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Abstract. A new approach is presented for investigating the superposition of any number of periodic structures,
and the moir´e effects which may result. This approach, which is based on an algebraic analysis of the Fourier-
spectrum using concepts from the theory of geometry of numbers, fully explains the properties of the superposition
of periodic layers and of their moir´e effects. It provides the fundamental notations and tools for investigating, both
in the spectral domain and in the image domain, properties of the superposition as a whole (such as periodicity or
almost-periodicity), and properties of each of the individual moir´es generated in the superposition (such as their
profile forms and intensity levels, their singular states, etc.). This new, rather unexpected combination of Fourier
theory and geometry of numbers proves very useful, and it offers a profound insight into the structure of the spectrum
of the layer superposition and the corresponding properties back in the image domain.
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1. Introduction

The superposition of periodic structures (such as line-
gratings, dot-screens, etc.) offers a wide range of
interesting properties for exploration: starting from
the overall structure of the superposition (which may
be periodic or not) and culminating in the interesting
and sometimes even spectacular moir´e effects which
may appear in the superposition. The superposition
moiré phenomenon has a vast number of important
applications in many different fields [1–5], while in
other circumstances (like in the case of color repro-
duction) it may have an unwanted, adverse effect [6].
It is therefore important to fully understand this phe-
nomenon and its various properties, along with the
other global properties of the layer superposition as a
whole.

Although classical geometric or algebraic ap-
proaches can be used to explain the superposition moir´e
phenomenon and its geometric properties [7, 8], it has
been shown that the best approach for exploring phe-
nomena related to the superposition ofperiodic struc-
tures is the spectral approach, which is based on the

Fourier theory [9, 10]. Unlike the classical geometric
and algebraic methods, this approach enables us to an-
alyze properties not only in the original images and in
their superposition but also in their spectral represen-
tations, and thus it offers a more profound insight into
the problem and provides indispensable tools for ex-
ploring it. Moreover, the additional dimension offered
by the impulse amplitudes in the spectrum (in addition
to their geometric locations) also enables a quantitative
analysis of the moir´e intensity levels [11], in addition to
the qualitative geometric analysis of the moir´e, already
offered by the earlier approaches.

We start the article with a short review of our Fourier-
based approach and its significant advantages. Then,
in the main part of the article we further deepen this
Fourier approach, by introducing a new algebraic for-
malism based on the theory of geometry of numbers
[12] to describe the structure of the spectrum. Using
this new combination of algebraic methods and the
Fourier theory we find the rules which determine the
positioning of the impulses in the spectrum, and in par-
ticular, those impulses which correspond to each moir´e
effect. We show how this approach fully explains the
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properties of the superposition as a whole (periodicity
or almost-periodicity, the formation of impulse clusters
in the spectrum and their significance, etc.), and in par-
ticular, the properties of each moir´e effect which is gen-
erated in the superposition. We proceed as follows: In
Section 2 we prepare the ground by reviewing the basic
notions of our Fourier-based approach. In Sections 3–6
we develop our new algebraic method, and in Section 7
we show the new insight it offers into the structure of
the spectrum of the layer superposition and its eventual
moirés. Several illustrative examples are presented in
Section 8. Finally, in Section 9 we show how, via the
Fourier theory, the algebraic structure of the spectrum
relates to properties of the layer superposition and its
moirés back in the image domain.

2. The Spectral Approach

The spectral approach is based on the duality between
2D images in the (x, y)-plane and their 2D spectra in
the (u, v) frequency plane through the 2D Fourier trans-
form. Let us briefly review here the basic properties of
the image types we are concerned with, and the fun-
damental notions and notations on which our spectral
approach is based.

2.1. Properties of our Images and their Spectra

First, we only deal here with monochromatic (black
and white) images. In this case each image can be rep-
resented in the image domain by areflectancefunction,
which assigns to any point (x, y) of the image a value
between 0 and 1 representing its light reflectance: 0 for
black (i.e., no reflected light), 1 for white (i.e., full light
reflectance), and intermediate values for in-between
shades. In the case of transparencies, the reflectance
function is replaced by atransmittancefunction defined
in a similar way. Since the superposition of black and
any other shade always gives black, this suggests amul-
tiplicative model for the superposition of monochro-
matic images. Thus, whenm monochromatic images
are superposed (for example, by overprinting), the re-
flectance of the resulting image is given by theproduct
of the reflectance functions of the individual images

r (x, y) = r1(x, y) r2(x, y) . . . rm(x, y) (1)

According to the Convolution Theorem [13, p. 244] the
Fourier transform of the product function is the convo-
lution of the Fourier transforms of the individual func-
tions. Therefore if we denote the Fourier transform of

each function by the respective capital letter and the 2D
convolution by∗∗, the spectrum of the superposition
is given by

R(u, v) = R1(u, v)∗∗ R2(u, v)∗∗ · · ·∗∗ Rm(u, v)

(2)

Second, we are basically interested inperiodic im-
ages defined on the continuous (x, y)-plane, such as
line-gratings or dot-screens, and their superpositions.
This implies that the spectrum of the image on the
(u, v)-plane is not a continuous one but rather consists
of impulses, corresponding to the frequencies which
appear in the Fourier series decomposition of the im-
age [13, p. 204]. In the case of a 1-fold periodic image,
such as a line-grating, the spectrum consists of a 1D
“comb” of impulses through the origin; in the case of
a 2-fold periodic image the spectrum is a 2D “nailbed”
of impulses through the origin.

Each impulse in the 2D spectrum is characterized by
three main properties: itslabel (which is its index in
the Fourier series development); itsgeometric location
(or impulse location), and itsamplitude(see Fig. 1).
To the geometric location of any impulse is attached a
frequency vectorf in the spectrum plane, which con-
nects the spectrum origin to the geometric location of
the impulse. This vector can be expressed either by its
polar coordinates (f, θ ), whereθ is the direction of the
impulse andf is its distance from the origin (i.e., its
frequency in that direction); or by its Cartesian coordi-
nates (fu, fv), where fu and fv are the horizontal and
vertical components of the frequency. In terms of the
original image, thegeometric locationof an impulse
in the spectrum determines the frequencyf and the
directionθ of the corresponding periodic component in
the image, and theamplitudeof the impulse represents

Figure 1. Thegeometric locationandamplitudeof impulses in the
2D spectrum. To each impulse is attached itsfrequency vector, which
points to the geometric location of the impulse in the spectrum plane
(u, v).
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the intensity of that periodic component in the image.
(Note that if the original image is not symmetric about
the origin, the amplitude of each impulse in the spec-
trum may also have a non-zero imaginary component).

However, the question of whether or not an impulse
in the spectrum represents avisible periodic compo-
nent in the image strongly depends on properties of
the human visual system. The fact that the eye can-
not distinguish fine details above a certain frequency
(i.e., below a certain period) suggests that the human
visual system model includes a low-pass filtering stage.
This is a bidimensional bell-shaped filter whose form
is anisotropic (since it appears that the eye is less sensi-
tive to small details in diagonal directions such as 45◦

[14]). However, for the sake of simplicity this low-pass
filter can be approximated by thevisibility circle, a cir-
cular step-function around the spectrum origin whose
radius represents thecutoff frequency(i.e., the thresh-
old frequency beyond which fine detail is no longer
detected by the eye). Obviously, its radius depends on
several factors such as the contrast of the observed de-
tails, the viewing distance, light conditions, etc. If the
frequencies of the image details are beyond the bor-
der of the visibility circle in the spectrum, the eye can
no longer see them; but if a strong enough impulse in
the spectrum of the image superposition falls inside the
visibility circle, then a moir´e effect becomes visible in
the superposed image. (In fact, the visibility circle has
a hole in its center, since very low frequencies cannot
be seen, either.)

For the sake of convenience, we may assume that the
given images (gratings, grids, etc.) are symmetrically
centered about the origin. As a result, we will normally
deal with images (and image superpositions) which
arereal andsymmetric, and whose spectra are conse-
quently also real and symmetric [13, pp. 14–15]. This
means that each impulse in the spectrum (except for the
DC at the origin) is always accompanied by a twin im-
pulse of an identical amplitude, which is symmetrically
located at the other side of the origin as in Fig. 1 (their
frequency vectors beingf and−f). If the image is non-
symmetric (but, of course, still real), the amplitudes of
the twin impulses atf and−f are complex conjugates.

