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Analysis of the Superposition of Periodic Layers and Their Moi€ Effects
through the Algebraic Structure of Their Fourier Spectrum
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Abstract. A new approach is presented for investigating the superposition of any number of periodic structures,
and the moie” effects which may result. This approach, which is based on an algebraic analysis of the Fourier-
spectrum using concepts from the theory of geometry of numbers, fully explains the properties of the superpositiot
of periodic layers and of their maréffects. It provides the fundamental notations and tools for investigating, both

in the spectral domain and in the image domain, properties of the superposition as a whole (such as periodicity c
almost-periodicity), and properties of each of the individual e®igenerated in the superposition (such as their
profile forms and intensity levels, their singular states, etc.). This new, rather unexpected combination of Fouriel
theory and geometry of numbers proves very useful, and it offers a profound insight into the structure of the spectrun
of the layer superposition and the corresponding properties back in the image domain.

Keywords: superposition of periodic structures, mogffect, Fourier analysis, geometry of numbers, spectrum
support, dense spectrum, discrete spectrum

1. Introduction Fourier theory [9, 10]. Unlike the classical geometric
and algebraic methods, this approach enables us to an-
The superposition of periodic structures (such as line- alyze properties not only in the original images and in
gratings, dot-screens, etc.) offers a wide range of their superposition but also in their spectral represen-
interesting properties for exploration: starting from tations, and thus it offers a more profound insight into
the overall structure of the superposition (which may the problem and provides indispensable tools for ex-
be periodic or not) and culminating in the interesting ploring it. Moreover, the additional dimension offered
and sometimes even spectacular raa@ffects which by the impulse amplitudes in the spectrum (in addition
may appear in the superposition. The superposition to their geometric locations) also enables a quantitative
moiré phenomenon has a vast number of important analysis of the mo&intensity levels [11], in addition to
applications in many different fields [1-5], while in  the qualitative geometric analysis of the nialready
other circumstances (like in the case of color repro- offered by the earlier approaches.
duction) it may have an unwanted, adverse effect [6]. We startthe article with a short review of our Fourier-
It is therefore important to fully understand this phe- based approach and its significant advantages. Then,
nomenon and its various properties, along with the in the main part of the article we further deepen this
other global properties of the layer superposition as a Fourier approach, by introducing a new algebraic for-
whole. malism based on the theory of geometry of numbers
Although classical geometric or algebraic ap- [12] to describe the structure of the spectrum. Using
proaches can be used to explain the superpositioremoir” this new combination of algebraic methods and the
phenomenon and its geometric properties [7, 8], it has Fourier theory we find the rules which determine the
been shown that the best approach for exploring phe- positioning of the impulses in the spectrum, and in par-
nomena related to the superpositiorpefiodic struc- ticular, those impulses which correspond to each enoir”
turesis the spectral approach, which is based on the effect. We show how this approach fully explains the



100  Amidror and Hersch

properties of the superposition as a whole (periodicity each function by the respective capital letter and the 2D
or almost-periodicity, the formation of impulse clusters convolution byxx, the spectrum of the superposition
in the spectrum and their significance, etc.), and in par- is given by

ticular, the properties of each meieffect which is gen-

erate_d in the superposition. We procee_d as follows: I_n R(U, v) = Ry(U, v)ss% Ro(U, v)ssk - - -5 Ryy(U, )
Sec_:tlon 2we prepare the ground by reviewing the basic )
notions of our Fourier-based approach. In Sections 3-6

we develop our new algebraic method, and in Section7 ~ Second, we are basically interestecperiodicim-

we show the new insight it offers into the structure of ages defined on the continuous )-plane, such as
the spectrum of the layer superposition and its eventual line-gratings or dot-screens, and their superpositions.
moirés. Several illustrative examples are presented in This implies that the spectrum of the image on the
Section 8. Finally, in Section 9 we show how, via the (U, v)-plane is not a continuous one but rather consists
Fourier theory, the algebraic structure of the spectrum ©f impulses, corresponding to the frequencies which

relates to properties of the layer superposition and its @Ppear in the Fourier series decomposition of the im-
moirés back in the image domain. age [13, p. 204]. Inthe case of a 1-fold periodic image,

such as a line-grating, the spectrum consists of a 1D

“comb” of impulses through the origin; in the case of
2. The Spectral Approach a 2-fold periodic image the spectrum is a 2D “nailbed”

of impulses through the origin.
The spectral approach is based on the duality between  Each impulse in the 2D spectrum is characterized by
2D images in theX, y)-plane and their 2D spectrain  three main properties: itabel (which is its index in
the (U, v) frequency plane through the 2D Fourier trans-  the Fourier series development);gsometric location
form. Let us briefly review here the basic properties of (or impulse locatiol, and itsamplitude(see Fig. 1).
the image types we are concerned with, and the fun- To the geometric location of any impulse is attached a
damental notions and notations on which our spectral frequency vectof in the spectrum plane, which con-
approach is based. nects the spectrum origin to the geometric location of
the impulse. This vector can be expressed either by its
polar coordinatesf( 6), wheref is the direction of the
impulse andf is its distance from the origin (i.e., its
First, we only deal here with monochromatic (black frequency in that direction); or by its Cart(_asian coordi-
and white) images. In this case each image can be rep-"ates €u, f.), wheref, and f, are the horizontal and
resented in the image domain bieflectancdunction, ~ Vertical components of the frequency. In terms of the
which assigns to any poink(y) of the image a value original image, thegeometric locatiorof an impulse

between 0 and 1 representing its light reflectance: 0 for IN the spectrum determines the frequerfcyand the
black (i.e., no reflected light), 1 for white (i.e., full light  diréctioné of the corresponding periodic componentin

reflectance), and intermediate values for in-between the image, and themplitudeof the impulse represents

shades. In the case of transparencies, the reflectance
functionis replaced bytansmittancéunction defined

in a similar way. Since the superposition of black and
any other shade always gives black, this suggestsla
tiplicative model for the superposition of monochro- L oY - impulse
matic images. Thus, whem monochromatic images y
are superposed (for example, by overprinting), the re-
flectance of the resulting image is given by greduct T
of the reflectance functions of the individual images R B
3 \ geometric

r (X’ y) = rl(x, y) r2(X, y) . I’m(X, y) (1) ( location

2.1. Properties of our Images and their Spectra

amplitude
4

* frequency vector

According to the Convolution Theorem [13, p. 244] the Fi . , . . :

. L igure L Thegeometric locatiorandamplitudeof impulses in the
Fourier transform of the product function is the convo-  5p spectrum. To each impulse is attacheétégguency vectomhich
lution of the Fourier transforms of the individual func-  points to the geometric location of the impulse in the spectrum plane
tions. Therefore if we denote the Fourier transform of (U, v).
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the intensity of that periodic component in the image. combs can be seen as an operation in which frequency
(Note that if the original image is not symmetric about vectors from the individual spectra are added vec-
the origin, the amplitude of each impulse in the spec- torially, while the corresponding impulse amplitudes
trum may also have a non-zero imaginary component). are multiplied. More precisely, each impulse in the

However, the question of whether or not an impulse spectrum-convolution is generated during the convo-
in the spectrum representsvisible periodic compo- lution process by the contribution oheimpulse from
nent in the image strongly depends on properties of eachindividual spectrum: its location is given by the
the human visual system. The fact that the eye can- sum of their frequency vectors, and its amplitude is
not distinguish fine details above a certain frequency given by the product of their amplitudes. This per-
(i.e., below a certain period) suggests that the human mits us to introduce an indexing method for denot-
visual system model includes a low-pass filtering stage. ing each of the impulses of the spectrum-convolution
This is a bidimensional bell-shaped filter whose form in a unique, unambiguous way. The general im-
is anisotropic (since it appears that the eye is less sensi-pulse in the spectrum-convolution will be denoted the
tive to small details in diagonal directions such a8 45 (ky, ko, ..., kn)-impulse wherem is the number of su-
[14]). However, for the sake of simplicity this low-pass perposed gratings, and each integes the index (har-
filter can be approximated by tésibility circle, a cir- monic), within the comb (the Fourier series) of itile
cular step-function around the spectrum origin whose spectrum, of the impulse that thith spectrum con-
radius represents thaitoff frequencyi.e., the thresh-  tributed to the impulse in question in the convolution.
old frequency beyond which fine detail is no longer Using this formal notation we can therefore express
detected by the eye). Obviously, its radius depends onthe geometric location of the generl] (ka, . . ., kn)-
several factors such as the contrast of the observed deimpulse in the spectrum-convolution by the vectorial
tails, the viewing distance, light conditions, etc. If the sum (or linear combination)
frequencies of the image details are beyond the bor-
der of the visibility circle in the spectrum, the eye can
no longer see them; but if a strong enough impulse in
the spectrum of the image superposition falls inside the
visibility circle, then a moie effect becomes visible in ~ and its amplitude by:
the superposed image. (In fact, the visibility circle has
a hole in itg center, since very low frequencies cannot A ko kg = aﬁ)aﬁf) ... ali;") (4)
be seen, either.)

For the sake of convenience, we may assume that the
given images (gratings, grids, etc.) are symmetrically whgrefi den_otes the frequencyv'ectorof.thefundamen-
centered about the origin. As a result, we will normally tal 'mg’)“'se in the spectrum of theh grating, andkf;
deal with images (and image superpositions) which anda_kl are respectively the_ f_requenc_y vector and the
arereal andsymmetric and whose spectra are conse- amplitude of thé; th harmonic impulse in the spectrum

quently also real and symmetric [13, pp. 14-15]. This of theith grat!ng. . .
means that each impulse in the spectrum (except for the ter-rr:: g/fe i('i;o(rglrtseus?;r?fcigﬁ (321;?; a}l;c;ﬁbeetzverltftreerj n
DC at the origin) is always accompanied by a twin im- uencies of thenoriginal ragn S ané- are the angles
pulse of anidentical amplitude, which is symmetrically '?hat thev form withgthe gositivge horilzontal axisgthen
located at the other side of the origin as in Fig. 1 (their th 3(; i f f?h K r I
frequency vectors beirfigand—f). If the image isnon- '€ cooraina esfy., f,)ofthe ku. ka. .. .. km)-impulse
symmetric (but, of course, still real), the amplitudes of in the spectrum-convolution are given by

the twin impulses at and—f are complex conjugates.

iy ko ky = Kaf1 + Kofo 4+ - - - + Kinfm (3)

fu = kg f1 cosdy + k; f, coso,

_ +- -+ kn fycosty,

2.2. The Spectrum Convolution f, = ky f1 SiNG1 + ko f2 SiNG, (5)
and the Superposition Mds .
+ -+ + Kn fm SiN6Gy,

According to the Convolution Theorem (Egs. (1) and
(2)), whenm line-gratings are superposed in the im- Therefore, the frequency, the period and the angle of
age domain, the resulting spectrum is the convolu- the considered impulse (and of the neoirfepresents)
tion of their individual spectra. This convolution of are given by the length and the direction of the vector
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k, as follows

fe+ 12 Tu=1/f ¢u=arctarf,/f,)
(6)

Note that in the special casemf= 2 gratings, when
a moit effect occurs due to the (1)-impulse in the
convolution, Egs. (5) and (6) are reduced to the famil-
iar geometrically obtained formulas of the period and
angle of the moi’effect between two gratings [7]

T TiT>
M =
\/ T2+ T#—2T;T,cosu
. T, sina (7)
Sinpmy =

\/ T2+ T — 2T, T, cosw

(whereT; and T, are the periods of the two original
images andr is the angle difference between them,
62 — 61). WhenT, = T, this is further simplified into

() (b)

the well-known formulas [7]

T

=m om =90 —a/2 8

Tm

Let us now say a word about the notations used for
the superposition mais. We use a notational formal-
ism which provides a systematic means for identify-
ing the various mo#g”effects. As we have seen, a
(ka, ko, ..., km)-impulse of the spectrum-convolution
which falls close to the spectrum origin, inside the vis-
ibility circle, represents a maréffectin the superposed
image (see Fig. 2). We call tie-grating moig whose
fundamental impulse is th&q, ka, . . ., km)-impulse in
the spectrum-convolution &, ko, . . . , km)-moirg; the
highest absolute value in the index-list is called the
order of the moi€. Note that in the case of doubly
periodic images, such as in dot screens, each super-
posed image contributes two frequency vectors to the
spectrum, so thah in Eqgs. (3)—(5) above counts each
doubly periodic layer as two gratings.
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Figure 2 Binary gratings (a) and (b) and their superposition (c) in the image domain; their respective spectra are the infinite impulse-combs
shown in (d) and (e) and their convolution (f). Black dots in the spectra indicate the geometric location of the impulses; the line segments
connecting them have been added to clarify the geometric relations. Only impulse locations are shown in the spectra, but not their amplitude:
The circle in the center of the spectrum (f) represents the visibility circle. It contains the impulse pair whose frequency vegter§,aand

f, — f1 and whose indices are,(+1) and (1, 1); this is the fundamental impulse pair of the {11)-moiré seen in (c). The dotted line in (f)

shows the infinite impulse-comb which represents this enoir”
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2.3. Singular States slightly off the origin, thus generating a meigffect
with a very significant, visible period (see the center

An interesting special case occurs when impulses of images in Fig. 3).

the convolution fallexactlyon top of the DC impulse More formally, we say that a singular meistate

at the spectrum origin. This happens for instance in occurs whenever &{, . .., ky)-impulse in the spec-

the superposition of 2 identical gratings with an angle trum convolution falls exactly on the spectrum ori-

difference of 0 or 180 (Fig. 3(a)), or when 3 identi-  gin, i.e., when the frequency -vectors of thesuper-

cal gratings are superposed with angle differences of posed gratingsf, ... ,fm, are such thap_kif; = 0.

