multi-robot search algorithm is motidate
over time to prevent explosions of the swarm and ensup¥ USing a one-to-one matching between particles in the PSO
ultimate convergencew is the weight given to the attractionSWarm and robots in the multi-robot system. We assume
to the previous best location of the current particle and that our robots can communicate amongst themselves. We
is the weight given to the attraction to the previous bed{SO initially assume they have perfect knowledge of their
location of the particle neighborhoodand() is a sampling location m_t.he.envwonmen_t, either via GPS or some other
of a uniformly-distributed random variable [, 1]. global positioning mechanism (an implementation of PSO-

The parallel between the multi-agent search in the robof[¢SPired search without this constraints will be introduice
scenario and the multi-agent search in the virtual optimiz&€ction IV). Robots are therefore able to use the basic PSO

tion space has been recently explored in several instancg@uations to determine their desired velocities. Howebere
Distributed unsupervised robotic learning was accomptish@r® some key differences between PSO and multi-robot search
in a robotic group by assigning each robot a unique pdpat require us to make some modifications to the algorithm.
particle that represented the robot controller [19]. Adsiphs 1) Discrete versus Continuous Time: PSO works by having
of PSO have been used for multi-robot odor search in sevepal'ticles update their positions within the search spaegety
instances [9], [15]. Particle Swarm Optimization was als@iscrete iteration of the algorithm. Multi-robot searctecgtes
applied recursively to a multi-robot search task, where tti continuous time, and as of yet robots are unable to tetepor
parameters of the PSO-inspired search were optimized bytAgmselves between locations. We therefore approximée th
external PSO algorithm [6]. The effect of including aspeci§mp by having the robot move for a fixed amount of time
of multi-robot search in PSO has been partially explored the appropriate velocity towards its desired locativerak
[21]. Additionally, PSO was used as an inspiration for Hons of the algorithm happen after each of these steps. This
solution to a multi-animal foraging task [5], which could beépproach requires that the robotic swarm is synchronized so
applied to multi-robot systems as well. However, none o¢hethat iterations match between robots.
applications extend the inspiration to use PSO as an eftecti 2) Movement Limitations: In PSO, particles can have infi-
model of the robot group performance. nite acceleration and no intrinsic limitations on veloc(i§
Section 1l of this paper presents our PSO-inspired mulfitere is a velocity limit, it is often set high enough that
robot search algorithm as well as our modifications to PS@articles can cross the region of interest of the virtuakepa
to model it. In Section I, we analyzes the performancd @ single step). Because they exist in the real world, ®bot
of the algorithm using a realistic sensor- and actuatoethashave limits to how quickly they can move and adjust their
model for differing numbers of robots and communicationeadings. In most multi-robot search scenarios, it wouke ta
ranges; we compare these results to those obtained usingubstantial amount of time for a robot to cross the search
the simplified modified PSO model. Section IV introduces @nvironment at maximum velocity. If a robot needs to go in a
new PSO-inspired multi-robot search algorithm which déesrflifferent direction, they typically must spend the time atate
require global positioning. This new algorithm is analyzed to face the new direction.
Section V, and results are compared both to the respectivelhe velocity limit of the robots can be overcome by using
simplified modified PSO model and to those obtained for tt#e high value for the fixed time given for each robot step.
original PSO-inspired algorithm. In Section VI, we discusklowever, this comes with the disadvantage of slowing down
the implications of the observed results, and Section Vihe search process. We deal with the acceleration limitatio
concludes. by alloting a short period of time after each step during Wwhic
robots rotate to their new desired bearing.
Il. TECHNIQUES 3) Function Evaluation: We assume robots have a sensor
By using PSO as an inspiration for multi-robot search, w&hich can detect the intensity of the target signal. This
hope not only to generate an effective search algorithm, Botensity is given by:
also to allow for the creation of a simplified microscopic P
model of the search system by modifying the PSO algorithm to I(d) = d—g +n()
include aspects of the multi-robot search. We therefore laav
exchange between the two scenarios, with PSO influencing thieere P, is the source power] is the distance between the
robotic system design and aspects of mobile robotics guidirobot and the source, and) is a sampling of additive Gaus-
the creation of the simplified PSO model. If this simplifiegian noise. These intensities represent the function atiahs
model is able to achieve similar results to our multi-robaif the PSO algorithm. Robots prefer higher intensities.