2.2. The Spectrum Convolution
and the Superposition Moirés

According to the Convolution Theorem (Eqs. (1) and
(2)), whenm line-gratings are superposed in the im-
age domain, the resulting spectrum is the convolu-
tion of their individual spectra. This convolution of

combs can be seen as an operation in which frequency
vectors from the individual spectra are added vec-
torially, while the corresponding impulse amplitudes
are multiplied. More precisely, each impulse in the
spectrum-convolution is generated during the convo-
lution process by the contribution ofoneimpulse from
eachindividual spectrum: its location is given by the
sum of their frequency vectors, and its amplitude is
given by the product of their amplitudes. This per-
mits us to introduce an indexing method for denot-
ing each of the impulses of the spectrum-convolution
in a unique, unambiguous way. The general im-
pulse in the spectrum-convolution will be denoted the
(k1, k2, . . . , km)-impulse, wherem is the number of su-
perposed gratings, and each integerki is the index (har-
monic), within the comb (the Fourier series) of thei th
spectrum, of the impulse that thisi th spectrum con-
tributed to the impulse in question in the convolution.
Using this formal notation we can therefore express
the geometric location of the general (k1, k2, . . . , km)-
impulse in the spectrum-convolution by the vectorial
sum (or linear combination)

fk1,k2,...,km = k1f1 + k2f2 + · · · + kmfm (3)

and its amplitude by:

ak1,k2,...,km = a(1)
k1

a(2)
k2

· · · a(m)
km

(4)

wheref i denotes the frequency vector of the fundamen-
tal impulse in the spectrum of thei th grating, andki f i

anda(i )
ki

are respectively the frequency vector and the
amplitude of theki th harmonic impulse in the spectrum
of the i th grating.

The vectorial sum of Eq. (3) can also be written in
terms of its Cartesian components. Iffi are the fre-
quencies of themoriginal gratings andθi are the angles
that they form with the positive horizontal axis, then
the coordinates (fu, fv) of the (k1, k2, . . . , km)-impulse
in the spectrum-convolution are given by

fu = k1 f1 cosθ1 + k2 f2 cosθ2

+ · · · + km fm cosθm
(5)fv = k1 f1 sinθ1 + k2 f2 sinθ2

+ · · · + km fm sinθm

Therefore, the frequency, the period and the angle of
the considered impulse (and of the moir´e it represents)
are given by the length and the direction of the vector
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fk1,k2,...,km as follows

f =
√

f 2
u + f 2

v TM = 1/ f ϕM = arctan( fv/ fu)

(6)

Note that in the special case ofm= 2 gratings, when
a moiré effect occurs due to the (1,−1)-impulse in the
convolution, Eqs. (5) and (6) are reduced to the famil-
iar geometrically obtained formulas of the period and
angle of the moir´e effect between two gratings [7]

TM = T1T2√
T2

1 + T2
2 − 2T1T2 cosα

(7)
sinϕM = T1 sinα√

T2
1 + T2

2 − 2T1T2 cosα

(whereT1 and T2 are the periods of the two original
images andα is the angle difference between them,
θ2 − θ1). WhenT1 = T2 this is further simplified into

Figure 2. Binary gratings (a) and (b) and their superposition (c) in the image domain; their respective spectra are the infinite impulse-combs
shown in (d) and (e) and their convolution (f). Black dots in the spectra indicate the geometric location of the impulses; the line segments
connecting them have been added to clarify the geometric relations. Only impulse locations are shown in the spectra, but not their amplitudes.
The circle in the center of the spectrum (f) represents the visibility circle. It contains the impulse pair whose frequency vectors aref1 − f2 and
f2 − f1 and whose indices are (1, −1) and (−1, 1); this is the fundamental impulse pair of the (1, −1)-moiré seen in (c). The dotted line in (f)
shows the infinite impulse-comb which represents this moir´e.

the well-known formulas [7]

TM = T

2 sin(α/2)
ϕM = 90◦ − α/2 (8)

Let us now say a word about the notations used for
the superposition moir´es. We use a notational formal-
ism which provides a systematic means for identify-
ing the various moir´e effects. As we have seen, a
(k1, k2, . . . , km)-impulse of the spectrum-convolution
which falls close to the spectrum origin, inside the vis-
ibility circle, represents a moir´e effect in the superposed
image (see Fig. 2). We call them-grating moiré whose
fundamental impulse is the (k1, k2, . . . , km)-impulse in
the spectrum-convolution a (k1, k2, . . . , km)-moiré; the
highest absolute value in the index-list is called the
order of the moiré. Note that in the case of doubly
periodic images, such as in dot screens, each super-
posed image contributes two frequency vectors to the
spectrum, so thatm in Eqs. (3)–(5) above counts each
doubly periodic layer as two gratings.
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2.3. Singular States

An interesting special case occurs when impulses of
the convolution fallexactlyon top of the DC impulse
at the spectrum origin. This happens for instance in
the superposition of 2 identical gratings with an angle
difference of 0◦ or 180◦ (Fig. 3(a)), or when 3 identi-
cal gratings are superposed with angle differences of
120◦ between each other (Fig. 3(d)). As can be seen
from the respective vector diagrams (Figs. 3(c) and (f)),
these are limit cases in which the vectorial sum of the
frequency vectors is exactly0. This means that the
moiré frequency is 0 (i.e., its period is infinitely large),
and therefore the moir´e is not visible. This situation is
called asingular moiŕe state; but although the moir´e
effect in a singular state is not visible, this is a very
unstable moir´e-free state since any slight deviation in
the angle or frequency of any of the superposed layers
may cause the new impulses in the spectrum to move

Figure 3. Examples of singular states. First row: (a) the superposition of two identical gratings at an angle difference of 0◦ gives a singular
(unstable) moir´e-free state. (b) A small angle or frequency deviation in any of the layers causes the reappearance of the moir´e with a very
significant visible period. The spectral interpretation of (b) is shown in the vector diagram (c); compare to Fig. 2(f) which shows also impulses of
higher orders. Second row: (d) the superposition of three identical gratings with angle differences of 120◦ gives a singular (unstable) moir´e-free
state; again, any small angle or frequency deviation may cause the reappearance of the moir´e, as shown in (e) and in its vector diagram, (f).

slightly off the origin, thus generating a moir´e effect
with a very significant, visible period (see the center
images in Fig. 3).

More formally, we say that a singular moir´e state
occurs whenever a (k1, . . . , km)-impulse in the spec-
trum convolution falls exactly on the spectrum ori-
gin, i.e., when the frequency-vectors of them super-
posed gratings,f1, . . . ,fm, are such that

∑
ki f i = 0.

This implies, of course, that all the impulses of the
(k1, . . . , km)-moiré comb fall on the spectrum origin.
Furthermore, as it can easily be seen in the spectrum
convolution,any(k1, . . . , km)-impulse in the spectrum
convolution can be made singular by sliding the vector-
sum

∑
ki f i to the spectrum origin, namely: by ap-

propriately modifying the vectorsf1, . . . , fm (i.e., the
frequencies and angles of the superposed layers). When
the (k1, . . . , km)-impulse is located exactly on the spec-
trum origin we say that the corresponding (k1, . . . , km)-
moiré has become singular1.
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Figure 4. Top: the superposition of two dot-screens with identical frequencies and with an angle difference of: (a)α = 30◦; (b) α = 34.5◦;
(c) α = 5◦. Bottom: the corresponding spectra. Only impulse locations are shown in the spectra, but not their amplitudes. Bold points denote
the locations of the fundamental impulses of the two original dot-screens. Large points represent convolution impulses of the first order (i.e.,
(k1, k2, k3, k4)-impulses withki = 1, 0, or −1); smaller points represent convolution impulses of higher orders (only impulses of the first few
orders are shown). The circle around the spectrum origin represents the visibility circle. Note that while in (a) no significant impulses are located
inside the visibility circle, in (b) the spectrum origin is closely surrounded by the impulse-cluster of the second order (1, 2, −2, −1)-moiré, and
in (c) the spectrum origin is closely surrounded by the impulse-cluster of the first order (1, 0, −1, 0)-moiré.