120 between each other (Fig. 3(d)). As can be seen This implies, of course that all the impulses of the

from the respective vector diagrams (Figs. 3(c) and (f)), (kg, ..., km)-moiré comb fall on the spectrum origin.

these are limit cases in which the vectorial sum of the Furthermore, as it can easily be seen in the spectrum

frequency vectors is exactly. This means that the  convolution,any(ky, ..., kn)-impulse in the spectrum

moiré frequency is O (i.e., its period is infinitely large), convolution can be made singular by sliding the vector-

and therefore the mairis not visible. This situationis  sum>_kif; to the spectrum origin, namely: by ap-

called asingular moigé state but although the mog” propriately modifying the vectorf, ..., f;, (i.e., the

effect in a singular state is not visible, this is a very frequenciesand angles ofthe superposed layers). When

unstable mo“free state since any slight deviation in the (g, ..., kn)-impulse is located exactly on the spec-

the angle or frequency of any of the superposed layers trum origin we say that the corresponditg,(. . . , km)-

may cause the new impulses in the spectrum to move moiré has become singufar

i
i —————
“Imul “Ilmmlmlll W::nm::mmu\\\mm\u\mmm\m\\ i

(d (e) ®

Figure 3 Examples of singular states. First row: (a) the superposition of two identical gratings at an angle differéngives @ singular
(unstable) moe-free state. (b) A small angle or frequency deviation in any of the layers causes the reappearance oé thithmmivery
significant visible period. The spectral interpretation of (b) is shown in the vector diagram (c); compare to Fig. 2(f) which shows also impulses of
higher orders. Second row: (d) the superposition of three identical gratings with angle differencesgi¥@2@ singular (unstable) meiffee

state; again, any small angle or frequency deviation may cause the reappearance ofe¢hassbioivn in (€) and in its vector diagram, (f).
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a= f+26,-2f - f, a=f -f,
b=-2f+ f,+ f,-2f, b=1f,-f,

(a) (®) ©

Figure 4 Top: the superposition of two dot-screens with identical frequencies and with an angle differencexof: @; (b) « = 34.5°%;

(c) « = 5°. Bottom: the corresponding spectra. Only impulse locations are shown in the spectra, but not their amplitudes. Bold points denote
the locations of the fundamental impulses of the two original dot-screens. Large points represent convolution impulses of the first order (i.e.
(k1, ko, k3, kq)-impulses withk; = 1, 0, or —1); smaller points represent convolution impulses of higher orders (only impulses of the first few
orders are shown). The circle around the spectrum origin represents the visibility circle. Note that while in (a) no significantimpulses are locatec
inside the visibility circle, in (b) the spectrum origin is closely surrounded by the impulse-cluster of the second @de@(1-1)-moiré, and

in (c) the spectrum origin is closely surrounded by the impulse-cluster of the first order«1, 0)-moiré.

2.4. Impulse Clusters in the Spectrum Convolution; extracting this impulse cluster from the spectrum and

Moiré Extraction taking its inverse Fourier transform, one obtains, back
in the image domain, the isolated contribution of the

Figure 2(f) shows the spectrum of the superposition of moiré in question to the superposition, i.e., the raoir’

two 1-fold periodic images, namely: the convolution of intensity profile.

their original nailbed spectra. Similarly, Fig. 4 shows

the spectra of various superpositions of two 2-fold peri-

odic images. As we can see, the spectrum convolution 2.5. The Advantages of the Spectral Approach

consists of a “forest” of impulses (with real or complex

amplitudes, depending on the symmetry properties in The spectral approach presented above proves very use-

the image domain). It has been shown [11] that the ful in the investigation of superposed periodic layers

occurrence of amogrphenomenon in the image super- and their moie” effects. The main advantages of the

position is associated with the appearance of impulse spectral approach include the following points:

clustersinthe spectrum, asin Figs. 2(f)and 4. In partic-

ular it has been shown there that the main cluster, thein- (1) It provides a means for labeling and identifying

finite impulse-cluster whichis centered on the spectrum each of the possible maréffects in them-layer

origin and whose fundamental impulseks,(. . . , km), superposition individually. Thus, each mein the

represents in the spectrum the,(. . ., km)-moiré ef- superposition has its own “identity” or index nota-

fect generated in the superposition. And indeed, by tion: the kg, ..., kn)-moiré.
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(2) The spectrum of the superposition contains all the
information about each of the generated rasir’
the period and the angle of the mmidre given
by the geometric locations of its fundamental im-
pulses, and its intensity profile is given by the am-
plitudes of its fundamental and higher harmonic
impulses (the moe cluster). This enables a full
guantitativeanalysis of each magrand its intensity
levels [11], in addition to thqualitativegeometric
analysis of the mo@, which is already offered by
the classical approaches.

3)
simultaneouslhall the impulses which may repre-
sent moig effects in the given superposition, it pro-
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infinite set of all the integem-tuples) into the spectrum
plane,R?. The key point of our approach is the alge-
braic formalization of this mapping using the funda-
mental relationship given by Eq. (3): we define (in Sec-
tion 4) the linear transformatiods, ¢, (Ki, ..., km)
from Z™ to R? which gives for eachl, ..., km)-
impulse in the spectrum convolution its geometric lo-
cationk;fy + - - - + knfry in the U, v)-plane. The alge-
to be very fruitful: it provides a fundamental expla-
nation of the structure of the spectrum (the impulse

Since the spectrum of the superposition contains “forest” and “clusters”), and in particular it fully ex-

plains the clusterization phenomenon and provides a
complete identification of all impulses which partici-

(4)

vides an overall, panoramic view of all the different pate in each of the clusters in the spectrum. Note that
moirés of various orders which are simultaneously throughout this algebraic discussion we ignore the am-
present in the same layer superposition [10]. plitudes of the impulses in the spectrum, and we only
Moreover, this approach permits us to see how concentrate on their indices, their geometric locations,
changes in the original superposed layers influence and the relationship between them. Only then, based
the spectrum. This enables us, in particular, to dy- on the algebraic results obtained, do we reintroduce in
namically trace in the spectral domain the devel- Section 9 the impulse amplitudes, and relate the alge-

opment of each of the mas, and to identify at
any moment which of them is visible, singular, or
simply irrelevant (beyond the visibility circle).

)

tion for all multiple-layer moies, including the

The spectral approach provides an easy explana-

braic structure of the spectrum, via the Fourier theory,
to properties of the layer superposition and its resir’
back in the image domain.

more complex cases where the geometric analy- 3. The Support of the Spectrum;

sis may become too complicated. In our approach

allmoirés of all orders are treated on an equal basis,

and there is no longer any need to deal first with
“simple moi@s”, then with “moigs of moigs”, etc.
(as, for example, in [15, p. 134], [22, pp. 63—64] or
[6, pp. 336—337]).

2.6. Overview of the Following
Algebraic Formalization

Modules and Lattices

From the algebraic point of view, the spectrum plane
(u, v) is considered as a 2D Euclidean vector space
RR?; the geometric location of each impulse is therefore
a point (or a vector; we will not distinguish between
points and their corresponding vectors) with coordi-
nates (,, f,) in this plane (see Section 2.2 and Fig. 1).
The set of the geometric locations on the«)-plane
of all the impulses in a given spectrum (either the spec-
trum of a single layer or the spectrum of a layer super-

The numerous advantages of the spectral approach inposition) is called thesupportof that spectrum. It is

the analysis of superpositions of periodic layers and
their moi effects clearly show the interest in further

deepening this approach. Our aim will be to obtain a
full understanding of the spectrum of the superposition,
and through it, a better insight into the superposition
itself, in the image domain. This will be done in the

following sections, using a new algebraic approach,
which is based on the theory of geometry of numbers.

important to note that the support of a spectrum con-
tains the geometric locations afl the impulses in the

spectrum, including those whose amplitudes happen to
be zero; this ensures that there are no “gaps” or “holes”
in the algebraic structure of the support. As a conse-
quence of Egs. (3) and (4), the support of the spectrum
is only determined by the frequencies and angles of the
superposed layers, but it is invariant under changes in

As we have seen, the spectrum of the superposition the profile shape of each layer; such changes do not in-

of m gratings consists of all the impulsds (.. ., ky)
wherek; € Z. This gives, in fact, a mapping @™ (the

fluence the impulskcationsin the spectrum, but only
theiramplitudes.
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3.1. Modules and Lattices iR"

Let us define here two algebraic structures which will
be used in the following discussions concerning the
support of a spectrum.

Definition. Letvy, ..., vy bem arbitrary vectors in
R". The set of all the points (vectors) RI' given by
(i.e., all the linear combinations of the vecters. . .,

Vi with integer coefficients) is called anodulein
R".

The vectory,, ..., vy are calledyenerating vectors
of the moduleM, but they are not generally a basis,
since they are not necessarily linearly independent in
R" (and in fact, their numben may be even larger than
n). The maximum number of linearly independent
(overR) vectorg in a moduleM is called therank of
M (denoted: rank M = r, or simply: rankM = r);
it is clear thatr < mandr < n[12, p. 44]. We will
call the maximum numbez of linearly independent
vectors ovelZ in a moduleM theintegral rankof M
(denoted: rank M = 2); itis clear that <z <m?

Definition. Letvy, ..., vy, bemlinearly independent
(overR) vectors inR" (obviously,m < n). The set of
all the points (vectors) iiR" given by

L = {kaV1 + - - - + KV | ki € Z} (10)

is called dattice (or adot-lattice) in R" [16].

Clearly, a lattice is a special case of a module, in
which them generating vectors are linearly indepen-
dent. In this case, the generating vecteys. . ., Vi
are, indeed, dasisor anintegral basis(over Z) of
the latticeL; and using the notations above we have:
r=z=m.

While a lattice is always aliscretesubset ofR"
(meaning that it does not contain arbitrarily close
points), a module may #ensdn R" (even thoughiitis
not continuousy. Consider, for example, the following
module inR?: My = {k(1, 0)+I(+/2,0) | k,| € Z}. My
is generated by the vectors (1, 0) ard2( 0), and its
integral rank is 2; however, its rank is only 1, since all
its members are located withi®? on a straight line
(the x-axis). Moreover, the modul#; is dense on

this line (although it does not fully cover the whole
continuous line: for example,2(0) ¢ Mj). As a
second example, consider the following module in
R% M, = {(k(1,0) +1(3, 3) + m(0, 1) |k, I, m € Z}.
Although M5 is generated by three vectorsi?, the
third of them is actually redundant in this case (since
it can be obtained as an integral linear combination of
the two others), and the modub, coincides with a
lattice inR? having the basis(1, 0), (3, 3).

These two examples can be summarized as follows

Mi: rankg M; = 1 < ranky M; =2 dense module
M,: rankg M, = 2 = rank; M, = 2 discrete lattice

In fact, the following general property holds:

Proposition 1. A module inR" is a lattice iff it is
discrete[12, p. 44]; and a module iiR" is not a lattice

iff it is dense in a subgroup dk". Moreover using the
notation r = rankg M and z = rankz; M, a module
M is a lattice (and therefore discrejeiff z = r; the
module is not a latticgand is dense in a subspace of
RMYiffz >r.

Itis interesting to note that a module does not neces-
sarily have a basis (ov&). For example, we have seen
that the moduleM; in the example above is of rank 1;
but still, it cannot be generated by a single vector. This
means that there exists no basidMe. But although a
moduleM does not necessarily have a basis (®Rgr
it does always have aintegral basis(over Z) which
spans it: If them generating vectorg,, ..., vy, of the
moduleM are linearly independent (ov&), they are
themselves an integral basisMf, and rank, M = m.
Otherwise, we take the minimal subsef. . ., v, from
them generating vectors which still spans the module
M; vi, ..., V; are linearly independent ovér (since
otherwise one of them is a linear combination dtef
the others, ands, ..., v; is not minimal). Therefore
Vi, ..., Vzare anintegral basis (ovg) of M, and their
numberz is the integral rank oM.

