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give rise to a different type of moingattern, which consists

Abstract. Moire phenomena of different types are frequently en- of a Single structure resembling a top-viewed funnel, or a

countered in electronic imaging. Most common are moiré effects

that occur between periodic structures. These effects have been
intensively investigated in the past, and their mathematical theory is
today fully understood. The same is true for moiré effects between
repetitive layers (i.e., between geometric transformations of periodic
layers). However, although moiré effects that occur between random
layers (Glass patterns) have long been recognized, only little is
known today about their mathematical behavior. In this work we
study the behavior of such moirés, and compare it with analogous
results from the periodic case. We show that all cases, periodic or
not, obey the same basic mathematical rules, in spite of their differ-
ent visual properties. This leads us to a unified approach that ex-
plains both the behavior of Glass patterns in the stochastic case,
and the well-known behavior of the moiré patterns in periodic or
repetitive cases. © 2003 SPIE and IS&T. [DOI: 10.1117/1.1604785]

distant galaxy in the night skisee Fig. 2b)]. This phe-
nomenon is known in literature as a Glass pattern, after
Leon Glass who described it in the late 19805However,
Glass patterns are still much less understood today than
periodic or repetitive moireffects, partly because they do
not easily lend themselves to the same mathematical tools
that so nicely explain the classical moieffects between
periodic or repetitive layers.

In the present work we present a general, unified ap-
proach that explains all of these phenomena. We show that
in spite of their completely different visual appearance,
moires between periodic or aperiodic layers are in fact par-

ticular cases of the same phenomenon, and they all follow
the same fundamental rules that explain what happens in
the superposition of any layers, periodic or not. In particu-

lar, we show the rules that govern the existence or inexis-

The moifeeffect is a well-known phenomenon that occurs tence of moirgphenomena, and their behavior under layer
when two or more structures such as gratings, screens, etc; : 0 X P X y
rhappings(layer rotations, scalings, shifts, etc.

interfere with each other and generate a new visible pattern We start in Sec. 2 by establishing the terminology and

that does not exist in any of the original structu(eg. 1). the basic notions that are needed for the rest of the work. In

Moiré phenomena are frequently encountered in eIeC_Sec 3 we discuss the superposition of aperiodic layers and
tronic imaging. For example, in the field of color printing, : Perp P y

three or four halftone dot screens must be superposed, one

for each of the primary color inks being us@gually cyan,

magenta, yellow, and blagk When these halftone screens

are made of periodic dot screens, strong undesirable peri-

odic moire effects may occur in some circumstances be- \
tween the superposed screéRef. 2, Sec. 3.8 The use of ‘
random dot screens instead of periodic dot screens is

known to be an efficient solution to this problem, since ‘

1 Introduction

random screens do not generate in their superposition such
moire effects. This is particularly helpful in nonstandard
color printing when the number of color inks being used
(and thus, the number of halftone screessceeds four, in
which case it becomes extremely diffictftat all possible
to find moirefree combinations of periodic screens.

On the other hand, it is also known that the superposi-
tion of aperiodic layers such as random dot screens may

Paper 02104 received Oct. 24, 2002; revised manuscript received Apr. 13, 2003;
accepted for publication May 27, 2003.
1017-9909/2003/$15.00 © 2003 SPIE and IS&T.

Fig. 1 An example of a moiré effect that occurs due to the super-
position of two identical periodic layers with a small angle difference.
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Fig. 2 (a) An aperiodic dot screen. (b) The superposition of two identical copies of the aperiodic dot
screen (a) with a small angle difference gives a moiré effect in the form of a Glass pattern around the
center of rotation. However, if one of the aperiodic layers is rotated by 180 deg, as shown in (c), the
Glass pattern disappears. (d) When the superposed layers are periodic, a Glass pattern is still gener-
ated around the center of rotation, but due to the periodicity of the layers, this pattern is periodically
repeated throughout the superposition, thus generating a periodic moiré pattern.

explain its main properties; this leads us to a general rulethe moirein both periodic and aperiodic cases. Finally, in
that determines the moiexistence conditions for all cases, Sec. 6 we present the main conclusions.

periodic or not. Then, in Sec. 4, we explain the mathemati-

cal meaning of Glass patterns, using the fixed point theo- . .

rem and its particular case for affine transformations. In 2 Background and Basic Notions

Sec. 5 we explain the behavior of Glass patterns underin this introductory section, we briefly review the basic
layer mappings, and show that the behavior of the corre-notions and terminology that are used later. Since we deal
sponding periodic moireis in fact just the same. This leads with layersandlayer superpositionshroughout this work,

us to a second general rule, which determines the influencdet us start by explaining these notions and their main prop-
of layer mappinggrotation, scaling, layer shifts, ejcon erties. In fact, a layefor image is the most general term
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Unified approach for the explanation . . .

we use to cover anything in the image domain. It can bewas obtained by rotation of one of the superposed layers,
periodic or not, continuous or binary, etc. However, we still by a scaling transformation, or by a combination of both, it
need to make some basic assumptions on our layers. gives rise to an intriguing ordering of the microstructure
First of all, we limit ourselves here to monochrome, elements in the superposition in “trajectories” having a cir-
black and white images. This means that each image can beular, radial, or spiral shagsee Figs. &), 3(a), and 3b)].*
represented by eeflectancefunctionr (x,y), which assigns ~ Other layer transformations may give rise to Glass patterns
to any point &,y) of the image a value between 0 and 1 having elliptic, hyperbolic, or other geometrically shaped
representing its light reflectance: 0 for blaie., no re- trajectories: However, wh_en we rotate one of the aperiodic
flected lighy, 1 for white (i.e., full light reflectance and  layers by 180 degsee Fig. )], the Glass pattern com-
intermediate values for in-between shades. In the case oPletely disappears.
transparencies, the reflectance function is replaced by a
transmittancefunction defined in a similar way. 3.1 Glass Patterns and Correlation
A superposition of such images can be obtained by over-
printing, or by laying printed transparencies on top of each
other. Since the superposition of black and any other shad
always gives black, this suggestsnaltiplicative model for
the superposition of monochrome images. Thus, wimen
monochrome images are superposed, the reflectance of th
resulting image is given by thproduct of the reflectance
functions of the individual images:

