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Abstract: The Neugebauer equations and the Demichebften this is done by direct calculation, using the Demichel
equations on which they are based are one of the basic toolsquations. However, the Demichel equations are valid only
for modeling colour printing systems that use the halftoningunder a rather strict condition: they require that the super-
technique. However, these equations implicitly assume thgiosed screens be independent of each other, so that the
the colour ink distributions in the screen superposition arepercent area of dot overlap in the superposition be the
statistically independent. We show that this condition is noproduct of the individual dot percent areas in the original
satisfied in the conventional screen superposition used fohalftone screens.
colour printing, and we discuss the consequences of this It has been recently shownas a consequence of this
fact. Furthermore, we give a precise criterion that deter-requirement, that in the superposition of two regular dot-
mines, for any number of superposed regular screens, iscreens having the same frequency* the validity of the
which cases the Demichel (and hence the Neugebauebemichel equations is not always guaranteed, and it de-
equations are satisfied, and in which cases they fail: Thgends on the angle between the two superposed screens.
Demichel equations fail in all cases where the screen su- In the present contribution, we extend this result to the
perposition is singular, and they are satisfied in all non- most general case of regular screen superpositions, namely
singular screen superpositions. We illustrate our resultsthe superposition af screens with any angle and frequency
with several examples of both case000 John Wiley & Sons, combinations. We show that the Demichel equations are
Inc. Col Res Appl, 25, 267-277, 2000 valid only for screen superpositions that are nonsingular,
Key words: Neugebauer equations; Demichel equations\'l.\/h”eI for singular superposit?(_)rfsjnzluding thz_ (_:on\1|en- d
colour printing: dot-screen superpositions _tlona 3-or _4-§creen superpositions that are traditionally use
in colour printing, the Demichel equations are not valid. Al-
though the colour deviations that result from using the
INTRODUCTION Demichel equations in such singular cases are not excessively

large, they still may be nonnegligible, and one should be aware

The Neugebauer equations are one of the most basic 100 i existence when using the Neugebauer equations.
for modeling colour printing systems that are based on

halftoning techniques.The use of the Neugebauer equa-

tions for predicting the colour of a given printed patch THE NEUGEBAUER AND DEMICHEL EQUATIONS
requires a precise knowledge of the proportional area of o ) ) .
each ink combination within the given patch. This informa- Most printing devices are only _bll_evel, meaning that they
tion can be obtained by counting pixels (either under a*'® qnly capable of printing solid |nI§ or Ieaw_ng the paper
microscope or by using a computer simulation), but most!NPrinted, but they cannot produce intermediate ink tones.

*The frequency of a regular dot-screen is defined as the number of

Correspondence to: Dr. Isaac Amidror, Laboratoire de ‘BystePeph- . . .
P P screen dots per unit of length (inch, cm, etc.) along the screen’s main axes.

eriques, Ecole Polytechnique é@ale de Lausanne, CH-1015 Lausanne,
Switzerland " The precise mathematical meaning of these terms is explained below,
© 2000 John Wiley & Sons, Inc. following Proposition 1.
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TABLE I. The 2° = 8 possible combinations of ink  superposed dot-screens, each screen being printed with one
superposition in the classical case with cyan, ma-  of the C, M, Y inks. Looking through a microscope we can

genta, and yellow inks. see that our printed patch is covered by a multitude of
Primary inks G;, G, Cy: | partially oyerlapplng cyan, magenta, apd yellow halftone_
Colour resulting dots, possibly separated by some unprinted areas. Now, if
c M Y from the ink superposition e know the fraction of the total patch area (i.e., the relative
0 0 0 W (white) area)ay, that is occupied by each of the possibléigk
1 0 0 C (cyan) overlaps in our patch, then, by virtue of the additive colour
8 g) ‘13 :‘("((”;ﬁgv‘i;“a) composition principlé, we can predict theXYZ colour
0 1 1 R (fed) coordinates of our patch by means of the following equa-
1 0 1 G (green) tions, known as the Neugebauer equations:
1 1 0 B (blue)
1 1 1 K_(black) Xp = @900Xo00 T @o0rXoor T+ + - + A11:Xi1y,

1 and 0 indicate, respectively, if the ink in question does or does
not participate in the superposition. Yp = @o00Yo00 T Aoo1Yoor + - - - + A111Y111, (1)

. . . . . . Zp =@ + agoiloor t - - - T 111111
In such devices the visual impression of intermediate tone P = BaooZo00 + oorloos L

levels is usually obtained by means of the halftoning tech- .
: ; . - . . The surface fractiong;;,, can be found, for example, by
nique, i.e., by breaking the original continuous-tone image Lo Y .
counting inside our given patch the number of pixels cov-

Into sma!l QOts whose size varies depend_mg on the_e ton%red by each of the>possible ink combinations, taking into
level. This is also true for most colour printing devices,

. : . account the exact halftone dot shapes and sizes. However,
where each of the primary inks or colorants (usually: cyan