Notation. Letvy,..., vy be arbitrary vectors ifR".
We denote theector spac@and themodulewhich are
spanned (generated) by these vectors by

S[.XV]_, ..
Md(Vl, ..

o Vm) = {kava + -+ - + kmvm | ki € R}
.,Vm):{k1V1+"'+kam|ki GZ}
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Spfvy, ..., vn) is the set of all the linear combi-
nations overR of the vectorsvy,...,vneR", and

Md(vs, ..., V) is the set of all their linear combina-
tions overZ. Note that the notations Sp( ) and Md()

can be also used in the case of an infinite set of vectors

Vi,Vo, ... € R".

Clearly, Sp¥, ..., Vvm) is a subspace of the vector
spaceR", whereas Md(i, . . ., Vin) is @ module within
this subspace: Md1i,...,Vm) C Sp(Vi,...,Vm) €
R". While Sp{1, . . ., vm) is continuous and has the car-
dinality of the continuum, the module Mg, ..., vy,)
is only a denumerable infinite set which is imbedded
within Sp(vy, ..., Vm), anditis either discrete or dense
in it. Moreover, we have

Sp(Md(vy, ..., Vm)) = Sp(V1, ..., Vm)

This means that Spg, .. ., vVy) is the smallest sub-
space ofR" which includes the module Mdy, ...,
Vm); we will call it the continuous extensioof the
module. It is clear that “filling the gaps” inside the
module Mdgsy, ..., vy) by admittingk; € R rather
thank; € Z does not change the number of indepen-
dent vectors oveR, so that we have

rankg Md(vy, ..., Vvy) = dim Spivy, ..., V) (11)

Using these new terms we can now reformulate re-
sults which were obtained earlier in this section:

Since linear independence oviimplies linear in-
dependence ové, itis clear that for any set of vectors
Vi, ..., Vmthe maximum number of linear independent
vectors oveZ > the maximum number of linear inde-
pendent vectors oveR:

ranky; Md(vy, ..., Vm) > rankg Md(vy, ..., Vm)
and by (11):
ranky, Md(vs, ..., Vm) > dim Spivy, ..., V) (12)

And furthermore, we can reformulate Proposition 1 as
follows:

The moduleM = Md(vs, ..., Vy) is a lattice (and
therefore discretajf the equality in (12) holds, i.e.,

rank; Md(vy, ..., Vy) =dimSpvy, ..., Vm)
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and converselyM is not a lattice (and is dense on a
subgroup ofR") iff the inequality in (12) holds, i.e.,
rankz; Md(vq, ..

., Vm) > dimSpvy, ..., Vy).

3.2. The Application to the Frequency Spectrum

Let us now proceed from the general case (with vectors
Vi, ...,Vm € R") to our particular case of interest, in
which f1, ..., fm € R? are frequency vectors in the
spectrum planey, v). Letus start with some examples:

Example 1. The support of the spectrum of apgri-
odicfunction of two variableg(x, y) is a lattice inR?,

i.e., in the (1, v)-plane; this follows from the decom-
position of the periodic function into a Fourier series.
If p(x,y) is 2-fold periodic, the support of its spec-
trum s a 2D lattice. Ifp(X, y) is 1-fold periodic, like a
line-grating, the support of its spectrum is a 1D lattice
on a straight line through the origin of the, @)-plane.
This 1D lattice consists of all the points wheref

is the fundamental frequency gf(x, y) andk runs
through all integers. Note that all functions with the
same period have an identical spectrum support, even
when some (or even most) of the impulses in their spec-
tra happen to have a zero amplitude, as in the case of
p(x) = cos2rx/T).

Example 2. Letri(x, y) andr,(X, y) be line gratings,
with fundamental frequency vectofsandf,, respec-
tively, as in Fig. 2. The spectrum of each of them is
an impulse comb; and if we superpose (i.e., multiply)
ri(x, y) andro(x, y), the spectrum of their superposi-
tionis the convolution of these two combs. The support
of this spectrum convolution (see Fig. 2(f)) is given by:
Md(f]_, fz) = {k1f1 + k2f2 | ki € Z}, which is a mod-
ule in the spectrum planei(v). If the vectorsf; and

f, are linearly independent (ové@®) in R?, they are
also linearly independent ov&r so thaz=r =2, and
therefore this module is in fact a lattice of rank 2, as
in Fig. 2(f). Otherwise, i.e., if; andf, are collinear
(=linearly dependent oveR), there are two possible
cases:

(1) If f;y andf, are also linearly dependent ovér(so
thatz = r = 1), or in other words iff; andf,
arecommensurablé.e., the ratio of their lengths
is rational)® then Md(;, f,) is a lattice of rank 1
which is located on the line spannedfayandf,.
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(2) If f; andf; are linearly independent ovEr(so that lattice of all the points ilR™ with integer coordinates:
Z > r), or in other words iff; andf, areincom- Z™ = {(Kq, ..., km) | ki € Z}. This lattice will hence-
mensurablethen Mdf,, f,) becomes a dense set forth be called thendices-lattice The Ky, ..., kn)-
of points on the line spanned liyandf,, namely: impulse can therefore be represented in two different
a module of rank 1 and integral rank of 2. ways: either by its index-vectok{, ..., km) € Z™, or
by its geometric location in thai( v) spectrum plane,
In the general case, if we superpasdine gratings S kifi € Md(fy, ..., fm).
whose frequency vectors drethen the support of their Moreover, for any given set of frequency vectors
spectrum convolution is given by the module f1,...,fm € R? (i.e., for any given superposition of
m gratings) there exists a natural mapping between the
Md(fa, ..., fm) = {kif1 + - + knfm [ ki € Z} indices of the impulses and their geometric locations.
wheref; € R2. (13) This mapping from the indices-lattic™ to the cor-
responding module (spectrum support) K4d(. ., fm)
The rank of this module is obviously < 2, since in the (U, v)-plane is given by the linear transforma-
it is imbedded in the 2D spectral plane, ¢), but as  tion (homomorphism), 1 : Z™ — Md(fy, ..., fr)
for its integral rankz we only know that < z < m. which is defined by
Therefore, there exist two possible casez ¥ r then
the spectrum support Mfi( ..., fm) is not a lattice U, ke, oo km) = kaf 4+ -+ knfm (15)
but rather a dense module. But as we will see below,
in some cases it may happen that r, so that the We will see below that this transformation is closely
spectrum support Ml ..., fm) does coincide inthe  rejated to the mows generated in the superposition
(u, v)-plane with a 2D or 1D lattice, and is discrete.  f the m gratings defined by the frequency vectors
_ In the discussion below we will also need the con- ¢, justasanexample, wewill see that the trans-
tinuous counterpart of MY, .. ., fm), namely formationW;, __is singulariff the vectords, ..., f

represent a singular meisee Section 5.1).

SP(fy, ... fm) = {Kafy + - + konfm [ i € R} Note that although this linear transformation is only

wheref; € R?, (14) defined here for integer coordinatiks i.e., between
Z™ and Md€y, ..., fn), it has a natural continuous
It is clear that S, . . ., fm) is a subspace d&? (it extension to their full enclosing vector spack8

may either coincide witR?, if dim Sp(fy, . . ., fm) = 2, and Spfy, ..., fn): By admitting thatk; € R rather
orbealinethroughitsorigin, ifdimSp, ..., fn) =1; thank e Z, ¥, ¢, becomes a continuous linear
dimSp(fy, ..., fn) = Ois a degenerate case which oc- transformation®s, ¢ : R™ — Sp(fy, ..., fm) (where
curs when the spectrum only contains the DC impulse Spf, ..., fm) € R?), which is defined the same way
and represents a constant image). We therefore haveasyy, _; above.

Md(fs, ..., fm) C Sp(f1, ..., fm) € R2 Obviously, each choice of the vectdrs. .., fm €

R? (the fundamental frequency vectors of thesuper-
posed gratings) defines a differentlinear transformation
,,,,, f,» Wwhich maps thek,, . . ., km)-impulse to a dif-
ferent point (geometric locatiok)f; +- - - +kmfrm inthe

4. The Mapping between the Impulse Indices
and their Geometric Locations

We return now to the fundamental Eq. (3) which speci- SPectrum planey v). We will first considenys, __, as
fiesforeveryky, . .., km)-impulseinthe spectrumcon- & function of k1, . .., km) alone, for an arbitrary fixed
set offy, ..., fm. Then, in the end of Section 7 below

volution its impulse location in theu( v)-plane. Note X
that throughout the discussion counts 1-fold peri- ~ WeWIIconsiders, i as a function of the frequency
odic layers (gratings) in the superposition, and each VECtOrsf, ..., fm as well, and we will see what hap-
2-fold periodic layer is counted as two 1-fold periodic Pens in the spectrum whéq ..., fry are being varied.
layers. Letfy, k.. k, = kif1 + -+ + knfm be a point

(vector) in Mdfy, ..., fm), i.e., the geometric location 5. Some Needed Notions from Linear Algebra

in the (U, v)-plane of the K, ..., ky)-impulse of the

spectrum convolution. As we can see, the index-vector In order to better understand the properties of the dis-
(K1, ..., km) of this impulse defines a point ii™, the crete linear transformation (15), we will first study its

we will considenys,
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continuous extensiom;, ;. , whose properties can  vector inV which it mapsto0 e Wis0 € V, i.e., if
easily be determined using some basic notions fromlin- Ker ® = {0} (or stillin other words, if dim Ked = 0).

ear algebra. For this end, we will briefly review in the

them. Then, in the following section we will return
to the original discrete transformation (15) and study
its properties by considering it as ttestrictionof the
continuous transformatiots,, s, i.e., withki € Z
rather thark; € R.

.....

5.1. The Image and the Kernel
of a Linear Transformation

Let @ be a linear transformation from a vector space
V to a vector spac®/, i.e.,®: V — W. Theimageof
® and thekernelof ® are defined as:

Imd={weW|w=>o(),veV}
Kerd ={veV | dV) =0}

Both Im® and Kerd are vector spaces (subspaces
of W andV, respectively), and moreover, there exists
between their dimensions the following relationship
[18, p. 318]

dimKer® + dimim® = dimV (16)

.....

m and dimIm®s, s, = 2 (or: dimIm®y,

the degenerate case of dimdm,__;, = 0, in which

the spectrum only contains the DC impulse, can be
ignored). Hence we obtain

dimV —dimIim®s, ¢

m-—2 (orm-—1) 17
Therefore, whetm > 3 (or respectively:m > 2)
we obtain dimKekb;, ;. > 1. This means that a
non-trivial subspace ®&™ is mapped, under the trans-

formation®s, ¢, to the location (0, 0) in theu( v)-
plane, i.e., to the spectrum origin. We will see shortly
(in Section 6) the significance of this fact.

A linear transformatiord: V — W is calledsingu-
lar if there exists a non-zeroe V thatis mapped bgp
to0 e W (i.e., if dimKer® > 1). The linear transfor-
mation ® is calledregular or non-singularif the only

Note that in our case, the linear transformation

..........

ki € Z not all of them 0 such thaf_ kif; = 0, (which
also means that the vectdss. . ., f, are linearly de-
pendent oveZ), and hence the vectofs . . ., f, rep-
resent a singular mar(see Section 2.3).

5.2. Partition of a Vector Space

into Equivalence Classes

LetV be a vector space and lgtbe a subspace M.
For any vector € V we define

v+U={v+ulueU}

v + U is a copy of the subspadé insideV, parallel
to U, which is shifted (translated) from the origin by
the vectow. v + U is called theequivalence clasgr
cose} of the vectorv in V moduloU (i.e., with re-
spect tdJ). The set of all the equivalence classe¥in
gives a disjoint and exhaustive partitionéf(that is:
for anyv € V, v is a member of exactly one equiva-
lence class moduld). All the vectors within the same
equivalence class are calleduivalent modulo UAn
element chosen from an equivalence class is called a
representativef its equivalence class.

As an illustration, letV be the 3D Euclidean space
R3, and letU be the 2D subspace @ defined by:
U=1{xYV,2]z X + vy} (i.e., a plane through
the origin). Then, each equivalence class (modu)jo
in R® is a parallel translation of thel plane within
R®: (Xo. Yo. 20) + U = {(X0. Y0. 20) + (X, ¥.2) | Z=
X + vy}

Note that the only equivalence class\inwhich is
itself a vector space 8+ U (the equivalence class of
the vectorQ), i.e., the subspadd itself; all the other
classes are parallel translationd.bfvithin the vector
spaceV/, and they do not contain the vectifthe origin
of V). Nevertheless, we will still say that each of the
translated equivalence classes has the same dimension
as the original, unshifted subspdde dim(v + U) =
dimU.