4) Robot Collisions. Particles in PSO are assumed to b&nother Particle - Both particle’s velocities will be redirected
infinitely small. This allows them to be arbitrarily closedach to go directly away from each other.
other without causing interference. In multi-robot system Typically obstacle avoidance in multi-robot systems reggii
both robots and search targets have some volume which pgeme interaction time for the robots to adjust their heagling
vents them from clustering too densely. Some sort of collisi We approximate by ignoring this time and allowing patrticles
avoidance is typically desired to prevent robots from bdogm to immediately change direction.
stuck on surfaces. We use Braitenberg obstacle avoidance t@) Low Dimensionality: Typically PSO is used for the
cause robots to veer away from possible collisions. If a toboptimization of functions with many parameters (anywhere
is executing a step of the algorithm and avoids an obstéclefrom around ten to several thousand). This means that the PSO
will continue moving in its new direction but will not modify virtual search space is generally of high dimensionality: F
its internal velocity representation (i.e. at the nextat®Em it our multi-robot search scenario, robots can only move about
will re-orient to its previous heading). on a plane, so the number of dimensions is limited to two.
5) Particle Neighborhoods: The standard neighborhoodThis may have an impact on the optimal values for different
structures in PSO require particles to share informatiaihh wiparameters of the system.
other particles that can be anywhere in the search space3) Real-World Noise: Real-world robotic systems are sub-
Mobile robots often have strict limitations on their maximu ject to the stochasticity of their components and the enviro
communication range and capacity (i.e. number of othement around them. Even the most carefully tuned sensors and
with which they can simultaneously communicate) or magctuators will have some noise component in real experisnent
prefer shorter communication distances to conserve enkrgyln our scenario, we have noise on our proximity sensors and
this context, it makes more sense to define a neighborhadighpage of the robot wheels. We consider these effects to no
structure which is based on position in the search spateve a significant effect on the performance and ignore them
where nearby robots belong to the same neighborhood. Weour simplified model.
define a robot’s neighborhood as all other robots within someWe replicate the position-based neighborhood we use in
fixed ranger which could be the maximum communicatiormulti-robot search in PSO, and we use the same intensity
range. Because robots are constantly in motion, this meduasction as is used in the multi-robot search. Particlesepre
that the particle neighborhood is dynamic, with neighbolggher function evaluations (function maximization).
possibly changing at each iteration of the algorithm. This
neighborhood topology was shown to have good performand: A NALYSIS OF PSO4NSPIRED SEARCH WITH GLOBAL

in low-dimensional spaces in [21]. POSITIONING
We now simulate our PSO-inspired multi-robot search al-
B. Adapting PSO to Model Multi-Robot Search gorithm using a realistic sensor- and actuator-based model

and compare its performance to that of our simplified model.
\fe consider two performance metrics concerned with digtanc
from the target location.

In order to successfully create our simplified microscop
model of multi-robot search, some aspects of mobile roboti
systems must be incorporated into the PSO algorithm.

1) Discrete versus Continuous Movement and Robot Col- A, Setup
Ilspns _One of the primary aspects of m.UItHObOI search For our simulation, we use the realistic robotic simulator
which will affect the performance is the collisions and @lot Webots [17]. We use a square arena of 8 m x 8 m with a
avoidancg among robots and betwet_an rOb_OtS and the targe&ﬁﬁfﬂdrical target in the center. Our robots are simulatiaf
yvalls: Using the standard PSO particle d'sp_'a_ceme”t at €q Q e-puck robot [4]. Robots are initially placed within the
iteration, we will be unable to detect any collisions thaghti

| h h. We theref q ) rena with random positions, headings, and velocitiese8ys
occur along the path. We therefore need to approximate E’grameters can be seen in Table I. A larger than usual inertia

continuous movement of the robots by dividing the displac oefficient () was used to encourage robots to explore the
ment into multiple steps and checking for collisions at eadhrea well

