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ABSTRACT

We present a tutorial description of the CAP Computer-Aided Parallelization tool. CAP has been designed with the goal of
letting the parallel application programmer having the complete control about how his application is parallelized, and at the
same time freeing him from the burden of managing explicitly a large number of threads and associated synchronization and
communication primitives. The CAP tool, a precompiler generating C++ source code, enables application programmers to
specify at a high level of abstraction the set of threads present in the application, the processing operations offered by these
threads, and the parallel constructs specifying the flow of data and parameters between operations. A configuration map
specifies the mapping between CAP threads and operating system processes, possibly located on different computers. The
generated program may run on various parallel configurations without recompilation. We discuss the issues of flow control and
load balancing and show the solutions offered by CAP. We also show how CAP can be used to generate relatively complex
parallel programs incorporating neighbourhood dependent operations. Finally, we briefly describe a real 3D image processing
application: the Visible Human Slice Server (http://visiblehuman.epfl.ch), its implementation according to the previously
defined concepts and its performances. 
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1.  INTRODUCTION

Image oriented access and processing operations are often both compute and I/O intensive. Making use of a large number of
commodity components working in parallel, i.e. parallel processing on several PC’s and parallel access to many disks offers the
potential of scalable processing power and scalable disk access bandwidth.

The main problem of using parallel distributed memory computers is the creation of a parallel application made of many threads
running on different computers. Programming a parallel application on top of the native operating system (e.g. WindowsNT)
or with a message passing system yields synchronous parallel programs, where communications and I/O operations do generally
not overlap with computing operations. Creating parallel programs with completely asynchronous communications and I/O
accesses is possible6, 10, but difficult and error prone. Tiny programming errors in respect to synchronization and information
transfer lead to deadlocks which are very hard to debug. The difficulty of building reliable parallel programs on distributed
memory computers is one of the reasons why most commercial parallel computers are rather expensive SMP computers, i.e.
computers whose processors interact via shared memory and synchronization semaphores (for example the SGI Origin 2000
multiprocessor system).

To be competitive, parallel processing needs to exploit the potentialities of the underlying parallel hardware and software
(native operating system). Parallel applications may hide communication and disk access times by pipelining them with
processing operations. When decomposing an image into tiles to be processed by a set of n processors, communication can be
largely hidden if the original image is segmented into a number of tiles (k·n) which is a multiple of the number of available
processors (k integer, k >>1). Then, assuming that the computation is compute-bound, the total processing time is composed by
the time to fill the pipeline, i.e. the time to send the first n tiles to the n processors, the time to compute in parallel k·n tiles and
the time to send the last tile back to the master processor. If the pipeline set-up time is small in respect to the pure parallel
computation time, a good speed-up may be attained. Similar considerations apply when hiding disk access times. For example,
an application which requires 1 second disk access time and 1 second processing time can be executed as a pipeline comprising
disk access and processing operations and take only slightly more than 1 second. 

Ensuring on each contributing processing unit that data transfers to the network or to the disk are done at the same time as data
processing requires generally several threads within the same address space : threads responsible for communications, threads
responsible for I/O operations and a thread responsible for computation operations. These threads may synchronize when
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exchanging messages and through appropriate synchronization semaphores. Conceiving explicitly multi-threaded parallel
applications is therefore difficult and error-prone. The alternative of programming in each processing unit an event loop relying
on asynchronous message passing and file access primitives is also relatively difficult to achieve.

Further complexity is introduced if one would like to ensure load balancing, i.e. making sure that each slave processing unit is
busy during the time that the computation goes on. Finally, image processing operations are often neighbourhood-dependent,
i.e. to process a pixel or a voxel, the values of neighbouring pixels or voxels need to be known. Processing units need therefore
to be able to exchange image tile borders in a synchronized manner. 

In this paper, we would like to give a tutorial-like presentation of CAP, the Computer-Aided Parallelization tool we propose
for simplifying the creation of efficient pipelined parallel image processing programs on distributed memory multiprocessor
systems. CAP has been successfully applied for creating real applications, such as the Visible Human Slice Server (http://
visiblehuman.epfl.ch) running on a multi-PC multi-disk platform. 

2.  COMPUTER-AIDED PARALLELIZATION: THE CONCEPT

The CAP Computer-Aided Parallelization tool has been designed with the goal of letting the parallel application programmer
having the complete control about how his application is parallelized, and at the same time freeing him from the burden of
managing explicitly a large number of threads and associated synchronization and communication primitives.

The CAP tool enables application programmers to specify at a high level of abstraction the set of threads, which are present in
the application, the processing operations offered by these threads, and the parallel constructs specifying the flow of data and
parameters between operations. This specification completely defines how operations running on the same or on different
processors are sequenced and what data and parameters each operation receives as input values and produces as output values.

The CAP methodology consists of dividing a complex operation into several suboperations with data dependencies, and to
assign each suboperation to one of the program threads. The CAP preprocessor automatically compiles the high-level
description into a C++ program source that implements the required schedule, i.e. the synchronizations and communications to
satisfy the data dependencies underlying the parallel constructs. CAP also handles for a large part memory management and
communication protocols, freeing the programmer from low level issues.

CAP operations are defined by a single input, a single output, and the computation that generates the output from the input.
Input and output of operations are called tokens and are defined as C++ classes with serialization routines that enable the tokens
to be packed, transferred across the network, and unpacked. Communication occurs only when the output token of an operation
is transferred to the input of another operation. 

An operation specified in CAP as a schedule of
suboperations is called a parallel operation. A
parallel operation specifies the assignment of
suboperations to threads, and the data
dependencies between suboperations. When two
consecutive operations are assigned to different
threads, the tokens are redirected from one
thread to the other. As a result, parallel
operations also specify communications and
synchronizations between sequential operations.
A sequential operation, specified as a C++
routine, computes its output based on its input. A

sequential operation cannot incorporate any communication, but it may compute variables which are global to its thread.

Each parallel CAP construct consists of a split function splitting an input request into sub-requests sent in a pipelined parallel
manner to the operations of the available threads and of a merging function collecting the results. The merging function also
acts as a synchronization means terminating its execution and passing its result to the higher level program after the arrival of
all sub-results (Figure 1). The mapping of the threads to the computing units is specified by a configuration file. Figure 2 shows
a possible mapping.
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Fig. 1 Parallel split - merge construct.



The CAP specification of a parallel program
is described in a simple formal language, an
extension of C++. This specification is
translated into a C++ source program,
which, after compilation, runs on multiple
processors according to a configuration map
specifying the mapping of the threads
running the operations onto the set of
available processors3. The macro data flow
model which underlies the CAP approach
has also been successfully used by the
creators of the MENTAT parallel
programming language [5].

