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Abstract. Moiré phenomena of different types are frequently en-
countered in electronic imaging. Most common are moiré effects
that occur between periodic structures. These effects have been
intensively investigated in the past, and their mathematical theory is
today fully understood. The same is true for moiré effects between
repetitive layers (i.e., between geometric transformations of periodic
layers). However, although moiré effects that occur between random
layers (Glass patterns) have long been recognized, only little is
known today about their mathematical behavior. In this work we
study the behavior of such moirés, and compare it with analogous
results from the periodic case. We show that all cases, periodic or
not, obey the same basic mathematical rules, in spite of their differ-
ent visual properties. This leads us to a unified approach that ex-
plains both the behavior of Glass patterns in the stochastic case,
and the well-known behavior of the moiré patterns in periodic or
repetitive cases. © 2003 SPIE and IS&T. [DOI: 10.1117/1.1604785]

1 Introduction

The moiréeffect is a well-known phenomenon that occu
when two or more structures such as gratings, screens,
interfere with each other and generate a new visible pat
that does not exist in any of the original structures~Fig. 1!.

Moiré phenomena are frequently encountered in el
tronic imaging. For example, in the field of color printin
three or four halftone dot screens must be superposed,
for each of the primary color inks being used~usually cyan,
magenta, yellow, and black!.1 When these halftone screen
are made of periodic dot screens, strong undesirable p
odic moiré effects may occur in some circumstances b
tween the superposed screens~Ref. 2, Sec. 3.3!. The use of
random dot screens instead of periodic dot screen
known to be an efficient solution to this problem, sin
random screens do not generate in their superposition
moiré effects. This is particularly helpful in nonstanda
color printing when the number of color inks being us
~and thus, the number of halftone screens! exceeds four, in
which case it becomes extremely difficult~if at all possible!
to find moiré-free combinations of periodic screens.

On the other hand, it is also known that the superpo
tion of aperiodic layers such as random dot screens m
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give rise to a different type of moire´ pattern, which consists
of a single structure resembling a top-viewed funnel, o
distant galaxy in the night sky@see Fig. 2~b!#. This phe-
nomenon is known in literature as a Glass pattern, a
Leon Glass who described it in the late 1960s.3–5 However,
Glass patterns are still much less understood today t
periodic or repetitive moire´ effects, partly because they d
not easily lend themselves to the same mathematical t
that so nicely explain the classical moire´ effects between
periodic or repetitive layers.

In the present work we present a general, unified
proach that explains all of these phenomena. We show
in spite of their completely different visual appearanc
moirés between periodic or aperiodic layers are in fact p
ticular cases of the same phenomenon, and they all fol
the same fundamental rules that explain what happen
the superposition of any layers, periodic or not. In partic
lar, we show the rules that govern the existence or ine
tence of moire´ phenomena, and their behavior under lay
mappings~layer rotations, scalings, shifts, etc.!.

We start in Sec. 2 by establishing the terminology a
the basic notions that are needed for the rest of the work
Sec. 3 we discuss the superposition of aperiodic layers

;
Fig. 1 An example of a moiré effect that occurs due to the super-
position of two identical periodic layers with a small angle difference.
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Fig. 2 (a) An aperiodic dot screen. (b) The superposition of two identical copies of the aperiodic dot
screen (a) with a small angle difference gives a moiré effect in the form of a Glass pattern around the
center of rotation. However, if one of the aperiodic layers is rotated by 180 deg, as shown in (c), the
Glass pattern disappears. (d) When the superposed layers are periodic, a Glass pattern is still gener-
ated around the center of rotation, but due to the periodicity of the layers, this pattern is periodically
repeated throughout the superposition, thus generating a periodic moiré pattern.
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explain its main properties; this leads us to a general
that determines the moire´ existence conditions for all case
periodic or not. Then, in Sec. 4, we explain the mathem
cal meaning of Glass patterns, using the fixed point th
rem and its particular case for affine transformations.
Sec. 5 we explain the behavior of Glass patterns un
layer mappings, and show that the behavior of the co
sponding periodic moire´s is in fact just the same. This lead
us to a second general rule, which determines the influe
of layer mappings~rotation, scaling, layer shifts, etc.! on
rnal of Electronic Imaging / October 2003 / Vol. 12(4)
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the moiréin both periodic and aperiodic cases. Finally,
Sec. 6 we present the main conclusions.

2 Background and Basic Notions

In this introductory section, we briefly review the bas
notions and terminology that are used later. Since we d
with layersand layer superpositionsthroughout this work,
let us start by explaining these notions and their main pr
erties. In fact, a layer~or image! is the most general term
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Unified approach for the explanation . . .
we use to cover anything in the image domain. It can
periodic or not, continuous or binary, etc. However, we s
need to make some basic assumptions on our layers.

First of all, we limit ourselves here to monochrom
black and white images. This means that each image ca
represented by areflectancefunction r (x,y), which assigns
to any point (x,y) of the image a value between 0 and
representing its light reflectance: 0 for black~i.e., no re-
flected light!, 1 for white ~i.e., full light reflectance!, and
intermediate values for in-between shades. In the cas
transparencies, the reflectance function is replaced b
transmittancefunction defined in a similar way.

A superposition of such images can be obtained by ov
printing, or by laying printed transparencies on top of ea
other. Since the superposition of black and any other sh
always gives black, this suggests amultiplicativemodel for
the superposition of monochrome images. Thus, whenm
monochrome images are superposed, the reflectance o
resulting image is given by theproduct of the reflectance
functions of the individual images:

r ~x,y!5r 1~x,y!r 2~x,y!...r m~x,y!. ~1!

Let us now explain what we mean by periodic and a
riodic or stochastic layers. A functionf (x) is said to be
periodic if there exists a nonzero numberp, such that for
anyxPR, f (x1p)5 f (x). Similarly, a layerr (x,y) is said
to be periodic if there exists a nonzero vectorp
5(p1 ,p2), such that for any (x,y)PR2, r (x1p1 ,y1p2)
5r (x,y). If there exist two independent vectors having th
property, r (x,y) is said to be two-fold periodic. A laye
r (x,y) is said to beaperiodic if it is not periodic. For
example, the image of a human portrait or a natural la
scape is aperiodic. As a second example, a random
screen consisting of randomly positioned black dots is a
aperiodic. Note, however, that this random dot screen m
also be considered as astochastic layer, from a more sta-
tistical point of view, if we consider the screen in questi
as just one possible realization of a stochastic process,
ing some given statistical distribution. In the case of ra
dom dot screens~or more generally, random scatter—s
Chap. 17 in Ref. 6!, the terms aperiodic layer, stochas
layer, and random layer are sometimes used intercha
ably.