The set of all the equivalence classes moduln
V is itself a vector space, which is called theo-
tient spaceand denoted//U. Between the dimen-
sions of the vector spacés U andV /U there exists
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the following relationship [18, pp. 386—-387]

dimU 4+ dim(V/U) = dimV (18)

Finally, itis important to note that for each subspace
U of V we get a different partition o¥ into equiva-
lence classes (moduld). We say that each subspace
U of V inducesa different partition oV into equiva-
lence classes. In the following we will concentrate on
one particular partition o¥/, which has some special
properties.

5.3. The Partition of V into Equivalence Classes
Induced byd

Let @ be a linear transformation from a vector sp&ce

to a vector spac®/, i.e.,®:V — W. Since Kerd is a
subspace 0¥, it follows that Ker® induces a partition

of V into equivalence classes. This particular partition
of V has an important property: the whole equivalence
class of0 within V, i.e., Ker®, is mapped byd into

0 € W; and moreover, each of the other equivalence
classes withinV,v + Ker®, is mapped byd to a
single point within Im®; ®(v+Ker®) = &(v)+0=
®(v). Furthermore, two vectois b € V are mapped
by @ to the same point in Ind iff they belong to the
same equivalence class ¥f (modulo Ker®). This

means that to each equivalence class in this partiCUlaring Specia| property: the linear transformatmn

partition ofV there belongs one pointin Id, and vice
versa; the quotient spadé/Ker @ (i.e., the space of
all the equivalence classes induceddin V) and the
subspace Ind in W are therefore isomorphic. This is
indeed proven by the First Isomorphism theorem [19].

onto it a whole 1D portion (shifted line) &2>. Thus,
although the image ob is only 2D, each point in it
“absorbs” a whole 1D portion oR?, so that all the
3 dimensions ofR® have actually been “used” b$.
The aim of this “naive” description of the “collapsing”
process will become clear later, in Sections 6 and 7.
Note that this “collapsing” effect only occurs i
is a singular transformation. b is non-singular then
Ker® = {0}, and therefore each point & forms an
equivalence class of its own, containing only a single
point. Since dimKem = 0 it follows from (16) that
dimim® = dimV, and therefore the transformation
® in this case is an isomorphism which simply maps
every single point (equivalence classMinto a single
point in Im®. Obviously, this is only possible when
dimV <dimW.