Thanks to the automatic compilation of the parallel application, the application programmer does not need to explicitly program
the protocols to exchange data between parallel threads and to ensure their synchronizations. CAP’s runtime system ensures that
tokens are transferred from one address space to another in a completely asynchronous manner (socket-based communication
over TCP-IP). This ensures that correct pipelining is achieved, i.e. that data is transferred through the network or read from disks
while previous data is being processed. Supported platforms are WindowsNT and Unix. 

3.  INTRODUCTION TO THE CAP-BASED PARALLELIZATION

In a CAP program, the application developer specifies a set of threads (keyword process), processing operations available within
each thread (keyword operations) and global variables (keyword variables) in each thread which are maintained during the life
of the thread. The basic CAP parallel construct comprises a split function, an operation possibly located in server threads and
a merge function. 

The split function is called p times to split the input data into p subparts which are distributed to the different compute server
thread operations (ComputeServer[i].subOperation). Each operation running in a different thread ComputeServer[i] receives as
input the subpart sent by the split function, processes this subpart and returns its subresult to the merge function. The parallel
construct specifies explicitly in which thread the merge function is executed (often in the same thread as the split function). It
receives a number of subresults equal to the number of subparts sent by the split function. Split and merge functions are executed
as many times as specified in the split function (parallel while construct) or as specified in the parallel construct iterator (indexed
parallel construct). 

Fig. 3 shows the subdivision of an operation computing outputData from inputData into 10 suboperations computing subResult0
to subResult9 from subPart0 to subPart9. The suboperations are allocated evenly among two compute servers. subPart0 results
from the first call to the split function. The subresults are merged into the output data as soon as they are completed, i.e.
subResult0 is not necessarily merged first. All the operations have the potential to be performed in parallel, but subparts
processed by the same compute server are processed sequentially. 

CAP defines a standard way of passing data as input to the split
function, to take the output of the split function and forward it as
input to an operation, to take the output of an operation and to
forward it as input to the merge function. Data passed between
split, operation and merge functions is embedded into a token
structure. Token types are defined at the beginning of the
program. 
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Fig. 2 Mapping of the parallel construct onto a simple multi-
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Fig. 3 Parallel execution of 10 suboperations on two compute servers

1 int splitInput (splitInputTokenType* inputToken,
2 splitInputTokenType* previousToken,
3 splitOutputTokenType* & outputToken
4 )
5 { // sequential C++ body 
6 // programmer needs to create the outputToken
7 // function returns 1 if split function is to 
8 // be called again, otherwise 0
9 }



Prog. 1 specifies the interface of typical split functions, leaf
operations and merge functions. In the splitInput function (lines 1 to
9), the inputToken contains the input data to be divided into subparts;;
the previousToken contains the subpart resulting from the previous
call to the splitInput function, and the outputToken parameter is the
current subpart being computed by the split function. The leaf
operation contains the C++ code of the ComputeServerT::subOperation
(lines 10 to 15), which computes a subresult (outputP) from a subpart
(inputP). In the mergeOutput function (lines 17 to 20), the mergeInput

parameter contains the subresult to be merged into the output data (outputResult parameter). Leaf operations, split functions and
merge functions are sequential procedures written in the C++ language. The programmer needs to create the output tokens of
the split function and the output tokens of the operations. CAP directs automatically an output token to the input token of the
next operation. CAP creates the merge function output token of type mergeOutputTokenType defined by the user.

CAP requires the programmer to specify explicitly the thread (or
set of threads) which perform an operation. CAP is
compositional, i.e. it enables to declare abstract high-level
threads which include lower level "real" threads. Low-level
threads are mapped to operating system threads. For example, in
Prog. 2, the high-level thread ParallelServerT consists of one Main
thread running in the same address as the main program, and 4
ComputeServer threads running on separate computers. Real
threads perform sequential operations. High-level threads (or set

of threads) perform parallel operations. A client program launches the parallel execution of a program by calling a high level
operation (e.g. ParallelComputation) which is part of a high-level thread (e.g. ParallelServerT).

The high-level operation ParallelComputation contains a
parallel while CAP construct enabling the client to split the
input data into parts to be sent to operations running in threads
located in the same or in different address spaces, possibly on
different computers (PC’s). The parallel while construct directs
the token originating from the split function according to a user
defined field (index) located in the token generated by the split function. The index of the destination thread contained in the
field thisTokenP->index can be dynamically varied during the computation. 

If the number of parallel branches is independent of the token generated by the split function, an indexed parallel construct can
be used, which requires slightly modified split and merge functions (Prog. 4, lines 1 to 9). The corresponding indexed parallel
construct has the structure coded in Prog. 4, lines 15 to 17).

10 leaf operation ComputeServerT::subOperation 
11 in splitOutputTokenType* inputP
12 out mergeInputTokenType* outputP 
13 { // sequential C++ body }
14 // attention: outputP token needs
15 // to be created by programmer
16
17 void mergeOutput(mergeOutputTokenType* outputResult
18 mergeInputTokenType* mergeInput)
19 { // sequential C++ body }
20 // outputResult generated by CAP

Prog. 1. split, merge and leaf operation

1 process ParallelServerT {
2 subprocesses :
3 MainProcessT Main;
4 ComputeServerT ComputeServer[4];
5 operations :
6 ParallelComputation 
7 in splitInputTokenType* inputP 
8 out mergeOutputTokenType* outputP ;
9 } ;
10
11 // instantiation of the high-level thread
12 ParallelServerT ParallelServer; 

Prog. 2. thread hierarchy

1 operation ParallelServerT::ParallelComputation
2 in splitInputTokenType* inputP 
3 out mergeOutputTokenType* outputP
4 {
5 parallel while (splitInput, mergeOutput, 
6 Main, mergeOutputTokenType Result)
7 (ComputeServer[thisTokenP->index].subOperation);
8 }

Prog. 3. parallel operation

1 void splitInput (splitInputTokenType* inputToken, 
2 splitOutputTokenType* & outputToken,
3 int index) // current index of splitInput call
4 { ... // sequential C++ body } 
5
6 void mergeOutput(mergeOutputTokenType* outputResult, 
7 mergeInputTokenType* mergeInput,
8 int index) // current index of mergeOutput call
9 { ... // sequential C++ body } // outputResult generated by CAP

10
11 operation ParallelServerT::ParallelComputation
12 in splitInputTokenType* inputP 
13 out mergeOutputTokenType* outputP
14 { // this is the explicit index
15 indexed (int i = 0 ; i < NUMBER_OF_PARALLEL_ITERATIONS ; i++ )
16 parallel (splitInput, mergeOutput, Main, mergeOutputTokenType Result)
17 ( ComputeServer[i%NUMBER_OF_COMPUTESERVERS].subOperation ) ;
18 }

Prog. 4. Indexed parallel construct



In the case that the operations to be executed in
parallel differ one from another (e.g. in the case of
functional parallelism), a third parallel construct
enables specifying custom split, custom operations
and custom merge functions for each of the parallel
branches. The syntax of the parallel operation is the
following, for 4 parallel branches (Prog. 5). The Main thread executes the merge functions. According to the configuration file
(next page), it runs in the same address space as the main program. The result token is Result of type mergeOutputTokenType.