2.4. Impulse Clusters in the Spectrum Convolution;
Moiré Extraction

Figure 2(f) shows the spectrum of the superposition of
two 1-fold periodic images, namely: the convolution of
their original nailbed spectra. Similarly, Fig. 4 shows
the spectra of various superpositions of two 2-fold peri-
odic images. As we can see, the spectrum convolution
consists of a “forest” of impulses (with real or complex
amplitudes, depending on the symmetry properties in
the image domain). It has been shown [11] that the
occurrence of a moir´e phenomenon in the image super-
position is associated with the appearance of impulse
clusters in the spectrum, as in Figs. 2(f) and 4. In partic-
ular it has been shown there that the main cluster, the in-
finite impulse-cluster which is centered on the spectrum
origin and whose fundamental impulse is (k1, . . . , km),
represents in the spectrum the (k1, . . . , km)-moiré ef-
fect generated in the superposition. And indeed, by

extracting this impulse cluster from the spectrum and
taking its inverse Fourier transform, one obtains, back
in the image domain, the isolated contribution of the
moiré in question to the superposition, i.e., the moir´e
intensity profile.

2.5. The Advantages of the Spectral Approach

The spectral approach presented above proves very use-
ful in the investigation of superposed periodic layers
and their moiré effects. The main advantages of the
spectral approach include the following points:

(1) It provides a means for labeling and identifying
each of the possible moir´e effects in them-layer
superposition individually. Thus, each moir´e in the
superposition has its own “identity” or index nota-
tion: the (k1, . . . , km)-moiré.
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(2) The spectrum of the superposition contains all the
information about each of the generated moir´es:
the period and the angle of the moir´e are given
by the geometric locations of its fundamental im-
pulses, and its intensity profile is given by the am-
plitudes of its fundamental and higher harmonic
impulses (the moir´e cluster). This enables a full
quantitativeanalysis of each moir´e and its intensity
levels [11], in addition to thequalitativegeometric
analysis of the moir´e, which is already offered by
the classical approaches.

(3) Since the spectrum of the superposition contains
simultaneouslyall the impulses which may repre-
sent moiré effects in the given superposition, it pro-
vides an overall, panoramic view of all the different
moirés of various orders which are simultaneously
present in the same layer superposition [10].

(4) Moreover, this approach permits us to see how
changes in the original superposed layers influence
the spectrum. This enables us, in particular, to dy-
namically trace in the spectral domain the devel-
opment of each of the moir´es, and to identify at
any moment which of them is visible, singular, or
simply irrelevant (beyond the visibility circle).

(5) The spectral approach provides an easy explana-
tion for all multiple-layer moirés, including the
more complex cases where the geometric analy-
sis may become too complicated. In our approach
all moirés of all orders are treated on an equal basis,
and there is no longer any need to deal first with
“simple moirés”, then with “moirés of moirés”, etc.
(as, for example, in [15, p. 134], [22, pp. 63–64] or
[6, pp. 336–337]).

2.6. Overview of the Following
Algebraic Formalization

The numerous advantages of the spectral approach in
the analysis of superpositions of periodic layers and
their moiré effects clearly show the interest in further
deepening this approach. Our aim will be to obtain a
full understanding of the spectrum of the superposition,
and through it, a better insight into the superposition
itself, in the image domain. This will be done in the
following sections, using a new algebraic approach,
which is based on the theory of geometry of numbers.
As we have seen, the spectrum of the superposition
of m gratings consists of all the impulses (k1, . . . , km)
whereki ∈ Z. This gives, in fact, a mapping ofZm (the

infinite set of all the integerm-tuples) into the spectrum
plane,R2. The key point of our approach is the alge-
braic formalization of this mapping using the funda-
mental relationship given by Eq. (3): we define (in Sec-
tion 4) the linear transformation9f1,...,fm(k1, . . . , km)
from Zm to R2 which gives for each (k1, . . . , km)-
impulse in the spectrum convolution its geometric lo-
cationk1f1 + · · · + kmfm in the (u, v)-plane. The alge-
braic investigation of the transformation9f1,...,fm proves
to be very fruitful: it provides a fundamental expla-
nation of the structure of the spectrum (the impulse
“forest” and “clusters”), and in particular it fully ex-
plains the clusterization phenomenon and provides a
complete identification of all impulses which partici-
pate in each of the clusters in the spectrum. Note that
throughout this algebraic discussion we ignore the am-
plitudes of the impulses in the spectrum, and we only
concentrate on their indices, their geometric locations,
and the relationship between them. Only then, based
on the algebraic results obtained, do we reintroduce in
Section 9 the impulse amplitudes, and relate the alge-
braic structure of the spectrum, via the Fourier theory,
to properties of the layer superposition and its moir´es
back in the image domain.

3. The Support of the Spectrum;
Modules and Lattices

From the algebraic point of view, the spectrum plane
(u, v) is considered as a 2D Euclidean vector space
R2; the geometric location of each impulse is therefore
a point (or a vector; we will not distinguish between
points and their corresponding vectors) with coordi-
nates (fu, fv) in this plane (see Section 2.2 and Fig. 1).

The set of the geometric locations on the (u, v)-plane
of all the impulses in a given spectrum (either the spec-
trum of a single layer or the spectrum of a layer super-
position) is called thesupportof that spectrum. It is
important to note that the support of a spectrum con-
tains the geometric locations ofall the impulses in the
spectrum, including those whose amplitudes happen to
be zero; this ensures that there are no “gaps” or “holes”
in the algebraic structure of the support. As a conse-
quence of Eqs. (3) and (4), the support of the spectrum
is only determined by the frequencies and angles of the
superposed layers, but it is invariant under changes in
the profile shape of each layer; such changes do not in-
fluence the impulselocationsin the spectrum, but only
theiramplitudes.
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3.1. Modules and Lattices inRn

Let us define here two algebraic structures which will
be used in the following discussions concerning the
support of a spectrum.

Definition. Let v1, . . . , vm be m arbitrary vectors in
Rn. The set of all the points (vectors) inRn given by

M = {k1v1 + · · · + kmvm | ki ∈ Z} (9)

(i.e., all the linear combinations of the vectorsv1, . . . ,

vm with integer coefficients) is called amodule in
Rn.

The vectorsv1, . . . , vm are calledgenerating vectors
of the moduleM , but they are not generally a basis,
since they are not necessarily linearly independent in
Rn (and in fact, their numbermmay be even larger than
n). The maximum numberr of linearly independent
(overR) vectors2 in a moduleM is called therank of
M (denoted: rankR M = r , or simply: rankM = r );
it is clear thatr ≤ m andr ≤ n [12, p. 44]. We will
call the maximum numberz of linearly independent
vectors overZ in a moduleM the integral rankof M
(denoted: rankZ M = z); it is clear thatr ≤ z ≤ m.3

Definition. Let v1, . . . , vm bem linearly independent
(overR) vectors inRn (obviously,m ≤ n). The set of
all the points (vectors) inRn given by

L = {k1v1 + · · · + kmvm | ki ∈ Z} (10)

is called alattice (or adot-lattice) in Rn [16].

Clearly, a lattice is a special case of a module, in
which them generating vectors are linearly indepen-
dent. In this case, the generating vectorsv1, . . . , vm

are, indeed, abasisor an integral basis(over Z) of
the latticeL; and using the notations above we have:
r = z = m.

While a lattice is always adiscretesubset ofRn

(meaning that it does not contain arbitrarily close
points), a module may bedenseinRn (even though it is
not continuous).4 Consider, for example, the following
module inR2: M1 = {k(1, 0)+l (

√
2, 0) | k, l ∈ Z}. M1

is generated by the vectors (1, 0) and (
√

2, 0), and its
integral rank is 2; however, its rank is only 1, since all
its members are located withinR2 on a straight line
(the x-axis). Moreover, the moduleM1 is dense on

this line (although it does not fully cover the whole
continuous line: for example, (1

2, 0) 6∈ M1). As a
second example, consider the following module in
R2: M2 = {k(1, 0) + l ( 1

2, 1
2) + m(0, 1) | k, l , m ∈ Z}.

Although M2 is generated by three vectors inR2, the
third of them is actually redundant in this case (since
it can be obtained as an integral linear combination of
the two others), and the moduleM2 coincides with a
lattice inR2 having the basis:(1, 0), ( 1

2, 1
2).

These two examples can be summarized as follows

M1: rankR M1 = 1 < rankZ M1 = 2 dense module

M2: rankR M2 = 2 = rankZ M2 = 2 discrete lattice

In fact, the following general property holds:

Proposition 1. A module inRn is a lattice iff it is
discrete[12, p.44]; and a module inRn is not a lattice
iff it is dense in a subgroup ofRn. Moreover, using the
notation r = rankR M and z = rankZ M, a module
M is a lattice (and therefore discrete) iff z = r ; the
module is not a lattice(and is dense in a subspace of
Rn) iff z > r .