As already explained by Glass, this phenomenon occurs
hanks to the local correlation between the structures of the
0 superposed layers. In fact, its intensity can be used as a
visual indication to the degree of correlation between the
o layers in each point of the superposition. Thus, when
o identical layers having the same arbitrary structure are
slightly rotated on top of each othgsee Fig. 20)], a vis-
ible Glass pattern is generated around the center of rotation,
indicating the high correlation between the two layers in
this area. Within the center of this Glass pattern the corre-
sponding elements from both layers fall almost exactly on
top of each other, but slightly away from the center they
fall just next to each other, generating circular trajectories
o : : of point pairs. Further away from the center, the correlation
anyx<R, f(x+_p)_=f(x). Slmllgrly, a layer (x,y) is said befweenpthe two layers bgcomes smaller and smaller, and
to be periodic if there exists a nonzero VECION  the elements from both layers fall in an arbitrary, noncor-
=(p1,P2), such that for anyX,y) e R%, r(x+pg,y+p2) related manner. In this area the Glass pattern is no longer
=r(x,y). If there exist two independent vectors having this visible. This explains why the Glass pattern gradually de-
property, r(x,y) is said to be two-fold periodic. A layer cays and disappears as we go away from its center. Note,
r(x,y) is said to beaperiodic if it is not periodic. For however, that when the two superposed layers are not at all
example, the image of a human portrait or a natural land-correlated, no Glass pattern appears in the superposition
scape is aperiodic. As a second example, a random dotthis is indeed what happens when we rotate one of the
screen consisting of randomly positioned black dots is alsoaperiodic transparencies by 180 deg, as shown in F@y].2
aperiodic. Note, however, that this random dot screen mayln intermediate cases, where the two superposed layers are
also be considered asstochastic layerfrom a more sta-  only partially correlatedfor example, when one layer is a
tistical point of view, if we consider the screen in question copy of the other with some percent of random noise being
as just one possible realization of a stochastic process, havadded, the Glass pattern is weaker and less perceptible,
ing some given statistical distribution. In the case of ran- depending on the degree of the correlation which still re-
dom dot screengor more generally, random scatter—see mains between the superposed layers.
Chap. 17 in Ref. B the terms aperiodic layer, stochastic These facts are succinctly formulated by the following
layer, and random layer are sometimes used interchangegeneral rule.
ably. Rule 1 (existence condition for Glass pattermshe su-
Finally, for the sake of simplicity we only consider lay- perposition of layers gives rise to a Glass pattéfr(=if
ers having a uniform distribution of their microstructure and only if) there exists some degree of correlation between
elementgand hence a constant mean gray lgvalthough  the superposed structures.
our results hold also for more complex structures, such as In fact, as we show in Sec. 3.3, the bright and dark areas
halftone gradations, halftoned images with varying gray that form the Glass pattern are due to variations in the
levels, etc. correlation between the superposed layers. The particular
case in which the correlation is constant throughout the
- . superposition is explained in Sec. 3.2.
3 Superposition of Aperiodic Layers It should be noted that although this formulation of Rule
While the superposition of two identical periodic layers 1 uses the term Glass patterns, it is in fact completely gen-
with a small angle or scaling difference generates moireeral, and it covers both periodic and aperiodic cases. As we
effects that are themselves periodic, the superposition ofsee later, periodic cases are, indeed, particular cases of a
two identical aperiodic layers with a small angle or scaling general layer superposition, and in spite of their apparently
difference generates an aperiodic magféect known as a  different look, they still satisfy the same fundamental rules,
Glass patterisee Fig. 2b)]. This moirepattern is concen-  just as any other layers. Simply, because of their additional
trated around a certain point in the superposition, and ininternal structure, periodic cases also satisfy several addi-
contrary to periodic moig it gradually disappears as we tional specific rulesthat are expressed in terms of periods
go farther away from this point. Depending on whether it or frequencies, as described by the classical periodic’ moire

rOGY)=ri(xy)ra(xy)...rm(x,y). 1

Let us now explain what we mean by periodic and ape-
riodic or stochastic layers. A functiofi(x) is said to be
periodic if there exists a nonzero numbpr such that for
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Fig. 3 (a) Same as in Fig. 2(b), but with a small scaling difference (rather than an angle difference)
between the two layers. Note that in this case the microstructure consists of radial trajectories rather
than concentric circular trajectories. (b) Same as in (a), but with both a small angle and a small scaling
difference between the two identical layers. In this case the microstructure consists of spiral trajecto-
ries.

theory), rules that are no longer valid for general aperiodic that this explanation is based on tmécrostructure To ob-

cases. tain the point of view of themacrostructure we have to
look at the layers and their superposition from a bigger
3.2 Stable Versus Singular Moiré-Free distance, where the individual elements of the layers are no
Superpositions longer discerned by the eye, and what we see is only a

Just as in the periodic cagsee Sec. 2.9 in Ref)2we can  dray-level average of the microstructure in each area of the
distinguish in the general case, too, between two types ofSUperposition. From the point of view of the macrostruc-
moire-free superpositions. Suppose that two identical lay- ture, the center of the Glass pattern consists of a brighter
ers, periodic or not, are superposed exactly one on top ofgray level than areas farther away, due to the partial over-
the other, possibly with some fixed percent of random noiselapping of the microstructure elements of both layers in this
being added throughout. In this case the correlation be-area. Farther away, elements from the two layers are more
tween the layers remains constant throughout the superpolikely to fall side by side, thus increasing the covering rate
sition, and no macro-moireffects are visible. Upon first and the macroscopic gray level. This means that the Glass
observation, this situation resembles the mdie= case  pattern is not just an optical illusion, and it corresponds,
that occurs when the two superposed layers are completelyndeed, to the physical reality. In fact, just as in the periodic
independent of each other and have no correlation at all.case(see Proposition 8.1 in Ref),2noire patterns are sim-
However, a big difference exists between these two types ofply the macroscopic interpretation of the variations in the
moire-free superpositions. In the first case, the mdoe microstructures throughout the superposition.