Finally, for the sake of simplicity we only consider lay
ers having a uniform distribution of their microstructu
elements~and hence a constant mean gray level!, although
our results hold also for more complex structures, such
halftone gradations, halftoned images with varying gr
levels, etc.

3 Superposition of Aperiodic Layers

While the superposition of two identical periodic laye
with a small angle or scaling difference generates mo´
effects that are themselves periodic, the superposition
two identical aperiodic layers with a small angle or scali
difference generates an aperiodic moire´ effect known as a
Glass pattern@see Fig. 2~b!#. This moirépattern is concen-
trated around a certain point in the superposition, and
contrary to periodic moire´s, it gradually disappears as w
go farther away from this point. Depending on whethe
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was obtained by rotation of one of the superposed lay
by a scaling transformation, or by a combination of both
gives rise to an intriguing ordering of the microstructu
elements in the superposition in ‘‘trajectories’’ having a c
cular, radial, or spiral shape@see Figs. 2~b!, 3~a!, and 3~b!#.4

Other layer transformations may give rise to Glass patte
having elliptic, hyperbolic, or other geometrically shap
trajectories.4 However, when we rotate one of the aperiod
layers by 180 deg@see Fig. 2~c!#, the Glass pattern com
pletely disappears.

3.1 Glass Patterns and Correlation

As already explained by Glass, this phenomenon occ
thanks to the local correlation between the structures of
two superposed layers. In fact, its intensity can be used
visual indication to the degree of correlation between
two layers in each point of the superposition. Thus, wh
two identical layers having the same arbitrary structure
slightly rotated on top of each other@see Fig. 2~b!#, a vis-
ible Glass pattern is generated around the center of rota
indicating the high correlation between the two layers
this area. Within the center of this Glass pattern the co
sponding elements from both layers fall almost exactly
top of each other, but slightly away from the center th
fall just next to each other, generating circular trajector
of point pairs. Further away from the center, the correlat
between the two layers becomes smaller and smaller,
the elements from both layers fall in an arbitrary, nonc
related manner. In this area the Glass pattern is no lon
visible. This explains why the Glass pattern gradually d
cays and disappears as we go away from its center. N
however, that when the two superposed layers are not a
correlated, no Glass pattern appears in the superpos
@this is indeed what happens when we rotate one of
aperiodic transparencies by 180 deg, as shown in Fig. 2~c!#.
In intermediate cases, where the two superposed layers
only partially correlated~for example, when one layer is
copy of the other with some percent of random noise be
added!, the Glass pattern is weaker and less percepti
depending on the degree of the correlation which still
mains between the superposed layers.

These facts are succinctly formulated by the followi
general rule.

Rule 1 ~existence condition for Glass patterns!: The su-
perposition of layers gives rise to a Glass patterniff ~5if
and only if! there exists some degree of correlation betwe
the superposed structures.

In fact, as we show in Sec. 3.3, the bright and dark ar
that form the Glass pattern are due to variations in
correlation between the superposed layers. The partic
case in which the correlation is constant throughout
superposition is explained in Sec. 3.2.

It should be noted that although this formulation of Ru
1 uses the term Glass patterns, it is in fact completely g
eral, and it covers both periodic and aperiodic cases. As
see later, periodic cases are, indeed, particular cases
general layer superposition, and in spite of their appare
different look, they still satisfy the same fundamental rul
just as any other layers. Simply, because of their additio
internal structure, periodic cases also satisfy several a
tional specific rules~that are expressed in terms of perio
or frequencies, as described by the classical periodic m´
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 671
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Fig. 3 (a) Same as in Fig. 2(b), but with a small scaling difference (rather than an angle difference)
between the two layers. Note that in this case the microstructure consists of radial trajectories rather
than concentric circular trajectories. (b) Same as in (a), but with both a small angle and a small scaling
difference between the two identical layers. In this case the microstructure consists of spiral trajecto-
ries.
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theory!, rules that are no longer valid for general aperiod
cases.

3.2 Stable Versus Singular Moiré-Free
Superpositions

Just as in the periodic case~see Sec. 2.9 in Ref. 2!, we can
distinguish in the general case, too, between two type
moiré-free superpositions. Suppose that two identical l
ers, periodic or not, are superposed exactly one on to
the other, possibly with some fixed percent of random no
being added throughout. In this case the correlation
tween the layers remains constant throughout the supe
sition, and no macro-moire´ effects are visible. Upon firs
observation, this situation resembles the moire´-free case
that occurs when the two superposed layers are comple
independent of each other and have no correlation at
However, a big difference exists between these two type
moiré-free superpositions. In the first case, the moire´ ~or
Glass! pattern does exist, but it is not visible because it
infinitely big; but such a moire´-free superposition is very
unstable, since any slight deviation in the angle or in
scaling of any of the superposed layers may cause
moiré to come back from infinity and become clearly vi
ible. This situation is called asingular moiré-free superpo-
sition. On the other hand, moire´-free superpositions, wher
the superposed layers are completely independent of
other, arestablemoiré-free superpositions, and even whe
small angle or scale deviations occur between their in
vidual layers, no macro-moire´ effects become visible. This
is, indeed, what is really meant by people saying that ‘‘
superposition of random screens does not generate m´
effects,’’ as is often heard in the context of random scre
halftoning, e.g., in color printing.