5.4. The Application of these Results
to our Continuous Case

Let us return back to our continuous linear transfor-
mation®, ¢ : R™ — Sp(fy, ..., fm) € R% Since
Ker @y, 1, isasubspace @&™ (with dimensiorm—2
orm — 1), it follows from the above discussion that
..... ¢, induces a partition dR™ into equivalence
classes (of dimensiom — 2, or respectivelym — 1).
And furthermore, this partition dR™ has the follow-
~~~~~ fm
maps the wholen — 2 (orm — 1) dimensional equiv-
alence class oD in R™, Kerds, ¢, into the ori-
gin (0, 0) of the @, v)-plane; and similarly, for every
v € R™ the transformationds, _f, maps the whole
m— 2 (orm— 1) dimensional equivalence classwif

These results can be interpreted, loosely speaking, asg™ v + Ker @y, 1., into a single point in theu, v)-

a “dimension preservation law” under the linear trans-
formation®: Assume, for example, that: R® — R?
(whered is surjective). Here dim Ind = 2, and there-
fore by (16) dimKerd = 3— 2 = 1. Therefore Ketb

is a 1D subspace @2, namely: a certain straight line
S through the origin. Ke (or simply ®) induces a
disjoint and exhaustive partition of the 3D spdke
into a 2D set (quotient space) containing all the 1D
shifted lines parallel t& (equivalence classes). Each
of these 1D lines is “collapsed” bg onto a single
point in Im®; and hence the 2D set of lines witHit?

is mapped (isomorphically) onto the whole 2D plane
Im @. It can be said, loosely speaking, that if 2 dimen-
sions out of the 3 dimensions & are “used” by®

to span Imd, then the 3— 2 = 1 remaining dimen-
sions are “invested” in each point of ldn, by mapping

.....

plane,®s, 1 (V).

.....

6. The Discrete Mapping¥
vs. the Continuous Mapping®

Let us now return to our original discrete transforma-
,,,,, f,: Z™ — Md(fy, ..., fy) givenin Eq. (15).
Looking now at¥, ¢ as therestriction of @y,
with ki € Z rather thank; € R, we can get a bet-
ter insight into the properties of the discrete mapping
W, e

Many of the algebraic notions which have been de-
fined above for vector spaces in the continuous case
have a similar counterpart also in the discrete case with
ki € Z (see Table 1):
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Table 1 Summary of the continuous terms wikh € R and their discrete restrictions

with k € Z.
Continuous terms Equivalent terms in the discrete case
(with ki € R) (with ki € Z)
R™ zm
Vector independence ov& Vector independence over
®f,, f: R™ = Sp(fy, ..., fm) (=RZ0rRY) Wty ol 2™ = MA(fy, . fm)
Im®,  t, = Spfy, ..., fm) ImW¥t,  t, = Md(fy, ..., fm)
Ker ®r,, i, is a subspace &™ Ker Wy, . 1., is a sub-lattice o™
v+Kerdg i, ng, ..., Nm) +Kerws,

Like in the continuous case, we can define for the rank; = rankg). We get, therefore, from (19)
transformationWy, ¢ : Z" — Md(fy,...,fy) the
imageof W, ¢ andthe&kernelof W, ¢ ; KerWy, s rank Kerds, ¢+ rankz Md(fq, . .., fm)
is a sub-lattice of the indices-lattig&", and Im®y, . . m_
isthe module Md{, . .., fn), i.e., the spectrum support = rankz™ =m (20)
in the (u, v)-plane. Furthermore, given a sub-lattice
of Z™, we can also define the partition of the lattice

.....

whereas for the continuous transformatibp _r, we

) . have by (16):
Z™ into equivalence classes modulo The set of all y (16)
the equivalence classés, ..., ny) + L in Z™ gives dim Kerd, ¢ + dim Sy, ..., fm) = dmR™=m
a disjoint and exhaustive partition @™, where each e
equivalence class is a parallel translation_ofvithin (1)
z".

(where dim Sgfq, ..., fn) =2or1l).

It is important to note, however, that the original
dimension of Key, . in R™ is not necessarily pre-
served in its restriction t&™, Ker¥, .. In fact,
since Kenls, 5, C Kerdy, ;,itis clear that

Now, if we take as sub-lattice the kernel of the
transformation¥;, ;. , we get a special partition of
Z™ which has the following property, as in the con-
tinuous case: the transformatiob, r, maps the
whole equivalence class 6fin Z™, Ker¥y, s, into
the origin (0, 0) of the§, v)-plane; and similarly, for
every {1y, ..., Ny € Z™ the transformationyy, s, rank Kerdr, ..,
maps the whole equivalence class of,(..., ny) in
Z™, (N1,...,Nm) + Kery, ¢, into a single point
U, i.(N1, ..., Ny) in the module Md{, .. ., fn) on
the @, v)-plane. S e

Furthermore, the equivalent of equality (16) fora 2. — S 7.~ ~ oo o . e
discrete linear transformatiohbetweentwo modules, |, .~~~ N o o Tl T b
W: My — My, is given by

.....

..... m (22)
However, the equality in (22) does not always hold.
This can be illustrated by an example in the 3D case:

.....

the plane Kery, 1, contains both the- andy-axes
rankz Ker & + rankz Im¥ = rank; M1~ (19) of R%), rank=1 (e.g., if the plane only contains the

x-axis but forms an irrational angle with tlyeaxis) or
This can be proved in the same way as the proof of (16) rank= 0 (if the only integral point in the plane is the
inthe continuous case of vector spaces (see for exampleorigin (0, .. ., 0)).
[18, p. 331 No. 9.23]), by replacing throughout the This is, indeed, an important difference between
proof the term “linear independence ouRY by the the continuous and the discrete cases. In the contin-
term “linear independence over. uous case the dimension of K&y, s, is automati-

Now, in the case of our transformatiodt, s, : cally determined by equality (16). In the discrete case,

Z™ — Md(fy, ..., fm), both M; and Kenyy,

.....
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(22), but its exact value depends also on other param- Proposition 2. The moduléMd(fy, ..., fy), the sup-

eters, namely: the inclinations of the continuous sub- port ofthe spectrunis a lattice(and therefore discreje

space Kemy, s, within R™, as shown in the example iff d = O (i.e, iff the continuous and discrete dimen-

above. Consequently, the rank of the translated lattice sions are identicgt and converselyMd(fy, ..., fm) is

(equivalence class) which “collapses” on each point adense moduleim &y, ; iff d > 0. (We remember

of ImW;, ;= Md(fy,...,fn) in the discrete case  from (14) thatlm &¢, s, i.e, Sp(fy, ..., fm), can be

may be smaller than the dimension of the full, continu- either the wholg€u, v)-plane or a 1D line through its

oustranslated subspace (equivalence class) which “col-origin).

lapses” on each point of Iy, ;= Sp(fy, ..., fm)

in the Corresponding continuous case. As we W|" see Iater (|n Section 91), thIS important
The question is, therefore, what happens to the “di- result provides a criterion for the periodicity of the su-

mension preservation law” in the discrete case? In Perposition of periodic layers (functions).

fact, the “lost” dimensions of Keb;, _; are not re- Two interesting consequences follow immediately:

ally lost, and they are simply taken care of elsewhere, _
in Imyy, ¢ . Since the right hand sides of (20) and (@) The spectrum support ofrn-singularsuperpo-
(21) areléaaal (22) implies that sition can be a discrete lattice (meaning that the

superposition is periodic; see Section 9.1(b)) only
in the case ofn = 2 gratings (as in Fig. 2). If
m > 3 then dim Ked =m— dimIm® > 0 (since
dimim® = 2 or 1), and therefore if rank Kar

rank; Md(fy, ..., fm) > dimSpfy, ..., fm)  (23)

_(Where dim Spfl_, .o, fm)=20r1). More precisely, = 0 (=non-singular state) thed = dim Ker®
if we note the difference bgi, we obtain —rankKerd > 0. Therefore fom > 3 gratings,
any non-singular case has a dense spectrum sup-

dimKer®s, t, —rankKerd;, ¢ port.
— rank; Md(fy, ..., fm) — dim Spfe, ..., fr) =d (b) The spectrum support ofsingular superposition
T Y can be a discrete lattice evemif> 3. This occurs

. . L whend = 0. In other words, if the spectrum sup-
This means that if due to the inclinations of the sub- b P

space Kers, 1 in R™ it happens, as in the example

""" ) . . this occurs when rapkimwy = 1 and rank
rank Kerds, s, the first term of (20), is automati- Ker —m-1 LU
cally “balanced” by an identical increase in the second e f '
term of (20): rank Md(fy, ..., fm) is increased byl The various possible cases which may occur in the
units with respect to dim §fy, ..., fm). This means spectrum support in the superpositiomot= 2, . . ., 6

that the number of independent ovéwvectors which  gratings are summarized in Table 2. Severalillustrative
span |mlljfl _____ fm IS h|gher bw than the number of inde- examples are g|ven in Section 8.

pendent oveR vectors which span its enclosing con-
tinuous space, Inb;, ¢ . This situation is illustrated
in Examples 3 and 4 of Section 8.

Furthermore, if we only look at the right hand side
of the above equation we have

7. The Algebraic Interpretation of the Impulse
Locations in the Spectrum Support

7.1. The Global Spectrum Support

rankg Md(fa, ... fm) = dim Sp(fa, ... fm) = (224) Using the terminology introduced in the previous sec-
tions it now becomes clear that the set of all the
impulse locations in the spectrum convolution (the
support of the impulse “forest”) is in fact the module

rankz Md(fy, ..., fm) —rankg Md(fy, ..., fn) =d Md(fy, ..., fm), i.e., theimage of the indices-lattiZ&"

or equivalently, by (11)

.....

According to Proposition 1 we obtain, therefore, the this spectrum support can be either a dense module or a
following result: discrete lattice, and we found necessary and sufficient
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Table 2 Summary of the algebraic structural properties of the various possible casesfdr ..., 6 superposed gratings.
The interpretation of these properties in terms of the image domain is discussed in Section 9.

dim  rank; Spectrum dim rank  Sing./

m Frequency vectors I Imw support Ked  Kerw Not Examples Remarks
1 f 1 = 1 1DL1 0 0 N Sec. 3Ex. 1 (1)
2 f1, f2 coplanar: 2 = 2 2DL N Sec. 3Ex. 2 )
f1, f2 collinear: 1 = 1 1DL S Sec. 3Ex. 2 3)
1 < 2 1D-M 1 0 N Sec. 3Ex. 2
3 f1, f2, f3 coplanar: 2 = 2 2DL 1 1 S Sec. 8Ex. 2
2 3 2D-M 1 0 N 4)
fq, fo, f3 collinear: 1 = 1 1DL1 2 2 S Sec. 8Ex. 3
1 2 1D-M 2 1 S Sec. 8Ex. 4
1 3 1D-M 2 0 N
4 fq,f,, f3, 4 coplanar: 2 = 2 2DL1 2 2 S Sec. 8Ex. 5
2 3 2D-M 2 1 S
2 4 2D-M 2 0 N
f1, f2, f3, f4 collinear: 1 = 1 1D 3 3 S
1 2 1D-M 3 2 S
1 3 1D-M 3 1 S
1 < 4 1D-M 3 0 N
5 f1, f2, f3, f4, f5 coplanar: 2 = 2 2DL 3 3 S
2 < 3 2D-M 3 2 S
2 < 4 2D-M 3 1 S Sec. 8Ex. 6 (5)
2 < 5 2D-M 3 0 N
fq, fo, f3, 4, f5 collinear: 1 = 1 1DL1 4 4 S
1 < 2 1D-M 4 3 S
1 < 3 1D-M 4 2 S
1 < 4 1D-M 4 1 S
1 < 5 1D-M 4 0 N
6 f1, f2, f3, f4, f5, fg coplanar: 2 = 2 2DL 4 4 S Sec. 8Ex. 7
2 < 3 2D-M 4 3 S
2 < 4 2D-M 4 2 S Sec. 8Ex. 8 (6)
2 < 5 2D-M 4 1 S
2 < 6 2D-M 4 0 N
f1, f2, f3, f4, f5, fg collinear: 1 = 1 1D 5 5 S
1 < 2 1D-M 5 4 S
1 < 3 1D-M 5 3 S
1 < 4 1D-M 5 2 S
1 < 5 1D-M 5 1 S
1 < 6 1D-M 5 0 N

Legend: 1D=one dimensional; 2B-two dimensional; L= discrete lattice; M= dense module; S singular; N=non-
singular. By “coplanar” is meant: coplanar but non-collinear.
(Continued on next page
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Table 2 (Continued)

Remarks

1. Asingle grating; no superposition (and no negir”

2. This is the only non-singular superposition with a discrete spectrum support.

3. Asingular moie’ between 2 gratings occluifsfy, f2 are collinear (i.e.¢ = 0° or 180°) and commensurable.

4. Note that 2D-M includes also the special case in which the 2D spectrum support is dense in one direction and discrete in the other.
For instance, in the case of 3 coplanar frequency vectors this may occur when 2 of the vectors are collinear but incommensurable,
while the third vector is oriented in a different direction.

5. To this category belongs the singular superposition of 5 identical gratings with equal angle differences of 72

6. To this category belongs the singular superposition of 3 identical screens with angle differen¢gs0830, which is the traditional
screen combination used in color printing.

Note that each pair of non-collinear gratings may be counted also as one 2D screen. For exampfecorresponds either to 4

superposed gratings or to 2 superposed screens, etc.

conditions for either case. Table 2 gives a systematic the (k, ..., nky)-impulses with all integer values of
summary of the different possible cases in the super- n, but in the general case this cluster may contain
position ofm = 2, ..., 6 gratings (or equivalently, up  other impulses, too, and it may be 2D (as in Fig. 4)
to three 2-fold periodic layers like dot-screens). The or even of a higher rank. How can we characterize
interpretation of the algebraic structure of the spectrum all the impulses which belong to this cluster (i.e., fall
support in terms of the superposition in the image do- on the spectrum origin)? Using our new terminology,
main will be discussed in Section 9. when the frequency vectofs, ..., f,, are such that a
(K1, . . ., km)-singular moi€ occurs, the linear transfor-
mation s, ., maps to the spectrum origin not only
the point Ky, . . ., km) but the whole sub-lattice c Z™
induced by, ., namely: L=Ker¥;, ;. The
We now proceed from the global spectrum support to sub-latticeL corresponds, therefore, to the impulse-
the support of each of the individual impulse clusters. cluster which collapses onto the spectrum origin at the
The cluster ofimpulse-locations which fall on the spec- (ki, ..., km)-singular state, and its points (integer
trum origin when thely, . .., kn)-moiré reaches asin-  tuples) are the indices of the impulses of this cluster.
gular state is simply the image undés, s of the This is illustrated in the examples in the next section.
lattice L = KerWs, ., i.e., ImL. Similarly, the However, as shown in Fig. 4, in the proximity of a
other clusters of impulse-locations which are simul- (Kkg, ..., ky)-singular moig state, apart from the main
taneously formed in the spectrum plane are the imagescluster of theKg, . . ., km)-impulse which is formed at
of the other equivalence classes,(...,ny) + L in the spectrum origin, other impulse clusters are also si-
the indices-lattic&™. Let us now explain thisin more  multaneously formed elsewhere in the spectrum. Let
detail; several illustrative examples will be giveninthe us see now in detail what is the nature of these im-
next section. pulse clusters, and how we can characterize the im-
In Section 2.3 we defined a singular m®as a con-  pulses which belong to each of the clusters. We have
figuration of the superposed layers in which the moir” seen above that the transformatidp_;, induces a
period is infinitely large (i.e., its frequency is zero). partition of the indices-latticE™ into disjoint and ex-
More formally, a ki, ..., km)-moiré reaches a singu-  haustive equivalence classes,(. .., nm) + L, which
lar state whenever the location of its fundamental im- are translations of the sub-lattide in Z™ (the sub-
pulse, theks, ..., kn)-impulse in the spectrum convo-  latticel itself is the equivalence cla8st L which con-
lution, coincides with the spectrum origin (0, 0) (i.e., tains all the points oF™ that are mapped by, 1.
whenever the frequency vectdis .. ., f, of the su- to the spectrum origin). We have also seen that the
perposed layers are such thatkfi = 0). We have transformation¥;, . ; has the special property that it
seen, however, that whenla(. .., ky)-moiré reaches  maps every equivalence clasg (..., nn) + L of the
a singular state, not only thé; . . ., kn)-impulse it- indices-latticeZ™ into a differentsingle pointwithin

7.2. The Individual Impulse Clusters

,,,,,

self falls on the spectrum origin, but rather, a whole
infinite impulse-cluster around the spectrum origin.
This cluster clearly contains the 1D comb formed by

the spectrum plane. This explains why an infinite (but
still denumerable) number of clusters are formed in
the spectrum simultaneously with the main cluster of



Analysis of the Superposition of Periodic Layers 115