A particle is defined to have “collided” with an object when \y,» se a matching setup with our PSO model, with all
it comes within some distance of that object, defined by the, ameters derived from the robotic scenario (see Table Ii)
Ob]eCt.S and particle's radil anq the pa_rtlcles_proxmmn_sor . In PSO, particles can never “discover” the optimum of the
detection range. When a particle collides with somethitsy, function: rather, they congregate around it and their pusit

velocity will maintain its magnitude but be redirected. The  seq o get an estimate of its location. Similarly, we su
rgsk;])onﬁehtq a CI:I(')”ISPn will vary depending upon the objegi,; yonots are unable to discover the exact target, buerath
with which it collides: we use their observations to estimate its position. Thifiés t

Environment Boundary - The particle’s velocity will be re- . <o for real search scenarios such as land mine detection,

ﬂecte_d” off the _boundary by negating the component of thgnere the mine is not observed directly but sensed via the
velocity tangential to the boundary. chemical traces it emits.

Search Target - The particle’s velocity will be redirected to go
directly away from the target. Lhitp:/iwww.e-puck.org



TABLE | 3

ROBOTIC PARAMETERS
] Realistic
Parameter Value : i
Robot Radius 0.0265 m . -
Target Radius 0.10 m £ ]
Proximity Sensor Detection Range 0.025 m g
Maximum Velocity 0.1287 m/s & Bl
Time per lteration 9.6s =) ]
Target Power Pp) 1.0 n? 3
Additive Noise (;()) Standard Deviation| 1.0 8 |
Inertia Coefficient ) 1.2 2
Personal Weightzw) 2.0
Neighborhood Weightr{w) 2.0 g
Proximity Sensor Noise 3%
Wheel Slip 10% ﬂ
2 3 5 10 20
TABLE 1l

Number of Robots
PSO RRAMETERS

Fig. 1. Distance from target of swarm’s strongest signabci@n averaged

Parameter Value over 1000 runs. Communication range = 2.0m. Error bars represent
Space Bounds +- 4.0 standard error.

Maximum Velocity 1.24

Inter-Robot Collision Distance 0.078

Robot-Target Collision Distance 0.152 2 p— Simp"f‘ied
Number of Steps per lteration 100
Target Power Py) 1.0

Additive Noise ()) Standard Deviation] 1.0

Inertia Coefficient @) 1.2

Personal Weightyw) 2.0

Neighborhood Weightr{w) 2.0

We execute 1000 runs of the algorithm of 100 iterations each
with varying numbers of robots and communication ranges

Distance from Target (m)

B. Results

To evaluate the performance of the algorithms, we initially
look at the distance from the target to the location where the Iterations

strongest signal was detected by the swarm. The performance ) ] ] )
ig. 2. Distance of swarm’s strongest signal detection ftanget during

averaged Qvef. all runs for varying numbers of ro_bOtS. W't&arch process for 20 robots averaged over 1000 runs. Coicatian range
a communication range of 2.0 m can be seen in Fig. 4= 2.0m.

There is fairly close matching between the robotic simafati

and PSO. As expected, the performance increases as the

number of particles/robots increases, as the swarm isrbet@bot will be able to reach this average position, it is a ulsef
able to explore the environment. We can see the progresséyaluation if our goal is only to record the target location f
of the algorithm with 20 particles/robots in Fig. 2. There itater use.

a rapid improvement in the early stages, followed by gradual The effect of varying communication ranges with 20 robots
improvement in the latter stages. can be seen in Fig. 4 for both strongest swarm detection and
Thus far, our performance metric has been the distancetbé average position of the strongest detection by all mbot
the strongest detected signal (closest robot) from theetargThe matching between robots and particles is not as close
this is the best estimate any individual robot has of theetarchere, though the same trend can be observed between the two.