3.3 Macrostructures and Microstructures in the
Superposition

As we can see, the explanation in Sec. 3.1 is based o
observation of the individual elements of the original laye
and their behavior in the superposition. We say, therefo
ctronic Imaging / October 2003 / Vol. 12(4)
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that this explanation is based on themicrostructure. To ob-
tain the point of view of themacrostructure, we have to
look at the layers and their superposition from a bigg
distance, where the individual elements of the layers are
longer discerned by the eye, and what we see is onl
gray-level average of the microstructure in each area of
superposition. From the point of view of the macrostru
ture, the center of the Glass pattern consists of a brig
gray level than areas farther away, due to the partial ov
lapping of the microstructure elements of both layers in t
area. Farther away, elements from the two layers are m
likely to fall side by side, thus increasing the covering ra
and the macroscopic gray level. This means that the G
pattern is not just an optical illusion, and it correspon
indeed, to the physical reality. In fact, just as in the perio
case~see Proposition 8.1 in Ref. 2!, moirépatterns are sim-
ply the macroscopic interpretation of the variations in t
microstructures throughout the superposition.

Note that the ordering of the microstructure eleme
within a Glass pattern into circular, radial, or spiral traje
tories is no longer visible from far away~try to observe Fig.
3 from a distance of 3 to 4 m, where the individual el
ments of the layers are no longer discerned by the ey!.
Therefore, these trajectories are not part of the macrost
ture description, and they belong to the microstructure
the superposition, just as rosettes in the periodic case.
indeed, from the point of view of the macrostructure, the
is no distinction between gray levels obtained when
neighboring elements in the superposition are located
circular trajectories, due to rotation, or on radial trajec
ries, due to a scaling transformation. What counts in b
cases is the resulting mean coverage rate, which determ
the overall gray level, and not the specific geometric
rangement.

It is interesting to note, as it is well known in the field o
halftoning, that even in a superposition of uncorrelated r
dom screens, where no macrostructures~Glass patterns! ex-
ist, the microstructure still may give rise to various rando
dot alignments such as nebulous or worm-like structu



Unified approach for the explanation . . .
Fig. 4 (a) Illustration of the fixed point theorem in the 1-D case. Any continuous function y5g(x) that
maps a domain D5@a,b# onto itself crosses the diagonal y5x within the domain @a,b# at least once.
At each such point xF we have, therefore, g(xF)5xF . Moreover, due to the continuity of the function
g, for any point xG within a near neighborhood of xF , we have: g(xG)'xG . (b) The fixed point theorem
is not generally valid when D is the full range of R. This can be illustrated by any continuous function
of the type g(x)5x1c, cÞ0. Although these functions map R onto itself, they are parallel to the
diagonal y5x, and hence they never cross it for any finite value xFPR, meaning that for no point
xFPR we have g(xF)5xF .
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~artifacts!.7 Even when these artifacts do not influence t
macroscopic, overall gray level of the superposition~i.e.,
when they do not affect the average covering rate throu
out the superposition!, they still may be more or less con
spicuous when viewed from a close distance, depending
the statistical nature or distribution of the points in t
original screens~fully random, blue noise,8 green noise,9

etc.!.
As we can see, just as in the case of periodic layers,

microstructures generated in the superposition of aperio
layers may have very interesting and intriguing shapes,
their study is certainly not less fascinating than the study
the macrostructures. But although the investigation of
microstructures and their morphology in the superposit
of aperiodic layers deserves full research on its own, in
present contribution we mainly concentrate on the inve
gation of the macrostructure aspects of the superpos
and on its various mathematical properties. In the next s
tions we see what happens to the macrostructures in
superposition of periodic or aperiodic layers under la
transformations, and this investigation leads us to our s
ond universal rule on layer superpositions.

4 Fixed Point Theorem

A famous theorem in mathematical topology, known as
fixed point theorem~Ref. 10, p. 653!, says that any continu
ous functiong(x) that maps the domainD5@a,b# onto
itself, g: @a,b#→@a,b#, has at least one fixed point in@a,b#
@namely, a pointxFP@a,b# that is mapped byg(x) to it-
self: g(xF)5xF]. This theorem is clearly illustrated in Fig
4~a!.

This fundamental theorem can be easily generalized
higher dimensions, although in such cases it can no lon
be graphically illustrated as in Fig. 4~a!. For example, a
2-D version of the fixed point theorem states that any c
tinuous mappingg(x,y) that maps the diskD5$(x,y)ux2

1y2<r % into itself has at least one fixed point inD,
-
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namely, a point (xF ,yF)PD that is mapped byg(x,y) to
itself: g(xF ,yF)5(xF ,yF) ~Ref. 10, p. 176!.

It is interesting to note, however, that the fixed po
theorem is not generally valid for infinite domainsD such
asD5R, or, in the 2-D case,D5R2 ~the entirex,y plane!.
In such cases the theorem still holds for many functionsg,
but there exist other functionsg for which the theorem
fails. This is illustrated, for the 1-D case, in Fig. 4~b!. Al-
though any function of the typeg(x)5x1c ~with cÞ0) is
continuous and fully mapsR onto itself, there exist for
these functions no fixed pointxFPR such thatg(xF)5xF
~unless we admit that parallel lines meet at infinity,
which case we may say thatxF5` is a fixed point!.* How-
ever, other continuous functions that mapR onto itself,
such asg(x)5x3, do have fixed points, since they do cro
the diagonaly5x at least at one pointxF . A similar situa-
tion exists also in the 2-D case: While for many continuo
mappingsg(x,y) from R2 onto itself, such as scalings o
rotations, there exists a fixed point, for other mappings s
as translationsg(x,y)5(x2a,y2b), there exist no fixed
points ~again, unless we consider infinity as a fixed poin!.
However, the most important result for our needs may
formulated as follows.

The affine fixed point theorem:All nondegenerate affine
mappingsg(x,y) from R2 onto itself have a single fixed
point.

This theorem asserts that all mappings such as rotati
scalings, etc., as well as their combinations, have indee
fixed point. This also includes all of their combination
with translations, but pure translations are excluded. T
theorem is explained and demonstrated in Appendix A.