(C), magenta (M), yellow (Y) and often also black (K)) is as we see below, un_dgr cer_taln conquns it is possible to
. 2 . L calculate these coefficients in a much simpler way.
only bilevel. The principle of colour image printing is based

: . Let us denote by (C) = ¢, P(M) = m, andP(Y) =y
on the fact that a wide range of cplou_rs can be obtam_ed, %he fractions of the patch area, where the C, M, and Y inks
at least approximated, by combinations of these primar

colour inks. The original colour image is first separated)have been deposited. From a statistical point of vie(c),
either by photographic or by digital filtering, into 3 or 4 P(M), and P(Y) may also be considered as the probability

layers (colour planes), one for each of the CMY or CMYK of any particular point that is randomly chosen within the

rimary ink colours. Then, the halftoning technique is a _patch area being covered by the C, M, or Y ink, respec-
pr y ' ' g que1s ap tively. It follows that the probability of not being covered by
plied separately to each of the colour planes of the imag

e . .
. ; ¢yan isP(=C) = 1 — ¢ (where- is the NOT symbol), that
and the resulting 3 or 4 colour screens are printed one on tog}/ not being covered by magentaR¢-M) = 1 — m, and

of the other. This gives to the eye, when looking from Anat of not being covered by yellow B(-Y) = 1 — y.

sufficient distance, an illusion of a full range of |ntermed|ateHence’ the probability of any randomly chosen point being

colour levels, although the printing device is only bilevel. _
The Neugebauer equatidnare the basic mathematical covered by."?‘” three COlm."S BC)P(M)P(Y) = cmy, and
the probability of not being covered by any of the three

tool for modeling such bilevel colour printing systems thatColours iSP(=CP(=M)P(=Y) = (1 — c)(1 — m)(L — ).

use the halftoning technique. The Neugebauer equations age . S . .
based on the fact that printing superposed dot-screens gelmllarly, the probability of any point of only being covered

: : . . . by cyan isP(C)P(=M)P(=Y) = c¢(1 — m)(1 — y) (note
usmg_the_ colour |_nks oo Q“ gives nse o 2 po_ssMe that this is not the same as the probability of being covered
cqmblnatlons of ink superpOSétlons on ?a‘*.‘ point of theby cyan,P(C)!). By similar reasoning, we can predict the
printed paper. Table | shows thé 2 8 possible ink overlaps surface fractiora,, covered by each of theank combi

for the classical case with = 3 inks: cyan, magenta, and . .
s . . . nations of Table | as a function of the dot percentages,
yellow. For the sake of simplicity, in the following discussion e . .
. . . . andy of the individual C-, M-, and Y-screens in our patch:
we mainly use the case with = 3 inks, but the generali-

zation to any numben is straightforward. Ago= P(-C)P(-M)P(=Y)=(1—c) (L —m)(1 —y)
In order to establish the Neugebauer equations, we need to

know first the tristimulusKYZcolour coordinates of the inks to 8100 = P(C)P(=M)P(=Y) = c(1 — m)(1 —y)

be used and of all their possible superpositions. In our 3-colour _

example we denote these coordinatesXy, Yy, and Z, 0= PO PMM)P(=Y) = (1 = c)m(1 —y)

where the binary indices j, k run over the 2 colour combi a1 = P(=C)P(=M)P(Y) = (1 — ¢)(1 — m)y 2)

nations as shown in Table I. These colorimetric coordinates

can be obtained by printing a sample patch for each of the 2a0;; = P(=C) P(M) P(Y) = (1 — c)my

possible superpositions of solid (i.e., 100% coverage) inks,

and measuring theiYZ values using a colorimeter. a0 = P(CQP(=M)P(Y) = c(1 - my
Suppose now that_we are given a new_halftoned patf:h thq;m — P(C)P(M)P(~Y) = cm(1 — y)

has been printed using the same CMY inks. Depending on

the case, this patch may consist of one, two, or three,;; = P(C)P(M)P(Y) = cmy.
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These equations, known as the Demichel equations, were Most famous are the rosette forms that are obtained in the
first published in 1924 in a now forgotten French printer’'sclassical superposition of three identical screens with equal
review called “Le Procge”+ By substituting these equa- angle differences of 30° (or 60°); these rosette forms are
tions in the Neugebauer Egs. (1), we obtain a prediction ofvell known in the printing industry and they have been
the XY Zvalues of the printed colour patch in question.  widely described in literature (Ref. 6, pp. 339-341; Ref. 7,