The ParallelComputation high-level operation may
be called from the main C++ program running in the
client (or master) thread. After making use of the
results (printing them, storing them in a file or
processing them further), it is the programmer’s
responsibility to delete the high-level parallel
operation’s output token.

Under WindowsNT, the program is developed in the Visual C++ environment as a single multithreaded program running on a
single PC. The standard Visual C++ debugger is used to debug the Cap program. Once the program is running correctly as a
single NT process, a configuration map can be created to run the program as several NT processes on the same PC. If the
program behaves correctly, the configuration file can be adapted to run the program on multiple PC’s. The communication
between the processes relies on a TCP/IP socket-based message passing system. 

A configuration file specifies the mapping between
CAP threads and underlying NT processes. A list of
NT processes (A, B, C, etc..) is defined in the section
processes and the Cap threads defined in the section
threads are mapped to the declared NT processes
(Prog. 7). In the configuration file example shown
above, A and B are NT processes. Process A is
associated to the PC where the program is started
and process B is a server process running on the PC

designated by its IP number. The executable file is given by its full path specifier. To provide a correct initial load distribution,
two server threads execute on the master PC and two slave threads on the slave PC.

4.  A DIDACTIC EXAMPLE : COMPUTING THE MANDELBROT SET

The Mandelbrot set is a set of complex numbers {c ∈ §}, where after an infinite number of applications (in the program,
MAX_ITERATIONS) of complex function fc(0) = z2+c, the resulting absolute value |fc

n(0)| is smaller than infinity (in the program,
smaller than MAX_MAGNITUDE). The Mandelbrot set is included within a region of radius 2 from the center of origin. 

The complex map showing the Mandelbrot set can be easily computed: we define the width of each pixel to be a given fraction,
for example 1/100 and draw an image ranging from approximately (-2,-2) to (+2,+2). 

The Mandelbrot program uses a simple parallel while loop for asking in round-robin manner the compute server threads to
compute the image scanlines (see operation ParallelServerT::GlobalOperation). The split function distributes scanline indices
(token TileDescriptionT) to the server thread operations (ComputeMandelbrot). Each server thread generates the scanlines it is
asked to synthesize and sends each one as a token of type TileT to the merge function. The merge function merges the scanlines
into the final image (token ImageT). The full program, comprising the definition of constants, tokens, CAP threads, user
functions, leaf operations and main program is shown.

4.1. Program head with user defined constants and functions

The MandelbrotFunction computes the color of each pixel in the Mandelbrot set, as a function of its x, y coordinates (Prog. 8).
1 /* mandelbrotPar.pc : simple parallel program for computing the Mandelbrot set */
2 #include "complex.h" // complex number class
3 const int NUMBER_OF_COMPUTE_SERVERS = 4;
4 const int IMAGE_SIZE_X = 512; const int IMAGE_SIZE_Y = 512;
5

1 parallel (Main, mergeOutputTokenType Result) (
2 (SplitInput0, ComputerServer[0].operation0, MergeOutput0)
3 (SplitInput1, ComputerServer[1].operation1, MergeOutput1)
4 (SplitInput2, ComputerServer[2].operation2, MergeOutput2)
5 (SplitInput3, ComputerServer[3].operation3, MergeOutput3)
6 ) ;

Prog. 5. Parallel construct

1 int main(int argc, char** argv)
2 { // create input token
3 splitInputTokenType* inputP = new (splitInputTokenType);
4 mergeOutputTokenType* mainOutput;
5 call ParallelServer.ParallelComputation 
6 in inputP out mainOutput;
7 // display results contain in the output token mainOutput
8 delete mainOutput;
9 return 0;
10 }

Prog. 6. Main program

1 // mandelbrot.cnf 
2 configuration { 
3 processes :  
4     A ( "user" ) ;
5     B ( "128.178.71.141", "mandelbrotPar.exe" ) ; 
6 threads : 
7     "Main" (A) ; // thread "Main" is located in the
8 // same address space as the main program
9     "Server[0]" (A) ; 
10     "Server[1]" (A) ; 
11     "Server[2]" (B) ; 
12     "Server[3]" (B) ; 
13 } ; 

Prog. 7. Configuration file



6 // Mandelbrot fonction constants
7 const double X_START = -2.0; const double Y_START = -2.0; const double GAP = 0.01;
8 const int    MAX_ITERATIONS = 200; const double MAX_MAGNITUDE = 200.0;
9

10
11 // Mandelbrot function renders magnitude after a number of iterations
12 // if magnitude very small (zero after rounding operation), 
13 // (x,y) value belongs to the Mandelbrot set
14
15 unsigned char MandelbrotFunction(int x, int y){
16 complex c(X_START + x*GAP, Y_START + y*GAP); complex z(0.0,0.0); 
17 int k = 0; double m; // initial values 
18 while (z.Magnitude() < MAX_MAGNITUDE && k < MAX_ITERATIONS) {
19 z = z * z + c;
20 k++;
21 }
22 m = z.Magnitude();
23 if (m>2550) m = 2550; // limit the magnitude to the maximal diplayable value: 255 *10
24 return (unsigned char)(m/10); // return truncated magnitude as pixel intensity between 0 and 255
25 }

Prog. 8. Mandelbrot constants and function definition

4.2. Token definitions

The necessary set of tokens comprises one token to start the parallel computation, one token with the scanline index, one token
incorporating one full scanline and the output token comprising the full image.