It is interesting to note that a module does not neces-
sarily have a basis (overR). For example, we have seen
that the moduleM1 in the example above is of rank 1;
but still, it cannot be generated by a single vector. This
means that there exists no basis toM1. But although a
moduleM does not necessarily have a basis (overR),
it does always have anintegral basis(overZ) which
spans it: If them generating vectorsv1, . . . , vm of the
moduleM are linearly independent (overZ), they are
themselves an integral basis ofM , and rankZ M = m.
Otherwise, we take the minimal subsetv1, . . . , vz from
them generating vectors which still spans the module
M ; v1, . . . , vz are linearly independent overZ (since
otherwise one of them is a linear combination overZ of
the others, andv1, . . . , vz is not minimal). Therefore
v1, . . . , vz are an integral basis (overZ) of M , and their
numberz is the integral rank ofM .

Notation. Let v1, . . . , vm be arbitrary vectors inRn.
We denote thevector spaceand themodulewhich are
spanned (generated) by these vectors by

Sp(v1, . . . , vm) = {k1v1 + · · · + kmvm | ki ∈ R}
Md(v1, . . . , vm) = {k1v1 + · · · + kmvm | ki ∈ Z}
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Sp(v1, . . . , vm) is the set of all the linear combi-
nations overR of the vectorsv1, . . . , vm ∈Rn, and
Md(v1, . . . , vm) is the set of all their linear combina-
tions overZ. Note that the notations Sp( ) and Md( )
can be also used in the case of an infinite set of vectors
v1, v2, . . . ∈ Rn.

Clearly, Sp(v1, . . . , vm) is a subspace of the vector
spaceRn, whereas Md(v1, . . . , vm) is a module within
this subspace: Md(v1, . . . , vm) ⊂ Sp(v1, . . . , vm) ⊆
Rn. While Sp(v1, . . . , vm) is continuous and has the car-
dinality of the continuum, the module Md(v1, . . . , vm)
is only a denumerable infinite set which is imbedded
within Sp(v1, . . . , vm), and it is either discrete or dense
in it. Moreover, we have

Sp(Md(v1, . . . , vm)) = Sp(v1, . . . , vm)

This means that Sp(v1, . . . , vm) is the smallest sub-
space ofRn which includes the module Md(v1, . . . ,

vm); we will call it the continuous extensionof the
module. It is clear that “filling the gaps” inside the
module Md(v1, . . . , vm) by admittingki ∈ R rather
thanki ∈ Z does not change the number of indepen-
dent vectors overR, so that we have

rankRMd(v1, . . . , vm) = dim Sp(v1, . . . , vm) (11)

Using these new terms we can now reformulate re-
sults which were obtained earlier in this section:

Since linear independence overR implies linear in-
dependence overZ, it is clear that for any set of vectors
v1, . . . , vm the maximum number of linear independent
vectors overZ ≥ the maximum number of linear inde-
pendent vectors overR:

rankZ Md(v1, . . . , vm) ≥ rankR Md(v1, . . . , vm)

and by (11):

rankZ Md(v1, . . . , vm) ≥ dim Sp(v1, . . . , vm) (12)

And furthermore, we can reformulate Proposition 1 as
follows:

The moduleM = Md(v1, . . . , vm) is a lattice (and
therefore discrete)iff the equality in (12) holds, i.e.,

rankZ Md(v1, . . . , vm) = dim Sp(v1, . . . , vm)

and conversely,M is not a lattice (and is dense on a
subgroup ofRn) iff the inequality in (12) holds, i.e.,

rankZ Md(v1, . . . , vm) > dim Sp(v1, . . . , vm).

3.2. The Application to the Frequency Spectrum

Let us now proceed from the general case (with vectors
v1, . . . , vm ∈ Rn) to our particular case of interest, in
which f1, . . . , fm ∈ R2 are frequency vectors in the
spectrum plane (u, v). Let us start with some examples:

Example 1. The support of the spectrum of anyperi-
odicfunction of two variablesp(x, y) is a lattice inR2,
i.e., in the (u, v)-plane; this follows from the decom-
position of the periodic function into a Fourier series.
If p(x, y) is 2-fold periodic, the support of its spec-
trum is a 2D lattice. Ifp(x, y) is 1-fold periodic, like a
line-grating, the support of its spectrum is a 1D lattice
on a straight line through the origin of the (u, v)-plane.
This 1D lattice consists of all the pointskf where f
is the fundamental frequency ofp(x, y) and k runs
through all integers. Note that all functions with the
same period have an identical spectrum support, even
when some (or even most) of the impulses in their spec-
tra happen to have a zero amplitude, as in the case of
p(x) = cos(2πx/T).

Example 2. Let r1(x, y) andr2(x, y) be line gratings,
with fundamental frequency vectorsf1 andf2, respec-
tively, as in Fig. 2. The spectrum of each of them is
an impulse comb; and if we superpose (i.e., multiply)
r1(x, y) andr2(x, y), the spectrum of their superposi-
tion is the convolution of these two combs. The support
of this spectrum convolution (see Fig. 2(f)) is given by:
Md(f1, f2) = {k1f1 + k2f2 | ki ∈ Z}, which is a mod-
ule in the spectrum plane (u, v). If the vectorsf1 and
f2 are linearly independent (overR) in R2, they are
also linearly independent overZ, so thatz= r = 2, and
therefore this module is in fact a lattice of rank 2, as
in Fig. 2(f). Otherwise, i.e., iff1 and f2 are collinear
(=linearly dependent overR), there are two possible
cases:

(1) If f1 andf2 are also linearly dependent overZ (so
that z = r = 1), or in other words iff1 and f2

arecommensurable(i.e., the ratio of their lengths
is rational),5 then Md(f1, f2) is a lattice of rank 1
which is located on the line spanned byf1 andf2.
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(2) If f1 andf2 are linearly independent overZ (so that
z > r ), or in other words iff1 and f2 are incom-
mensurable, then Md(f1, f2) becomes a dense set
of points on the line spanned byf1 andf2, namely:
a module of rank 1 and integral rank of 2.

In the general case, if we superposem line gratings
whose frequency vectors aref i , then the support of their
spectrum convolution is given by the module

Md(f1, . . . , fm) = {k1f1 + · · · + kmfm | ki ∈ Z}
wheref i ∈ R2. (13)

The rank of this module is obviouslyr ≤ 2, since
it is imbedded in the 2D spectral plane (u, v), but as
for its integral rankz we only know thatr ≤ z ≤ m.
Therefore, there exist two possible cases: Ifz > r then
the spectrum support Md(f1, . . . , fm) is not a lattice
but rather a dense module. But as we will see below,
in some cases it may happen thatz = r , so that the
spectrum support Md(f1, . . . , fm) does coincide in the
(u, v)-plane with a 2D or 1D lattice, and is discrete.

In the discussion below we will also need the con-
tinuous counterpart of Md(f1, . . . , fm), namely

Sp(f1, . . . , fm) = {k1f1 + · · · + kmfm | ki ∈ R}
wheref i ∈ R2. (14)

It is clear that Sp(f1, . . . , fm) is a subspace ofR2 (it
may either coincide withR2, if dim Sp(f1, . . . , fm) = 2,
or be a line through its origin, if dim Sp(f1, . . . , fm) = 1;
dim Sp(f1, . . . , fm) = 0 is a degenerate case which oc-
curs when the spectrum only contains the DC impulse
and represents a constant image). We therefore have:
Md(f1, . . . , fm) ⊂ Sp(f1, . . . , fm) ⊆ R2.