location and is a useful evaluation if our goal involves nmavi The simplified model achieves slightly better performance i
one robot as close as possible to the target. However, #ilkcases. This suggests that perhaps our modeling callisio
estimate is limited in its precision, as robots are not able avoidance is not precisely accurate and does not cause &s muc
measure inside the target, and it may be possible to impradispersion as it should Counter to intuition, for the strestg
that estimate by combining the knowledge of the swarm. Vgsvarm detection, the best performance here is for the ssballe
can take the strongest detected signal location of evergtrolsommunication range. Intermediate communication rangés h

in the swarm and average this position within the searchespagorse performances, while the largest range performehtklig

to generate a new prediction of the target location (seeJigbetter. After observing several simulations, this was tbtm

for example). This gives us another metric with which wee the result of larger communication ranges causing more
can evaluate the performance of our algorithms. While mgarticle/robot clustering. This occurred when some robaden



IV. PSO4ANSPIRED SEARCH WITHOUT GLOBAL

Robot 3 POSITIONING
Average Position
& @ Thus far, we have assumed that robots have perfect knowl-

edge of their position within the environment. This is often
not the case in real multi-robot systems; very large numbers
of robots may make it infeasible for a central positioning
system to track them all, and the swarm may operate in
locations where GPS and similar systems are unavailable. An
alternative method for robots to determine the locations of
nearby teammates is to use an on-board relative positioning
system, such as the one described in [20]. This can be used to
allow for effective multi-robot search techniques. Howeoeir
simplified PSO model will need some additional modifications

Fig. 3. Several robots near the target and their averagéigosThis position before it can be used on robots that are not aware of their
may be closer to the target than any individual robot locatio global position.

&

Robot 1

Robot 2

A. Short Particle Memory

a noisy detection which gave a falsely high result. If these.A major difference between PSO-inspired search with and

clusters happened to form near the periphery of the areWa\thOUt global positioning is that robots may no longer able

where the signal to noise ratio of the target was low, théo remember which locations in the past yielded strong $igna

might not observe the stronger signal near the arena Cen({gFectlons, as there are no global coordinates with which to

and therefore never find the target. This was improved syghtsﬁg\z :ggiif?os.rgrr:eu?hheilrm(;rtr%alo(f)tzﬁrgzt?r/ngﬁz igfeonu;r:d o
for very large communication range, which resulted in Iargt,§ path,

robotic clusters which typically were able to find the targé? Very noisy, makmg_ a_ccurate backiracking of more than a
after some time. small distance unrealistic. Other GPS-free techniques Ineay

applied, but this may result in an unreasonable computation

The average position of the strongest detection achievggdy/or organizational overhead for the swarm. Therefore,
fairly poor results for low communication ranges. Howevefghots with this limitation can only know their current and

performance improved dramatically as the range increasggyhaps immediately previous locations with reasonahie-ac
and at the maximum communication range, the average RQcy, giving them a very short memory.
s?tion was closer to the target than thg strongest detectedye modify the PSO-inspired search algorithm by limiting
signal at any communication range. This demonstates th@s strongest detected signal to be either the current oeimm
with the proper evaluation metric, a well-connected SWaM §jiately previous detection. The implications of this cheuage
able to achieve superior performance working together thap; if the current detection is stronger than the last,ettier
any individual member of the swarm. no personal best component to the modification of the vglocit
(i.e.zj; —z; ; = 0). If the last detection was stronger than the
07 ‘ ‘ current one, the robot is pulled in the direction from whith i

| éimplified, Stronéest Signal just came.
06 %% 5 Realistic, Strongest Signal
o Simplified, A Positi . .
1 Realistio, Average Position B. Sharing Information Among Robots
£ 05f 1 Because robots do not remember their previous locations,
7;,_: instead of sharing their strongest detection locatiores; tinly
& 04 I share their current detections. Robots can then sense which
£ 0l other robot (if any) in the vicinity has the strongest cutren
e detection and use that as their neighborhood best with the
& ool | location given by the relative positioning system.
01l | C. Lack of Global Bearing
ﬂ ﬁﬂ The standard PSO equations update every orthogonal di-
0 10 20 30 40 mension separately. However, because we no longer have a