Glasg pattern does exist, but it is not visible because itis  Note that the ordering of the microstructure elements
infinitely big; but such a moirdree superposition is very  within a Glass pattern into circular, radial, or spiral trajec-
unstable, since any slight deviation in the angle or in the tories is no longer visible from far awdyry to observe Fig.
scaling of any of the superposed layers may cause the3 from a distance of 3 to 4 m, where the individual ele-
moire to come back from infinity and become clearly vis- ments of the layers are no longer discerned by the)eye!
ible. This situation is called aingular moire-free superpo-  Therefore, these trajectories are not part of the macrostruc-
sition. On the other hand, mokfece superpositions, where ture description, and they belong to the microstructure of
the superposed layers are completely independent of eackhe superposition, just as rosettes in the periodic case. And
other, arestablemoire-free superpositions, and even when indeed, from the point of view of the macrostructure, there
small angle or scale deviations occur between their indi-ijs no distinction between gray levels obtained when the
vidual layers, no macro-moireffects become visible. This  neighboring elements in the superposition are located on
is, indeed, what is really meant by people saying that “the cjrcular trajectories, due to rotation, or on radial trajecto-
superposition of random screens does not generate moirgies, due to a scaling transformation. What counts in both
effects,” as is often heard in the context of random screen cases s the resulting mean coverage rate, which determines

halftoning, e.g., in color printing. the overall gray level, and not the specific geometric ar-
_ ) rangement.
3.3 Macrostructures and Microstructures in the It is interesting to note, as it is well known in the field of
Superposition halftoning, that even in a superposition of uncorrelated ran-

As we can see, the explanation in Sec. 3.1 is based on amlom screens, where no macrostructu@gss patternsex-
observation of the individual elements of the original layers ist, the microstructure still may give rise to various random
and their behavior in the superposition. We say, therefore,dot alignments such as nebulous or worm-like structures
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Fig. 4 (a) lllustration of the fixed point theorem in the 1-D case. Any continuous function y= g(x) that
maps a domain D=[ a, b] onto itself crosses the diagonal y= x within the domain [ a, b] at least once.
At each such point x we have, therefore, g(xg) = xg. Moreover, due to the continuity of the function
g, for any point x5 within a near neighborhood of x-, we have: g(xg)~ X . (b) The fixed point theorem
is not generally valid when D is the full range of R. This can be illustrated by any continuous function
of the type g(x)=x+c, c#0. Although these functions map R onto itself, they are parallel to the
diagonal y=x, and hence they never cross it for any finite value x-e R, meaning that for no point
Xge R we have g(xg)=Xr.

(artifacts.” Even when these artifacts do not influence the namely, a point Xg,yg) € D that is mapped byg(x,y) to
macroscopic, overall gray level of the superpositiag., itself: g(xe,ye) = (X ,Ve) (Ref. 10, p. 176

when they do not_ ?‘ﬁeCt the average covering rate through- It is iniererting Eto rFlote, however, that the fixed point
out the superpositionthey still may be more or less con- ,a4rem is not generally valid for infinite domaiBssuch
spicuous when viewed from a close distance, depending on. .y _p o in the 2-D caseD = R? (the entirex,y plane

the statistical nature or distribution of the points in the In such cases the theorem still holds for many functigns
original screensfully random, blue noisé,green noisé, but there exist other functiong for which the theorem

etc). . S0 L

As we can see, just as in the case of periodic layers, thefa'ls' This is |IIusFrated, for the 1-D case, n Figb3. AI.'
microstructures generated in the superposition of aperiodict’ough any function of the typg(x) =x+c (with ¢#0) is
layers may have very interesting and intriguing shapes, andfontinuous and fully maps$t onto itself, there exist for
their study is certainly not less fascinating than the study of these functions no fixed poin¢: € R such thatg(xg) =xg
the macrostructures. But although the investigation of the (Unless we admit that parallel lines meet at infinity, in
microstructures and their morphology in the superposition Which case we may say that = is a fixed poinL.* How-
of aperiodic layers deserves full research on its own, in theever, other continuous functions that m&ponto itself,
present contribution we mainly concentrate on the investi- such agy(x)=x3, do have fixed points, since they do cross
gation of the macrostructure aspects of the superpositionthe diagonaly=x at least at one pointz. A similar situa-
and on its various mathematical properties. In the next sec+tjon exists also in the 2-D case: While for many continuous
tions we see what hap_pens to th_e macrostructures in thenappingsg(x,y) from R? onto itself, such as scalings or
superposition of periodic or aperiodic layers under layer rotations, there exists a fixed point, for other mappings such
transformations, and this investigation leads us to our secys translationgy(x,y) = (x—a,y—b), there exist no fixed
ond universal rule on layer superpositions. points (again, unless we consider infinity as a fixed ppint
. . However, the most important result for our needs may be
4 Fixed Point Theorem formulated as follows.
A famous theorem in mathematical topology, known as the  The affine fixed point theoremAll nondegenerate affine

fixed point theoreniRef. 10, p. 658 says that any continu-  mappingsg(x,y) from R? onto itself have a single fixed
ous functiong(x) that maps the domaib=[a,b] onto point.

itself, g: [a,b]—[a,b], has at least one fixed point ia,b] This theorem asserts that all mappings such as rotations,
[namely, a poinxg €[a,b] that is mapped byg(x) to it- scalings, etc., as well as their combinations, have indeed a
self: g(xg) = xg]. This theorem is clearly illustrated in Fig. fixed point. This also includes all of their combinations

4(a). with translations, but pure translations are excluded. This

This fundamental theorem can be easily generalized totheorem is explained and demonstrated in Appendix A.
higher dimensions, although in such cases it can no longer
be graphically illustrated as in Fig.(&. For example, a
2-D version of the fixed point theorem states that any Con_*Note that the functiog(x) =x+c, c#0, is not a valid counter-example

. . . _ 2
thzPUS m_appln@g(x,y) that maps the dI.SID—{(X.,y) |_X for the fixed point theorem withD =[a,b], simply because it does not
+y°<r} into itself has at least one fixed point iD, mapD onto itself.
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Let us see now how the fixed point theorem can help usstill may have around the center oscillations between darker
formalize our subject of interest, the superposition of simi- and brighter areas, but if the correlation between the layers
lar structures, periodic or not. This mathematical formaliza- decreases with the distance, these oscillations gradually
tion will allow us in the following sections to deduce im- fade out and disappear as we go farther from the center of
portant facts on the behavior of Glass patterns. Suppose wé¢he Glass pattern.
are given a layer(x,y) consisting of an arbitrary struc- This correspondence between Glass patterns and peri-
ture, as explained in Sec. 2. We generate a second, slightlpdic moires is further developed in the next section. We
modified layerr,(x,y) by applying onr;(x,y) a continu- will see there that, in fact, periodic mogeare simply a
ous mappingcoordinate transformatiorg(x,y) that maps particular case of Glass patterns that occurs when the su-
the x,y planeR2 onto itself. For exampler,(x,y) could be ~ Perposed layers are periodic.