4. The Mapping between the Impulse Indices
and their Geometric Locations

We return now to the fundamental Eq. (3) which speci-
fies for every (k1, . . . , km)-impulse in the spectrum con-
volution its impulse location in the (u, v)-plane. Note
that throughout the discussionm counts 1-fold peri-
odic layers (gratings) in the superposition, and each
2-fold periodic layer is counted as two 1-fold periodic
layers. Letfk1,k2,...,km = k1f1 + · · · + kmfm be a point
(vector) in Md(f1, . . . , fm), i.e., the geometric location
in the (u, v)-plane of the (k1, . . . , km)-impulse of the
spectrum convolution. As we can see, the index-vector
(k1, . . . , km) of this impulse defines a point inZm, the

lattice of all the points inRm with integer coordinates:
Zm = {(k1, . . . , km) | ki ∈ Z}. This lattice will hence-
forth be called theindices-lattice. The (k1, . . . , km)-
impulse can therefore be represented in two different
ways: either by its index-vector (k1, . . . , km) ∈ Zm, or
by its geometric location in the (u, v) spectrum plane,∑

ki f i ∈ Md(f1, . . . , fm).
Moreover, for any given set of frequency vectors

f1, . . . , fm ∈ R2 (i.e., for any given superposition of
m gratings) there exists a natural mapping between the
indices of the impulses and their geometric locations.
This mapping from the indices-latticeZm to the cor-
responding module (spectrum support) Md(f1, . . . , fm)
in the (u, v)-plane is given by the linear transforma-
tion (homomorphism)9f1,...,fm: Zm → Md(f1, . . . , fm)
which is defined by

9f1,...,fm(k1, . . . , km) = k1f1 + · · · + kmfm (15)

We will see below that this transformation is closely
related to the moir´es generated in the superposition
of the m gratings defined by the frequency vectors
f1, . . . , fm. Just as an example, we will see that the trans-
formation9f1,...,fm is singulariff the vectorsf1, . . . , fm

represent a singular moir´e (see Section 5.1).
Note that although this linear transformation is only

defined here for integer coordinateski , i.e., between
Zm and Md(f1, . . . , fm), it has a natural continuous
extension to their full enclosing vector spacesRm

and Sp(f1, . . . , fm): By admitting thatki ∈ R rather
than ki ∈ Z, 9f1,...,fm becomes a continuous linear
transformation8f1,...,fm: Rm → Sp(f1, . . . , fm) (where
Sp(f1, . . . , fm) ⊆ R2), which is defined the same way
as9f1,...,fm above.

Obviously, each choice of the vectorsf1, . . . , fm ∈
R2 (the fundamental frequency vectors of them super-
posed gratings) defines a different linear transformation
9f1,...,fm, which maps the(k1, . . . , km)-impulse to a dif-
ferent point (geometric location)k1f1+· · ·+kmfm in the
spectrum plane (u, v). We will first consider9f1,...,fm as
a function of (k1, . . . , km) alone, for an arbitrary fixed
set off1, . . . , fm. Then, in the end of Section 7 below
we will consider9f1,...,fm as a function of the frequency
vectorsf1, . . . , fm as well, and we will see what hap-
pens in the spectrum whenf1, . . . , fm are being varied.

5. Some Needed Notions from Linear Algebra

In order to better understand the properties of the dis-
crete linear transformation (15), we will first study its
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continuous extension8f1,...,fm, whose properties can
easily be determined using some basic notions from lin-
ear algebra. For this end, we will briefly review in the
present section the needed algebraic notions concern-
ing vector spaces and linear transformations between
them. Then, in the following section we will return
to the original discrete transformation (15) and study
its properties by considering it as therestrictionof the
continuous transformation8f1,...,fm, i.e., with ki ∈ Z
rather thanki ∈ R.

5.1. The Image and the Kernel
of a Linear Transformation

Let 8 be a linear transformation from a vector space
V to a vector spaceW, i.e.,8: V → W. Theimageof
8 and thekernelof 8 are defined as:

Im 8 = {w ∈ W | w = 8(v), v ∈ V}
Ker8 = {v ∈ V | 8(v) = 0}

Both Im8 and Ker8 are vector spaces (subspaces
of W andV , respectively), and moreover, there exists
between their dimensions the following relationship
[18, p. 318]

dim Ker8 + dim Im8 = dim V (16)

In the case of our particular transformation8f1,...,fm,
V andW are respectivelyRm andR2 and Im8f1,...,fm is
the subspace Sp(f1, . . . , fm) ⊆ R2. Therefore dimV =
m and dim Im8f1,...,fm = 2 (or: dim Im8f1,...,fm = 1;
the degenerate case of dim Im8f1,...,fm = 0, in which
the spectrum only contains the DC impulse, can be
ignored). Hence we obtain

dim Ker8f1,...,fm = dim V − dim Im8f1,...,fm

= m − 2 (or m − 1) (17)

Therefore, whenm ≥ 3 (or respectively:m ≥ 2)
we obtain dim Ker8f1,...,fm ≥ 1. This means that a
non-trivial subspace ofRm is mapped, under the trans-
formation8f1,...,fm, to the location (0, 0) in the (u, v)-
plane, i.e., to the spectrum origin. We will see shortly
(in Section 6) the significance of this fact.

A linear transformation8: V → W is calledsingu-
lar if there exists a non-zerov ∈ V that is mapped by8
to 0 ∈ W (i.e., if dim Ker8 ≥ 1). The linear transfor-
mation8 is calledregular or non-singularif the only

vector inV which it maps to0 ∈ W is 0 ∈ V , i.e., if
Ker8 = {0} (or still in other words, if dim Ker8 = 0).

Note that in our case, the linear transformation
8f1,...,fm as well as its discrete counterpart9f1,...,fm of
(15) are singulariff the vectorsf1, . . . , fm represent a
singular moiré: Since9f1,...,fm is singulariff there exist
ki ∈ Z not all of them 0 such that

∑
ki f i = 0, (which

also means that the vectorsf1, . . . , fm are linearly de-
pendent overZ), and hence the vectorsf1, . . . , fm rep-
resent a singular moir´e (see Section 2.3).

5.2. Partition of a Vector Space
into Equivalence Classes

Let V be a vector space and letU be a subspace inV .
For any vectorv ∈ V we define

v + U = {v + u | u ∈ U }

v + U is a copy of the subspaceU insideV , parallel
to U , which is shifted (translated) from the origin by
the vectorv. v + U is called theequivalence class(or
coset) of the vectorv in V moduloU (i.e., with re-
spect toU ). The set of all the equivalence classes inV
gives a disjoint and exhaustive partition ofV (that is:
for anyv ∈ V , v is a member of exactly one equiva-
lence class moduloU ). All the vectors within the same
equivalence class are calledequivalent modulo U. An
element chosen from an equivalence class is called a
representativeof its equivalence class.

As an illustration, letV be the 3D Euclidean space
R3, and letU be the 2D subspace ofR3 defined by:
U = {(x, y, z) | z = x + y} (i.e., a plane through
the origin). Then, each equivalence class (moduloU )
in R3 is a parallel translation of theU plane within
R3: (x0, y0, z0) + U = {(x0, y0, z0) + (x, y, z) | z =
x + y}.

Note that the only equivalence class inV which is
itself a vector space is0 + U (the equivalence class of
the vector0), i.e., the subspaceU itself; all the other
classes are parallel translations ofU within the vector
spaceV , and they do not contain the vector0 (the origin
of V). Nevertheless, we will still say that each of the
translated equivalence classes has the same dimension
as the original, unshifted subspaceU : dim(v + U ) =
dimU .

The set of all the equivalence classes moduloU in
V is itself a vector space, which is called thequo-
tient spaceand denotedV/U . Between the dimen-
sions of the vector spacesV , U andV/U there exists
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the following relationship [18, pp. 386–387]

dimU + dim(V/U ) = dim V (18)

Finally, it is important to note that for each subspace
U of V we get a different partition ofV into equiva-
lence classes (moduloU ). We say that each subspace
U of V inducesa different partition ofV into equiva-
lence classes. In the following we will concentrate on
one particular partition ofV , which has some special
properties.

5.3. The Partition of V into Equivalence Classes
Induced byΦ

Let8 be a linear transformation from a vector spaceV
to a vector spaceW, i.e.,8: V → W. Since Ker8 is a
subspace ofV , it follows that Ker8 induces a partition
of V into equivalence classes. This particular partition
of V has an important property: the whole equivalence
class of0 within V , i.e., Ker8, is mapped by8 into
0 ∈ W; and moreover, each of the other equivalence
classes withinV, v + Ker8, is mapped by8 to a
single point within Im8: 8(v+Ker8) = 8(v)+0 =
8(v). Furthermore, two vectorsa, b ∈ V are mapped
by 8 to the same point in Im8 iff they belong to the
same equivalence class ofV (modulo Ker8). This
means that to each equivalence class in this particular
partition ofV there belongs one point in Im8, and vice
versa; the quotient spaceV/Ker8 (i.e., the space of
all the equivalence classes induced by8 in V) and the
subspace Im8 in W are therefore isomorphic. This is
indeed proven by the First Isomorphism theorem [19].