the ki, .. ., km)-moiré: each ofthese clustersis simply example, when only one dimension of the cluster has
theimage undeds, ¢, ofadifferentequivalenceclass been spread out, and each point still represents an infin-
(n4, ..., nm) + L of the indices-lattic&™. The indices ity of impulses); orfully spread-ouf{when each point

of the impulses in each of these clusters are therefore of the cluster represents exactly one single impulse, so
a translated replica of the indices of the impulses of thatno twoimpulsesinthe cluster fall on the same point
L, each of which being incremented by a “cluster rep- inthe spectrum). It should be noted that although in the

resentative” (i, ..., Nm) (see figures in the examples examples we have seen previously (Fig. 4) the spread-
below). The location of each cluster,( ..., nm) + L out moifé clustersin they, v)-plane were always 2D or
in the spectrum is givenb¥;, ;. (N1,...,Nm)+0= 1D discrete lattices, in the general case each spread-out
U, i.(N1, ..., Ny), i.e., it is shifted from the spec-  cluster in the spectrum may also be a dense module. If
trum origin by W, ¢ (N1, ..., Nm). we denote byd;, 1 |, the restriction of transforma-

As for the relationship between the rank of a single tion W, ¢ which is only defined betweeh c Z™
cluster and the rank of the whole spectrum support, and ImL c Md(fq, ..., fy), then when the moér€lus-
Md(fy, ..., fm), we have from (20): teris fully spread-outwe have K&, |, = {0} and

therefore from (19): rankimL = rankL. In other

rankL +rankz Md(fy, ..., fm) =m  (25) words, the integral rank of an individual fully spread-
~out cluster in the spectrum equals the ranklLof=

These ranks depend, of course, on the specific Kerw;, ; in Z™. Moreover, according to (25) this

choice of the frequency vectofs, ..., f, of the su- means that: rankim L = m — rankyMd(fy, . . ., fm).
perposed layers: since the module d(. ., fm) is Therefore, when the rank df ist > 2, each fully
generated by the frequency vectdrs. .., fm € R?, spread-out cluster within thei(v)-plane becomes a
rankz, Md(fy, . .., f) is simply the maximum number  ,oqule with rankImL = r > 2, i.e., a dense
of vectors amongy, . .., fm € R? which are still lin- module in the 2D spectrum plane. See for example

early independent ovet. RankL complements this  ihe clusters in Fig. 11 (in Example 7 below), where
number tom, the number of superposed gratings, SO rank| — 6 — 2 = 4. The interpretation of this prop-
that it indicates the “redundancy level” of the superpo- erty of the clusters in terms of the image domain will
sition, i.e., the number afependenvectors (layers), be discussed in Section 9.2.

which do not further enrich the spectrum support, but  Note that even when each of the clusters in itself is a
are rather “invested” in its existing points (and hence jscrete lattice, their intertwined impulses throughout
enrich each of the clusters). the spectrum are not necessarily located on a common

It is interesting to note that for different singular lattice, and their support may be an everywhere dense
moirés different configurations of clusters are formed ,oqule.

in the spectrum (in general, either the assignment of

impulses to each cluster or the cluster locations in the

spectrum or both may differ). This is due to the fact 8. Examples

that for different sub-lattices Kak;,  ;_, the indices-

lattice Z™ is partitioned into a different set of equiva-  Inthis section we presentanumber of examples toillus-

lence classes. trate the above discussion, and to demonstrate the con-
Finally, let us see what happens in the spectrum when tribution of the algebraic approach developed above to

we start moving away from they ..., ky)-singular the understanding of the structure of the spectrum sup-

state. When we slightly modify one or more of the port. In particular, these examples illustrate the clus-

frequency vector§,, . . ., f, of the superposed layers, terization phenomenon, and the identification of the

each of the clusters in the spectrum starts “spreading impulses which participate in each of the clusters in

out,” revealing thus the infinity of points from which  the spectrum. We start in Example 1 with the simplest

it is composed (Figs. 6-12). In particular, the main  possible case, the superposition-reobétween two

cluster which spreads out around the spectrum origin gratings; in this case the algebraic situation is straight-

enables us to visualize the impulses which correspond forward, and it is presented rather informally, by way

to the moig (which originate from Ke¥, ¢ in the of introduction. Then in Examples 2—4 we present var-
singular state of the ma). Depending on which ofthe  ious moig configurations between 3 gratings, since in
vectordy, .. ., f,have been changed and how, the clus- the case of 3 gratings all the algebraic structures occur

ters in the spectrum may hartially spread-out(for in the 3D space and are therefore easy to understand.
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Examples 5-8 illustrate some more interesting cases 1D clusters starts spreading out and gives a comb of

which occurin higher dimensions. It may be instructive
to track each of the examples in the synoptic summary
of the different possible cases presented in Table 2.

Example 1. The simplest possible example consists
of the superposition of 2 gratings. Let us illustrate this
situation with the case of the (3,2)-moiré, a 3rd order
moiré which becomes visible when the {2)-impulse
in the spectrum convolution is located inside the visi-
bility circle, i.e., when the frequency vectéy of the
second grating is close 1%!1 (see the vector diagram
in Fig. 5(b)). This (3,—2)-impulse is the fundamental
impulse of a 1D-cluster through the spectrum origin,
which represents the meiih question; but in the same
time other 1D clusters are also formed in the spectrum,
in parallel to the main 1D cluster. Note that when
a = 0° and the frequency vectds attains exactly the
pointf, = gfl each of the 1D clusters collapses into a
single point on thes-axis, and in particular, the main
cluster collapses into the spectrum origin, so that the
(3, —2)-moiré becomes singular (and hence invisible
in the layer superposition).

Letus analyze this example to illustrate the algebraic

impulses in the spectrum (as in Fig. 5(b)).

Example 2. (1D clustersona?2D supportin the @©)-
plane): Consider the (1, 1, 1)-singular meswhich oc-
curs between 3 gratings when their frequency vectors
are given, in polar coordinates, bfif: = (0°, 32), f, =
(120, 32), f3=(240,32), i.e., in Cartesian co-
ordinates: f;=(32,0), f,=(—1616V3), f3 =
(—16, —164/3) (see Fig. 6(a)). Since in this casés

is a linear combination, both ové&t and overR, of

f, andf, (i.e., f3= — f; — ), we have here: rapk
Md(fq, fp, f3) = dim Spfq, f,, f3) = 2. This means by
(24) thatd = 0, and the spectrum support, Mg

fo, f3), is in this singular case a discrete lattice of rank
2 (see Fig. 6(a)). Furthermore, from (25) we learn that
each point of this lattice represents a collapsed lattice
(cluster) whose rank is: rank = 3—2 = 1. And
indeed, when the 3 superposed gratings slightly move
away from the singular maar'state (i.e., when their
frequency vector§ are slightly modified), each of the
1D clusters in the spectrum starts spreading out, and in
the image domain a 1D maihecomes visible in the
superposition, as indicated by the low frequencies of

discussion of the preceding sections. In this case thethe 1D spread-out cluster around the spectrum origin

indices-lattice (the lattice of all the indices of the im-
pulses obtained in the spectrum convolutiorj3sand
the linear transformatiow, ;, which maps each index
pair (ki, k») € Z? into the geometric location of the
(k1, ko)-impulse in the ¢, v)-plane is given according
to (15) by

U, 1,(Ky, ko) = kqf1 + kof2

Figure 5(a) illustrates the indices-latti#& and its
partition into equivalence classes induced by the sub-
lattice (X, —2k). This sub-lattice itself becomes the
clustern = 0 of the partition, containing the indices
of the fundamental impulse of the (3,2)-moiré and
all its harmonics. The indices of this Oth cluster are
given byL = {(3k, —2Kk) | k € Z}, and the indices of
the nth cluster are given in this case lgyn, n) + L.
Figure 5(b) shows the image of the transformatigyy,
in the (U, v)-plane, i.e., the spectrum support, when
the vectord,, f, arealmostin the singular positiono(
is almost 0). Whenfy, f, areexactlyin the singular
position, ¥, ¢, maps each equivalence clasZdfinto
a single point on theli-axis (the point into which the

respective 1D cluster in the spectrum collapses). Butas

f,, f, start moving off the singular state, each of these

(Fig. 6(b)).

In fact, this explanation already shows how the struc-
tural properties of the spectrum support can be deter-
mined using (24) and (25). However, in order to il-
lustrate the algebraic discussion of the preceding sec-
tions, and particularly, to illustrate the assignment of
impulses to each cluster, we will analyze this example
infull detail. The linear transformatiod, 1, 1, is given
in this singular case by

W, 1,65 (K1, Ko, K3) = Kify + kofo + kafs
= k1(32, 0) + ko(—16, 16v/3)
+ks(—16, —16V/3) (26)

Let us compare the transformatiob, ¢, r, itself
with its continuous counterpar®y, r,¢,: R® — R2.
Ker @y, 1, 1, i.€., the subspace @€ which is mapped
by @4, 1, 1, into the origin (0, 0) of they, v)-plane, con-
tains all the pointsky, ko, ks) € R® which solve the
following set of two linear equations, obtained from
(26):

32k; — 16k, — 16ks = 0
164/3k, — 16v/3k3 = 0
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Figure 5 A schematic illustration of the transformatidn, t, (ki, ko) = kif1 + kof2 which maps the indices-lattic&? (top) into the @, v)-
spectrum plane (bottom), in the case of a two grating superposition fwita % f1 ande ~ 0°. (a) Schematic view of the indices-lattice,
72. The dashed lines illustrate th&2+ 3k, = n diagonals £equivalence classes). (b) The image of the mapping, in the @, v)-plane,
showing the corresponding impulse clusters in the spectrum support, slightly befmaehes 0, black dots indicate the impulse locations. The
nth diagonal in (a) is mapped into tiéh comb (1D-cluster) in theu( v) spectrum (b).
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Figure 6 The singular 3-grating superposition of Example 2 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 2D lattice, each point of which represents a collapsed cluster. (b) Slightly off the singular state: each of the
clusters in the spectrum is spread out, clearly demonstrating its 1D nature. Encircled points denote the locations of the fundamental impulses «
the 3 original combs. Large points represent convolution impulses of the first order, and smaller points represent convolution impulses of highe

orders. Only impulses up to the 5th order are shown.

The solution of this set of equations is: K&, s, t,
:{(k]_, ko, k3) | ki = ko = ks, ki € R} which means
that Kerdy, 1, 1, is the diagonal lineg = y = x of R>.
ThereforeR? is partitioned bydy, , ¢, into an infinite

no loss of dimensions in this case. The latticeon-
sists of the indices of all the impulses of the 1D clus-
ter which collapses, precisely at the singular state,
on the origin of the spectrum{..., (-1, -1, —1),

2D set of translated lines (1D equivalence classes) par- (0, 0, 0), (1, 1, 1), .. .}. This cluster can be seen spread-

allel to the linez = y = x. Since dimKe®x, 1,1, = 1
we have here dim Inbs, ,1, = 3— 1= 2, and indeed
the continuous transformatiob, 1, 1, maps into each
point of the 2D (1, v)-plane a whole 1D line from this
decomposition oR®.

Returning now to the discrete case whére 7Z,
it is clear that in this example the lattice =
Ker Wy, 1,1, =Kerdr, 1,1, NZ3 is indeed a lattice of
rank 1 on the diagonal line = y = X, given by
L= {(kl, ko, ka) | ki = ko = kg, ki €7}, so there is

out around the spectrum origin in Fig. 6(b), which
shows the spectrum slightly off the singular state.
Each of the other clusters in this spectrum consists

of the impulses of one parallel translationlofvithin

Z3 (N, ng,ng) + L={(n1, N2, N3) + (Ky, ko, k) |

ki =k, =Kks, ki € Z}; each of these translated lattices
of rank 1 is mapped by, 1,1, into a single point

Wt 1,.1,(N1, N2, N3) within the (U, v) spectrum plane.
For example (see Fig. 6): on top of the funda-
mental impulse of the first grating, which is the
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(1, 0, 0)-impulse in the spectrum convolution (lo- represents, in fact, a collapsed lattice (cluster) whose
cated in thgu, v)-plane aff; = (32, 0)), collapses the  rankis: rankL = 3 — 1 = 2. And indeed, when the

whole 1D clustex1,0,0) + L,i.e. {..., (0, -1, —1), 3 superposed gratings move a little from the singular
(1,0,0), (2,1,1),...}. Thisclustercanbe seen spread- moiré state, each of the 2D clusters in the spectrum
out around the impulshk in Fig. 6(b). spreads out, and in the image domain a 2D mbie-

comes visible in the superposition, as indicated by the
Example 3. (2D clusters ona 1D supportin the v)- low frequencies of the 2D spread-out cluster around
plane): Consider the (1, 1, 1)-singular nevishich oc-  the spectrum origin (see Fig. 7(b)).

curs between 3 gratings whose frequency vectors are: L€t us analyze this example in more detail. In this
f1=f, = (32 32), f3 = (—64, —64) (see Fig. 7(a)). In  case the linear transformatiai, 1, r, is given by
this case the vectorfs, f,, f3 in the (u, v)-plane are

collinear (linearly dependent ové), and also com- Yty tafa(ke ko, ke) = Ki(32,32) + kx(32, 32)

mensurable (linearly dependent ov8y. We have, +k3(—64, —64)
therefore: dim Sffy, f,, f3) = ranky Md(fy, f, f3) =
1, so that the spectrum support, Md(., f3), is in We will consider, again, both this transformation

this singular case a discrete lattice of rank 1. More- and its continuous counterpas, t, r,.- The kernel of
over, from (25) we find that each point of this lattice ®r, 1,.f, iS the solution of the equation B2+ 32k, —

0
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Figure 7. The singular 3-grating superposition of Example 3 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 1D lattice, each point of which represents a collapsed cluster. (b) Slightly off the singular state: each of the
clusters in the spectrum is spread out, clearly demonstrating its 2D nature. Only impulses up to the 3rd order are shown.
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64ks = 0 with ki € R, which is the 2D plane
2z = x + y in R®. ThereforeR® is partitioned by
&1, 1, 1, iNto an infinite 1D set of translated planes (2D

line Spfy, f, f3). Moreover, from (25) we get that
each point of this module is, in fact, a collapsed lat-
tice (cluster) whose rank is: rank = 3 —2 = 1.

equivalence classes) which are parallel to the plane And indeed, if the 3 superposed gratings move a little

2z = x + y. Since dimKe®by, 1,1, = 2, we have
here dimImds, 1,1, = 3— 2 = 1, and indeed the im-
age of®x, s, 1, is the 1D line which is spanned in the
(u, v)-plane byf, f,, f3, namely:v = u. Therefore the
continuous transformatioby, 1, 1, maps into each point
of this line in the (1, v)-plane a whole 2D plane from
the decomposition di®.

Returning now to the discrete case, it is clear that
the kernelL of the discrete mappingx, s, 1, is the 2D
lattice: L = {(kl, ko, k3) | 2k = ky + ko, ki € 7}
which is imbedded in the plane2= x + y. Therefore

in this case there is no loss of dimensions, and the

cluster which falls on the spectrum origin (as well as
all the other clusters) is of a 2D nature (see Fig. 7(b),

