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ABSTRACT

We are interested in running in parallel cellular automata. We present an algorithm which explores the dynamic remapping
of cells in order to balance the load between the processing nodes. The parallel application runs on a cluster of PCs con-
nected by Fast-Ethernet.

A general cellular automaton can be described as a set of cells where each cell is a state machine. To compute the next cell
state, each cell needs some information from neighbouring cells. There are no limitations on the kind of information
exchanged nor on the computation itself. Only the automaton topology defining the neighbours of each cell remains
unchanged during the automaton’s life.

As a typical example of a cellular automaton we consider the image skeletonization problem. Skeletonization requires spa-
tial filtering to be repetitively applied to the image. Each step erodes a thin part of the original image. After the last step,
only the image skeleton remains. Skeletonization algorithms require vast amounts of computing power, especially when
applied to large images. Therefore, skeletonization application can potentially benefit from the use of parallel processing.

Two different parallel algorithms are proposed, one with a static load distribution consisting in splitting the cells over several
processing nodes and the other with a dynamic load balancing scheme capable of remapping cells during the program execu-
tion. Performance measurements shows that the cell migration doesn’t reduce the speedup if the program is already load bal-
anced. It greatly improves the performance if the parallel application is not well balanced.

Keywords : parallel cellular automata, dynamic load balancing, image filtering, skeletonization, Computer-Aided Parallel-
ization (CAP), cluster of PCs

1  INTRODUCTION

We are interested in running in parallel cellular automata. We present an algorithm which explores the dynamic remapping
of cells in order to balance the load between the processing nodes. The parallel application runs on a cluster of PCs (Win-
dows NT) connected by Fast-Ethernet (100 Mbits/sec).

A general cellular automaton1,2 can be described as a set of cells where each cell is a state machine. To compute the next
cell state, each cell needs some information from neighbouring cells. There are no limitations on the kind of information
exchanged nor on the computation itself. Only the automaton topology defining the neighbours of each cell remains
unchanged during the automaton’s life. 

Let us describe a simple solution for the parallel execution of a cellular automaton. The cells are distributed over several
threads running on different computers. Each thread is responsible for running several automaton cells. Every thread applies
successively to all its cells a 3 steps algorithm : (1)(2) exchange (send and receive) neighbouring information, (3) compute
the next cell state. If communications are based on synchronous message passing, the whole system is synchronized at
exchange time because of the neighbourhood dependencies. Due to the serial execution of communications, computations
and multiple synchronizations, some processors remain partly idle and the achievable speedup does not scale when increas-
ing the number of processors.

Improved performance can be obtained by running communications asynchronously. One can then overlap data exchange
with computation. Neighbouring information is received during the computation of the previous step and sent during the
computation of the next step. This solution offers improved performances, but still does not achieve a linear speedup. Like
in the skeletonization problem, discussed in section 2, the computation load may be highly data dependent and may consid-
erably vary from cell to cell. Furthermore, the parallel application may run on heterogeneous processors inducing a severe
load balancing problem. Due to the neighbouring dependencies, cells consuming more computation time slow down the
whole system. To reach an optimal solution we need a flexible load balancing scheme.
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One solution is to allow each cell to be dynamically remapped during program execution. One or more cells may be dis-
placed from overloaded threads to partly idle threads. Cell remapping requires 3 steps after terminating the computation of
the cell to be remapped : (1) notify every thread about the decision to remap a given cell, (2) wait for acknowledgement
from all threads and (3) remap the cell. Step (2) ensures that the neighbourhood information for the remapped cell is redi-
rected towards the target thread. In the applications we consider, the overhead for remapping a cell is insignificant compared
with the computation time. For the sake of load balancing, we will present in section 4 a trategy for cell remapping.

As a typical example of a cellular automaton, we consider the image skeletonization problem3,4. Skeletonization requires
spatial filtering to be repetitively applied to the image. Each step erodes a thin part of the original image. After the last step,
only the image skeleton remains. Skeletonization algorithms require vast amounts of computing power, especially when
applied to large images. Therefore, skeletonization application can potentially benefit from the use of parallel processing.

To parallelize image skeletonization, we divide the original image into tiles. These tiles are distributed across several
threads. Each thread applies successively the skeletonization algorithm to all its tiles. Threads are mapped onto several pro-
cessors according to a configuration file. Tiles cannot be processed independently from their neigbouring tiles. Before each
computation step, neighbouring tiles need to exchange their borders. In addition, each computation step depends on the pre-
ceding step.

Section 2 presents the image skeletonization algorithm. Section 3 develops a parallelization scheme. Section 4 shows how to
load balance the application by cell remapping. The performance analysis is presented in section 5.