These results can be interpreted, loosely speaking, as
a “dimension preservation law” under the linear trans-
formation8: Assume, for example, that8: R3 → R2

(where8 is surjective). Here dim Im8 = 2, and there-
fore by (16) dim Ker8 = 3− 2 = 1. Therefore Ker8
is a 1D subspace ofR3, namely: a certain straight line
S through the origin. Ker8 (or simply8) induces a
disjoint and exhaustive partition of the 3D spaceR3

into a 2D set (quotient space) containing all the 1D
shifted lines parallel toS (equivalence classes). Each
of these 1D lines is “collapsed” by8 onto a single
point in Im8; and hence the 2D set of lines withinR3

is mapped (isomorphically) onto the whole 2D plane
Im 8. It can be said, loosely speaking, that if 2 dimen-
sions out of the 3 dimensions ofR3 are “used” by8
to span Im8, then the 3− 2 = 1 remaining dimen-
sions are “invested” in each point of Im8, by mapping

onto it a whole 1D portion (shifted line) ofR3. Thus,
although the image of8 is only 2D, each point in it
“absorbs” a whole 1D portion ofR3, so that all the
3 dimensions ofR3 have actually been “used” by8.
The aim of this “naive” description of the “collapsing”
process will become clear later, in Sections 6 and 7.

Note that this “collapsing” effect only occurs if8
is a singular transformation. If8 is non-singular then
Ker8 = {0}, and therefore each point ofV forms an
equivalence class of its own, containing only a single
point. Since dim Ker8 = 0 it follows from (16) that
dim Im8 = dim V , and therefore the transformation
8 in this case is an isomorphism which simply maps
every single point (equivalence class) ofV into a single
point in Im8. Obviously, this is only possible when
dim V ≤ dimW.

5.4. The Application of these Results
to our Continuous Case

Let us return back to our continuous linear transfor-
mation8f1,...,fm: Rm → Sp(f1, . . . , fm) ⊆ R2. Since
Ker8f1,...,fm is a subspace ofRm (with dimensionm−2
or m − 1), it follows from the above discussion that
Ker8f1,...,fm induces a partition ofRm into equivalence
classes (of dimensionm − 2, or respectively,m − 1).
And furthermore, this partition ofRm has the follow-
ing special property: the linear transformation8f1,...,fm

maps the wholem − 2 (or m − 1) dimensional equiv-
alence class of0 in Rm, Ker8f1,...,fm, into the ori-
gin (0, 0) of the (u, v)-plane; and similarly, for every
v ∈ Rm the transformation8f1,...,fm maps the whole
m−2 (orm−1) dimensional equivalence class ofv in
Rm, v + Ker8f1,...,fm, into a single point in the (u, v)-
plane,8f1,...,fm(v).

6. The Discrete MappingΨ
vs. the Continuous MappingΦ

Let us now return to our original discrete transforma-
tion 9f1,...,fm: Zm → Md(f1, . . . , fm) given in Eq. (15).
Looking now at9f1,...,fm as therestriction of 8f1,...,fm

with ki ∈ Z rather thanki ∈ R, we can get a bet-
ter insight into the properties of the discrete mapping
9f1,...,fm.

Many of the algebraic notions which have been de-
fined above for vector spaces in the continuous case
have a similar counterpart also in the discrete case with
ki ∈ Z (see Table 1):
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Table 1. Summary of the continuous terms withki ∈ R and their discrete restrictions
with ki ∈Z.

Continuous terms Equivalent terms in the discrete case
(with ki ∈ R) (with ki ∈ Z)

Rm Zm

Vector independence overR Vector independence overZ
8f1,...,fm : Rm → Sp(f1, . . . , fm) (=R2 orR1) 9f1,...,fm : Zm → Md(f1, . . . , fm)

Im 8f1,...,fm = Sp(f1, . . . , fm) Im9f1,...,fm = Md(f1, . . . , fm)

Ker8f1,...,fm is a subspace ofRm Ker9f1,...,fm is a sub-lattice ofZm

v + Ker8f1,...,fm (n1, . . . , nm) + Ker9f1,...,fm

Like in the continuous case, we can define for the
transformation9f1,...,fm: Zm → Md(f1, . . . , fm) the
imageof9f1,...,fm and thekernelof9f1,...,fm; Ker9f1,...,fm

is a sub-lattice of the indices-latticeZm, and Im9f1,...,fm

is the module Md(f1, . . . , fm), i.e., the spectrum support
in the (u, v)-plane. Furthermore, given a sub-latticeL
of Zm, we can also define the partition of the lattice
Zm into equivalence classes moduloL. The set of all
the equivalence classes(n1, . . . , nm) + L in Zm gives
a disjoint and exhaustive partition ofZm, where each
equivalence class is a parallel translation ofL within
Zm.

Now, if we take as sub-latticeL the kernel of the
transformation9f1,...,fm, we get a special partition of
Zm which has the following property, as in the con-
tinuous case: the transformation9f1,...,fm maps the
whole equivalence class of0 in Zm, Ker9f1,...,fm, into
the origin (0, 0) of the (u, v)-plane; and similarly, for
every (n1, . . . , nm) ∈ Zm the transformation9f1,...,fm

maps the whole equivalence class of (n1, . . . , nm) in
Zm, (n1, . . . , nm) + Ker9f1,...,fm, into a single point
9f1,...,fm(n1, . . . , nm) in the module Md(f1, . . . , fm) on
the (u, v)-plane.

Furthermore, the equivalent of equality (16) for a
discrete linear transformation9 between two modules,
9: M1 → M2, is given by

rankZ Ker9 + rankZ Im 9 = rankZ M1 (19)

This can be proved in the same way as the proof of (16)
in the continuous case of vector spaces (see for example
[18, p. 331 No. 9.23]), by replacing throughout the
proof the term “linear independence overR” by the
term “linear independence overZ”.

Now, in the case of our transformation9f1,...,fm:
Zm → Md(f1, . . . , fm), both M1 and Ker9f1,...,fm are
in fact lattices (and hence by Proposition 1 they have

rankZ = rankR). We get, therefore, from (19)

rank Ker9f1,...,fm + rankZMd(f1, . . . , fm)

= rankZm = m (20)

whereas for the continuous transformation8f1,...,fm we
have by (16):

dim Ker8f1,...,fm + dim Sp(f1, . . . , fm) = dimRm = m

(21)

(where dim Sp(f1, . . . , fm) = 2 or 1).
It is important to note, however, that the original

dimension of Ker8f1,...,fm in Rm is not necessarily pre-
served in its restriction toZm, Ker9f1,...,fm. In fact,
since Ker9f1,...,fm ⊂ Ker8f1,...,fm, it is clear that

rank Ker9f1,...,fm ≤ dim Ker8f1,...,fm (22)

However, the equality in (22) does not always hold.
This can be illustrated by an example in the 3D case:
Let Ker8f1,...,fm be a 2D subspace ofR3 (i.e., a plane
through its origin); its restriction toZ3, Ker9f1,...,fm, is
the lattice of all points ofZ3 included in Ker8f1,...,fm.
It is clear that depending on the plane inclinations in
the spaceR3 Ker9f1,...,fm may have rank= 2 (e.g., if
the plane Ker8f1,...,fm contains both thex- andy-axes
of R3), rank= 1 (e.g., if the plane only contains the
x-axis but forms an irrational angle with they-axis) or
rank= 0 (if the only integral point in the plane is the
origin (0, . . . , 0)).

This is, indeed, an important difference between
the continuous and the discrete cases. In the contin-
uous case the dimension of Ker8f1,...,fm is automati-
cally determined by equality (16). In the discrete case,
however, the rank of Ker9f1,...,fm (the discrete coun-
terpart of Ker8f1,...,fm) is only bounded by inequality
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(22), but its exact value depends also on other param-
eters, namely: the inclinations of the continuous sub-
space Ker8f1,...,fm withinRm, as shown in the example
above. Consequently, the rank of the translated lattice
(equivalence class) which “collapses” on each point
of Im 9f1,...,fm = Md(f1, . . . , fm) in the discrete case
may be smaller than the dimension of the full, continu-
ous translated subspace (equivalence class) which “col-
lapses” on each point of Im8f1,...,fm = Sp(f1, . . . , fm)

in the corresponding continuous case.
The question is, therefore, what happens to the “di-

mension preservation law” in the discrete case? In
fact, the “lost” dimensions of Ker9f1,...,fm are not re-
ally lost, and they are simply taken care of elsewhere,
in Im 9f1,...,fm. Since the right hand sides of (20) and
(21) are equal, (22) implies that

rankZMd(f1, . . . , fm) ≥ dim Sp(f1, . . . , fm) (23)

(where dim Sp(f1, . . . , fm) = 2 or 1). More precisely,
if we note the difference byd, we obtain

dim Ker8f1,...,fm − rank Ker9f1,...,fm

= rankZMd(f1, . . . , fm) − dim Sp(f1, . . . , fm) = d

This means that if due to the inclinations of the sub-
space Ker8f1,...,fm in Rm it happens, as in the example
above, that Ker9f1,...,fm cannot attain the full dimen-
sion of Ker8f1,...,fm, then this “loss” ofd units in
rank Ker9f1,...,fm, the first term of (20), is automati-
cally “balanced” by an identical increase in the second
term of (20): rankZMd(f1, . . . , fm) is increased byd
units with respect to dim Sp(f1, . . . , fm). This means
that the number of independent overZ vectors which
span Im9f1,...,fm is higher byd than the number of inde-
pendent overR vectors which span its enclosing con-
tinuous space, Im8f1,...,fm. This situation is illustrated
in Examples 3 and 4 of Section 8.