Note, however, that in the above reasoning it has beepp. 57-59; Ref. 8). If we examine the forms of these rosettes
tacitly assumed that the distributions of the cyan, magentan various registration positions of the superposed screens,
and yellow inks in the screen superposition are independent;e., when the original screens are being laterally shifted
we return to this point in more detail in a later section, andwith respect to each other, we can distinguish between two
once again in Appendix A. main types of rosettes. When the three screens are super-
posed in-phase, i.e., with a dot centered on the origin, a
perfect match of one screen-dot from each layer occurs at
the origin, generating there a “dot-centered” rosette. More-
over, almost perfect copies of this dot-centered rosette ap-
Although the considerations leading to the Demichel equapear all over the superposition, generating a uniform micro-
tions seem to be quite plausible, in reality they are not validstructure with almost-dot-centered rosettes throughout. This
in all cases. It has been shown recentlipr the case of isillustrated in Fig. 1(c) and in its magnified version in Fig.
2-screen superpositions, that the Demichel consideratior®(c). However, when the screens are superposed in counter-
are not generally true for all screen superposition anglephase, a different pattern of “clear-centered” rosettes is
Still worse: as we see below, it turns out that even in thegenerated throughout the superposition [see Figs. 1(d) and
very case for which they were originally devised, namely2(d)]. A gradual transition between these extreme rosette-
the conventional superposition of 3 regular screens witHorms occurs in the intermediate phase positions. Note,
identical frequencies and angle differences of 30° (or 60°)however, that each type of rosette manifests itself in a
the Demichel equations do not really hold. In order todifferent shift combination of the original screens, so that
demonstrate the problem, we need to make a small digreslifferent rosette types do not mix together in the same
sion on the microstructure of dot-screen superpositions (guperposition.
more detailed discussion on this subject can be found in However, the microstructure obtained in a superposition of
Chapter 8 of Ref. 5). only two of the three screens with the same angle difference of

It is well known that when periodic layers (such as line 30° (or 60°) is characterized by the simultaneous presence of
grids, dot-screens, etc.) are superposed, new structures wiicrostructure elements of all types (dot-centered, clear-cen-
two distinct levels may appear in the superposition, whichtered, and intermediate variants), which are uniformly distrib-
do not exist in any of the original layers: the macrostruc-uted throughout the superposition plane. This gives to the eye
tures and the microstructures. The macrostructures, usualthe impression of a uniform and regular microstructure, as
known as the moir@atterns, are, of course, the most prom-shown in Fig. 1(a) and in its magnified version in Fig. 2(a).
inent; being much coarser than the detail of the originalFurthermore, in this 2-screen superposition, in contrast to its
layers, they are clearly visible even when observed from &8-screen counterpart, registration shifts between the individual
distance. The microstructures, on the contrary, are almost agreens do not modify the general nature of the microstructure
small as the periods of the original screens (typically, jusfcompare Figs. 1(a) and 1(b)].

2-5 times larger), and, therefore, they are visible only when
examining the superposition from a close distance or
through a magnifying glass. These tiny structures are also
called rosettes due to the various flower-like shapes they
often form in the superposition of dot-screens (Ref. 6, p.This difference in the behavior of the microstructure be-

339). tween the classical 3-screen superposition and its 2-screen

Macrostructures and microstructures may coexist in theounterpart has an important consequence on the colorimet-
same superposition; in fact, macrostructures, whenever thayc behavior of these screen superpositions.
exist, are made up from repetitive alternations in the micro- Suppose that the 3-screen superposition consists of a
structures. However, while microstructures exist practicallyC-screen, an M-screen and a Y-screen, each of which hav-
in any screen superposition, except for the most trivialing a constant dot size throughout. It is clear, therefore, that
cases, macro mdieffects are not always generated. A shortin the C-scree?(C) andP(-C) = 1 — P(C) are constant
discussion on the relationship between macro- and microand invariant under any possible shifts of the dot-screen. A
structures is given in Appendix B; a more complete accounsimilar reasoning is also true f&t(M) and P(-M) = 1 —
can be found in Chapter 8 of Ref. 5. In the present article wd>(M) in the M-screen, and fdP(Y) andP(=Y) = 1 — P(Y)
are not concerned with macrostructures, since we are onliyn the Y-screen.
interested here in mdirigee screen superpositions that are  Consequently, it follows that botR(C)P(M)P(Y) and
usable in colour printing. Therefore, we concentrate now orP(-C)P(=M)P(-Y) are constant, and they are not influ-
the microstructures (the rosettes) that are generated i@enced by possible shifts in any of the dot-screens.
screen superpositions. However, as it is well known in the printing art (Ref. 6,

MACRO- AND MICROSTRUCTURES IN THE
SUPERPOSITION OF REGULAR SCREENS

LIMITATIONS OF THE DEMICHEL
CONSIDERATIONS
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FIG. 1. (a) In-phase superposition of two identical dot-screens at angles 6, = 30° and 6, = —30°. (b) Counter-phase
superposition of the same screens. (c) In-phase superposition with a third identical screen having angle 6; = 0° on top of (a).
(d) Counter-phase superposition with a third identical screen having angle 6; = 0° on top of (b).

pp. 339, 341-342), it turns out that in the classical 3-scree
superposition there exists between dot-centered and cle
centered rosettes slight differences in the fractions of ink dof, ). ~o1"a_ < ~reen superposition, which is a singular
coverage. For example, as we can see from Figs. 2(c),( ase, in in-phase and in count;er-phase superposi-
and from Table I, in the in-phase superposition, where thgjgng.