1 token StartT {}; // empty token is input to the split function: 
2 // it specifies the start of the computation
3 token TileDescriptionT { // this token is sent by the split function to specify the scanline index
4 int lineIndex; // scanline index
5 TileDescriptionT (int Index) { lineIndex = Index; } 
6 };
7 token TileT { // resulting image tile comprising one scanline 
8 int lineIndex; // scanline index of computed line 
9 unsigned char buffer[IMAGE_SIZE_X];

10 TileT (int index){ 
11 lineIndex = index ; // inline constructor
12 }                 
13 };
14 token ImageT { // token comprising the full image, 
15 // used as the output of the merge function
16 unsigned char buffer[IMAGE_SIZE_X*IMAGE_SIZE_Y]; 
17 };

Prog. 9. Mandelbrot tokens

4.3. CAP threads 

A high-level thread containing all other threads as well as the “Main” thread running in the same address space as the C++ main
program are required. High-level threads incorporate high-level operations and normal threads incorporate leaf operations and
possibly thread variables. Only normal threads are mapped to operating system threads.

1 process ParallelServerT { // higher-level abstract thread with subthreads
2 subprocesses :
3 MainProcessT Main ;
4 ComputeServerT Server[NUMBER_OF_COMPUTE_SERVERS] ;
5 operations : // higher-level operation, callable from main program
6 GlobalOperation in StartT* InputP out ImageT* OutputP ;
7 } ;
8
9 process ComputeServerT { // declaration of compute server thread

10 operations :
11 ComputeMandelbrot in TileDescriptionT* InputP out TileT* OutputP;
12 };
13
14 process MainProcessT { // main process is the thread running the main program
15 operations :
16 } ;
17
18 ParallelServerT ParallelServer ; // instantiation of high-level parallel thread

Prog. 10. Mandelbrot thread hierarchy

4.4. CAP operations, split and merge functions

A high-level CAP operation generally incorporates a parallel construct. This parallel construct either incorporates other CAP
high-level operations or leaf operations and specifies the split and merge functions.

1 int SplitFunction (StartT* inputP, // split function with fixed sequence
2 TileDescriptionT* previousP, // of input parameters



3 TileDescriptionT*& nextP)
4 { 
5 int nextIndex = 0; // scanline index
6 if (previousP!=0) nextIndex = previousP->lineIndex + 1;
7 nextP = new TileDescriptionT(nextIndex); // allocates output token with correct index value
8 if (nextIndex == IMAGE_SIZE_Y-1) return 0; // if last scanline, returns 0
9 else return 1; // else continue calling the split function

10 }
11
12 leaf operation ComputeServerT::ComputeMandelbrot // code of leaf operations
13 in TileDescriptionT* InputP // input token is coming from split fct
14 out TileT* OutputP // output token travels to merge function
15 {
16 OutputP = new TileT(InputP->lineIndex); // allocates output token: 
17 // tile comprising a single scanline
18 for (int i=0; i< IMAGE_SIZE_X; i++) // computes magn values of each pixel of scanline
19 OutputP->buffer[i] = MandelbrotFunction(i,InputP->lineIndex);
20 }
21
22 void MergeFunction (ImageT* intoP, TileT* inputP) // merges scanlines into output image buffer
23 { // copies one full scanline from 
24 // &inputP->buffer to &intoP->buffer 
25 CopyMemory(&intoP->buffer[inputP->lineIndex*IMAGE_SIZE_X],&inputP->buffer, IMAGE_SIZE_X); 
26 }
27
28 operation ParallelServerT::GlobalOperation // definition of parallel operations
29 in StartT* InputP
30 out ImageT* OutputP
31 {
32 parallel while ( SplitFunction, MergeFunction, Main, ImageT Result()) 
33 ( Server[thisTokenP->lineIndex%NUMBER_OF_COMPUTE_SERVERS].ComputeMandelbrot) ;
34 }

Prog. 11. Mandelbrot parallel computation

4.5. Main program

The main program incorporates an instantiation of the token which is the input to the parallel GlobalOperation. CAP generates 
the output token of the required type ImageT.

1 int main () // main program
2 {
3 long StartupTime = GetTickCount(); 
4 long EndComputingTime;
5 StartT* InputP = new StartT() ; // input token to global operation
6 ImageT* OutputP; // output token coming from global operations
7 // calling the parallel operation
8 call ParallelServer.GlobalOperation in InputP out OutputP ;
9

10 EndComputingTime = GetTickCount();
11
12 printf("Computing time [ms] is %l \n”, EndComputingTime-StartupTime );
13 return 0 ;
14 }

Prog. 12. Mandelbrot main program

5.  FLOW CONTROL AND LOAD BALANCING ISSUES

In the current CAP implementation, the split function generates the tokens at a much higher rate than they can be consumed,
i.e. processed by operations within the parallel construct and merged by the merging operation. Tokens may therefore
accumulate in front of operations and merging functions. This may require considerable amounts of memory and induce disk
swapping operations (transfer of virtual memory to and from disk). 

Another problem is load balancing. In real applications,
the load may be different in different compute servers.
There is therefore a need to direct tokens generated by the
split function towards a compute server which has
terminated an operation on a previous token.

1 flow_control (maxNbTokens)
2 indexed 
3 (int index = 0 ; index < indexMax ; index++)
4 parallel (splitfct, mergefct, Main, OutT outP)
5 (ComputeServer[...].operation ) ;

Prog. 13. flow-control



For the purpose of flow-control and load balancing,
the CAP preprocessor translates an indexed parallel
loop, respectively a parallel while loop, into a
combination of indexed parallel, respectively parallel
while and a for CAP construct. The constructs shown
in Prog. 13 is translated into the construct described
in Prog. 14, where a token is recirculated in a for
loop, and at each new entry into the for loop, the split
function is called. The cycling around the for loop
ensures that at one time, only maxNbTokens are in
circulation. The application developer specifies by
the instruction flow_control(maxNbTokens) the
number of tokens in circulation, for example 20.