Furthermore, if we only look at the right hand side
of the above equation we have

rankZMd(f1, . . . , fm) − dim Sp(f1, . . . , fm) = d
(24)

or equivalently, by (11)

rankZMd(f1, . . . , fm) − rankRMd(f1, . . . , fm) = d

According to Proposition 1 we obtain, therefore, the
following result:

Proposition 2. The moduleMd(f1, . . . , fm), the sup-
port of the spectrum, is a lattice(and therefore discrete)
iff d = 0 (i.e., iff the continuous and discrete dimen-
sions are identical); and conversely, Md(f1, . . . , fm) is
a dense module inIm 8f1,...,fm iff d > 0. (We remember
from (14) that Im 8f1,...,fm, i.e., Sp(f1, . . . , fm), can be
either the whole(u, v)-plane, or a 1D line through its
origin).

As we will see later (in Section 9.1), this important
result provides a criterion for the periodicity of the su-
perposition of periodic layers (functions).

Two interesting consequences follow immediately:

(a) The spectrum support of anon-singularsuperpo-
sition can be a discrete lattice (meaning that the
superposition is periodic; see Section 9.1(b)) only
in the case ofm = 2 gratings (as in Fig. 2). If
m ≥ 3 then dim Ker8 = m− dim Im8 > 0 (since
dim Im8 = 2 or 1), and therefore if rank Ker9
= 0 (= non-singular state) thend = dim Ker8
− rank Ker9 > 0. Therefore form ≥ 3 gratings,
any non-singular case has a dense spectrum sup-
port.

(b) The spectrum support of asingularsuperposition
can be a discrete lattice even ifm ≥ 3. This occurs
whend = 0. In other words, if the spectrum sup-
port is 2D this occurs when rankZ Im9f1,...,fm =
2 and rank Ker9f1,...,fm = m − 2, and if the
spectrum support is 1D (f1, . . . , fm are collinear)
this occurs when rankZ Im9f1,...,fm = 1 and rank
Ker9f1,...,fm = m − 1.

The various possible cases which may occur in the
spectrum support in the superposition ofm = 2, . . . , 6
gratings are summarized in Table 2. Several illustrative
examples are given in Section 8.

7. The Algebraic Interpretation of the Impulse
Locations in the Spectrum Support

7.1. The Global Spectrum Support

Using the terminology introduced in the previous sec-
tions it now becomes clear that the set of all the
impulse locations in the spectrum convolution (the
support of the impulse “forest”) is in fact the module
Md(f1, . . . , fm), i.e., the image of the indices-latticeZm

under the transformation9f1,...,fm. We have seen that
this spectrum support can be either a dense module or a
discrete lattice, and we found necessary and sufficient
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Table 2. Summary of the algebraic structural properties of the various possible cases form = 1, . . . , 6 superposed gratings.
The interpretation of these properties in terms of the image domain is discussed in Section 9.

dim rankZ Spectrum dim rank Sing./
m Frequency vectors Im8 Im 9 support Ker8 Ker9 Not Examples Remarks

1 f1 1 = 1 1D-L 0 0 N Sec. 3 Ex. 1 (1)
------------------------------------------------------------------------------------------------------------------------------------------------------
2 f1, f2 coplanar: 2 = 2 2D-L 0 0 N Sec. 3 Ex. 2 (2)

f1, f2 collinear: 1 = 1 1D-L 1 1 S Sec. 3 Ex. 2 (3)

1 < 2 1D-M 1 0 N Sec. 3 Ex. 2
------------------------------------------------------------------------------------------------------------------------------------------------------
3 f1, f2, f3 coplanar: 2 = 2 2D-L 1 1 S Sec. 8 Ex. 2

2 < 3 2D-M 1 0 N (4)

f1, f2, f3 collinear: 1 = 1 1D-L 2 2 S Sec. 8 Ex. 3

1 < 2 1D-M 2 1 S Sec. 8 Ex. 4

1 < 3 1D-M 2 0 N
------------------------------------------------------------------------------------------------------------------------------------------------------
4 f1, f2, f3, f4 coplanar: 2 = 2 2D-L 2 2 S Sec. 8 Ex. 5

2 < 3 2D-M 2 1 S

2 < 4 2D-M 2 0 N

f1, f2, f3, f4 collinear: 1 = 1 1D-L 3 3 S

1 < 2 1D-M 3 2 S

1 < 3 1D-M 3 1 S

1 < 4 1D-M 3 0 N
------------------------------------------------------------------------------------------------------------------------------------------------------
5 f1, f2, f3, f4, f5 coplanar: 2 = 2 2D-L 3 3 S

2 < 3 2D-M 3 2 S

2 < 4 2D-M 3 1 S Sec. 8 Ex. 6 (5)

2 < 5 2D-M 3 0 N

f1, f2, f3, f4, f5 collinear: 1 = 1 1D-L 4 4 S

1 < 2 1D-M 4 3 S

1 < 3 1D-M 4 2 S

1 < 4 1D-M 4 1 S

1 < 5 1D-M 4 0 N
------------------------------------------------------------------------------------------------------------------------------------------------------
6 f1, f2, f3, f4, f5, f6 coplanar: 2 = 2 2D-L 4 4 S Sec. 8 Ex. 7

2 < 3 2D-M 4 3 S

2 < 4 2D-M 4 2 S Sec. 8 Ex. 8 (6)

2 < 5 2D-M 4 1 S

2 < 6 2D-M 4 0 N

f1, f2, f3, f4, f5, f6 collinear: 1 = 1 1D-L 5 5 S

1 < 2 1D-M 5 4 S

1 < 3 1D-M 5 3 S

1 < 4 1D-M 5 2 S

1 < 5 1D-M 5 1 S

1 < 6 1D-M 5 0 N

Legend: 1D= one dimensional; 2D= two dimensional; L= discrete lattice; M= dense module; S= singular; N= non-
singular. By “coplanar” is meant: coplanar but non-collinear.

(Continued on next page).
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Table 2. (Continued.)

Remarks:
1. A single grating; no superposition (and no moir´e).
2. This is the only non-singular superposition with a discrete spectrum support.
3. A singular moiré between 2 gratings occursiff f1, f2 are collinear (i.e.,α = 0◦ or 180◦) and commensurable.
4. Note that 2D-M includes also the special case in which the 2D spectrum support is dense in one direction and discrete in the other.

For instance, in the case of 3 coplanar frequency vectors this may occur when 2 of the vectors are collinear but incommensurable,
while the third vector is oriented in a different direction.

5. To this category belongs the singular superposition of 5 identical gratings with equal angle differences of 72◦.
6. To this category belongs the singular superposition of 3 identical screens with angle differences of 30◦ (or 60◦), which is the traditional

screen combination used in color printing.
Note that each pair of non-collinear gratings may be counted also as one 2D screen. For example,m = 4 corresponds either to 4
superposed gratings or to 2 superposed screens, etc.

conditions for either case. Table 2 gives a systematic
summary of the different possible cases in the super-
position ofm = 2, . . . , 6 gratings (or equivalently, up
to three 2-fold periodic layers like dot-screens). The
interpretation of the algebraic structure of the spectrum
support in terms of the superposition in the image do-
main will be discussed in Section 9.

7.2. The Individual Impulse Clusters

We now proceed from the global spectrum support to
the support of each of the individual impulse clusters.
The cluster of impulse-locations which fall on the spec-
trum origin when the (k1, . . . , km)-moiré reaches a sin-
gular state is simply the image under9f1,...,fm of the
lattice L = Ker9f1,...,fm, i.e., ImL. Similarly, the
other clusters of impulse-locations which are simul-
taneously formed in the spectrum plane are the images
of the other equivalence classes (n1, . . . , nm) + L in
the indices-latticeZm. Let us now explain this in more
detail; several illustrative examples will be given in the
next section.