*Note that the functiong(x)5x1c, cÞ0, is not a valid counter-example
for the fixed point theorem withD5@a,b#, simply because it does no
mapD onto itself.
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 673
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Let us see now how the fixed point theorem can help
formalize our subject of interest, the superposition of sim
lar structures, periodic or not. This mathematical formali
tion will allow us in the following sections to deduce im
portant facts on the behavior of Glass patterns. Suppose
are given a layerr 1(x,y) consisting of an arbitrary struc
ture, as explained in Sec. 2. We generate a second, slig
modified layerr 2(x,y) by applying onr 1(x,y) a continu-
ous mapping~coordinate transformation! g(x,y) that maps
thex,y planeR2 onto itself. For example,r 2(x,y) could be
a slightly rotated version ofr 1(x,y). We now superpose th
two layersr 1(x,y) andr 2(x,y), for example by overprint-
ing, or by laying their transparencies on top of each oth
The superposition thus obtained is represented mathem
cally by the product:

r ~x,y!5r 1~x,y!r 2~x,y!. ~2!

Suppose that the continuous mappingg(x,y) has a fixed
point (xF ,yF). This means that at the point (xF ,yF) we
have r 2(xF ,yF)5r 1@g(xF ,yF)#5r 1(xF ,yF), so that the
point (xF ,yF ,zF) belonging to the surfacez5r 1(x,y) re-
mains unchanged after applying the mappingg(x,y). For
example, if it was a black point, it remains a black point
r 2(x,y), and if it was a white point, it remains a whit
point in r 2(x,y). Furthermore, in the neighborhood of th
fixed point, any point (xG ,yG ,zG) of r 1(x,y) has been only
slightly displaced inr 2(x,y). How does this affect the su
perposition of Eq.~2!?

Clearly, the superpositionr (x,y) is darker than each in
dividual layer, since it becomes black wherever any of
superposed layers is black. However, the mean gray l
of the superposition remains brighter in a close neighb
hood around the fixed point (xF ,yF), since in this area the
black dots ofr 2(x,y) fall almost exactly on top of their
original counterparts inr 1(x,y), so that the mean gra
level is only slightly darker than inr 1(x,y). But as we go
farther from the fixed point (xF ,yF), the correlation be-
tween the dots ofr 2(x,y) and the dots ofr 1(x,y) gradually
decreases, and consequently the mean gray level of th
perposition becomes darker as the black points ofr 2(x,y)
fall more often between black points ofr 1(x,y), leaving
less white area in the superposition.

If the dots of r 1(x,y) @and hence the dots ofr 2(x,y)]
are randomly distributed, then far away from the fixed po
(xF ,yF) there will no longer be any correlation between t
points of the two layers, and the resulting gray level in t
superposition will remain constant as we go farther fro
(xF ,yF). However, if r 1(x,y) is a periodic structure, suc
as a periodic dot screen, then as we go farther from
fixed point (xF ,yF), the mean gray level will periodically
become darker and brighter, because zones of in-phas
perposition, where elements of the two layers fall on top
each other, repeatedly alternate with zones of counterp
superposition, where elements of the two layers fall
tween each other@compare Figs. 2~b! and 2~d!#. It is inter-
esting to note that in the superposition of partly rand
layers, such as periodic dot screens with a certain degre
randomness being added, the resulting Glass patterns h
indeed, an intermediate look. Depending on the case,
674 / Journal of Electronic Imaging / October 2003 / Vol. 12(4)
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still may have around the center oscillations between da
and brighter areas, but if the correlation between the lay
decreases with the distance, these oscillations gradu
fade out and disappear as we go farther from the cente
the Glass pattern.

This correspondence between Glass patterns and
odic moirés is further developed in the next section. W
will see there that, in fact, periodic moire´s are simply a
particular case of Glass patterns that occurs when the
perposed layers are periodic.

5 Behavior of Glass Patterns and of Periodic
Moiré s Under Layer Mappings

Having understood the mathematical meaning of Glass
terns, let us try to see their behavior when any of the
perposed layers undergo a transformation such as rota
scaling, translation, etc. Moreover, since the behavior
periodic moirés under such transformations is already fu
known from the classical moire´ theory, it would be inter-
esting to compare the behavior of both cases, periodic
aperiodic, and to see if they follow the same mathemat
rules.

To study the behavior of a Glass pattern, we must,
course, make sure that a Glass pattern is indeed gene
in our layer superposition. Therefore, we have to superp
layers that are sufficiently correlated. The easiest way
doing so is to assume a full correlation, i.e., that the sup
posed layers, periodic or not, be fully identical before t
application of the layer mappings in question. In the rest
this section we make this assumption. Note that this d
not cause a loss of generality, since in cases where
original layers are only partially correlated~for example,
due to the presence of some random noise!, the Glass pat-
terns may look somewhat different or be less visible, b
their behavior under layer mappings remains the same

5.1 Behavior Under Layer Rotations

The simplest nontrivial layer transformation consists o
rotation of any of the superposed layers. This case has
practical advantage of being very easy to experiment
manipulating superposed transparencies. Suppose we
two identical transparencies consisting of the same a
trary dot pattern, periodic or not. We superpose the t
transparencies precisely on top of each other, and w
keeping the first transparency~say, the upper one! fixed, we
slightly rotate the other one by a small anglea, so that a
Glass pattern becomes visible around the fixed point at
rotation center. As we have already seen, the center of
Glass pattern is brighter than areas further away, due to
partial overlapping of the black elements of both laye
around the fixed point. This behavior at the center is co
mon to both periodic and stochastic cases, and indeed
difference between these cases becomes apparent only
ther away from the fixed point. In astochasticcase, as we
go farther away from the fixed point, the mean gray level
the superposition is stabilized at a certain darker level@see
Fig. 2~b!#, because farther from the center the correlat
between the two layers becomes negligible. But in aperi-
odic case@see Fig. 2~d!#, the brighter gray level at the cen
ter becomes alternately darker and brighter as we go a
from the fixed point, and it continues to oscillate period
cally, because zones of in-phase superposition, where
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Unified approach for the explanation . . .
ments of the two layers fall on top of each other, repeate
alternate with zones of counterphase superposition, wh
elements of the two layers fall between each other.