microstructure consists of dot-centered rosettes, there is

ABLE II. The proportional areas of each of the 2% =
possible combinations of ink superposition in the

slightly more area that is simultaneously covered by the 3 Proportional Proportional
colorants than in the counter-phase superposition, where the areain area in
. . in-phase counter-phase
IjnlfrOStEUCtl:jre Cort]tSIStS Offde?;-CTer?'tered ros?ﬁt;;; and Nno ink overlap superposition  superposition  Difference
ot-centered rosettes are found. This means =
P(C"M"Y) (where" is the AND symbol) does vary accord \éV:: SDCiD,\"A'DV'ﬂD\;‘Y g'fggl g-fi?g ’g-ggig
ing to the shift registration of the individual dot-screens iny = c"m™Y 0.1739 0.1394 0.0345
the superposition. Consequently, although there may exist & = ﬂCEﬂMDY 0.1740 0.1399 0.0341
particular shift combination in whichP(C"MYY) = g - ﬂcgﬂ:‘\"AEYY 000 oo Iyt
P(C)P(M)P(Y), this equality does not hold in all possible g = com™-Y 0.0612 0.0961 —0.0349
shifts. In general, we have, therefore: K= CcMY 0.0872 0.0514 0.0358
P(CDI\/I DY) + P(C)P(M)P(Y). 3) These values were obtained by counting subpixels in a computer

simulation of the in-phase and the counter-phase screen superpo-

Thi that in the cl ical 3 ition t sitions. The simulation has been done using three screens with
IS means that In the classical 5-screen superpositon hﬁentical circular dots having a constant radius of 0.35 screen-

three superposed screens are not independent of each othedtiod.
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FIG. 2. A magnified view of the screen superpositions of Fig. 1, permitting to distinguish between the different layers and
their precise dot locations.

A more formal demonstration of this phenomenon as wellTherefore, using them in the Neugebauer equations for the
as its geometric interpretation can be found in Sec. 8.8 oprediction of the colour obtained in the 3-screen combina-
Ref. 5. tion inevitably leads to some colorimetric errors depending
In a similar way, as we can see from Figs. 3(c),(d) and Tablen the precise registration shift between the 3 screens. Numeric
II, in the in-phase superposition there is slightly less uncoveredxamples of the colour variations due to such registration shifts
white space than in the counter-phase superposition. Herean be found in Refs. 8 and 9; although usually these colour
again, we see th&(W) = P(-~C"=M"-Y) does vary with the  deviations are not excessively large, in some cases they may
registration shifts of the individual dot-screens. Although theraexceedAELab of 10, which is not a negligible value.
may exist a particular combination in which s interesting to note, however, that such errors do not
P(-C"=M™=Y) = P(=C)P(-M)P(=Y), this equality is not  gccur in the 2-screen counterpart of this classical 3-screen
true in all possible shifts, and in general we have superposition. As we have seen above, in a 2-screen super-
O s p00 position with identical frequencies and an angle difference
PECEMY) # PGOPEMPEY). () of 30° (or 60°), no substantial microstructure changes occur
These results clearly show that, in the case of the classicalue to layer shifts. This can be also verified in Table IlI: as
3-screen superposition, the Demichel equations do not holdve can easily see, all the ink combinations in this case
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TABLE lll. The proportional areas of each of the 22 =
4 possible combinations of ink superposition in the
2-screen (C and M) counterpart of the classical
3-screen superposition, which is a nonsingular case,
in in-phase and in counter-phase superpositions.

Proportional Proportional
area in area in
in-phase counter-phase
Ink overlap superposition superposition Difference
W = -C"-M 0.3790 0.3789 0.0001
C =C'M 0.2366 0.2375 —0.0009
M = -C"™M 0.2360 0.2361 —0.0001
B =C"M 0.1484 0.1475 0.0009

These values were obtained by counting subpixels in a computer
simulation of the in-phase and the counter-phase screen superpo-
sitions. The differences (see last column) are basically due to noise
in the simulation process. The simulation has been done using two
screens with identical circular dots having a constant radius of 0.35
screen-period.

Let us illustrate this result by means of a few additional
examples:

1. The most trivial case of a singular screen superposition

occurs when two (or more) screens with identical fre-
guencies are superposed at the same angle. In this
trivial case, the dot overlap of the screens may be
anywhere between 0—-100%, depending on the registra-
tion shifts, and the Demichel equations obviously fail.

. The 2-screen superposition of two identical dot-screens

with an angle difference of arc@m(% 36.87° is sin-
gular, and, therefore, layer shifts may cause substantial
changes in its microstructure [see Figs. 4(a),(b)]. And
indeed, as already shown in Ref. 2, the Demichel equa-
tions in this case are not valid; this is clearly illustrated
in Figs. 5(a),(b) and in Table IV.