which shows the spread-out clusters in the spectrum

slightly off the singular staté.

The support of all the collapsed clusters in the spec-
trum (precisely at the singular state) is the image of the
transformation¥s, , 1,, i.e., the module given by (13):

Md(fy. f2. f3) = {ki(32 32) +k2(32, 32)
+k3(64, 64) | ki € Z}

As we can see, in this case the support of the spec-

trum forms a lattice of rank 1; and each point of this
lattice consists of a whole 2D cluster of impulses, rep-

from the singular mog’state, each of the 1D clusters
in the spectrum spreads out, and in the image domain
a 1D moie becomes visible in the superposition, as
indicated by the low frequencies of the 1D spread-out
cluster around the spectrum origin (see Fig. 8(b)).

Let us analyze this example in more detail, com-
paring it to Example 3. In the present case the linear
transformation¥s, , 1, is given by

Wt 1,.15(K1, Ko, k3) = ki(32, 32) + k2(32, 32)
+Ks(—32v/2, —324/2)

The kernel of the continuous counterpart of this
transformation®s, s, 1, is the solution of the equation
32; + 32k, — 32v/2ks = 0 with k; € R, which is the
2D planev/2z = x + y in R3. ThereforeR? is parti-
tioned by ®x, 1, ¢, into an infinite 1D set of translated
planes (2D equivalence classes) which are parallel to
the plane/2z = x+y. The image ofbx, , 1, is the 1D
line which is spanned in theu(v)-plane byfy, f,, f3,
namely:v = u. Therefore, like in Example 3, the con-
tinuous transformatio®s, ¢, t, maps into each point of
this line in the @, v)-plane a whole 2D plane from the
decomposition oR>.

Let us now return to the discrete case. Although the

resenting one equivalence class (translation of the 2D kernel of the continuou®x, , 1, is still a 2D plane in

lattice L) from the partition induced by, 1, ¢, in the
indices-latticeZ®.

Example 4. (1D clusters ona 1D supportin the, @)-

R3, as in Example 3, we see that in the present case,
duetotheirrational inclination of this plane, its discrete
restriction tok; € Z (i.e., the latticeL = Ker W, ¢, 1,
which collapsesto the spectrum origin) has a lower rank

plane): This example illustrates what happens in a casethan 2. In fact, the only points of the indices-latti&®

similar to Example 3 when the lattide = Ker s, ¢, ¢,
which collapses on the spectrum origin has a lower
rank than its continuous counterpart Kt s, r,, due
to an irrational inclination of the plane Keéx, s, 1,
within R3. Consider the singular marwhich oc-

which fall on the plane/2z = x+y are those for which

z =0, sothatwe gett. = KerWx, s, 1, = {(kq, ko, k3) |
ko= —ki, ks=0, ki € Z}. Therefore, in this case the
cluster which falls on the spectrum origin is of rank
1. L {...,(=1,1,0),(0,0,0), (1, -1,0), ...}

curs between 3 gratings whose frequency vectors are:(see Fig. 8(b), which shows the spread-out clus-

fq fo = (32 32),f3 = q-f; whereq, unlike in
Example 3, is an irrational number, say/2 (see
Fig. 8(a)). Inthis case the vectdisf,, fzinthe (u, v)-
plane are linearly dependent ovRr but only two of
them are linearly dependent ov&rWe therefore have:
dim Sﬂfl, fg, f3) =1< rankZ Md(fj_, f2, f3) = 2,80
that the spectrum support, Md(f,, f3), is in this case
a dense module of rapk= 2 imbedded on the 1D

ters slightly off the singular state). Similarly, a 1D
cluster which consists of one parallel translation of
L within Z* collapses on each point in the spec-
trum support. For example (see Fig. 8(b)), on the
fundamental impulse of the first grating, which is
the (1, O, O)-impulse in the spectrum convolution,
collapses the whole 1D clusted, 0,0) + L, i.e.,
{...,(0,1,0),(1,0,0), (2,-1,0),...}.
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Figure 8 The singular 3-grating superposition of Example 4 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 1D module (of integral rank 2), each point of which represents a collapsed cluster. (b) Slightly off the singular
state: each of the clusters in the spectrum is spread out, clearly demonstrating its 1D nature. Only impulses up to the 3rd order are shown.

The support of all these collapsed clusters in the case the support of the spectrum forms a dense mod-
spectrum (precisely at the singular state) is the image ule of rank; = 2 which is imbedded on the 1D line
of the transformation, 1, 1,, i.€., the module of rank v = u; and each point of this module consists of a

= 2 given by (13) whole 1D cluster, representing one equivalence class
(translation of the 1D latticé ) from the partition in-
Md(fy, fo, f3) = {k1(32, 32) + k2(32, 32) duced by, 1, 1, in the indices-latticé®.
As we can see in this example, the “loss” of one di-
+ke(=32v2. ~32v2) | ki € Z) mension in the discrete Kdr, ¢, ¢, due to an irrational

_ o _ _ ~inclination of the 2D plane Keby, 1, 1, in R® (i.e., the
This module is imbedded in the image of the contin- |oss of one dimensionin each cluster) is “compensated”

uous transformatio®y, r, 1, in the (U, v)-plane, which  in the image of¥s, 1, 1, in the (U, v)-plane by an incre-
is the same 1D line as in Example 3: ment of 1 in the integral rank of this module: whereas
in Example 3 Imy, 1, 1, was a module of rank= 1
Sp(fy, f2, f3) = {(U,v) € R? | v = u}. imbedded on the 1D line Irby, 1, , (Namely a lattice
of rank 1), in the present case M, 1,1, iS a dense
In this example we therefore have: dim&pf,, f3) module of rank = 2 which is imbedded on the same

= 1< ranky Md(f1, f2, f3) = 2. Thismeansthatinthis  line Im®s, ¢, ¢,. (Note that the continuous Kdr, ¢, 1,
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and Im®x, 1, 1, have both the same dimensions as in
Example 3; only the dimensions of their discrete coun-
terparts have changed).

Example 5. (2D clusters on a 2D support in
the (@, v)-plane): Consider thé2, 0, —1, 1)-singular
moiré which occurs between 2 screens (or 4 grat-
ings) when their frequency vectors are given by=
(32,0),f, = (0, 32),f3 = (32, 32) andf; = (—32,32)
(see Fig. 9(a)). It is easy to see that in this chse
f4 are linear combinations, both ovBrandR, of fq,

fo (namely: fz3=f, + f,, f4=f, —f1), while f; and

f, are independent. Therefore, we have here: zank
Md(fy, o, f3, f4) = dim Spfy, fo, f3,f4) = 2. This
means that the spectrum support, Fdf, f3, f4), is

in this singular case a discrete lattice of rank 2. And
furthermore, from (25) we get that each point of this

lattice represents, in fact, a collapsed lattice (cluster)
whose rank is: rank =4 —2 = 2.

It should be noted that in general it is not always
practical to find arithmetically the Cartesian coordi-
nates of the frequency vectdisand to determine the
lattice L. In such cases, a computer program which
calculates the comb convolutions in the spectral do-
main can be helpful. Given the polar coordinates of the
frequency vectorf (i.e., the frequencies and the direc-
tions of each superposed layer) this program calculates
the spectral convolution (up to a specified number of
harmonics on each impulse comb), using the rules of
comb convolution (Egs. (3) and (4)). The resulting im-
pulse configuration spectrum support) is graphically
displayed in they, v)-spectrum, showing the location
(and optionally also the index) of each impulse. Thisis
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Figure 9 The singular 4-grating superposition of Example 5 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 2D lattice, each point of which represents a collapsed cluster. (b) Slightly off the singular state: each of th
clusters is spread out, clearly demonstrating its 2D nature. Only impulses up to the 3rd order are shown.
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how the figures illustrating the examples of this section obtained by computer immediately gives us an insight
have been prepared. This method is useful both for get- into the nature of this case. Figure 10(a) shows the
ting a general overview of the spectrum support, and spectrum support exactly at the specified singular con-
for determining the indices of any particular impulses figuration (taking the frequency of each layer to be
in the spectrum. This is demonstrated in the following 32). Visibly, this spectrum support 3ot a discrete
example: lattice, but rather an everywhere dense module on the
(u, v)-plane. In order to visually identify the individ-
Example 6. (1D clusters on a dense 2D support in  ualimpulses belonging to each of the collapsed clusters
the (U, v)-plane): Consider thel, 1,1, 1, 1)-singular  in the singular state, we move slightly off the singular
moiré which occurs in the superposition of 5 gratings  state (by modifying the values of one or more of the fre-
with identical frequencies, and angle differences of quency vectors) so that the impulse clusters in the spec-
360°/5 = 72°. In this case the arithmetic calculation trum become fully spread out (see Fig. 10(b)). As we
of the Cartesian coordinates is more tricky (the values can see here, each cluster is only of rank 1; this implies
sin72 = 3/10+ 25 and cos 72= ;(+/5— 1) can (according to (25)) that rapkmy, ¢, =5—1=4,
be obtained from the radiuses of the circumscribed and and since dim Inds, ¢, is obviously only 2, it follows,
the inscribed circles in a regular polygon [17, Vol. 7, indeed, that the spectrum support of this singular state
p. 221, “Polygon”]). However, the spectrum support is everywhere dense on the, {)-plane (see Table 2).

S o

(2) (b)

Figure 10 The singular 5-grating superposition of Example 6 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here an everywhere dense 2D module, each point of which represents a collapsed cluster. The spectrum in (b) sho
an enlarged view of the central part of the spectrum (a), slightly off the singular state: each of the clusters in the spectrum is spread out, clearl
demonstrating its 1D nature. Only impulses up to the 3rd order are shown.
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Example 7. (2D dense clusters on a discrete 2D sup- equations foky, ..., ks € R:
port in the (1, v)-plane): Consider the singular ratio-
nal superposition of 3 dot-screens, whose frequency
vectors are given byf; = (32, 0), f,=(0, 32), f3=
(3:322.32),f, = (-2-322-32,fs = (£-32
—£.32 andfg = (£ -32, £ - 32). The linear transfor-
mationVs,  f, is given here by

32 +¢-3%—3 32K +¢-3%s+5 3% =0
3%+ ¢ 3%+ 3 32€—% - 3%6+¢-3% =0

Wr, e (Ke, Ko, K3, Ka, ks, Ke)
— ku(32 0) + ky(0, 32)

o 4
+ks (3

In order to find Kerds, ¢, for the continuous case,
we have to solve the following set of two linear

32,232 + k(-
-32,—2-32) +ke (

3
5
2
5

-32,2-32)
-32,2-32)

The solution of this set of equations i&ks, kz,
ks, K, ks, Kg) | 2ks = —2K1 + ko — k3 + 2ks4, 2k =
—ky — 2ko — 2kz — kg, ki € R}. This is clearly a 4D
volume (with 4 free variables) in the 6D spak® Fur-
thermore, the latticd, which is the discrete solution
for Wy, s, (i.e., withk; € Z), isalsoa4D lattice imbed-

ded in this volume; this means that there is no loss of
dimensions, so that the spectrum support is indeed a
discrete lattice, and each cluster in the 2D spectrum is
a dense module with rapk= 4.
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Figure 11 The singular 3-screen superposition of Example 7 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 2D lattice, each point of which represents a collapsed cluster. The spectrum in (b) shows an enlarged view of t
central part of the spectrum (a), showing the spread-out main cluster slightly off the singular state: this cluster forms i-filar{e a dense

2D module. Only impulses up to the 3rd order are shown.
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aoorom| :

(@ ()

Figure 12 The singular 3-screen superposition (top) and the spectrum support (bottom) of Example 8: the traditional 3-screen combination
used for color printing. (a) Exactly at the singular state: the spectrum support forms here an everywhere dense 2D module, each point of whic
represents a collapsed cluster. The spectrum in (b) shows an enlarged view of the central part of the spectrum (a), slightly off the singular stat
each of the clusters is spread out, clearly demonstrating its 2D lattice structure. Only impulses up to the 3rd order are shown.

If we closely look at the points (impulses) of the sub-cluster (sub-lattice of the 4D lattitg; obviously,
main cluster around the origin (for example, all the all of them collapse together onto the spectrum origin
cluster impulses up to order 2), we can see that in at the singular state.
this case there occur simultaneously several different
moirés (isocentric mo&s, i.e., moies which have the  Example 8. (2D discrete clusters on a dense 2D sup-
same singular state): first, we have a 3-screeneamoir” port in the (1, v)-plane): Consider the singular super-
spanned by th€0, 1, —1, 0, 1, 0)-impulse and its or- position of 3 screens with identical frequencies and
thogonal counterpartl, 0,0, 1, 0, —1); and then we  equal angle differences of 3(this is the conventional
have a 2-screen marbetween each of the 3 screen screen combination traditionally used in color printing;
pairs: a moie” spanned by thél, 2, -2, —1, 0, 0)- see Fig. 12(a)). Itis interesting to note that this super-
impulse and its orthogonal counterpart; a moir” position manifests a 12-fold symmetry, which s clearly
spanned by thg2, 0,0, 0, —2, —1)-impulse and its seen bothinthe image domain andinthe spectrum. And
orthogonal counterpart; and a mwirspanned by  yet, whenever the 3 superposed screens move slightly
the (0,0,2,0, -1, —2)-impulse and its orthogonal off the singular state, the generated reois” two-
counterpart. To each of these nesrbelongs a 2D  dimensional and it only presents a 4-fold symmetry.
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The algebraic analysis of this example provides the these algebraic foundations by reintroducing the im-
explanation of this phenomenon: the cluster which is pulse amplitudes on top of their geometric locations in
collapsed on the spectrum origin in this singular su- the spectrum. We will see how both the structural and
perposition is indeed a 2D lattice (see the spread-out the amplitude properties of the spectrum are related

cluster in Fig. 12(b)).

In this example we havef; = (32, 0), f, = (0, 32),
fs = (16V3,16), f4 = (—16,16V3), f5 = (16V3,
—16) andfg = (16, 16v/3). Therefore the linear trans-
formationWs, 1, is given in this case by

.....

Wr, g (Ke, Ko, K3, Ka, ks, Ke)
= ki(32,0) + kp(0, 32) + k3(16+/3, 16)
+ ka(—16, 16v/3) + ks(16v/3, —16)
+ ke(16, 16v/3)

In order to find Kerds, s, for the continuous case,
we have to solve the following set of two linear equa-
tions forky, ..., ks € R:

32k, + 164/3kg — 16Ky + 164/3ks + 16ks = 0
32k, + 16ks + 16v/3Kkg — 16Ks + 16v/3ks = 0

The solution of this set of equations i&ky, ko,
ks, Ks, ks, Ke) | 2ks = —~/3k + ko — k3 ++/3Ks, 2ks =
—ky —+/3ko —+/3ks —ka, ki € R}. Thisis clearly a 4D
volume (having 4 free variables) in the 6D spa&®
However, the latticd., which is the discrete solution
for W, 1, (i.e., withk; € Z), isnota 4D lattice but
ratheronly a 2D lattice (since f&g andkg to be integers
itis required thaks = —ks andks = —kg in order that
all the roots be cancelled out). This means that in this
case there is aloss of 2 dimensions.ig= Ker s, ¢,
with respect to Ketbs, ¢, and therefore the spectrum

.....

support of this singular case is an everywhere dense

module. And furthermore, according to (25) we see
that each point of this module (at the singular state)
represents, in fact, a collapsed lattice (cluster) of a 2D
nature: rank. =6 —4 = 2.

9. The Interpretation of the Spectrum Structure
Back in the Image Domain

In the previous sections we analyzed the properties of