a slightly rotated version af;(X,y). We now superpose the
two layersr1(x,y) andr,(x,y), for example by overprint-
ing, or by laying their transparencies on top of each other. ) ) ]
The superposition thus obtained is represented mathematitiaving understood the mathematical meaning of Glass pat-

5 Behayior of Glass Patterns and of Periodic
Moire s Under Layer Mappings

cally by the product: terns, let us try to see their behavior when any of the su-
perposed layers undergo a transformation such as rotation,
FX,Y) =1 1(%Y)Fo(X,Y). 2 scaling, translation, etc. Moreover, since the behavior of

periodic moirs under such transformations is already fully

Suppose that the continuous mappifg,y) has a fixed ~ known from the classical moirtheory, it would be inter-
point (x¢,yg). This means that at the poinkg,ye) we esting to compare the behavior of both cases, periodic and
AR _ ' aperiodic, and to see if they follow the same mathematical
have ry(Xg,Ye) =ri[9(Xe ,Ye) 1= 1(Xg Y¢), so that the

point (x-yr .2¢) belonging to the surface=ry(x.y) re- oo

. . . To study the behavior of a Glass pattern, we must, of
mains unchanged after applying the mappg{g,y). For  course, make sure that a Glass pattern is indeed generated

example, if it was a black point, it remains a black pointin in oyr layer superposition. Therefore, we have to superpose
ra(x,y), and if it was a white point, it remains a white |ayers that are sufficiently correlated. The easiest way of
point inr,(x,y). Furthermore, in the neighborhood of this doing so is to assume a full correlation, i.e., that the super-
fixed point, any pointXg,Yg,Zg) Of r1(X,y) has beenonly  posed layers, periodic or not, be fully identical before the
slightly displaced irr,(x,y). How does this affect the su- application of the layer mappings in question. In the rest of
perposition of Eq(2)? this section we make this assumption. Note that this does
Clearly, the superposition(x,y) is darker than each in- not cause a loss of genera_lity, since in cases where the
dividual layer, since it becomes black wherever any of the original layers are only partially correlatebr example,
superposed layers is black. However, the mean gray levedue to the presence of some random noitiee Glass pat-
of the superposition remains brighter in a close neighbor-terns may look somewhat different or be less visible, but
hood around the fixed poinkg ,yg), since in this area the their behavior under layer mappings remains the same.
black dots ofr,(x,y) fall almost exactly on top of their . .
original counterparts ir,(x,y), so that the mean gray 5.1 Behavior Under Layer Rotations
level is only slightly darker than in;(x,y). But as we go  The .simplest nontrivial layer transformation.consists of a
farther from the fixed pointXe,ye), the correlation be-  rotation of any of the superposed layers. This case has the

tween the dots of ,(x,y) and the dots of (x,y) gradually ~ Practical advantage of being very easy to experiment by
anipulating superposed transparencies. Suppose we have

ly th level of th = . . N .
decrea;es, and consequently the mean gray leve' 0 the Sl{\r/]vo identical transparencies consisting of the same arbi-
perposition becomes darker as the black points,(%,y) trary dot pattern, periodic or not. We superpose the two

fall more often petween black points o{(x.y), leaving transparencies precisely on top of each other, and while
less white area in the superposition. keeping the first transparen¢say, the upper ondixed, we

If the dots ofry(x,y) [and hence the dots ab(X,y)]  glightly rotate the other one by a small angieso that a
are randomly distributed, then far away from the fixed point G|ass pattern becomes visible around the fixed point at the
(X ,Yr) there will no longer be any correlation between the rotation center. As we have already seen, the center of the
points of the two layers, and the resulting gray level in the Gjass pattern is brighter than areas further away, due to the
superposition will remain constant as we go farther from partial overlapping of the black elements of both layers
(Xg,Yg). However, ifr,(x,y) is a periodic structure, such  around the fixed point. This behavior at the center is com-
as a periodic dot screen, then as we go farther from themon to both periodic and stochastic cases, and indeed, the
fixed point kg,yg), the mean gray level will periodically  difference between these cases becomes apparent only far-
become darker and brighter, because zones of in-phase suher away from the fixed point. In stochasticcase, as we
perposition, where elements of the two layers fall on top of go farther away from the fixed point, the mean gray level of
each other, repeatedly alternate with zones of counterphaséhe superposition is stabilized at a certain darker |¢seé
superposition, where elements of the two layers fall be- Fig. 2(b)], because farther from the center the correlation
tween each othdicompare Figs. ) and 2d)]. It is inter- between the two layers becomes negligible. But ipeai-
esting to note that in the superposition of partly random odic case[see Fig. 2d)], the brighter gray level at the cen-
layers, such as periodic dot screens with a certain degree ofer becomes alternately darker and brighter as we go away
randomness being added, the resulting Glass patterns havésom the fixed point, and it continues to oscillate periodi-
indeed, an intermediate look. Depending on the case, theycally, because zones of in-phase superposition, where ele-
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ments of the two layers fall on top of each other, repeatedly Suppose we have two identical layers consisting of the
alternate with zones of counterphase superposition, wheresame arbitrary dot pattern, periodic or not. We superpose
elements of the two layers fall between each other. the two layers precisely on top of each other, and while

We may say, therefore, that the Glass pattern that is genkeeping the first layer fixed, we slightly scale the other one
erated around the fixed point in a periodic case is periodic.[see Fig. 8)]. Once again, a Glass pattern will become
However, from another point of view, we may say that visible around the fixed point, whose center is brighter than
while in the stochastic case there exists only one Glassareas farther away, due to the partial overlapping of the
pattern, which is located around the fixed point, in the pe- black elements of both layers around the fixed point. Al-
riodic case, the Glass pattern that is generated around th¢éhough the microstructure obtained in this case is different
fixed point is periodically repeated throughout the superpo-than in the case of layer rotatiofig consists ofradial
sition, forming the bright areas of the periodic mopat- rather tharcircular dot trajectories, compare Figgapand
tern. From this point of view, the periods of a periodic 2(b)], the macroscopic properties of the Glass pattern re-
moire pattern are simply duplicates of the main Glass pat- main the same. And again, while in the stochastic case as
tern that is generated around the fixed point, and the periodve go farther from the fixed point, the mean gray level of
length of the moirecorresponds to the distance between the superposition is stabilized at a certain darker level, in
these duplicate5This does not mean, of course, that our the periodic case as we go farther from the fixed point, the
rotation transformatiom(x,y) has more fixed points when brighter gray level at the center alternately becomes darker
the two superposed layers are periodic than when the layer@nd brighter, and it continues oscillating repeatedly as the
are aperiodic. Obviously, in both casgik,y) has exactly elements of the two layers periodical!y fall on top of each
one fixed point. But when the two superposed layers areother(in phasg or between each othéin counterphase
periodic, we also have infinitely many points of coinci-  Thus, we may say, once again, that while in the stochas-
dence between the two Superposed |ayer3’ where the twéC case thert_—:‘ eX|stS_onIy one Glass p_attern, which is located
layers happen to coincide because of the periodicity in theiraround the fixed point, in the periodic case, the Glass pat-
internal structure. But these points of coincidence are nottern that is generated around the fixed point is periodically
fixed points of the underlying mappirggx,y). We can say, ~repeated throughout the superposition, forming the bright
therefore, that the fixed point af(x,y) determines the aréas of the periodic moingattern.