We may say, therefore, that the Glass pattern that is g
erated around the fixed point in a periodic case is perio
However, from another point of view, we may say th
while in the stochastic case there exists only one G
pattern, which is located around the fixed point, in the
riodic case, the Glass pattern that is generated around
fixed point is periodically repeated throughout the super
sition, forming the bright areas of the periodic moire´ pat-
tern. From this point of view, the periods of a period
moiré pattern are simply duplicates of the main Glass p
tern that is generated around the fixed point, and the pe
length of the moire´ corresponds to the distance betwe
these duplicates.† This does not mean, of course, that o
rotation transformationg(x,y) has more fixed points whe
the two superposed layers are periodic than when the la
are aperiodic. Obviously, in both casesg(x,y) has exactly
one fixed point. But when the two superposed layers
periodic, we also have infinitely many points of coinc
dence between the two superposed layers, where the
layers happen to coincide because of the periodicity in th
internal structure. But these points of coincidence are
fixed points of the underlying mappingg(x,y). We can say,
therefore, that the fixed point ofg(x,y) determines the
mainperiodic tile of the moire´, while all the other periodic
tiles are only duplicates that exist due to the periodicity
the superposed layers.

Note, however, that in spite of all these differences
tween the Glass patterns in periodic and aperiodic supe
sitions, their fundamental behavior under layer rotations
mains basically the same. In both cases, when the anga
departs from 0, the Glass pattern~respectively, the periodic
tile of the moiré! becomes smaller and smaller until it com
pletely disappears. And inversely, as the anglea tends to 0,
the Glass pattern~respectively, the periodic tile of the
moiré! becomes bigger and bigger, until whena reaches 0
we obtain a singular superposition with an infinitely b
moiré, which is no longer visible.

5.2 Behavior Under Layer Scalings

A similar effect occurs also in the case of a scaling tra
formation. Note, however, that in this case the visual stu
of the effect by using superposed transparencies is no
easy as in the case of rotation, because it is not possib
manually stretch or shrink transparencies. For testing
case one needs, therefore, to prepare in advance a s
reduced or enlarged copies of the original layer~for ex-
ample, zoomed photocopies!. A better solution would be to
make simulations on a computer screen, since this wo
permit us to observe the superposition continuously wh
the scaling rate is gradually being varied.

†It is important to note, however, that these duplicates arenot necessarily identical in
their microstructure, and the periodicity of the moire´ concerns only its macrostruc
ture, namely, the moire´ intensity profile~the variation in the mean gray level that i
observed from such a distance that the microstructure detail of the original laye
no longer discerned by the eye!. In other words, although the microstructure in th
superposition of two periodic layers is not always periodic, the intensity profile
the isolated moire´ is, indeed, periodic~see Sec. 6.3 in Ref. 1!.
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Suppose we have two identical layers consisting of
same arbitrary dot pattern, periodic or not. We superp
the two layers precisely on top of each other, and wh
keeping the first layer fixed, we slightly scale the other o
@see Fig. 3~a!#. Once again, a Glass pattern will becom
visible around the fixed point, whose center is brighter th
areas farther away, due to the partial overlapping of
black elements of both layers around the fixed point. A
though the microstructure obtained in this case is differ
than in the case of layer rotations@it consists ofradial
rather thancircular dot trajectories, compare Figs. 3~a! and
2~b!#, the macroscopic properties of the Glass pattern
main the same. And again, while in the stochastic case
we go farther from the fixed point, the mean gray level
the superposition is stabilized at a certain darker level
the periodic case as we go farther from the fixed point,
brighter gray level at the center alternately becomes da
and brighter, and it continues oscillating repeatedly as
elements of the two layers periodically fall on top of ea
other ~in phase! or between each other~in counterphase!.

Thus, we may say, once again, that while in the stoch
tic case there exists only one Glass pattern, which is loca
around the fixed point, in the periodic case, the Glass p
tern that is generated around the fixed point is periodica
repeated throughout the superposition, forming the bri
areas of the periodic moire´ pattern.

But just as we have seen with layer rotations, in spite
the difference between the Glass patterns in periodic
aperiodic superpositions, their fundamental behavior un
layer scalings remains basically the same. In both ca
when the scaling factors gradually departs from 1, the
Glass pattern~respectively, the periodic tile of the moire´!
becomes smaller and smaller. And inversely, as the sca
factor s tends to 1, the Glass pattern~respectively, the pe-
riodic tile of the moiré! becomes bigger and bigger, unt
whens reaches 1 we obtain a singular superposition with
infinitely big moiré, which is no longer visible. It should be
mentioned, however, that while in the periodic case n
higher order moire´s may occur arounds52,3, or s
51/2,1/3, etc., in the purely stochastic case, no higher
der moirés exist, since at such scaling values no correlat
exists between the superposed layers@for instance, a ran-
dom screenr (x,y) is not correlated withr (2x,2y)].

5.3 Behavior Under Layer Shifts

Suppose we have two identical transparencies that are
perposed with a small angle difference~or a small scaling
difference!, so that a visible Glass pattern is generat
around the fixed point. What happens to this Glass pat
when we laterally translate one of the transparencies w
respect to the other? The answer for the case of perio
moirés is already well known: the moire´ pattern will simply
be translated~by a much longer distance than the origin
layer shift!, without undergoing any other modification
The extent and the direction of its translation are det
mined by the extent and the direction of the shifts in t
original layers as explained, for example, in Sec. 7.6
Ref. 2 ~see Fig. 5!. Since the superposition of periodic lay
ers is a particular case of the superposition of any gen
layers, it would be reasonable to expect that the behavio
a periodic moire´ under layer shifts should be a particul
case of the behavior of a Glass pattern under the same l

s

Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 675
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676 / Journal of Ele
Fig. 5 A periodic moiré between two identical periodic grids of period T that are superposed with a
small angle difference a, and its behavior under layer shifts. The origin of each image is indicated by
a cross. (a) Both grids and the resulting moiré are centered on the origin, in their initial position. (b)
Grid A is shifted by 1/2 period (i.e., by T/2) to the right. Consequently, the moiré is shifted 1/2 moiré
period downward. (c) Grid A is shifted by 1/2 period (i.e., by T/2) upward. Consequently, the moiré is
shifted 1/2 moiré period to the right. (d) Grid A is shifted by 1/2 period to the right and 1/2 period
upward. Consequently, the moiré is shifted 1/2 moiré period downward and 1/2 moiré period to the
right.
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shifts. And indeed, as described in detail next, simple
perimentation with two superposed transparencies sh
that exactly the same results are obtained in the perio
and aperiodic cases.