The load-balancing mechanism uses the same
construct: tokens recirculate according to a for loop
along the branch of an operation, which has just

terminated a previous loop. For example, if the flow-control variable specifies 20 circulating tokens, then each token represents
an independent execution branch, i.e. each token may be forwarded to an operation located possibly in a different address space.
The execution branch index is available through the CAP variable cap_fcindex0. This means that when a branch has terminated
a single execution, it is again available to receive a token and to execute an operation. To ensure sufficient pipelining, several
tokens should circulate in each compute server thread, for example 20 tokens circulating in 4 distinct compute server threads.
The modulo operation cap_fcindex0%NbOfComputeServers specifies the current compute server thread index. An example of a
construct enabling flow-control and load-balancing is the following shown in Prog. 16. To ensure both flow control and load
balancing, the parallel while construct of the previously described MandelbrotPar program needs to be modified as follows:

1 operation ParallelServerT::GlobalOperation
2 in ImageT* InputP
3 out ImageT* OutputP
4
5 { flow_control(20)
6 parallel while (SplitFunction, MergeFunction, Main, ImageT Result()) 
7 ( Server[cap_fcindex0%NUMBER_OF_COMPUTE_SERVERS].ComputeMandelbrot ) ;
8 }

Prog. 16. Flow-control, load balanced Mandelbrot parallel operation

To show that load balancing really works, a simple example consists in running the Mandelbrot program as a set of 4 slave CAP
threads on two PC’s, both with and without flow control, once distributed as 2 CAP threads per PC (equilibrated version) and
once as 1 CAP thread on one PC and the other 3 CAP threads on the other PC (non equilibrated). Table 1 shows the results. The

single processor execution time is around 12s. In the non-equilibrated configuration without flow-control, the second processor
executes 3/4 of the jobs and should take around 9s (neglecting the communication overheads). The measured execution 

time in that configuration is 9.55s. When flow control is enabled, the thread executing alone on the first PC consumes as many
jobs as the three threads executing on the second PC, and the total execution time is down to around 6s. Flow control ensures
that the PC with only one of the four CAP threads remains busy, i.e. more Mandelbrot image line generation requests are
directed to that CAP thread than to each of the other 3 CAP threads located in the second PC.

6.  NEIGHBORHOOD DEPENDENT PARALLEL OPERATIONS

In the previous sections, the parallel program considered only applications, where the operations running in parallel in different
threads were able to proceed independently on their subset of data. In many real application cases (for example image filtering

Configuration without flow control with flow control

single PC 12.26 s 12.37 s

2 PC, equilibrated 6.63 s 6.62 s

2 PC, non equilibrated 9.55 s 6.67 s

TABLE 1. Mandelbrot program execution times on one and two Pentium II PC’s

1 indexed 
2 ( int indexFC = 0 ; indexFC < maxNbTokens ; indexFC++ )
3 parallel (copyInputToken, copyOutputToken, Main, OutT outP) (
4 for ( int nbCirculations = 0 ;
5  nbCirculations<indexMax/maxNbTokens ;
6  nbCirculations++ )
7 (  Main.splitfct 
8 >-> ComputerServer[...].operation 
9 >-> Main.mergefct 

10 )
11 );

Prog. 14. CAP flow-control implementation

1 (
2 flow_control (20)
3 indexed
4  ( int index = 0 ; index < indexMax ; index++ )
5 parallel (splitfct, mergefct, main, OutT outP)
6 ( ComputerServer[cap_fcindex0%NbOfComputeServers].
7 operation ); 
8 )

Prog. 15. Load balancing



or image segmentation11), each processing element (thread) must, at a certain point of its program execution receive information
from neighbouring processing elements (threads). As an example, let us consider the parallelization of the game of Life. 

Fig. 4 The world, the tiles and the array located in server threads.

The world is made of a rectangular array of cells, which are either dead or alive. The state of a cell in the next cycle depends on
its actual state as well as on the states of its 8 immediate neighbors according to the following rule: A living cell with 2 or 3
living cells remains alive, otherwise it dies. A dead cell with 3 neighbors becomes alive, otherwise it remains dead. 

To parallelize the game of life, we segment the world into horizontal tiles whose vertical size is the total size divided by the
number of compute server threads. In each server thread, we create an array of the size of the horizontal tile plus two horizontal
lines: one for the top border which is a copy of the most bottom line belonging to the previous tile and one for the bottom border
which is a copy of the most top line belonging to the following tile (Fig. 4).The parallel program comprises the following stages:

1. Read the world from a file and copy it into the arrays located in server threads. For this purpose, the world is read from a 
file, possibly passed as a parameter from the command line and tokens comprising each one part of the world are sent to 
each server thread (split-merge construct). 
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2. Each parallel iteration, i.e. each computation of the new state of the tiles making up the world includes two steps (Fig. 5): 
(a) each thread must ask its neighbouring tiles to send its top and bottom neighbour lines and must merge these lines into 
its cell array (tile); (b) each thread must compute the new state of its part of the world based on the present state. 

3. Once all iterations are terminated, a high-level parallel GetWorld operation collects the tiles computed by all threads and 
merges them in the resulting output token.

The graphical representation of the schedule of operations for two parallel iterations (step 2 above), in the case of a 4 tile world
is shown in Fig. 5. In each step, the servers first exchange borders, synchronize to ensure that all borders have been received
(GS0), compute their tile, and synchronize again (GS1), before staring the next iteration step.

The main program comprises three calls to parallel CAP constructs : one for initialization of the world, one for computing the
iterations and one for gathering the results.

1 call ParallelServer.parallelInitPartWorld in fullworldP out resultP ; 
2 call ParallelServer.Automaton (NB_ITERATIONS) in inputP out outputP;
3 call ParallelServer.GetWorld in inputP out lastResultP;

Prog. 17. Main program parallel operation call sequence

Let us assume that in each server thread, the tile representing a part of the world has been correctly initialized by the high-level
parallelInitPartWorld parallel operation. 

The Automaton high-level parallel operation comprises a sequence of two indexed parallel constructs: one for exchanging and
merging tile borders and one for the computing the tiles’ new state (game of life iteration, Prog. 18). The syntax of Prog. 18
matches the graphical representation of Fig. 5. The light gray box (single automaton step) in Fig. 5 is specified at lines 10 to 18.
The first indexed parallel construct (line 10 to 13) specifies that all compute servers exchange borders simultaneously (a single
ExchangeBorders operation is shown as a dark gray box in Fig. 5). The second indexed parallel construct specifies that all compute
servers compute their respective tile in parallel (lines 15 to 18). The repetition of the automaton step is specified using the CAP
for loop (line 9).

1 // on Main, sequences the indexed parallel ExchangeBorder and the following
2 // indexed parallel ComputeStep
3
4 operation ParallelServerT::Automaton(int nbIterations) 
5 in void* InputP 
6 out void* OutputP
7 {
8 // single iteration first
9 for (int it = 0 ; it < nbIterations ; it++ ) ( // iterations ExchangeBorders->ComputeStep

10 indexed // to synchronize exchange of borders
11 ( int i = 0 ; i < NUMBER_OF_COMPUTE_SERVERS; i++)
12 parallel ( void, void, Main, void output)
13 ( ExchangeBorders (i) )
14 >->
15 indexed
16 ( int j = 0; j < NUMBER_OF_COMPUTE_SERVERS ; j++ )
17 parallel ( void, void, Main, void output)
18 ( Server[j].ComputeStep ) 
19 ) ;
20 }

Prog. 18. CAP specification of the automaton iteration step

The ExchangeBorders operation is itself a high-level parallel operation comprising a parallel construct. Within each branch of
the parallel construct, split operations are empty (void) and merge operations copy a top or a bottom border into the thread's tile.
The merge of the parallel operation is executed in thread Server[partIx] and the operations themselves, i.e. respectively
sendBottomBorder and sendTopBorder are executed in the thread responsible for the tiles above and respectively below the current
tile (Server[partIx+1], Server[partIx-1]).