main periodic tile of the moirewhile all the other periodic o Bctj‘.tfgus'[ as V‘t’)e have se:n glith layer rotations, in sc?ite Ofd
tiles are only duplicates that exist due to the periodicity of the dillerence between the Glass pattems in periodic an
the superposed layers. aperiodic superpositions, their fundamental behavior under

Note, however, that in spite of all these differences be- layer scalings remains basically the same. In both cases,
tween the Glass patterns in periodic and aperiodic superpo¥/Nen the scaling factos gradually departs from 1, the
sitions, their fundamental behavior under layer rotations re-Glass patterrirespectively, the perlqdlc tile of the mo)re_
mains basically the same. In both cases, when the angle becomes smaller and smaller. And mverselly, as the scaling
departs from O, the Glass pattemespectively, the periodic  1actors tends to 1, the Glass pattefrespectively, the pe-
tile of the moiré becomes smaller and smaller until it com- riodic tile of the moirg b“fcom‘?s bigger and blgger, qntll
pletely disappears. And inversely, as the anglends to 0, ~ Whensreaches 1 we obtain a singular superposition with an
the Glass patterr(respectively, the periodic tile of the Nfinitely big moire which is no longer visible. It should be
moire) becomes bigger and bigger, until wherreaches 0 mentloned, howe\fer, that while in the periodic case new
we obtain a singular superposition with an infinitely big higher order moire may occur arounds=2,3, or s
moire, which is no longer visible. =1/2,1/3, etc., in the purely stochastic case, no higher or-

der moires exist, since at such scaling values no correlation
) ] exists between the superposed layidos instance, a ran-
5.2 Behavior Under Layer Scalings dom screerm(x,y) is not correlated withr (2x,2y)].
A similar effect occurs also in the case of a scaling trans-
formation. Note, however, that in this case the visual study5.3 Behavior Under Layer Shifts

of the effect by using superposed transparencies is not ag, e we have two identical transparencies that are su-

. . . Yerposed with a small angle different@ a small scaling
manually stretch or shrink transparencies. For testing this ifference, so that a visible Glass pattern is generated
case one needs, therefore, to prepare in advance a set Qfng the fixed point. What happens to this Glass pattern

redulced or en(ljargr;]ed copies gf the orligi.nal Ia{/k;l(; bex- when we laterally translate one of the transparencies with
ample, zoomed photocopies\ better solution would be to agnect to the other? The answer for the case of periodic

make simulations on a computer screen, since this WOUIdmoir'es is already well known: the moirgattern will simply

permit us to observe the superposition continuously while pe tansiatedby a much longer distance than the original
the scaling rate is gradually being varied. layer shify, without undergoing any other modifications.
The extent and the direction of its translation are deter-
_ mined by the extent and the direction of the shifts in the
"It is important to note, however, that these duplicatesnateecessarily identical in original layers as explained, for example, in Sec. 7.6 of
their microstructure, and the periodicity of the moarencerns only its macrostruc- P i it i _
ture, namely, the moiritensity profile(the variation in the mean gray level that is REf', 2 (See F,Ig' 5 Since the SUpEI’pOSItIO'I’.\ of peI’IOdIC Iay
observed from such a distance that the microstructure detail of the original layers is€I'S IS @ particular case of the superposition of any general
no longer discerned by the eyén other words, although the microstructure in the |ayers, it would be reasonable to expect that the behavior of
superposition of two periodic layers is not always periodic, the intensity profile of PR I . :
the isolated moirés, indeed, periodiésee Sec. 6.3 in Ref)1 a periodic moireunder layer shifts should be a particular

case of the behavior of a Glass pattern under the same layer
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Fig. 5 A periodic moiré between two identical periodic grids of period T that are superposed with a
small angle difference «, and its behavior under layer shifts. The origin of each image is indicated by
a cross. (a) Both grids and the resulting moiré are centered on the origin, in their initial position. (b)
Grid A is shifted by 1/2 period (i.e., by T/2) to the right. Consequently, the moiré is shifted 1/2 moiré
period downward. (c) Grid A is shifted by 1/2 period (i.e., by 7/2) upward. Consequently, the moiré is
shifted 1/2 moiré period to the right. (d) Grid A is shifted by 1/2 period to the right and 1/2 period
upward. Consequently, the moiré is shifted 1/2 moiré period downward and 1/2 moiré period to the
right.

* When the first transparency is slightly shifted to the
left, the Glass(or moire) pattern largely moves up-
ward.

* When the first transparency is slightly shifted upward,
the Glasgor moire pattern largely moves to the right.

« And when the first transparency is slightly shifted
downward, the Glas&r moire pattern largely moves
to the left.

shifts. And indeed, as described in detail next, simple ex-
perimentation with two superposed transparencies shows
that exactly the same results are obtained in the periodic
and aperiodic cases.

Suppose that a Glass pattefmespectively, a periodic
moire pattern is generated around the fixed point by rotat-
ing the second transparency by a small angleounter-
clockwise, and that we slightly shift the first transparency
(the nonrotated laygrin a given directiorf. As shown in
Figs. 5 and 6, the resulting effect will be a much larger shift
of the Glass patterfrespectively, the periodic moirgin a
direction that is basically perpendicular to the shift of the
first transparency.