Suppose that a Glass pattern~respectively, a periodic
moiré pattern! is generated around the fixed point by rota
ing the second transparency by a small anglea counter-
clockwise, and that we slightly shift the first transparen
~the nonrotated layer! in a given direction.‡ As shown in
Figs. 5 and 6, the resulting effect will be a much larger sh
of the Glass pattern~respectively, the periodic moire´!, in a
direction that is basically perpendicular to the shift of t
first transparency.

• When the first transparency is slightly shifted to t
right, the Glass~or moiré! pattern largely moves
downward.

‡We choose this layer convention to remain compatible with the figures and
examples given for the periodic case in Chap. 7 of Ref.1, some of which are re
duced here.
ctronic Imaging / October 2003 / Vol. 12(4)
-
s
c

• When the first transparency is slightly shifted to t
left, the Glass~or moiré! pattern largely moves up
ward.

• When the first transparency is slightly shifted upwa
the Glass~or moiré! pattern largely moves to the righ

• And when the first transparency is slightly shifte
downward, the Glass~or moiré! pattern largely moves
to the left.

The identical qualitative behavior of both periodic an
aperiodic cases further confirms our assumption that b
cases are, indeed, two different facets of the same phen
enon. But if our assumption is correct, the behavior of b
cases must be identical quantitatively, too. Since the qu
titative behavior of the periodic moire´ under layer shifts is
already well known~see Sec. 7.6 in Ref. 2!, we try now to
determine quantitatively the behavior of the aperiodic c
~i.e., the shift of the Glass pattern!, to see if we obtain the
same results.

In order to do so, let us try to locate the fixed point~i.e.,
the center of the Glass pattern! when the second layer i

-



Unified approach for the explanation . . .
Fig. 6 A Glass pattern between two identical aperiodic dot screens that are superposed with a small
angle difference a, and its behavior under layer shifts. The origin of each image is indicated by a cross.
(a) Both layers and the resulting Glass pattern are centered on the origin, in their initial position. (b)
Layer A is shifted by x0 to the right. Consequently, the Glass pattern is shifted downward. (c) Layer A
is shifted by y0 upward. Consequently, the Glass pattern is shifted to the right. (d) Layer A is shifted by
x0 to the right and by y0 upward. Consequently, the Glass pattern is shifted downward and to the right.
Note that the angle difference a between the superposed layers is the same as in Fig. 5, and the layer
shifts are also the same as in Fig. 5: x05T/2, y05T/2. And indeed, the resulting shift of the Glass
pattern is the same as the resulting shift of the moiré pattern in Fig. 5 (although in the aperiodic case
it cannot be expressed in terms of moiré periods).
d

g

y:
rotated by anglea, and the first, unrotated layer is shifte
laterally in the originalx andy directions by (x0 ,y0). This
is also equivalent to rotating the second layer by anglea,
and then shifting it along the originalx andy directions by
2(x0 ,y0), while the first layer remains fixed. The mappin
g(x,y) is given, therefore, by:

x85x cosa1y sina1x0 ,
~3!y852x sina1y cosa1y0 ,

wherex,y are the coordinatesbeforeapplying the rotation
and the shift, andx8,y8 are the coordinatesafter the map-
ping. Our problem of finding the fixed point ofg(x,y) con-
sists, therefore, of finding when (x8,y8) equals~x,y!. This
happens, of course, where:

x5x cosa1y sina1x0 ,
~4!y52x sina1y cosa1y0 ,
which gives us the following linear set of equations forx
andy:

x~12cosa!2y sina5x0 ,
~5!

x sina1y~12cosa!5y0 .

It can be easily shown~for example, using Cramer’s
rule! that the solution of this set of equations is given b

x5
x0~12cosa!1y0 sina

2~12cosa!
,

~6!

y5
2x0 sina1y0~12cosa!

2~12cosa!
,

Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 677
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Fig. 7 Geometrical interpretation of the 2-D linear transformation, whose matrix is (2a 1
1 a). (a) shows

points A5(1,0), B5(1,1), C5(0,1),..., H5(1,21) in the x, y plane before applying this transforma-
tion, and (b) shows the new locations of these points in the x8,y8 plane after the application of the
transformation. For example, point A, whose initial coordinates in (a) are (1,0) is mapped by the
transformation to the point (2a 1

1 a)(0
1)5(2a

1 ) in (b).
as

r

sult
f

as
8,
or in matrix form:

S x
yD5

1

2 S 1
sina

12cosa

2
sina

12cosa
1

D S x0

y0
D

5
1

2 S 1 cot~a/2!

2cot~a/2! 1 D S x0

y0
D . ~7!

Note that this solution~fixed point! exists and is unique
whenever 2(12cosa)Þ0, i.e., wheneveraÞ0.

Equation~7! means that the fixed point~x,y! is simply a
linear transformation of the lateral shift (x0 ,y0) undergone
by the original layer. The matrix of this transformation h
the form of (2a 1

1 a) with a5cot(a/2). As shown in Fig. 7,
this transformation corresponds, in fact, to:

• a rotation by angleu, where tanu52a, i.e., u
52arctana

• and a scaling by factors: s5(11a2)1/2.

By inserting herea5cot(a/2) and remembering the facto
1/2 before the matrix, we see that the location~x,y! of the
fixed point is obtained from the layer shift (x0 ,y0) by a
rotation of:

u52arctanS cot
a

2 D5arccotS cot
a

2 D2
p

2
5

a

2
2

p

2
, ~8!

and a scaling by:

s5
1

2
@11cot2~a/2!#1/25

1

2 sin~a/2!
. ~9!
ctronic Imaging / October 2003 / Vol. 12(4)
And indeed, as we have expected, this quantitative re
fully corresponds to the moire´ shift obtained in the case o
a periodic moire´:

As predicted by proposition 7.2 in Ref. 2, the moire´ in
the periodic case is shifted in its own direction, which is,
shown in Fig. 4.8 of Ref. 2, reproduced here as Fig.
exactlya/22p/2.