. Any stable moirdree 2-screen superpositiéflike the

superposition of two identical screens with angle dif-
ference of 25°, 30°, or 60°, is nonsingular; therefore, its
microstructure consists of a homogeneous blend of
rosettes of all types, and it is not substantially influ-
enced by layer shifts [see Figs. 1(a),(b)]. And indeed, as

remain insensitive to layer shifts. The particular case of
white coverage is also illustrated in Figs. 3(a),(b); it is

instructive to compare these figures with their 3-screen already shown in Ref. 2, the Demichel equations in this
counterparts, Figs. 3(c),(d). case are valid.

This means that in 2-screen superpositions with identical 4 Any stable moitdree 3-screen superpositisris non-
frequencies and an angle difference of 30° (or 60°) the two  gjngular; therefore, its microstructure consists of a ho-
superposed screens are independent, and the Demichel equa- jogeneous blend of rosettes of all types, and it is not
tions do hold. However, as already shown in Ref. 2, this result g pstantially influenced by layer shifts. Once again, the
is not true for all angle differences; and moreover, it tums out  pemijchel equations in this case are valid.
that this result depends also on the frequencies of the twos  The classical 4-screen superposition that is most often
superposed screens. How can we explain all these facts? used in colour printing (i.e., angle differences of 30° (or

AIthough this behavior may seem Surpl’iSing at first S|ght, 600) for the C, M, K screens and an ang|e difference of
in fact there is nothing mysterious about it. The answer is  15° for the Y screen) is singular, because adding a
given by the following result (Ref. 5, Chapter 8, p. 224). fourth layer on top of a singular superposition does not
Proposition 1. A nontrivial shift of individual layers in the affect the singularity. The Demichel equations in this
superposition causes a substantial change in the microstruc- case remain, therefore, nonvalid.
ture of the superposition if and only if their frequency
vectorsf; are linearly dependent ovér(the setof all integer  Examples (3) and (4) illustrate a particularly interesting
numbers), i.e., if and only if there exist integer numblers consequence of our result. In cases of stable Troie
not all of them 0 such that k;f; = 0. But this precisely superpositiort? where no moiréoecomes visible even when
means that the superposition is singular.** a small deviation occurs in the angle or in the frequency of

A short explanation of this proposition is provided in any of the superposed layers, the Demichel equations are
Appendix B. This proposition means, therefore, that thevalid. Note that such superpositions also offer a good col-
Demichel equations fail in all cases where the screen swsrimetric stability under registration shifts. Examples of
perposition is singular, and hold in all the nonsingularsuch 3-screen superpositions are given in Fig. 19 of Ref. 10
screen superpositions. and in Ref. 9. This is in contrast with unstable mMeiiree

superpositions, like the conventional 3- or 4-screen super-
- positions, which are by definition singular cases, and hence

** A superposition is said to be singular if at least one integer linear do not satisfy the Demichel equations.

combination of the frequency vectors of the original layers is exactly zero. Note, however, that although the above result tells us in

This means that a superposition is singular, if it generates a’ ratfizet hich cases such deviations occur. it does not specify the
whose period is infinitely large, and hence invisible. However, singularW I u viatl ur, 1 p Ify

states are very unstable moiree states, since any slight deviation in the degree of the discrepancy. In general, it turns out that the
angle or in the frequency of any of the superposed layers may cause tHarger the number of superposed layers and the higher the

moireto come back from infinity and to have a clearly visible period. The grder of the singular state (i.e., the larger the integgefer
classical 3-screen superposition with angle differences of 30° (or 60°) iSWhiCh S kf = 0) the less visible are its microstructure
171

indeed, an example of a singular case, but its 2-screen counterpart is nQ e . " .
singular. For a more detailed discussion on singular and nonsingula_?hanges dueto Iayer shifts in the superposition. And indeed,

superpositions, their image-domain and frequency-domain properties, ariél SUCh singular cases the colour deviations may become
several examples and figures see Ref. 10, Sec. 4 or Ref. 5, Sec. 2.9. almost unperceptible—although they still do exist.
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FIG. 3. (a) In-phase and (b) counter-phase superposition of two identical dot-screens with an angle difference of 30°. (c)
In-phase and (d) counter-phase superposition of three identical dot-screens with angle differences of 30°. Note that in (c)
there is slightly less uncovered white space than in (d), while between (a) and (b) no difference can be distinguished in the
white coverage rate.