1 // this operation asks in parallel the neighbours to send their borders and merges them
2 // exchange of borders works in wraparound mode 
3
4 operation ParallelServerT::ExchangeBorders (int partIx) 
5 in void* InputP 
6 out void* OutputP
7 {  
8 parallel (Server[partIx], void result) (  // indicates merge in Server thread
9 ( void 

10 , ifelse (partIx>0) 
11 ( Server[partIx-1].sendBottomBorder)                    // partIx>0
12 ( Server[NUMBER_OF_COMPUTE_SERVERS-1].sendBottomBorder) // partIx==0
13 , mergeBorders(TopBorder)
14 )
15 ( void 
16 , ifelse (partIx<NUMBER_OF_COMPUTE_SERVERS-1) // partIx<NUMBER_OF_COMPUTE_SERVERS-1
17 ( Server[partIx+1].sendTopBorder) // partIx==NUMBER_OF_COMPUTE_SERVERS-1



18 ( Server[0].sendTopBorder)
19 , mergeBorders(BottomBorder)
20 ) 
21 ) ;
22 }

Prog. 19. CAP specification of the ExchangeBorders operation

According to the presented solution (operation Automaton), all borders are exchanged in parallel and all computations are
executed in parallel. However, there is no overlap between the exchange of borders and the computations. In order to introduce
such an overlap, we can separate the ComputeStep procedure into a ComputeCenter procedure, i.e. the computation of those cells
whose 8-neighbours are located within the present tile and into a ComputerBorder procedure, whose cells are located at the
border of the current tile. Then, the central part may be computed at the same time as borders are exchanged between
neighbouring tiles. The parallel program needs only a very slight modification: the ExchangeBorders high-level operation
becomes the SendBorderCompCenter operation incorporating the new ComputeCenter leaf operation.

1 // this operation asks in parallel the neighbours to send their borders and merges them
2
3 operation ParallelServerT::SendBordersCompCenter (int partIx) 
4 in void* InputP 
5 out void* OutputP
6 {  
7 parallel (Server[partIx], void result) ( // merge functions executed in thread Server[partIx]
8 ( void // no split function
9 , Server[partIx].ComputeCenter // computeCenter executed in current thread

10 , void // no merging operation 
11 )
12 ( void 
13 , ifelse (partIx>0) 
14 ( Server[partIx-1].sendBottomBorder) // partIx > 0
15 ( Server[NUMBER_OF_COMPUTE_SERVERS-1].sendBottomBorder) // partIx==0, take last tile
16 , mergeBorders (TopBorder)
17 )
18 ( void 
19 , ifelse (partIx<NUMBER_OF_COMPUTE_SERVERS-1) 
20 ( Server[partIx+1].sendTopBorder ) // partIx<NUMBER_OF_COMPUTE_SERVERS-1
21 ( Server[0].sendTopBorder ) // partIx==NUMBER_OF_COMPUTE_SERVERS-1
22 , mergeBorders (BottomBorder)
23 ) 
24 );
25 }

Prog. 20. CAP specification of the improved ExchangeBorders operation

The high-level operation Automaton, which expresses the global parallel behavior of the application keeps the same structure,
with ExchangeBorders (i) becoming ExchangeBordersCompCenter(i) and with ComputeStep becoming ComputeBorders.

1 // on Main, sequences the indexed parallel ExchangeBorder and the following
2 // indexed parallel ComputeStep
3
4 operation ParallelServerT::Automaton(int nbIterations) 
5 in void* InputP 
6 out void* OutputP
7 {
8 // single iteration first
9 for (int it = 0 ; it < nbIterations ; it++) (

10 indexed (int i=0; i<NUMBER_OF_COMPUTE_SERVERS; i++)
11 parallel (void,void,Main,void output)
12 ( ExchangeBordersCompCenter (i) )
13 >->
14 indexed
15 (int j=0; j<NUMBER_OF_COMPUTE_SERVERS; j++)
16 parallel (void,void,Main,void output)
17 ( Server[j].ComputeBorders) 
18 ) ;
19 }

Prog. 21. CAP specification of the improved Automaton operation

This example demonstrates that the parallel behavior of the program is concentrated in a few high-level operations and that it
can easily be modified to experiment with alternative parallelization schemes.



7.  A REAL APPLICATION: THE VISIBLE HUMAN SLICE SERVER

Thanks to CAP, a parallel Visible Human Slice Server
has been developed, which offers the capability of
interactively specifying the exact position and
orientation of a desired slice (Figure 1) and of
requesting and obtaining that slice from a 3D
tomographic volume, made of either CT, MRI or
cryosection images (digital color photographs of
cross-sections).

Accessing and extracting slices from the 3D Visible
Human image1 requires high processing power and
considerable storage space, e.g. 13GBytes for the
human male dataset. We decided therefore to build the
Visible Human Slice Server on top of 5 Bi-Pentium
Pro 200MHz PC’s. An additional Bi-Pentium II
333MHz PC acts as the client on which the slices are
visualized. All the PC’s are interconnected through a
100Mbits/s Fast Ethernet switch. A total of 60 disks is
equally distributed among the server’s 5 Bi-Pentium
Pro PC’s.

For enabling parallel access to its data, the Visible Human 3D volume is segmented into volumic extents of size 32x32x17 RGB
voxels, i.e. 51KBytes, which are striped over the 60 disks residing on the 5 server PC’s8. In order to extract an image slice from
the 3D image, the extents intersecting the slice are read and the slice parts contained in these volumic extents are extracted and
projected onto the display space (Figure 5).

Fig. 7 Extraction of slice parts from volumic file extents

The parallel slice server application consists of a client PC and of server processes running on the server’s parallel PC’s. The
client PC interprets the slice location and orientation parameters defined by the user and determines the image extents which
need to be accessed. It sends to the concerned servers (servers whose disks contain the required extents) the extent reading and
image slice part extraction requests. These servers execute the requests and transfer the resulting slice parts to the client PC
which assembles them into the final displayable image slice. The parallel slice server application is described by the diagram
of Fig. 6. This diagram, translated to the CAP language, corresponds to the parallel while operation described in Fig. 7.