Fig. 8 Vector diagram explaining the moiré orientation in the super-
position of two identical periodic screens with an angle difference of
a. Vectors f1 and f2 are the main and secondary frequency vectors
of the first layer, and f3 and f4 are the main and secondary fre-
quency vectors of the second layer (note that in the figure we rather
show 2f3 and 2f4 , in the opposite directions). The moiré effect
generated in the superposition is represented by the vectors a5f1

2f3 and b5f22f4 . The orientation of the moiré, represented by the
orientation of its main frequency vector a, is a/22p/2. Namely, it is
perpendicular to the bisector between the directions of the two origi-
nal layers.
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Unified approach for the explanation . . .
Furthermore, the extent of the shift of the periodic mo´
is given, in terms of periods, by Eqs.~7.26! and ~2.10! in
Ref. 2, namely:

bM5TM~f12f2!5
T

2 sin~a/2!
~f12f2!, ~10!

where bM is the resulting shift of the moire´, TM is the
period of the moire´, T is the period of the original layers
andf1 andf2 are the shifts of the original layers in term
of periodsT. Noting that in our casef250 ~the second
layer is not shifted!, we see that for a shift ofd in the first
layer ~i.e., f15d/T periods!, the extent of the resulting
shift of the moiréis:

bM5
1

2 sin~a/2!
d. ~11!

Hence, the shift of the periodic moire´ is obtained by scaling
up the shift d of the original layer by the factors
51/2 sin(a/2), exactly as predicted by Eq.~9! according to
fixed point considerations.

We see, therefore, that the resulting moire´ shifts in the
periodic case and in the aperiodic case are indeed iden
and both are explained as a shift of the fixed point. Ho
ever, in the periodic case, the same result can also be
tained in terms of periods, frequencies, Fourier series
velopments, etc., as was done in Ref. 2. This period-
frequency-based interpretation is extremely useful due
the new insights and powerful tools it offers for analyzi
the periodic case. But in the general aperiodic case, we
no longer use period-based approaches, and we revert t
more general analysis in terms of the fixed point theore

5.4 Behavior Under a General Affine Transformation

In the most general affine case, when the transforma
g(x,y) is given by:

x85a1x1b1y1x0 ,
~12!

y85a2x1b2y1y0 ,

the fixed point is given by the set of equations:

~12a1!x2b1y5x0 ,
~13!

2a2x1~12b2!y5y0 ,

whose solution is:

x5
~12b2!x01b1y0

12a12b21a1b22a2b1
,

~14!

y5
a2x01~12a1!y0

12a12b21a1b22a2b1
,

or in matrix form:
l,

-
-
r

n
he

n

S x
yD5

1

12a12b21a1b22a2b1
S 12b2 b1

a2 12a1
D S x0

y0
D .

~15!

This means that even in the general case where the l
transformation is given by the affine mappingg(x,y) of Eq.
~12!, the location~x,y! of the fixed point is still a linear
transformation of the shift (x0 ,y0) undergone by the origi-
nal layer.

It should be mentioned that this solution~i.e., the fixed
point! exists and is uniqueiff the determinant of the homog
enous equations in Eqs.~13!, i.e., the denominator of Eq
~15!, is nonzero:

12a12b21a1b22a2b1Þ0. ~16!

If this condition is not satisfied, then either there exis
no solution~fixed point! at all @this happens, for example
wheng(x,y) is a pure translation#, or there exists an infin-
ity of solutions@for example: ifg(x,y) consists of flipping
over the x axis, possibly followed by a vertical shift o
(0,y0), then there exists an infinity of fixed points formin
together a full horizontal line#. This subject is fully ex-
plained in Appendix A.

5.5 Behavior Under General Layer Transformations

Similar considerations also hold for more general lay
transformations, such as second-order polynomial trans
mations, logarithmic transformations, etc. However, findi
the fixed points in such cases may require some more c
plex calculations, using either analytic or numeric metho
Note that in the most general case there are more pos
configurations for the fixed points than in an affine tran
formation. A general mapping may have, for example,
fixed points at all, one isolated fixed point, several isola
fixed points, or even a curved line consisting of fixe
points.

In conclusion, we see that the following universal ru
holds for periodic as well as aperiodic layers, and expla
their fundamental behavior.

Rule 2~moirébehavior rule!: The behavior of the moire´
under rotations, scalings and shifts of the individual lay
~or more generally, under any layer mappings, linear
not!, is determined by the fixed points of the mappings a
their properties.

As we can see, our two universal rules determine
conditions for the generation of moire´ effects, as well as the
behavior of these moire´ effects under rotations, scaling
shifts, or any other layer transformations. This gives
indeed, a unified approach, which explains the fundame
properties of all types of moire´ effects, periodic or aperi-
odic.

6 Conclusions

Because moire´ effects are so frequently encountered
electronic imaging, a full understanding of their differe
forms is essential. In the present contribution we have g
a further step in this direction. We show that in spite
their different appearance, moire´ effects that occur betwee
Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 679
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Amidror
periodic or aperiodic layers are, in fact, particular cases
the same basic phenomenon, and all of them satisfy
same fundamental, universal rules.

Rule 1~moiré existence rule!: The superposition of lay-
ers gives rise to a moire´ patterniff there exists some degre
of correlation between the superposed structures.

Rule 2~moirébehavior rule!: The behavior of the moire´
under rotations, scalings, and shifts of the individual lay
~or more generally, under any layer mappings, linear
not!, is determined by the fixed points of the mappings a
their properties.

The first rule gives the conditions for the appearance
moiré effects, and the second rule determines the beha
of these moire´ effects under any layer transformation
Based on these general rules, we have presented a un
approach that explains the basic properties common to
the different types of moire´ effects: moire´s between sto-
chastic, periodic, or repetitive layers. It is clear, howev
that when additional structural information on the origin
layers exists, like in periodic or in repetitive cases, t
additional information may allow the investigation of th
moiré effects by means of more sophisticated metho
such as the Fourier theory, indicial equations, etc., thus
fering further insights and analysis tools that are prope
such cases. But in the most general aperiodic or stocha
cases, we can no longer use period-based approaches
we revert to the most basic interpretation of the moire´ phe-
nomena as Glass patterns, and to their explanation by
universal rules.