the spectrum convolution (i.e., the spectrum of the layer

superposition) from a pure algebraic point of view, (b)

concentrating only on the spectrum support, and ig-
noring the impulse amplitudes. Let us now “augment”

to properties of the layer superposition and its moir’
effects in the image domain.

9.1. The Image Domain Interpretation of the Global

Structure of the Spectrum Support

As we have seen in Eqg. (4) the amplitude of the
(Kg, ..., km)-impulse in the spectrum convolution is a
product of the amplitudes of the individual impulses
contributed by the spectrum of each of the layers. By
reintroducing the amplitude values of the spectrum im-
pulses on top of their geometric locations, we get again
a full description of the spectrum. This permits us to
use the Fourier theory to transform the structural results
we have algebraically obtained in the spectral domain
back into the image domain as well. We start by con-
sidering the structure of the global spectrum support
and interpreting its influence on the image domain.
The structure of the individual impulse clusters and
its image domain interpretation will be discussed in
Section 9.2.

As we have seen in Table 2, the spectrum convolu-
tion (i.e., the spectrum of the layer superposition) can
have four different types of spectrum support, which
are denoted in the table by 2D-L, 2D-M, 1D-L and
1D-M. These four types are the four possible combi-
nations of two basic and independent properties of the
spectrum support: (a) it can be either 2D or 1D; (b) it
can be either a discrete lattice or a dense module. Let
us see now what is the image domain interpretation of
each of these two basic independent properties.

(a) Clearly, a 2D spectrum support indicates that the
image superposition is indeed of a 2D nature. A
1D spectrum support in the(v)-plane means that
all the “action” in the image domain takes place
only in one direction, while in the perpendicular
direction the image is constant. This happens in a
grating superposition where all the original gratings
are parallel (their frequency vectors are collinear);
this is in fact a case of one-dimensional nature
which s artificially extended to the 2x( y) image
plane.

The support of the spectrum convolution is a dis-
crete latticaff the layer superposition in the image
domain is a periodic function (either 1D or 2D).
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Table 3 The four possible spectrum support types
and their interpretation in the image domain.

Spectrum Superposition in

support the image domain Examples
2D-L 2-fold periodic Sec. 8Ex. 2
1D-L 1-fold periodic Sec. 8Ex. 3
2D-M 2-fold almost-periodit ~ Sec. 8 Ex. 8
1D-M 1-fold almost-periodic Sec. 8Ex. 4

*Note that the case of 2D-M includes also a special
case in which the 2D spectrum is dense in one direc-
tion and discrete in the other; this case corresponds in
the image domain to a 2D function which is almost-
periodic in one direction and periodic inthe other. This
hybrid case may occur, for instance, in the superposi-
tion of 3 gratings, 2 of which have the same direction,
but with incommensurable frequencies.

This follows from the decomposition of the peri-
odic function into a Fourier series. When the spec-
trum support is a dense module, it is clear that the
layer superposition is not periodic; but on the other
hand the spectrum is still impulsive and not con-
tinuous, meaning that the superposition is not ape-
riodic, either. In fact, such cases belong to an in-
termediate class of functions which is known as
almost-periodidunctions [20]; a spectrum formed
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9.2. The Image Domain Interpretation
of the Clusters in the Spectrum

We have already mentioned that the main cluster in the
spectrum (the impulse cluster which is centered on the
spectrum origin) is the Fourier transform of the iso-
lated (extracted) madr” When this cluster is slightly
spread-out and its fundamental impulses are located
within the visibility circle, the corresponding meir
may be clearly visible in the image domain (if the am-
plitudes are nottoo weak); butwhen the singular state is
reached and the cluster impulses collapse onto the DC,
the moig in the image domain gets an infinite period
and disappears.

However, the support of this cluster in the, ¢)-
plane is not necessarily a discrete lattice, and in the
more general case it can even be a dense module (like
in Example 7 of Section 8). In fact, here too there exist
four different cases, whose interpretation back in the
image domain is summarized in Table 4.

Itis interesting to note that the algebraic structure of
the moie cluster is not necessarily the same as the alge-
braic structure of the overall spectrum of the superpo-
sition. The moi€ cluster may have a lower dimension
(a 1D clusterimbedded in an overall 2D spectrum, asin
Example 2 in Section 8) or a simpler structure (a 2D-L
cluster within a 2D-M spectrum, such as in Figs. 4(b)

by a dense module of impulses represents a gener-and (c), or in Example 8 of Section 8), or even both (a

alized Fourier series expansion which belongs to an
almost-periodic function. This means that in such

cases the layer superposition back in the image do-

main is an almost-periodic function.

The four possible types of spectrum support and their
interpretations in the image domain are summarized in
Table 3.

We can now reformulate Proposition 2 as a crite-
rion for the periodicity of the superposition of periodic
layers (functions):

Proposition 3. The superposition of m gratings
(or m/2 2D dot-screens etc) is periodic Iiff
ranky, Md(fq, ..., fn) = dimSpfy, ..., fn). The su-
perposition is almost-periodic iffank; Md(f4, ...,
fm) > dim Spfy,...,fm). (Note that the case of
‘<’ is impossible. This means that the two condi-
tions above are exhaustivand indeedthe superposi-
tion of periodic functions is either periodic or almost-
periodic).

1D-L cluster within a 2D-M spectrum, as in Example 6
of Section 8 This means, back in the image domain,
that even when the overall superposition of the peri-
odic layers is not periodic but rather almost-periodic, a
moiré generated in this superposition may still be peri-
odic. Thisis, infact, a very common situation, whichis
clearly illustrated, for instance, in the superposition of
Fig. 12(b): although the overall superposition is not pe-
riodic (notice the micro-structure!), the intensity profile
of the isolated mo#’is indeed periodic.

Our algebraic approach provides also information
regarding the other clusters which are formed in the

Table 4 The four possible cluster support types
and their interpretation in the image domain.

Main Extracted mo’in

cluster the image domain Examples
2D-L 2-fold periodic Sec. 8Ex. 5
1D-L 1-fold periodic Sec. 8Ex. 2
2D-M  2-fold almost-periodic ~ Sec. 8 Ex. 7
1D-M  1-fold almost-periodic
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spectrum simultaneously with the main cluster: the the Fourier spectrum of the superposed layers and
support of each of these clusters in the «)-plane their moiré effects. We introduce an algebraic for-
is simply a shifted replica of the support of the main malization of the structure of the Fourier spectrum,
cluster. However, the impulse amplitudes within each based on the theory of geometry of numbers. The key
cluster are calculated according to Eq. (4), meaning that point is the fundamental relationship between the index
the impulse amplitudes in the shifted clusters aoé (kq, ..., ky) of eachimpulse and its geometric location
simply shifted replicas of the impulse amplitudes inthe in the spectrum, which is given by the transformation
main cluster. These clusters contribute higher frequen- W, ¢ (Ka, ..., km) = Kif1 + - - - + kfm. By analyz-
ciesto the global structure of the spectrum support, and ing this algebraic relationship we acquire a full under-
in terms of the image domain, they take part in the gen- standing of the structural properties of the spectrum of
eration of micro-structure details in the superposition. the superposition. These spectral domain properties

9.3. The Amplitude of Compound Impulses
in the Singular States

As the superposed layers gradually approach a singu-
lar state, the spectrum undergoes an “inverse playback”
of the cluster spreading-out process. The singular state
itself is the limit case where each of the spread-out im-
pulse clusters collapses down into a singbenpound
impulse The question is, what happens to the ampli-
tudes of the impulses of each cluster at the limit point
when the singular state is attained, and each of the
impulse clusters fuses down into a single compound
impulse in the spectrum?

Since the spectrum of the superposed layers is al-
ways the convolution of the individual spectra (by the
Convolution Theorem), the answer to this question fol-
lows from the properties of convolution. The convolu-
tion of a function f (x, y) with an impulsive function
such as a comb is simply a sum of replicasf X, y),
which are copied on top of each impulse of the comb
[21, pp. 295—-296]; so if an overlapping occurs between
several replicas, the overlap behawaeéslitively. Since
in our case,f (X, y), too, is impulsive, we obtain the
following result:

When an impulse cluster collapses down into a sin-
gle impulse, the amplitude of the resulting compound
impulse is the sum of the individual amplitudes of all
the collapsed impulsé$

10. Summary

The superposition of periodic layers (such as line-

are then reflected back to the layer superposition in the
image domain and interpreted there by means of the
Fourier theory.

Using this new approach we show that the spectrum
support can be either a discrete lattice or a dense mod-
ule; in the first case the layer superposition in the im-
age domain is periodic, while in the second case it is
almost-periodic. Furthermore, we obtain a criterion
for the periodicity of the superposition of any number
of periodic layers: the superposition is periodfahe
continuous and the discrete dimensions of the spec-
trum support are equal; otherwise the superposition is
almost-periodic. We also show that a singular case
occurs in the superpositioiff the frequency vectors
f1, ..., fm of the superposed layers are linearly depen-
dent overZ, i.e.,iff ranky Md(fq, ..., f) < m. When
more than two gratings are superposed, the spectrum
support can be a discrete lattice (and hence the super-
position can be periodic) only if the superposition is
singular; but singular superpositions may have either a
discrete or a dense support (and hence be either peri-
odic or almost-periodic).

Otherimportant results concern the formation of im-
pulse clusters in the spectrum of the superposition. We
show that this clusterization of the spectrum support re-
flects the partition of the lattice of the impulse indices
(i.e.,Z™M) into equivalence classes, which is induced by
W 1. (or simply, by the frequency vectors .. ., fy
which define the layer superposition). The main im-
pulse cluster which is centered on the spectrum origin is
the spectral representation of a nexffectin the image
superposition, and the other clusters are simply trans-
lated replicas (in terms of impulse indices and impulse
locations) of this cluster. When the layer superposition

gratings, dot-screens etc.) and the phenomena relateds singular, each of the clusters is collapsed down into

thereto, such as the superposition reaiffects, can

be fully explained by analyzing the Fourier spectrum
of the superposition. In the present article we pro-
vide a solid algebraic foundation for the analysis of

a single point in the spectrum, but when moving a lit-
tle out of the singular state (by slightly modifying the
frequency vectorf, .. ., f, of the superposed layers),
each of the clusters in the spectrum starts “spreading
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out”, thus revealing its internal structure. Several ex-
amples of superposed periodic layers are provided to
illustrate our results, both in the spectrum and in the
image domains.
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Notes

1. It should be noted however that not every singular state is neces-

sarily moi-free: although thek(, ..., ky)-moiré itself is not

8.

129

Note that(1, 1, 1) and(1, —1, 0) form a basis of the 2D lattice

L (see Fig. 7(b)). This means that in the superposition of this
example not only the 3-lay€l, 1, 1)-moiré is singular, but also
the 2-layer(1, —1, 0)-moiré. And indeed, slightly out of the
singular state both of them are simultaneously visible.

. Obviously, since the marluster is a subset of the overall spec-

trum, its structure can never lmeore complex than that of the
overall spectrum.

10. Thisadditive behaviour of the impulse amplitudes should not

be confused with thenultiplicativebehaviour of the individual
impulse amplitudes in the convolution process: Each individ-
ual impulse amplitude in the convolution process is obtained
by Eqg. (4) as groduct but if several impulses thus obtained
happen to fall on the same geometric location, their individual
amplitudes are thesummed

visible in its singular state, other impulses may be present in the References

same time within the visibility circle and cause other masito
be visible.

. Vectorsvy, ..., Vp in R" are calledinearly independenover
R (or overZ, etc.) iftgvi + - +tmvm = Owitht; € R
(respectivelyt; € Z) implies thatty = --- =ty = 0.

. Note thatz < r is impossible, since linear independence dter
implies linear independence ov&and linear dependence over
Z implies linear dependence ovej.

. Formally, a subseD of R" is calleddiscreteif there exists a
numberd > 0 such that for any pointa, b € D the distance
betweera andbis larger tharl. A subseSof R" is calleddense
or everywhere densa R" if [ §] = R", where [ denotes the
closure ofS, i.e., the set containin§ and all its limit points [17,

Vol. 3, p. 434]. Examples: (1) The set of all integer numbers is
discrete. (2) Both the set of all rational numbers and the set of
all irrational numbers are denseliy although none of them is
continuous irR.

. Two vectorsvy, vo € R? (or real numbers irR) are called
commensurablg there exist non-zero integers, n such that
vz = (m/n)vi. This means that botlhy andv; can be measured
as integer multiples of the same length unit, §gyn)v1. More
generallyk vectorsvy, ..., vk in R" (or real numbers ifR) are
calledcommensurablé they are linearly dependent ov@r(the
set of all rational numbers); note that this is identical to linear
dependence ovet. And conversely, vectors (or real numbers)
which are linearly independent ovér (or overZ) are called
incommensurabl§l7, Vol. 7, p. 436]. Note tha¥, ..., vk are
commensurabléf rank; Md(vs, ..., vk) < k; they are incom-
mensurabléff rankz Md(vy, ..., vk) = k.

. Formally speaking, when the superposition moves out of the sin-
gular state Kew becomeg0}, so that each point ii™ becomes
its own one-member equivalence class. Therefore the spread-
out clusters no longer correspond to the current equivalence
classes. However, we will still consider the “spread-out clus-
ters” in the spectrum to be traces of the clusters of the singular
state that we have just left, and we will continue to call them
“clusters” in this sense.

. Note that the choice 6f = (32, 0) for the first layer is arbitrary,

and for any other choicé; andfs could be adapted accordingly.

However, for the sake of consistency and to facilitate compar-

isons between the spectra we will use the same convention in

most of the following examples, too.
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