2  IMAGE SKELETONIZATION ALGORITHM

Image skeletonization consists of extracting the skeleton from an input black and white image. The algorithm erodes repeat-
edly the image until only the skeleton remains. The erosion is performed by applying a 5x5 thinning filter to the whole
image. The thinning filter is applied repeatedly, thinning the input image pixel by pixel. The algorithm ends once the thin-
ning process leaves the image unchanged. Figure 1 shows a skeletonized image.

Since several skeletonization algorithms exist, let us describe the one providing excellent results4. Let  be the num-
ber of white to black (0 1) transitions in the ordered set of pixels  describing the neighbourhood of
pixel  (Fig. 2). Let  be the number of black neighbours of  (black = 1).

 is deleted, i.e. set to background (white = 0) if :

(1)

Figure 1.  Skeletonization algorithm example
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The process is repeated as long as changes occur. This algorithm is highly data dependent. One thinning filter step modifies
only small parts of the input image and leaves the major part unchanged. In the next section we take advantage of this fact to
improve the algorithm.

2.1  Improvement of the image skeletonization algorithm

To improve the image skeletonization algorithm, we divide the input image into cells (or tiles). The program maintains a list
of living and dead cells. A cell is dead if further applications of the thinning filter leave the cell unchanged. A cell is alive if
it is not dead. The algorithm applies the thinning filter to each living cell, decides if the cell is still alive and if necessary
updates the list of living and dead cells.

This algorithm improves considerably the performance of the skeletonization since a significant part of the image is
removed from the computation. What should be the cell size ? A small cell size ensures a fine grain selection of the living
and dead parts of the image, but increases the cell management overhead. The cell size should be chosen so as to keep the
management overhead time small compared with the average computation time.

3  PARALLEL SKELETONIZATION WITH STATIC LOAD DISTRIBUTION

To parallelize the skeletonization algorithm, the cells are uniformly distributed over N processing nodes. Each processing
node applies repeatedly the thinning filter to all its living cells. Since the cells can not be processed independently from their
neighbours, the processing nodes may need to exchange neighbouring information before applying the thinning filter to a
given cell. The program ends once all the cells of every processing node are dead. This parallelization scheme ensures that
all processing nodes are performing the same task.

Initially the cells are distributed in a round robin fashion over the N processing nodes. For example if there are 4 processing
units, the cells (Fig. 3) are distributed in row major order modulo the number of nodes ((L0, C0)->P0, (L0, C1)->P1, ...).

Figure 2. Neighbourhood of pixel 

Figure 3. Division of the input image into cells
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More generally, if there are LMax lines, CMax columns and N processing nodes, the distribution of the cells over the pro-
cessing nodes in function of the line and column numbers (L, C) is given by :

(2)

In the parallel algorithm, the overhead for the exchange of information between neighbouring cells increases since commu-
nication and synchronization is needed between processing nodes responsible for adjacent cells. The parallel program
requires therefore larger cell sizes.

To develop the parallel application, we use the Computer-Aided Parallelization (CAP) framework, which allows to manage
the neighbourhood dependencies and the data flow synchronization. The CAP Computer-Aided Parallelization framework5,6

is specially well suited for the parallelization of applications having significant communication and I/O bandwidth require-
ments. Application programmers specify at a high level of abstraction the set of threads present in the application, the
processing operations offered by these threads, and the flow of data and parameters between operations. Such a specifica-
tion is precompiled into a C++ source program which can be compiled and run on a cluster of distributed memory PCs. A
configuration file specifies the mapping between CAP threads and operating system processes possibly located on different
PCs. The compiled application is executed in a completely asynchronous manner : each thread has a queue of input tokens
(serializable C++ data structures) containing the operation execution requests and their parameters. Network I/O operations
are executed asynchronously, i.e. while data is being transferred to or from the network, other operations can be executed
concurrently by the corresponding processing node. If the application is compute bound, in a pipeline of network communi-
cation and processing operations, CAP allows to hide the time taken by the network communications. After initialization of
the pipeline, only the processing time, i.e. the cell state computation, determines the overall processing time. 

Each processing node contains two threads (IOThread, ComputeThread) running in one shared address space. The address
space stores the data relative to all its cells. The IOThread runs the asynchronously called ReceiveNeighbouringInfo and
SendNeighbouringInfo functions. The ComputeThread runs the ComputeNextCellStep function. The ReceiveNeighbouring-
Info function receives the neighbouring information from the other cells and puts it in the local processing node memory.
The SendNeighbouringInfo function sends the neighbouring information from the local cells to the neighbouring cells. The
ComputeNextCellStep applies the skeletonization filter to the given cell. Before starting the computation, the ComputeNext-
CellStep waits for the required neighbouring information and until the current neighbouring information has been sent. Once
the filter is applied, the ComputeNextCellStep determines if the cell is still alive, and if necessary updates the list of living
and dead cells.