Communication Range (m) global coordinate system, there are no longer fixed dimessio
To overcome this, we have each robot use its own coordinate
Fig. 4. Distance from the target of swarm’s strongest sigietction and of system relative to its current bearing: the dimension is
average position of particles’ strongest signal detestfon 20 robots averaged defined to be 45 degrees to the right of the robot's bearing
over 1000 runs. Error bars represent standard error. ) . ) .
and they dimension is defined to be 45 degrees to the left
(see Fig. 5). Because of the independent random component



of the velocity adjustment for each dimension, this causesthe simplified model, which allows robots to cluster more
any adjustments which are co-linear to the robot's headiagd prevents exploration.
(such as the personal best adjustment) to have a slightly

rangom bearing, which could promote more exploration in the 35 TH simpified
environment. [ Realistic
3 =] —
=S
g 25 R
g
g 2 A 1
=]
8 15 g
=
g
Q
a 1 i
0.5 R
: P L
2 3 5 10 20

Number of Robots

Fig. 6. Distance from target of swarm’s strongest signabci@n averaged
over 1000 runs of PSO-inspired search without global pwsitg. Commu-
nication ranger = 2.0. Error bars represent standard error.

The performance of 20 robots with varying communication
ranges can be seen in Fig. 7. The matching between the realis-
tic and simplified models is rather poor for low communicatio

Fig. 5. e-puck robot with x and y axes relative to its headihgven  ranges but improves for higher ranges. The performance here

consistently increases as the communication range ireseas

All of the changes described above can be added directiiiis can be explained by the short memory of the particles
to the simplified PSO model. - the clusters that were formed in the previous algorithm do
not form as often now because any falsely high detection will
quickly be forgotten and robots will tend to migrate towards

V. ANALYSIS OF PSO4NSPIRED SEARCH WITHOUT
GLOBAL POSITIONING

o ) the target.
We evaluate and compare PSO-inspired multi-robot search
without global positioning using our realistic sensor- and 2 ‘ ;
_ : i Il Simplified, Strongest Signal
actuator-based model and simplified PSO model. 18 B Realistic, Strongest Signal ]
1 Simplified, Average Position
A. Setup 16 [_] Realistic, Average Position 1
We use the same scenario and parameters as PSO-inspired€ 1.4 1
search with global positioning. However, because parti- 8 1, ]
cles/robots no longer remember their previous detectialhs, s 1 |
. . oy o o
results will only refer to the final positions of the robotstead ®
. . . o 4
of their strongest detection location. g 08
2 06 1
B. Results o
4 1
The strongest detection performance averaged over all runs o
for varying numbers of robots with communication range 2.0 ' H H II H
m can be seen in Fig. 6. While performance again improves as 0 _ 20 3.0 2.0
the number of robots grows, the performance increase is much Communication Range (m)

more abrupt than in the case with global positioning. There

seems to be a critical number of robots above which the swafa. 7. Distance from the target of swarm's strongest sigiegction and of

s able (o successiully congregate around the target, TRIPGEBOStor otperces stongest sono deeeton 20 ohor aeraoed
number seems to differ slightly between the simplified angpresent standard error.

realistic models: between 10 and 20 robots in the simplified

model and just over 5 in the realistic one. This leads to major The distances from the target here are all farther than those
discrepancies between the model and simulation in thiserangf the swarm with global positioning. This is because altitou
This could again be due to the inaccurate obstacle avoidamobots often remain near the target, they move about so that

in combination with a non-linear amplifying aggregatiofeef their position at any time is not guaranteed to be very close.



The algorithm could likely be improved if robots had imprdve  While our PSO-inspired search swarm was able to congre-
odometry and could somehow store the locations of thejate around the target in most cases, it did not converge to
best positions, though without actually using them in thestable positions very close to the target. While this may not
calculations (the actions of the robots remain the samey, olave had a particularly drastic effect in the case with dloba
the data recorded changes). We can evaluate the performgmasitioning, in the case without global positioning thisuked
with this modification. The results can be seen in Fig. 8 for 28 much higher distances between the robots and the target at
robots with varying communication ranges. Not only do we sé¢be end of the run and required marking or remembering the
an improvement here over the previous results, the dissanbest positions to achieve good results. It might be possible
here are all closer than even PSO-inspired search with globma overcome this problem by adjusting the swarm behavior
positioning was able to achieve. This suggests that using thwoughout the search, either as a function of the time passe
global positioning but storing the best locations may iasee or the observations made by the particles. A simple ideadvoul
performance as less clustering will occur in poor regions bk to decrease the inertia coefficiemtlinearly during the
the search space. The matching between the simplified mosiehrch, a common technique in standard PSO optimization.
and realistic sensor- and actuator-based model here is aganother could be to have robots that detect very strong gna
quite poor at low communication ranges and quite good fetop exploring in order to record that position and serve as a
higher ranges. constant beacon for others. If the swarm dynamic were to
change as it converged around the target, it might be pessibl