The unified approach we have presented here is c
pletely general, and it covers all the different types of mo´
effects between any superposed layers. But it also offer
a new, interesting point of view on the classical moire´ ef-
fects between periodic layers. While in a stochastic case~if
we assume a nondegenerate affine layer transformat!,
there may exist at most one Glass pattern, which is loca
around the fixed point, in a periodic case, the Glass pat
that is generated around the fixed point is periodically
peated throughout the superposition, with its center form
the bright areas of the periodic moire´ pattern. From this
point of view, the 2-D periods of a periodic moire´ pattern
are simply duplicates of the main Glass pattern, which
generated around the fixed point, and the period length
the moirécorresponds to the distance between these du
cates.

Finally, although we mainly mention here superpositio
of two layers, the results presented in this work are co
pletely general and can be easily extended to superposi
of three or more layers or to the multichromatic case.

Appendix A: Affine Fixed Point Theorem

As we have seen in Sec. 4, the affine fixed point theor
states that all nondegenerate affine mappingsg(x,y) from
R2 onto itself have a single fixed point.

To better understand this theorem, let us analyze
different possible types of affine mappingsg(x,y). The
most general affine mapping is given by:

x85a1x1b1y1x0 ,
~17!

y85a2x1b2y1y0 .
680 / Journal of Electronic Imaging / October 2003 / Vol. 12(4)
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First, we consider the homogeneous mapping that is
sociated withg(x,y), i.e., the corresponding linear transfo
mation where the shift (x0 ,y0) is zero:

x85a1x1b1y,

y85a2x1b2y. ~18!

Such a linear transformation may either:

a. map R2 onto the whole ofR2 ~this occurs, for ex-
ample, in rotations, scalings, flipping over an ax
etc.!

b. mapR2 ontoR ~for example, projection on thex axis,
etc.!

c. mapR2 onto the origin~0,0! @this occurs in the zero
transformation that maps all the points~x,y! to ~0,0!#.

Casesb and c occur when the linear transformation i
Eq. ~18! is singular, i.e., when its determinant equals ze

Ua1 b1

a2 b2
U5a1b22a2b150. ~19!

Such cases do not interest us, of course, and we are
interested in transformations belonging to typea, namely,
when Eq.~18! is nonsingular.

But this is not yet all. Each such nonsingular line
transformation may either:

1. have a single fixed point, located at the origin~this
occurs, for example, in rotations, scalings, etc.!

2. have a full line of fixed points that passes through
origin ~for example, flipping over thex axis, or scal-
ing in the y direction alone, have all points of thex
axis as fixed points!

3. have the fullx,y plane as fixed points~this occurs in
the identity transformation!.

The fixed points of transformation~18! are those points
of the plane for which (x8,y8) equal~x,y!, namely:

x5a1x1b1y,

y5a2x1b2y.

This gives us the following linear set of equations forx
andy:

~12a1!x2b1y50,
~20!

2a2x1~12b2!y50.

Clearly, cases 2. and 3. occur when this linear set
equations is singular, i.e., when:

U12a1 2b1

2a2 12b2
U512a12b21a1b22a2b150. ~21!
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Unified approach for the explanation . . .
Once again, such cases do not interest us, and we
only interested in transformations belonging to type
namely, when Eq.~20! is nonsingular.

Consequently, we only consider transformations that
isfy conditionsa and 1, i.e., where both of the determinan
in Eqs.~19! and~21! are nonzero. We call such linear tran
formationsnondegenerate linear transformations, and their
associated affine mappings that are obtained by addin
shift of (x0 ,y0) are callednondegenerate affine mapping.

It is clear, therefore, that all nondegenerate affine m
pingsg(x,y) from R2 onto itself have a single fixed poin
This is, indeed, precisely what is claimed by our affi
fixed point theorem.

As an illustration, let us mention that mappings such
rotations, scalings, etc. as well as their combinations ha
indeed, a fixed point. This is also true for all of their com
binations with translation, but not for pure translation
Note that pure translations are excluded, since their de
minant in Eq.~21! is zero. In fact, the homogeneous tran
formation ~18! that is associated with a pure translation
the identity transformation, that belongs to class 3 and
the wholex,y plane as fixed points. But the addition of
translation destroys all of these fixed points, so that a p
translation has no fixed points.

As a final example, let us consider the linear transform
tion which consists of vertical scaling. This transformati
belongs to class 2, and has the fullx axis as fixed points.
What happens now when we add to this linear transform
tion a translation? In this case, the answer depends on
direction of the translation: If the translation is horizontal
is clear that all the fixed points on thex axis are destroyed
and the resulting affine mappingg(x,y) has no fixed points.
But if the translation is vertical, the resulting affine ma
ping g(x,y) will still have a full line of fixed points, which
is parallel to thex axis. Note, however, that such cases a
not treated by our affine fixed point theorem, since th
determinant in Eq.~21! is zero. This theorem only consid
ers nondegenerate affine mappings, but it does not say
thing about degenerate affine mappings. In fact, as we h
just seen, some degenerate affine mappings have a full
of fixed points, while others~such as pure translations!
have no fixed points at all.

Note that it is possible to formulate a more general v
sion of this theorem that treats all affine mappings fromR2

onto itself, including degenerate cases such as vertical s
ings and translations:

The generalized affine fixed point theorem:An affine
mappingg(x,y) from R2 onto itself has a fixed point~either
one or infinitely many! iff rankA5rankB, whereA is the
re

-

a

-

,

r-

s

e

-

-
e
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e
e
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232 coefficient matrix of the homogeneous system of E
~20! andB is the 233 extended matrix that includesx0 and
y0 in its third column:

A5S 12a1 2b1

2a2 12b2
D B5S 12a1 2b1 x0

2a2 12b2 y0
D .

Moreover, if the rank of bothA andB is 2, the fixed point
is unique; if their rank is 1, there exists a full line of fixe
points; and if their rank is 0, all the points of thex,y plane
are fixed points ofg(x,y) @this occurs ifg(x,y) is the iden-
tity mapping without translation#.

This generalized theorem is, in fact, an application to
particular case of Eq.~20! of the algebraic theorem on th
dimension of the solution space of a system of linear eq
tions ~Ref. 11, p. 143!.
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