It is interesting to note that the Demichel equations arepartial answer to this question has been recently given by
also valid in superpositions of random screens, where th®ogers? who showed that in the superposition of two reg-
statistical independence between the different screens iflar dot-screens having the same frequency the validity of
clearly guaranteed. Such random screens are currently gaithe Demichel equations depends on the angle between the
ing interest in the field of colour printing, and different two superposed screens.
variants have been recently developéd? In the present contribution, we extend this result to the
most general case ofscreen superpositions with any angle
and frequency combinations. We explain that the Demichel
equations are valid only for screen superpositions which are
Since the Demichel equations significantly simplify one’snonsingular, while for singular superpositions, including the
task when using the Neugebauer approach, it could be vergonventional 3- or 4-screen superpositions that are tradi-
helpful to have a simple criterion that determines for whichtionally used in colour printing, the Demichel equations are
screen superposition the Demichel equations can be used.mot valid. Although the colour deviations that result from

CONCLUSION
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(a) ' (b)

FIG. 4. The singular superposition of two identical dot-screens with angle difference of arctan(‘—?) ~ 36.87°. (a): in-phase
superposition; (b): counter-phase superposition.

using the Demichel equations in such singular cases are noase in regular dot-screens, they still can be independent of
excessively large, they still may be nonnegligible, and onesach other. Proposition 1 precisely states in which cases
should be aware of their existence when using the Neugesuperposed regular dot-screens are independent, and in
bauer equations. which cases they are not.

Finally, it should be mentioned that, although we used in  Note that, in fact, superposed layers can be independent
this article 2-screen and 3-screen superpositions as our magi each other even if they are not screened at all, but rather
examples, the Neugebauer and the Demichel equations @artially covered by a single area of continuously deposited
well as all our results are completely general, for anyink, as shown in Fig. 6(a). In all cases, screened or not, the
n-screen superposition. probabilities P(C), P(M), and P(C"M) should be under
stood as “the probabilities that a randomly chosen point (or
pixel) within the given layer superposition falls in the range
covered by the inks C, M, or both.” But it is completely
The basic condition required for the Demichel equations tdrrelevant whether the layers in question and their superpo-
hold is, of course, that the superposed screens be indepegition are themselves random or not.
dent of each other, since only in this case we have Note, however, that although in cases like Fig. 6(a) the
Demichel equations do hold, they are, in fact, useless, since
the different colour zones here are too large to be blended

APPENDIX A: INDEPENDENCE AND RANDOMNESS

P(C"M) = P(C)P(M)

P(C"MYY) = P(C)P(M) P(Y),

etc. However, it is a very common mistake to say that theTABLE IV. The proportional areas of each of the 2°
requirement for the Demichel equations to hold is that “the= 4 possible combinations of ink superposition in
dot pattern in the screen superposition be distributed a!® singular 2-screen superposition SC and M) with
though it were a random pattern,” or that “the dots of eactfndle difference of arctan(;) ~ 36.87°.

screen be randomly positic_)ned vv_ith respect to the d(_)ts of Proportional Proportional
the other screens.” The mistake in such statements is that area in area in
they confuse the two different notions of “being indepen- in-phase counter-phase )
N L Y . Ink overlap superposition superposition Difference
dent” and “being random.” But these two notions are not
equivalent: while randomness of the different layers impliesn = -C"-M 0.3918 0.3693 0.0225
- _— _ (]
their independence, their independence does not necessarfly- ¢ =M 0.2251 0.2476 —0.0225
impl d Thus, it is true that if the dots in each ofy _ oM 0-2232 0-2457 ~0.0225

the C, M, Y layers were randomly distributed, then in the
superposition the 3 layers would be independent of each Thesg values were obtained by counting subpixels in a computer

her: but it is i tant to understand that even when ea‘Célmulatlon of the in-phase and the counter-phase screen superpo-
other; but it Is iImpor u ven w itions. The simulation has been done using two screens with iden-

of the layers is perfectly ordered and deterministic, as is th&cal circular dots having a constant radius of 0.35 screen-period.
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FIG. 5. (a)In-phase and (b) counter-phase superposition of two identical dot-screens with an angle difference of arctan(%) ~
36.87°: a magnified view of Fig. 4 with larger dots. Note that in (a) there is slightly more uncovered white space than in (b).

together by the eye as an additive colour composition, satructures of two distinct levels may appear in the superpo-

that the Neugebauer equations can no longer be used.

APPENDIX B: EXPLANATION OF PROPOSITION 1

sition, which do not exist in any of the original layers: the
macrostructures and the microstructures.

The macrostructures, usually known as the mqie-
terns, are, of course, the most prominent; being much

As we have seen earlier in this article, when periodic layersoarser than the detail of the original layers, they are clearly
(such as line grids, dot-screens, etc.) are superposed, neisible even when observed from a distance. A few exam-

(a)

FIG. 6. (a) The superposition of a solid (nonscreened) cyan
ink layer and a solid magenta ink layer that are independent
of each other and, hence, satisfy P(C™) = P(C)P(M). (b) An
example where the superposed layers are not independent
and, hence, P(C™M) # P(C)P(M). Note that P(C) and P(M) are
identical in cases (a) and (b), but P(C™M) is different in each

case.