0.7 = B Simpiified, Strongest Signal to use that change to at some point declare that the target had
0ol 5 gﬁgﬁ;:gdsgeggazsé Signal | been “found” and stop the search. . .
) Realistic, Average Position The search scenario we used here had only a single target in
~ 05l ] a non-dynamic environment. This is a very simple scenarib an
% more complex search tasks may yield different results. rOfte
2 o4t ] search tasks have a large (possibly unknown) number oftgarge
p & which robots must locate. Other tasks such as odor search may
g 03 ] have a dynamic environment where the chemical concentratio
B may vary in time as well as space. Some search algorithms
e oz are specifically tailored to locate only a single target iroa-n
ol II II II | dynamic environment and do not fare well in these scenarios.
H Standard PSO has been used successfully on functions which
0 3Dﬂ 4DW have many optima and on dynamic functions (see for example

10 [18]), suggesting that PSO-inspired search may work weh wi
these more complex scenarios, but it ought to be tested to
Fig. 8. Distance from the target of swarm's strongest sigteéction and d€termine concretely how well it is able to cope with these
of average position of particles’ strongest signal detesti for 20 robots Changes_
a\_/eraged over _1000 runs qf_ PSO-inspired search withoutablpbsitioning In standard PSO, the portion of the algorithm which typi—
with remembering best positions. Error bars representatanerror. . . b . .
cally requires the most (computational) time is the sangplin
by particles of the function space as opposed to the equsation
VI. DiscussioN which modify the particle positions. While this may be the
Our simplified microscopic PSO-based model was able ¢ase for some instances of multi-robot search (e.g., odwcke
replicate the results of our realistic sensor- and actuadsed with a slow detection sensor), often the opposite is truesreh
model with reasonable accuracy in most cases of PSO-imspifecan be easy and fast to sense the source signal intensity bu
search with global positioning. The time required to run theifficult and time-consuming to move to different locations
simplified model was several orders of magnitude less thanthe environment (e.g., sound search). It might therebare
the realistic one (less than 10 minutes for 1000 runs with thseful to further modify the PSO-inspired search algoritom
simplified model on a 2.8 GHz Pentium 4 desktop as comparedke advantage of this aspect of multi-robot search (agnat
to up to 20 hours for 1000 runs with the realistic model on @detections could be made while the robot is moving towards
dual-processor 2.8 GHz Xeon server). This allows us to ptedits new point, allowing for more informed swarm decisions).
what results we may get with different search scenarios andn this work, we have only focused on evaluating and
parameters without the high time cost of lengthy systematomparing models of PSO-inspired multi-robot search. The
simulations. However, there currently seem to be discreipan results presented here ought to be compared to those of other
between the simplified and realistic models of PSO-inspir@dulti-robot search algorithms to determine whether usi8QP
search without global positioning. This is likely due to thas an inspiration really does bring a significant benefit.
approximation of obstacle avoidance for a robot collidirithw
another robot or obstacle. More realistic approximatiors m VIl. CONCLUSION
improve the model quality at the price of a slightly higher We have presented a multi-robot search algorithm based on
computational cost. the principles of Particle Swarm Optimization and shown it

Communication Range (m)



can be successful at finding a target. We have adapted PS@.&p Parsopoulos, K. E. & Vrahatis, M. N., 2001. “Particle &wm Optimizer

model this algorithm and achieved close matching between th
two. We have further presented a multi-robot search algarit
which does not require global positioning and a matching PS0]
model. Implications of results and relevant future work énav

been discussed.
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