Fig. 6 Selecting within a Java applet an image slice within a 
miniaturized 3D tomographic image
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displayable slice
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Fig. 8 Graphical representation of the pipelined parallel extent access and slice extraction operations

The parallel application consists of one large split-merge construct. The parallel branches comprise each an I/O operation to
read one volumic extent from disk and a computing operation to extract and resample the part of the specified image slice
intersecting the volumic extent previously read from disk. By reading extents asynchronously from disks, disks access
operations and computing operations are completely pipelined, i.e. the computation time is hidden by the disk access time or
vice-versa, depending if disk access time or computation time represents the bottleneck for a given hardware configuration i.e
for a given number of PC’s and a given number of disks per PC. Note that since the split function generates hundreds of extent
access requests, each contributing server PC launches many simultaneous asynchronous extent access requests, providing
thereby a global bandwidth proportional to the number of contributing disks. 

The server's performance has been measured by striping the Visible Human (male dataset) onto 1 to 5 Bi-Pentium Pro server
PC's and onto 1 to 12 disks per server PC (max. 60 disks). Figure 8 shows the number of extracted 512x512 colour slices per
second for various configurations.

Each slice access request is decomposed into 437 volumic extent access requests (22 MBytes). For all the server configurations,
disk I/O bandwidth is always the bottleneck (effective single disk throughput for 51KB blocks: 1.88 MBytes/s). With 4.8 image
slices/s, the client PC is able to receive from the Fast Ethernet 7.8 MBytes/s of slice parts. These performances are close to the
performances offered by the underlying hardware, operating system (Windows NT) and network protocols (TCP/IP).

A scaled-down version of the server comprising a single Bi-Pentium-II PC and 16 disks has been installed as a permanent Web
Server and offers its interactive slicing services at http://visiblehuman.epfl.ch.

8.  CONCLUSIONS

We presented in a didactic manner the Computer-Aided Parallelization tool we propose for simplifying the creation of efficient
pipelined parallel image processing applications. Application programmers specify at a high level of abstraction the set of
threads present in the application, the processing operations offered by these threads, and the high-level parallel constructs
specifying the flow of data and parameters between operations. The generated program can run on various parallel
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10 };
11 )

merge functionsplit function output token of the 
parallel while construct
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configurations without recompilation. Only the configuration file mapping the CAP threads to NT processes and PC’s needs to
be modified. CAP also incorporates mechanisms for flow-control and load-balancing.

Besides the Visible Human Slice Server, CAP has been applied
successfully to a number of applications, both in the field of image
processing4 and in the field scientific computing3,7. We have
shown3 that the overhead specific to CAP is very low: each token
incorporates in addition to its user-defined structure a 24 bytes
header. The time to transfer this additional amount of information
is generally negligible, when compared to the latency to launch the
transfer of one block of data on commercially available networks
(packet transfer latency on Fast Ethernet: 300 µs). Therefore, the
overhead of CAP is generally negligibly small. Since CAP
generates schedules described by directed acyclic graphs, CAP
programs are deadlock free by construction.

We are currently preparing a distribution of CAP available to
interested users for teaching, research, and demonstration
purposes. This distribution will be downloadable from the Web.
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	14 out TileT* OutputP // output token travels to merge function
	15 {
	16 OutputP = new TileT(InputP->lineIndex); // allocates output token:
	17 // tile comprising a single scanline
	18 for (int i=0; i< IMAGE_SIZE_X; i++) // computes magn values of each pixel of scanline
	19 ��OutputP->buffer[i] = MandelbrotFunction(i,InputP->lineIndex);
	20 }
	21
	22 void MergeFunction (ImageT* intoP, TileT* inputP) // merges scanlines into output image buffer
	23 { // copies one full scanline from
	24 // &inputP->buffer to &intoP->buffer
	25 CopyMemory(&intoP->buffer[inputP->lineIndex*IMAGE_SIZE_X],&inputP->buffer, IMAGE_SIZE_X);
	26 }
	27
	28 operation ParallelServerT::GlobalOperation // definition of parallel operations
	29 in StartT* InputP
	30 out ImageT* OutputP
	31 {
	32 parallel while ( SplitFunction, MergeFunction, Main, ImageT Result())
	33 ( Server[thisTokenP->lineIndex%NUMBER_OF_COMPUTE_SERVERS].ComputeMandelbrot) ;
	34 }
	Prog. 11. Mandelbrot parallel computation

	4.5. Main program
	1 int main () // main program
	2 {
	3 long StartupTime = GetTickCount();
	4 long EndComputingTime;
	5 StartT* InputP = new StartT() ; // input token to global operation
	6 ImageT* OutputP; // output token coming from global operations
	7 // calling the parallel operation
	8 call ParallelServer.GlobalOperation in InputP out OutputP ;
	9
	10 EndComputingTime = GetTickCount();
	11
	12 printf("Computing time [ms] is %l \n”, EndComputingTime-StartupTime );
	13 return 0 ;
	14 }
	Prog. 12. Mandelbrot main program


	5. FLOW CONTROL AND LOAD BALANCING ISSUES
	1 flow_control (maxNbTokens)
	2 indexed
	3 (int index = 0 ; index < indexMax ; index++)
	4 parallel (splitfct, mergefct, Main, OutT outP)
	5 (ComputeServer[...].operation ) ;
	Prog. 13. flow-control
	1 indexed
	2 ( int indexFC = 0 ; indexFC < maxNbTokens ; indexFC++ )
	3 parallel (copyInputToken, copyOutputToken, Main, OutT outP) (
	4 for ( int nbCirculations = 0 ;
	5 nbCirculations<indexMax/maxNbTokens ;
	6 nbCirculations++ )
	7 ( Main.splitfct
	8 >-> ComputerServer[...].operation
	9 >-> Main.mergefct
	10 )
	11 );

	Prog. 14. CAP flow-control implementation
	1 (
	2 flow_control (20)
	3 indexed
	4 ( int index = 0 ; index < indexMax ; index++ )
	5 parallel (splitfct, mergefct, main, OutT outP)
	6 �( ComputerServer[cap_fcindex0%NbOfComputeServers].
	7 operation );
	8 )