The identical qualitative behavior of both periodic and
aperiodic cases further confirms our assumption that both
cases are, indeed, two different facets of the same phenom-
enon. But if our assumption is correct, the behavior of both
cases must be identical quantitatively, too. Since the quan-
titative behavior of the periodic moinender layer shifts is
already well knownsee Sec. 7.6 in Ref)2we try now to
determine quantitatively the behavior of the aperiodic case
(i.e., the shift of the Glass pattgrrio see if we obtain the
same results.

In order to do so, let us try to locate the fixed pding.,
the center of the Glass pattg¢rwhen the second layer is

* When the first transparency is slightly shifted to the
right, the Glass(or moire pattern largely moves
downward.

*We choose this layer convention to remain compatible with the figures and the
examples given for the periodic case in Chap. 7 of Ref.1, some of which are repro-
duced here.
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Fig. 6 A Glass pattern between two identical aperiodic dot screens that are superposed with a small
angle difference «, and its behavior under layer shifts. The origin of each image is indicated by a cross.
(a) Both layers and the resulting Glass pattern are centered on the origin, in their initial position. (b)
Layer A is shifted by X, to the right. Consequently, the Glass pattern is shifted downward. (c) Layer A
is shifted by y, upward. Consequently, the Glass pattern is shifted to the right. (d) Layer A is shifted by
X, to the right and by y, upward. Consequently, the Glass pattern is shifted downward and to the right.
Note that the angle difference a between the superposed layers is the same as in Fig. 5, and the layer
shifts are also the same as in Fig. 5: xo=T/2, y,= T/2. And indeed, the resulting shift of the Glass
pattern is the same as the resulting shift of the moiré pattern in Fig. 5 (although in the aperiodic case
it cannot be expressed in terms of moiré periods).

rotated by anglex, and the first, unrotated layer is shifted which gives us the following linear set of equations for
laterally in the originak andy directions by &g,Yo). This andy:

is also equivalent to rotating the second layer by angle
and then shifting it along the originalandy directions by

~ (Xo.Yo), while the first layer remains fixed. The mapping *(1~C0S@) Yy sina=xq,

g(x,y) is given, therefore, by: )
X' =X cosa+y sina+Xy, xsina+y(1—cosa)=Yy.
y'=—Xxsina+ycosa+yy, (3)

It can be easily showrifor example, using Cramer’s
wherex,y are the coordinateseforeapplying the rotation ~ fule) that the solution of this set of equations is given by:
and the shift, and’,y’ are the coordinateafter the map-
ping. Our problem of finding the fixed point gfx,y) con- Xo(1—cosa)+ Y, Sina
sists, therefore, of finding wherx(,y’) equals(x,y). This X= 2(1—cosa)
happens, of course, where:

(6)
X=X COSa+Y Sina+Xg, —Xg Sina+Yyo(1—cosa)

y=—XxSina+y cosa+yy, (4) y= 2(1—cosa) ’
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Fig. 7 Geometrical interpretation of the 2-D linear transformation, whose matrix is (_1‘_,z 9. (a) shows
points A=(1,0), B=(1,1), C=(0,1),..., H=(1,—1) in the x, y plane before applying this transforma-

tion, and (b) shows the new locations of these points in the x’,y’ plane after the application of the

transformation. For example, point A, whose initial coordinates in (a) are (1,0) is mapped by the
transformation to the point (%, 3)(3)=(_) in (b).

or in matrix form: And indeed, as we have expected, this quantitative result

fully corresponds to the moirghift obtained in the case of
sina

a periodic moire )
L1 1 1-cosa As predicted by proposition 7.2 in Ref. 2, the moire
XI_ 2 _ (XO) the periodic case is shifted in its own direction, which is, as
y) 2 sina 1 Yo shown in Fig. 4.8 of Ref. 2, reproduced here as Fig. 8,
" 1—cosa exactly a/2— /2.
1 1 col al2) Xo) .
~ 2\ —cot(al2) 1 Yo/’ @ v
* A
Note that this solutiortfixed poin) exists and is unique \
whenever 2(% cosa)#0, i.e., wheneven+ 0. \ .
Equation(7) means that the fixed poirix,y) is simply a \ th The ‘{)ei“;“a}SMI
linear transformation of the lateral shift{,y,) undergone \ T
by the original layer. The matrix of this transformation has \\
the form of (X, %) with a=cot(a/2). As shown in Fig. 7, | RV —v
this transformation corresponds, in fact, to: pm 0 >
e a rotation by angled, where tary=-a, i.e., 0 T -
= —arctam
° I — 2\1/2 4
and a scaling by factas: s=(1+a“)"~ The Vect?n.afl sum: 1,
By inserting herea= cot(a/2) and remembering the factor a=hrh \
1/2 before the matrix, we see that the locatiany) of the \
fixed point is obtained from the layer shifk{,y,) by a !
rotation of:

Fig. 8 Vector diagram explaining the moiré orientation in the super-

position of two identical periodic screens with an angle difference of

o T o T a. Vectors f; and f, are the main and secondary frequency vectors

=arCCO( COtE) ) = 2 % (8 of the first layer, and f; and f, are the main and secondary fre-
quency vectors of the second layer (note that in the figure we rather

show —f; and —f,, in the opposite directions). The moiré effect

and a scaling by: generated in the superposition is represented by the vectors a=f,;

o
0= — arctaré cotE

—fy and b=f,—f,. The orientation of the moire, represented by the

1 1 orientation of its main frequency vector a, is @/2— /2. Namely, it is

s=—[1+ cotz( a/2)]1/2= — ©) perpendicular to the bisector between the directions of the two origi-
2 2 sinal2) nal layers.
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Furthermore, the extent of the shift of the periodic moire
is given, in terms of periods, by Eq6.26 and (2.10 in
Ref. 2, namely:

-
bM:TM(¢l_¢2):m(¢l_¢2)a (10

where by, is the resulting shift of the moireT), is the
period of the moireT is the period of the original layers,
and ¢, and ¢, are the shifts of the original layers in terms
of periodsT. Noting that in our caseb,=0 (the second
layer is not shifteg] we see that for a shift af in the first
layer (i.e., ¢,=d/T periods, the extent of the resulting
shift of the moireis:

1
b= s ar2) & 3
Hence, the shift of the periodic moiig obtained by scaling
up the shiftd of the original layer by the factors
=1/2 sin(@/2), exactly as predicted by E¢P) according to
fixed point considerations.
We see, therefore, that the resulting mastgfts in the

1
b2+ albz_ a2b1

1-b,
az

x)_
y] 1-a;—

bl ) Xo)
l_al Yo .