Each processing node runs the same schedule. The schedule comprises a main loop executing for all the living cells of the
local address space one running step. A running step consists of executing asynchronously the SendNeighbouringInfo,
ReceiveNeighbouringInfo functions and in parallel the ComputeNextCellStep function for the given cell. Figure 4 shows a

Figure 4.  Parallel skeletonization algorithm schedule for one cell
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schematic view of the schedule. The CAP tool allows the programmer to specify this schedule by appropriate high-level lan-
guage constructs6.

When the program starts, all the cells are at step zero. Each time the thinning filter is applied to a cell, the cell step is incre-
mented by one. Because of the neighbouring dependencies, the differences between the step of a given cell and of its
neighbours is at most one. Therefore, during the program execution, some cells are waiting for their neighbours to perform
the computation of the next step. If all the cells of a processing node are waiting, the processor becomes idle, reducing the
overall performance. To avoid as much as possible such a situation, the parallel algorithm is improved by computing first
the cell with the smallest step value on each processing node.

While some cells are sending their neighbouring information or waiting for the reception of neighbouring information, other
cells could potentially keep the processor busy. This argument fails if there is just one cell per processing node or if the cel-
lular automaton topology implies that every cell is depending on all other cells. In order to run computations in parallel with
communications, one may partially compute a cell without knowing the neighbouring information. Cell computation may
start while receiving the neighbouring information from other cells7.

If the total computation load is evenly distributed over the processing nodes, the parallel algorithm can potentially keep all
the processors busy. However, in the case of the skeletonization algorithm, the computation time is highly data dependent.
To keep all processors busy, we need to balance dynamically the computation load.

4  DYNAMIC LOAD BALANCED PARALLEL SCHEME

For load balancing, we need to remap the cells during program execution. In order to migrate a cell from one address space
to another, we need to maintain the load (or the inverse of the load, i.e. an idle factor) for each processing node. A simple
way of computing the load is presented here. Let A be the average step value of all cells 

(3)

For each processing node, we compute an IdleFactor by adding the signed differences between the processing node cell step
values and the average step value A. When the processor is idle, the IdleFactor is set to a MaxIdleFactorValue minus the
number of cell in the processing node†.

(4)

A negative IdleFactor indicates that the cell step values of the corresponding processing node are behind the other process-
ing nodes. A processing node with a strongly negative IdleFactor is overloaded and slows other processing nodes which run
its neighbouring cells. A positive IdleFactor indicates that the corresponding processing node is ahead of the others. The
processor of such a processing node may soon become idle since the neighbouring dependencies with the cells of other pro-
cessing nodes will put it in a wait state. To balance the load, a cell from the processing node having the most negative
IdleFactor should be remapped to the processing node having the largest positive IdleFactor. The IdleFactor is evaluated
periodically, every time a new cell migration is performed. Between two cell migrations, a specific IntegrationTime allows
the system to take advantage of the previous cell migration.

In order to compute the IdleFactor, one thread, called MigrationThread, is added in each processing node. Periodically, a
new token is generated and traverses all the MigrationThreads of every processing nodes. The token is generated in process-
ing node P0, then it visits all processing nodes in the order : P1, P2, ..., PN and back to P0. The migration token makes three
full traversals in order to allow the parallel system to decide which cell to remap. During the first traversal, the migration
token collects the number of living cells of each processing node and the sum of their step values. This information is dis-
tributed to all the processing nodes during the second traversal. During this same traversal, every node computes its
IdleFactor. This IdleFactor is collected by the migration token and distributed over all processing nodes during the third
and last traversal. Then every node decides in a distributed manner which processing nodes are involved in the migration.

† A processing node having no cell to process should have a higher IdleFactor than processing nodes with cells waiting for neighbouring
information.
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The processing node from which the migration starts, migrates the cell with the smallest step value. In order to perform the
migration, the IOThread broadcasts to every processing node the migration cell destination and waits for acknowledgment.
Once the IOThread receives acknowledgments from every processing node, no further information for the migrating cell
will be received on the current processing node. The IOThread sends the cell data and all the previously received neighbour-
ing information to the destination processing node. The migration is done. The time period between each migration cycle is
set by the IntegrationTime parameter. If the IntegrationTime is too short, the processing nodes will waste time for perform-
ing useless cell migrations. In the worst case, a too short IntegrationTime results in migrating all the cells of a processing
node leaving it without any cell. If the IntegrationTime is too large, then the processors may become idle before receiving a
migrated cell. 