	Prog. 15. Load balancing
	1 operation ParallelServerT::GlobalOperation
	2 in ImageT* InputP
	3 out ImageT* OutputP
	4
	5 { flow_control(20)
	6 parallel while (SplitFunction, MergeFunction, Main, ImageT Result())
	7 ( Server[cap_fcindex0%NUMBER_OF_COMPUTE_SERVERS].ComputeMandelbrot ) ;
	8 }

	Prog. 16. Flow-control, load balanced Mandelbrot parallel operation
	TABLE 1. Mandelbrot program execution times on one and two Pentium II PC’s

	6. NEIGHBORHOOD DEPENDENT PARALLEL OPERATIONS
	Fig. 4�� The world, the tiles and the array located in server threads.
	Fig. 5�� Dependency diagram for two parallel iterations
	1. Read the world from a file and copy it into the arrays located in server threads. For this pur...
	2. Each parallel iteration, i.e. each computation of the new state of the tiles making up the wor...
	3. Once all iterations are terminated, a high-level parallel GetWorld operation collects the tile...
	1 call ParallelServer.parallelInitPartWorld in fullworldP out resultP ;
	2 call ParallelServer.Automaton (NB_ITERATIONS) in inputP out outputP;
	3 call ParallelServer.GetWorld in inputP out lastResultP;
	Prog. 17. Main program parallel operation call sequence
	1 // on Main, sequences the indexed parallel ExchangeBorder and the following
	2 // indexed parallel ComputeStep
	3
	4 operation ParallelServerT::Automaton(int nbIterations)
	5 in void* InputP
	6 out void* OutputP
	7 {
	8 // single iteration first
	9 for (int it = 0 ; it < nbIterations ; it++ ) ( // iterations ExchangeBorders->ComputeStep
	10 indexed // to synchronize exchange of borders
	11 ( int i = 0 ; i < NUMBER_OF_COMPUTE_SERVERS; i++)
	12 �� parallel ( void, void, Main, void output)
	13 �� ( ExchangeBorders (i) )
	14 >->
	15 indexed
	16 ( int j = 0; j < NUMBER_OF_COMPUTE_SERVERS ; j++ )
	17 �� parallel ( void, void, Main, void output)
	18 ���� ( Server[j].ComputeStep )
	19 ) ;
	20 }

	Prog. 18. CAP specification of the automaton iteration step
	1 // this operation asks in parallel the neighbours to send their borders and merges them
	2 // exchange of borders works in wraparound mode
	3
	4 operation ParallelServerT::ExchangeBorders (int partIx)
	5 in void* InputP
	6 out void* OutputP
	7 {
	8 parallel (Server[partIx], void result) ( // indicates merge in Server thread
	9 ( void
	10 �� , ifelse (partIx>0)
	11 �� ( Server[partIx-1].sendBottomBorder) // partIx>0
	12 ��� ( Server[NUMBER_OF_COMPUTE_SERVERS-1].sendBottomBorder) // partIx==0
	13 �� , mergeBorders(TopBorder)
	14 �� )
	15 �� ( void
	16 �� , ifelse (partIx<NUMBER_OF_COMPUTE_SERVERS-1) // partIx<NUMBER_OF_COMPUTE_SERVERS-1
	17 ���� ( Server[partIx+1].sendTopBorder) // partIx==NUMBER_OF_COMPUTE_SERVERS-1
	18 ���� ( Server[0].sendTopBorder)
	19 �� , mergeBorders(BottomBorder)
	20 �� )
	21 ) ;
	22 }

	Prog. 19. CAP specification of the ExchangeBorders operation
	1 // this operation asks in parallel the neighbours to send their borders and merges them
	2
	3 operation ParallelServerT::SendBordersCompCenter (int partIx)
	4 � in void* InputP
	5 � out void* OutputP
	6 {
	7 �� parallel (Server[partIx], void result) ( // merge functions executed in thread Server[partIx]
	8 ( void // no split function
	9 , Server[partIx].ComputeCenter // computeCenter executed in current thread
	10 , void // no merging operation
	11 )
	12 ( void
	13 � , ifelse (partIx>0)
	14 � ( Server[partIx-1].sendBottomBorder) // partIx > 0
	15 � ( Server[NUMBER_OF_COMPUTE_SERVERS-1].sendBottomBorder) // partIx==0, take last tile
	16 � , mergeBorders (TopBorder)
	17 � )
	18 ��� ( void
	19 �� , ifelse (partIx<NUMBER_OF_COMPUTE_SERVERS-1)
	20 ( Server[partIx+1].sendTopBorder ) // partIx<NUMBER_OF_COMPUTE_SERVERS-1
	21 � ( Server[0].sendTopBorder ) // partIx==NUMBER_OF_COMPUTE_SERVERS-1
	22 �� , mergeBorders (BottomBorder)
	23 ��� )
	24 );
	25 }

	Prog. 20. CAP specification of the improved ExchangeBorders operation
	1 // on Main, sequences the indexed parallel ExchangeBorder and the following
	2 // indexed parallel ComputeStep
	3
	4 operation ParallelServerT::Automaton(int nbIterations)
	5 in void* InputP
	6 out void* OutputP
	7 {
	8 // single iteration first
	9 for (int it = 0 ; it < nbIterations ; it++) (
	10 indexed (int i=0; i<NUMBER_OF_COMPUTE_SERVERS; i++)
	11 parallel (void,void,Main,void output)
	12 �( ExchangeBordersCompCenter (i) )
	13 >->
	14 indexed
	15 (int j=0; j<NUMBER_OF_COMPUTE_SERVERS; j++)
	16 parallel (void,void,Main,void output)
	17 ( Server[j].ComputeBorders)
	18 ) ;
	19 }

	Prog. 21. CAP specification of the improved Automaton operation


	7. A REAL APPLICATION: THE VISIBLE HUMAN SLICE SERVER
	Fig. 6�� Selecting within a Java applet an image slice within a miniaturized 3D tomographic image
	Fig. 7�� Extraction of slice parts from volumic file extents
	Fig. 8�� Graphical representation of the pipelined parallel extent access and slice extraction op...
	1 operation Ps2ServerT::ExtractSlice
	2 ��in SliceExtractionRequestT* InputP
	3 ��out SliceT* OutputP
	4 (
	5 ��parallel while (SplitSliceRequest, MergeSlicePart, Client, SliceT Output)
	6 ��(
	7 ����ExtentServer[thisTokenP->ExtentServerIndex].ReadExtent
	8 ����>->
	9 ����ComputeServer[thisTokenP->ComputeServerIndex].ExtractAndProjectSlicePart
	10 ��};
	11 )


	8. CONCLUSIONS
	Fig. 9�� Slice extraction performance under various configurations, without disk caching
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