This means that even in the general case where the layer
transformation is given by the affine mappig,y) of Eq.

(12), the location(x,y) of the fixed point is still a linear
transformation of the shiftx,y,) undergone by the origi-
nal layer.

It should be mentioned that this solutidire., the fixed
point) exists and is uniquif the determinant of the homog-
enous equations in Eqél3), i.e., the denominator of Eq.
(15), is nonzero:

(15

1—a;—b,+ab,—a,b;#0. (16)

If this condition is not satisfied, then either there exists
no solution(fixed poin} at all [this happens, for example,
wheng(x,y) is a pure translatigjp or there exists an infin-
ity of solutions[for example: ifg(x,y) consists of flipping
over thex axis, possibly followed by a vertical shift of
(0y0), then there exists an infinity of fixed points forming
together a full horizontal line This subject is fully ex-
plained in Appendix A.

periodic case and in the aperiodic case are indeed identical,

and both are explained as a shift of the fixed point. How-

ever, in the periodic case, the same result can also be obs 5 Behavior Under General Layer Transformations

tained in terms of periods, frequencies, Fourier series de-

velopments, etc., as was done in Ref. 2. This period- or
frequency-based interpretation is extremely useful due to
the new insights and powerful tools it offers for analyzing
the periodic case. But in the general aperiodic case, we ca
no longer use period-based approaches, and we revert to th
more general analysis in terms of the fixed point theorem.

5.4 Behavior Under a General Affine Transformation

In the most general affine case, when the transformation

g(x,y) is given by:

X' =a;x+byy+Xxg,

(12)
y'=axX+byy+yo,
the fixed point is given by the set of equations:
(1—-ap)x—biy=Xo,
(13
—aXx+(1-by)y=Yyo,
whose solution is:
~ (1=by)xe+byyp
" 1—a;—b,+ab,—ayb;’
(14

axXot(1—ay)yo
1-a;—by,+a;by,—asb;’

or in matrix form:

Similar considerations also hold for more general layer
transformations, such as second-order polynomial transfor-
mations, logarithmic transformations, etc. However, finding

fthe fixed points in such cases may require some more com-

lex calculations, using either analytic or numeric methods.

ote that in the most general case there are more possible
configurations for the fixed points than in an affine trans-
formation. A general mapping may have, for example, no
fixed points at all, one isolated fixed point, several isolated
fixed points, or even a curved line consisting of fixed
points.

In conclusion, we see that the following universal rule
holds for periodic as well as aperiodic layers, and explains
their fundamental behavior.

Rule 2 (moire behavior rulg: The behavior of the moire
under rotations, scalings and shifts of the individual layers
(or more generally, under any layer mappings, linear or
not), is determined by the fixed points of the mappings and
their properties.

As we can see, our two universal rules determine the
conditions for the generation of moiedfects, as well as the
behavior of these moireffects under rotations, scalings,
shifts, or any other layer transformations. This gives us,
indeed, a unified approach, which explains the fundamental
properties of all types of moireffects, periodic or aperi-
odic.

6 Conclusions

Because moireeffects are so frequently encountered in
electronic imaging, a full understanding of their different
forms is essential. In the present contribution we have gone
a further step in this direction. We show that in spite of
their different appearance, moieéfects that occur between
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periodic or aperiodic layers are, in fact, particular cases of  First, we consider the homogeneous mapping that is as-
the same basic phenomenon, and all of them satisfy thesociated withg(x,y), i.e., the corresponding linear transfor-
same fundame,ntal, universal rules. mation where the shiftx,y,) is zero:

Rule 1(moire existence rulg The superposition of lay-
ers gives rise to a moingatterniff there exists some degree
of correlation between the superposed structures.

Rule 2(moire behavior rulg The behavior of the moire
under rotations, scalings, and shifts of the individual layers Y’ = axX+b.y. (18
(or more generally, under any layer mappings, linear or
not), is determined by the fixed points of the mappings and  Such a linear transformation may either:
their properties.

The first rule gives the conditions for the appearance of ~a. map R? onto the whole ofR? (this occurs, for ex-

X' =ayx+byy,

moire effects, and the second rule determines the behavior ample, in rotations, scalings, flipping over an axis,
of these moireeffects under any layer transformations. etc)

Based on these general rules, we have presented a unified b. mapR? ontoRR (for example, projection on theaxis,
approach that explains the basic properties common to all etc)

the different types of moireffects: moire between sto- c. mapR? onto the origin(0,0) [this occurs in the zero
chastic, periodic, or repetitive layers. It is clear, however, transformation that maps all the poirtsy) to (0,0)].

that when additional structural information on the original

layers exists, like in periodic or in repetitive cases, this Casesb andc occur when the linear transformation in
additional information may allow the investigation of the Eq.(18) is singular, i.e., when its determinant equals zero:
moire effects by means of more sophisticated methods,

such as the Fourier theory, indicial equations, etc., thus of-|a, b,

fering further insights and analysis tools that are proper tol =a,b,—ayh;=0. (19

such cases. But in the most general aperiodic or stochastic®2 b,

cases, we can no longer use period-based approaches, and

we revert to the most basic interpretation of the meine- Such cases do not interest us, of course, and we are only
nomena as Glass patterns, and to their explanation by ouinterested in transformations belonging to tymenamely,
universal rules. when Eq.(18) is nonsingular.

The unified approach we have presented here is com- But this is not yet all. Each such nonsingular linear
pletely general, and it covers all the different types of moire transformation may either:
effects between any superposed layers. But it also offers us

a new, interesting point of view on the classical magfe 1. have a single fixed point, located at the origiinis

fects between periodic layers. While in a stochastic ¢dise occurs, for example, in rotations, scalings, etc.

we assume a nondegenerate affine layer transformation 2. have a full line of fixed points that passes through the
there may exist at most one Glass pattern, which is located origin (for example, flipping over tha& axis, or scal-
around the fixed point, in a periodic case, the Glass pattern ing in they direction alone, have all points of the
that is generated around the fixed point is periodically re- axis as fixed points

peated throughout the superposition, with its center forming 3. have the full,y plane as fixed pointéhis occurs in
the bright areas of the periodic moigattern. From this the identity transformation

point of view, the 2-D periods of a periodic moipattern

are simply duplicates of the main Glass pattern, which is  The fixed points of transformatiofi8) are those points

generated around the fixed point, and the period length ofof the plane for whichX’,y’) equal(x,y), namely:

the moirecorresponds to the distance between these dupli-

cates. X
Finally, although we mainly mention here superpositions

of two layers, the results presented in this work are com-

pletely general and can be easily extended to superposition¥ = 82X+ boy.

of three or more layers or to the multichromatic case.