Experiments show that it is difficult to find an a good IntegrationTime. In order to improve the cell remapping strategy, let
us introduce the notion of stability. A processing node is stable if the difference between the CellStep values within a pro-
cessing node is at most one :

(5)

A processing node is unstable, if it is not stable. Since the ComputeNextCellStep function processes first the cells with the
smallest CellStep value, the stable state is a permanent state if no cell migration occurs. Without cell migration, each unsta-
ble processing node will sooner or later reach the stable state. The migration cell emission and receiving processing nodes
are determined by the IdleFactor. In order to improve the cell migration strategy, we take into account two migration rules
avoiding in some special cases the migration of cells. We do not migrate the cell if the cell receiving processing node is in
an unstable state. This rule avoids to carry out consecutive migrations to the same cell receiving processing node. We also
do not migrate if the migrated cell will leave the receiving processing node in a stable state. This rule avoids migration if the
receiving processing node has no major advance compared with the emission processing node. These two rules are not
applied if the receiving processing node is detected to be idle. The stability information is exchanged in the same way as the
IdleFactor.

5  PERFORMANCE MEASUREMENT

The performance measurements were carried out on three input images : a balanced input image, a highly unbalanced input
image and a slightly unbalanced input image. The balanced input image (Fig. 5) consists of a repetitive pattern ensuring an
evenly distributed computation load. In the highly unbalanced input image (Fig. 6), according to the cell
distribution (eqn. 2), the non-empty cells are distributed unevenly across the processing nodes. One of two processing nodes
receives empty cells which require only one computation step. The slightly unbalanced input image (Fig. 7) is an intermedi-
ate case between the balanced and the highly unbalanced input images. The balanced and unbalanced input images are of
size 2048x2048 pixels (8 bits/pixel) and splitted into 16x16 cells, incorporating 128x128 pixels. The slightly unbalanced
input image is of size 1024x1536 pixels (8 bits/pixel) and splitted into 8x12 cells, incorporating 128x128 pixels..

Figure 5. Example (a) of a balanced input image, (b) after segmentation into cells and (c) after skeletonization
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The N processing nodes are all Bi-Pentium Pro 200 MHz PCs running under WindowsNT 4.0. They are connected through a
Fast Ethernet switch.

Figure 8 shows the speedup for the balanced input image, the highly unbalanced input image and the slightly unbalanced
input image. The measurements are done for 1 to 10 processors. The performances of the algorithms with and without the
cell migration scheme are compared. The measurements for the dynamically load balanced algorithm are done with an Inte-
grationTime of 0.5 sec between each cell migration.

In the case of the balanced input image, there is no significant performance difference between the two algorithms. For such
an input image, the cell migration is useless since the load is perfectly balanced between the processing nodes. The results
show that the overhead induced by the management of the cell migration is low. The parallelization does not provide a lin-
ear speedup because the neighbouring information exchange consumes processing resources (CPU power for the TCP/IP
communication protocol).

In the case of the highly unbalanced input image, the performances are considerably improved by dynamic load balancing.
Without cell migration the efficiency (speedup/N) is approximately 50% since one processor of two becomes idle. Imple-
menting the cell migration allows the parallel program to reach approximately the same speedup with a balanced or an
unbalanced input image. 

In the case of the slightly unbalanced input image, the performances are improved by using the dynamically load balanced
algorithm. Since in the input image, about one out of four cells is empty, the theoretically maximal performance improve-

Figure 6. Example (a) of a highly unbalanced input image, (b) after segmentation into cells and (c) after skeletonization

Figure 7. Example (a) of a slightly unbalanced input image, (b) after segmentation into cells and (c) after skeletonization.
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ment factor obtained by the dynamically load balanced algorithm is . Our algorithm reaches a performance
improvement factor of . The difference is due to the fact that some time is needed until the system reaches a load bal-
anced state.

Globally, performances are improved by dynamic cell remapping. No improvement is expected in the case of a well bal-
anced input image. A major improvement is achieved in the case of an unbalanced input image. The presented results
closely match the expected results.

6  CONCLUSIONS

We are interested in the parallelization of cellular automata. Our experiment is based on a particular image skeletonization
method. We have developed a parallellization algorithm which can be easily applied to other cellular automata. We explore
two parallelization methods, one with a static load distribution consisting in splitting the cells over several processing nodes
and the other with a dynamic load balancing scheme capable of remapping cells during the program execution. Perfor-
mance measurements show that the cell migration doesn’t reduce the speedup if the application is already load balanced. It
improves the performance if the parallel application is not well balanced.

Cellular automata have a wide range of applications : matrix computation, state machines, Von Neumann automata, etc.
Many problems can be expressed as cellular automata. Developing from the scratch a custom parallel application requires a
large effort. This paper shows the possibility of developing first a generic parallel cellular automaton and, on top of it, paral-
lel applications making use of the cellular automaton program interface. This approach reduces the programming effort
without loosing efficiency.
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Figure 8. Speedup for (a) the balanced input image, (b) the highly unbalanced input image and (c) the slightly unbalanced image.
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 (b) highly unbalanced image
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