Area covered by solid
(non screened) cyan ink

Area covered by solid
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%%

%
o
2
0,

<
%
<
XX
X

Q
X

X
XK
S

X
bode!
020

S

020.0,0.0.
0.9,.0.0.9,

%5
o
&5
et

929
b9%%;
5
0088
Pe%0%e!
LKL

S
53 S
QORIGRRIKILANKS

3RS
QKK
SR8
25
%

,.
<
%

%
5%
et

XS

KK

%S

%S
K
252585

boded
100
)

Ve
<

853
KL

358

KR
S

2%
SORR
200

2

2
LKL
%

%
%
%
35

2858
3

8

(b)

Volume 25, Number 4, August 2000

ples of such moirgethat occur in the superposition of two or
three regular dot-screens are shown in Figs. 7(a)—(d). The
right-hand side of each figure shows the interpretations of
these moite in the frequency domain=(the Fourier spec-
tral domain). Each of these mégreorresponds to a certain
vectorial sum or difference of the frequency vectipisf the
original superposed periodic screérsote that each of the
screens contributes to the spectrum two orthogonal fre-
quency vectors that correspond to its frequencies in its two
main directions, and each 2D moiiealso represented by
two orthogonal frequency vectors (vectorial sums). For ex-
ample, the moireeffect which is visible in Fig. 7(a) corre-
sponds to the frequency vector differenige— f; and its
orthogonal counterpafs — f,, while the moifeeffect in Fig.
7(c) corresponds to the frequency vector siym+ 2f, —

2f; — f, and its orthogonal counterpart2f, + f, + f; —

2f,. Itis important to note, however, that the moa#ect is
visible only when the corresponding vectorial frequency
sum,2 k;f;, falls in the spectrum within the visibility circle.
The visibility circle is a circular step function around the
spectrum origin whose radius corresponds to the cutoff
frequency of the eye at the corresponding viewing condi-
tions (distance, illumination, etc.), i.e., to the threshold

* For a short introduction to the frequency analysis of grating or screen
superpositions, see Ref. 10 or Chapter 2 in Ref. 5.
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FIG. 7. (a)-(c) Three examples of different moirés between two dot-screens (left), and their spectral interpretations (right). (d)
(left) A three dot-screen moiré and (right) its spectral interpretation. For the sake of clarity, only one of the two perpendicular
frequency vectors of the moiré is shown in each case. Dashed axes belong to the rotated layers. T,, T,; T3, T, and T, T4 are
the periods of the first, the second, and the third screens along their two main axes.

frequency beyond which fine detail is no longer detected bynake up a macro-mdirare, to a very close approximation,
the eye? Thus, when the vectorial sum of the moii@ls  nothing else but the microstructure forms that are obtained
beyond the visibility circle, the period of the moilgetoo  at the singular state of that macro-nioire all possible
small to be detected by the eye, and the maireo longer  phase shifts of the superposed layers (Ref. 5, Sec. 8.4). The
visible. However, there exists also another case in which thgyo extreme “in-phase” and “counter-phase” microstruc-
moiré effect is not visible: this occurs when the vectorial tyres (e.g., the “dot-centered” and the “clear-centered” ro-

frequency sum of the mdiris exactly zero, and it falls on  settes in the case of the classical 3-screen superposition)
the spectrum origin. In this case, the period of the Mmoiregenerate the two extreme intensity levels of the visible
effectis infinitely large, so that it is no longer visible in any acro-moife(its brightest and darkest areas), and the inter-
finite-sized part of the superposition. The mdimehis case  megiate forms between them generate all the in-between
is said to be singulaf, we also say in such cases that the,engity levels of the macro-méireThis result can be

superposition is singular. _ observed, for example, by comparing the local microstruc-
In contrast to macrostructures, the microstructures ger%-\_l""i

ted in th i | ‘ Il as th . tures in the dark and in the clear areas of Fig. 7(d) with the
erated in the SUpETPOSItion are aimost as smat as € PENOGR . sty ctures in Figs. 1(c) and 1(d), or by comparing the

of the original screens _(typlcally, Just 2-5 t|m_e_s larger), and’local microstructures of Fig. 7(c) with the microstructures in
therefore, they are visible only when examining the super-

. ) ..~ Figs. 4(a) and 4(b).
position from a close distance or through a magnifying Another int ’ : fruct int tati f
glass. These tiny structures are also called rosettes due to the nother Interesting microstructure -inierpretation of a

various flower-like shapes they often form in the superpo-maCro phenomenon in the screen superposition concerms

sition of dot-screens (Ref. 6, p. 339). §iqgg|gr moife. Whgn a mofr@ffegt is singqlar, ?ts period