= a1X+ bly!

This gives us the following linear set of equations %or
andy:
Appendix A: Affine Fixed Point Theorem

As we have seen in Sec. 4, the affine fixed point theorem(1—a;)x—b;y=0,

states that all nondegenerate affine mappiggsy) from (20)
R? onto itself have a single fixed point. —ayx+(1—b,)y=0.
To better understand this theorem, let us analyze the
different possible types of affine mappingéx,y). The Clearly, cases 2. and 3. occur when this linear set of
most general affine mapping is given by: equations is singular, i.e., when:
x'=a;x+byy+xq, 1-a, —b,
(17) :1_a1_b2+a1b2_a2b1:0. (21)
y’=a2X+b2y+y0. _a2 1_b2
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Once again, such cases do not interest us, and we ar@x 2 coefficient matrix of the homogeneous system of Eq.
only interested in transformations belonging to type 1, (20) andB is the 2x 3 extended matrix that includeg and
namely, when Eq(20) is nonsingular. Yo in its third column:

Consequently, we only consider transformations that sat-

isfy conditionsa and 1, i.e., where both of the determinants 1-a; —b, 1-a; —b; X
in Egs.(19) and(21) are nonzero. We call such linear trans- Az( ) B= .
formationsnondegenerate linear transformatigrand their —a; 1-b; —a; 1-by Yo

associated affine mappings that are obtained by adding
shift of (xq,Yo) are callednondegenerate affine mappings
It is clear, therefore, that all nondegenerate affine map-
pingsg(x,y) from R? onto itself have a single fixed point.
This is, indeed, precisely what is claimed by our affine
fixed point theorem.
As an illustration, let us mention that mappings such as

rotations, scalings, etc. as well as their combinations have,. ) - h
indeed, a fixed point. This is also true for all of their com- dimension of the solution space of a system of linear equa

Ef\/loreover, if the rank of bot\ andB is 2, the fixed point
is unique; if their rank is 1, there exists a full line of fixed
points; and if their rank is 0, all the points of tley plane
are fixed points ofy(x,y) [this occurs ifg(x,y) is the iden-
tity mapping without translation

This generalized theorem is, in fact, an application to the
particular case of Eq20) of the algebraic theorem on the

Isaac Amidror received his BSc degree in
mathematics from the Hebrew University of
Jerusalem, Israel, and his MSc degree in
computer science from the Weizmann In-
stitute of Science in Rehovot, Israel. He re-
ceived a Japanese government scholar-
ship for a two-year research period in the
computer science department of the Toyo-

binations with translation, but not for pure translations. tions (Ref. 11, p. 148
Note that pure translations are excluded, since their deterReferences
minant in Eq.(21) is zero. In fact, the homogeneous trans- 1. \J( Ak- (Cl-g\gL%e,Principles of Color Reproductigiwiley and Sons, New
X . . . JO or .

fom?a“or? (18) that is anSOCIated with a pure translation is 2. 1. Amidror, The Theory of the Moir®henomenorKluwer, Dordrecht
the identity transformation, that belongs to class 3 and has  (2000. ]
the wholex,y plane as fixed points. But the addition of a 3. SL%SGIgZ%,(l“QAGgre effect from random dots, Nature (London)223,
tran5|at!0n destroys_ all of these fixed points, so that a pure 4. L. Glass and R. Rez, “Perception of random dot interference pat-
translation has no fixed points. terns,” Nature (LondonP46, 360—362(1973.

As a final example, let us consider the linear transforma- 3- L. Glass, “Looking at dots, Math. Intell. 24, 37-43(2002.
. . . . . . . 6. R. N. Bracewell,Two Dimensional ImagingPrentice Hall, Engle-
tion which consists of vertical scaling. This transformation wood Cliffs, NJ(1995.
belongs to class 2, and has the fulbxis as fixed points. 7. I%&LT. LS:JC,: é\'CM'tha%'sanl% oc(sz'o%]) Arce, “Stochastic mafteProc.

o li _ 'S onfpp. 96— .

What happens now Wh‘?” we add to this linear transforma 8. R. Ulichney, “Dithering with blue noise,’Proc. IEEE 76, 56-79
tion a translation? In this case, the answer depends on the  (19s8.
direction of the translation: If the translation is horizontal, it 9 Eél ﬂLdn%r?;," SEOE-IQEC& €n2d42'\ii %ﬁﬂ'gggeﬂ “Green-noise digital
is clear that all the fixed points on theaxis are destroyed, 19 E. w, welssteinCRC Concise Encyclopedia of MathematieRC,
and the resulting affine mappimgx,y) has no fixed points. Boca Raton, FL(1999. .
But if the translation is vertical, the resulting affine map- % ép“r'ihgé?négtrﬁ'r? and K. A Semendyaytandbook of Mathematics
ping g(x,y) will still have a full line of fixed points, which ’ '
is parallel to thex axis. Note, however, that such cases are
not treated by our affine fixed point theorem, since their
determinant in Eq(21) is zero. This theorem only consid-
ers nondegenerate affine mappings, but it does not say any
thing about degenerate affine mappings. In fact, as we have
just seen, some degenerate affine mappings have a full line
of fixed points, while othergsuch as pure translations
have no fixed points at all. hashi University of Technology in Japan.

Note that it is possible to formulate a more general ver- After having worked a few years in industry
. f this th that treats all affi . it (notably in the fields of laser printing and
sion 0 'S_ eorem at treats all arnne mappings b digital typography), he received his PhD degree in the Swiss Fed-
onto itself, including degenerate cases such as vertical scaleral Institute of Technology, in Lausanne, Switzerland. He has pub-
ings and translations: lished numerous scientific papers and is the author of a recent book

The generalized affine fixed point theoreAn affine
mappingg(x,y) from R? onto itself has a fixed poirfeither
one or infinitely many iff rankA=rankB, whereA is the

on the theory of the moiré phenomenon (http:/Ispwww.epfl.ch/
books/moire/). His research interests include the mathematical foun-
dations of moiré phenomena, document security, color image repro-
duction, image processing, and digital typography.

Journal of Electronic Imaging / October 2003 / Vol. 12(4) / 681