It is important to note that macrostructures and micro-S infinitely large; this means that in any finite-sized part of
structures coexist in the same superpositions; in fact, madh€ superposition we can only see one of its different mi-
rostructures, whenever they exist, are made up from reloeg;rostructures, the others being located infinitely far.
itive alternations in the microstructures. It is particularly ~With this background in mind, we are now ready to

interesting to note that the microstructure alternations thagXplain Proposition 1.
Suppose, first, that in the given screen superposition we
S Omvously. the viibility circle is i ) , ~ haveZX kf; = 0, so that in the spectrum of the superposition
Obviously, the visibility circle is just a schematic approximation; In ho yactor suny k;f; is located within the visibility circle.
reality, this is a bidimensional bell-shaped low-pass filter whose formis not__ , .
really circular but rather anisotropic, since it appears that the eye is lesd NiS Vector sum represents, therefore, a meifect that is

sensitive to small details in diagonal directions such as 45°. visible in the screen superposition. Microscopically speak-
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ing, this moifeis composed of alternate areas in the supersuperposition is singular, the periods of the meiege not

position, which contain rosettes of the in-phase superposifinite but either visible (if the corresponding vector sum

tion, the counter-phase superposition, and all thei kf; is inside the visibility circle), or too small for being

intermediate layer shifts. Now, if we slowly shift the super- visible (if the vector sum is outside the visibility circle). In

posed screens on top of each other, without changing thebioth cases, layer shifts simply shift the locations of the

periods and their orientations, the mo@#ect in the super- different rosette types in the superposition following the

position is shifted across the superposition (see Result 2 imotion of the moifeperiods, but no uniform global rosette-

Ref. 14). This means that while the superposed layers arghape change occurs in the superposition.

being shifted, we see within a small window around the This explains, indeed, Proposition 1: A nontrivial shift of

origin, as the moir@eriods pass through it, a succession ofindividual layers in the superposition causes a substantial

rosette forms from all the different shift positions of the change in the microstructure of the superposition if and only

screens. Now, suppose that we slightly modify the vedtors if the superposition is singular.

(i.e., that we slightly stretch and rotate the superposed

layers) so tha® k;f; tends to0. The period of the moire 1. Rhodes W. Fifty years of the Neugebauer equations. SPIE Vol. 1184

gradually gets larger and larger, and the alternate rosette Neugebauer memorial seminar on colour reproduction; 1989. p 7-18.

zones appear farther apart; but still, as the layers are shifted- Rogers GL. Neugebauer revisited: random dots in halftone screening.
. . Col Res Appl 1998;23:104-113.

O_n top of each other, we See_m our small window a SUCCES~3 Hunt RWG. The reproduction of colour in photography, printing and

sion of rosette zones of all different forms. At the moment  tejevision. 4th Ed. London: Fountain; 1987. p 20—24.

when2 k;f; = 0, the frequency of our moires zero and itS 4. Demichel E. Le prowg 1924;26:17-21, 26-27.

period is infinite, meaning that the moiie singular. Since 5. Amidror I. The theory of the moirphenomenon. Dordrecht: Kluwer;

the singular moiteis no longer visible, only one type of 2000 - , ,
. . . . 6. Yule JAC. Principles of color reproduction. New York: Wiley; 1967.
rosette is visible in our window, the other rosette types D 328-345

bei'_"g |0C§ted now infinitely far away, Wi_thin the infinite 7. pelabastita PA. Screening techniques, fmairdour color printing.
moiré period. When the layers in this singular state are Vancouver: Proc TAGA Conf; 1992. p 44—65.

shifted on top of each other, we see at each moment & Daels K, Delabastita P. Color balance in conventional halftoning.
different type of rosette throughout the window as the  Baltimore: Proc TAGA Conf; 1994. p 1-18. o

s . - . .. 9. Schoppmeyer J. Screen systems for multicolor printing. U.S. Patent
infinite moireperiod moves across, but this time the rosette ™ " /=37 470 1985

shapes at each shift position will be uniform throughout anyio. amidror I, Hersch RD, Ostromoukhov V. Spectral analysis and min-
finite-sized window, i.e. throughout the whole superposi- imization of moirepatterns in colour separation. J Elec Imag 1994;3:
tion. This means, indeed, that when the screen superposition 295-317. ) _ _

is singular, a nontrivial shift of individual Iayers in the 11. Widmer E, Schilpfer K, Humbel V, Persiev S. The benefits of fre-

L. . . . quency modulation screening. Vancouver: Proc TAGA Conf; 1992. p
superposition causes a substantial change in the microstruc- ,5- ,5

ture throughout the superposition. While at some shift po12. schipfer K. Are fine screens an alternative to frequency modulation
sitions we see only “in-phase” rosettes, in other shift posi-  screening. Baltimore: Proc TAGA Conf; 1994. p 34—41.

tions we see only “counter-phase” rosettes, or intermediaté3- Ostromoukhov V. Pseudo-random halftone screening for color and
rosette types between them. This is illustrated in Figs. black&white printing. Yokohama: Proc 9-th Int Cong Non-impact

1(c),(d) for the conventional singular 3-screen superposis,, oo co 1993. p 579-582.
( )'( ) g9 perp 14. Amidror |, Hersch RD. Fourier-based analysis of phase shifts in the

tion, and in Figs. 4(a),(b) for a typical singular 2-screen  gyperposition of periodic layers and their niciféects. J Opt Soc Am
superposition. Now, on the contrary, when no rhairéhe A 1996;13:974-987.
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