In Section 2.3 we defined a singular moir´e as a con-
figuration of the superposed layers in which the moir´e
period is infinitely large (i.e., its frequency is zero).
More formally, a (k1, . . . , km)-moiré reaches a singu-
lar state whenever the location of its fundamental im-
pulse, the (k1, . . . , km)-impulse in the spectrum convo-
lution, coincides with the spectrum origin (0, 0) (i.e.,
whenever the frequency vectorsf1, . . . , fm of the su-
perposed layers are such that

∑
ki f i = 0). We have

seen, however, that when a (k1, . . . , km)-moiré reaches
a singular state, not only the (k1, . . . , km)-impulse it-
self falls on the spectrum origin, but rather, a whole
infinite impulse-cluster around the spectrum origin.
This cluster clearly contains the 1D comb formed by

the (nk1, . . . , nkm)-impulses with all integer values of
n, but in the general case this cluster may contain
other impulses, too, and it may be 2D (as in Fig. 4)
or even of a higher rank. How can we characterize
all the impulses which belong to this cluster (i.e., fall
on the spectrum origin)? Using our new terminology,
when the frequency vectorsf1, . . . , fm are such that a
(k1, . . . , km)-singular moiré occurs, the linear transfor-
mation9f1,...,fm maps to the spectrum origin not only
the point (k1, . . . , km) but the whole sub-latticeL ⊂Zm

induced by9f1,...,fm, namely: L = Ker9f1,...,fm. The
sub-latticeL corresponds, therefore, to the impulse-
cluster which collapses onto the spectrum origin at the
(k1, . . . , km)-singular state, and its points (integerm-
tuples) are the indices of the impulses of this cluster.
This is illustrated in the examples in the next section.

However, as shown in Fig. 4, in the proximity of a
(k1, . . . , km)-singular moiré state, apart from the main
cluster of the (k1, . . . , km)-impulse which is formed at
the spectrum origin, other impulse clusters are also si-
multaneously formed elsewhere in the spectrum. Let
us see now in detail what is the nature of these im-
pulse clusters, and how we can characterize the im-
pulses which belong to each of the clusters. We have
seen above that the transformation9f1,...,fm induces a
partition of the indices-latticeZm into disjoint and ex-
haustive equivalence classes (n1, . . . , nm) + L, which
are translations of the sub-latticeL in Zm (the sub-
latticeL itself is the equivalence class0+ L which con-
tains all the points ofZm that are mapped by9f1,...,fm

to the spectrum origin). We have also seen that the
transformation9f1,...,fm has the special property that it
maps every equivalence class (n1, . . . , nm) + L of the
indices-latticeZm into a differentsingle pointwithin
the spectrum plane. This explains why an infinite (but
still denumerable) number of clusters are formed in
the spectrum simultaneously with the main cluster of
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the (k1, . . . , km)-moiré: each of these clusters is simply
the image under9f1,...,fm of a different equivalence class
(n1, . . . , nm)+L of the indices-latticeZm. The indices
of the impulses in each of these clusters are therefore
a translated replica of the indices of the impulses of
L, each of which being incremented by a “cluster rep-
resentative” (n1, . . . , nm) (see figures in the examples
below). The location of each cluster (n1, . . . , nm) + L
in the spectrum is given by9f1,...,fm(n1, . . . , nm)+0 =
9f1,...,fm(n1, . . . , nm), i.e., it is shifted from the spec-
trum origin by9f1,...,fm(n1, . . . , nm).

As for the relationship between the rank of a single
cluster and the rank of the whole spectrum support,
Md(f1, . . . , fm), we have from (20):

rankL + rankZMd(f1, . . . , fm) = m (25)

These ranks depend, of course, on the specific
choice of the frequency vectorsf1, . . . , fm of the su-
perposed layers: since the module Md(f1, . . . , fm) is
generated by the frequency vectorsf1, . . . , fm ∈ R2,
rankZMd(f1, . . . , fm) is simply the maximum number
of vectors amongf1, . . . , fm ∈ R2 which are still lin-
early independent overZ. RankL complements this
number tom, the number of superposed gratings, so
that it indicates the “redundancy level” of the superpo-
sition, i.e., the number ofdependentvectors (layers),
which do not further enrich the spectrum support, but
are rather “invested” in its existing points (and hence
enrich each of the clusters).

It is interesting to note that for different singular
moirés different configurations of clusters are formed
in the spectrum (in general, either the assignment of
impulses to each cluster or the cluster locations in the
spectrum or both may differ). This is due to the fact
that for different sub-lattices Ker9f1,...,fm, the indices-
latticeZm is partitioned into a different set of equiva-
lence classes.

Finally, let us see what happens in the spectrum when
we start moving away from the (k1, . . . , km)-singular
state. When we slightly modify one or more of the
frequency vectorsf1, . . . , fm of the superposed layers,
each of the clusters in the spectrum starts “spreading
out,” revealing thus the infinity of points from which
it is composed (Figs. 6–12).6 In particular, the main
cluster which spreads out around the spectrum origin
enables us to visualize the impulses which correspond
to the moiré (which originate from Ker9f1,...,fm in the
singular state of the moir´e). Depending on which of the
vectorsf1, . . . , fm have been changed and how, the clus-
ters in the spectrum may bepartially spread-out(for

example, when only one dimension of the cluster has
been spread out, and each point still represents an infin-
ity of impulses); orfully spread-out(when each point
of the cluster represents exactly one single impulse, so
that no two impulses in the cluster fall on the same point
in the spectrum). It should be noted that although in the
examples we have seen previously (Fig. 4) the spread-
out moiré clusters in the (u, v)-plane were always 2D or
1D discrete lattices, in the general case each spread-out
cluster in the spectrum may also be a dense module. If
we denote by9f1,...,fm|L the restriction of transforma-
tion 9f1,...,fm which is only defined betweenL ⊂ Zm

and ImL ⊂ Md(f1, . . . , fm), then when the moir´e clus-
ter is fully spread-out we have Ker9f1,...,fm|L = {0} and
therefore from (19): rankZ Im L = rankL. In other
words, the integral rank of an individual fully spread-
out cluster in the spectrum equals the rank ofL =
Ker9f1,...,fm in Zm. Moreover, according to (25) this
means that: rankZ Im L = m − rankZMd(f1, . . . , fm).

Therefore, when the rank ofL is r > 2, each fully
spread-out cluster within the (u, v)-plane becomes a
module with rankZ Im L = r > 2, i.e., a dense
module in the 2D spectrum plane. See for example
the clusters in Fig. 11 (in Example 7 below), where
rank L = 6 − 2 = 4. The interpretation of this prop-
erty of the clusters in terms of the image domain will
be discussed in Section 9.2.

Note that even when each of the clusters in itself is a
discrete lattice, their intertwined impulses throughout
the spectrum are not necessarily located on a common
lattice, and their support may be an everywhere dense
module.

8. Examples

In this section we present a number of examples to illus-
trate the above discussion, and to demonstrate the con-
tribution of the algebraic approach developed above to
the understanding of the structure of the spectrum sup-
port. In particular, these examples illustrate the clus-
terization phenomenon, and the identification of the
impulses which participate in each of the clusters in
the spectrum. We start in Example 1 with the simplest
possible case, the superposition-moir´e between two
gratings; in this case the algebraic situation is straight-
forward, and it is presented rather informally, by way
of introduction. Then in Examples 2–4 we present var-
ious moiré configurations between 3 gratings, since in
the case of 3 gratings all the algebraic structures occur
in the 3D space and are therefore easy to understand.
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Examples 5–8 illustrate some more interesting cases
which occur in higher dimensions. It may be instructive
to track each of the examples in the synoptic summary
of the different possible cases presented in Table 2.

Example 1. The simplest possible example consists
of the superposition of 2 gratings. Let us illustrate this
situation with the case of the (3,−2)-moiré, a 3rd order
moiré which becomes visible when the (3,−2)-impulse
in the spectrum convolution is located inside the visi-
bility circle, i.e., when the frequency vectorf2 of the
second grating is close to32f1 (see the vector diagram
in Fig. 5(b)). This (3,−2)-impulse is the fundamental
impulse of a 1D-cluster through the spectrum origin,
which represents the moir´e in question; but in the same
time other 1D clusters are also formed in the spectrum,
in parallel to the main 1D cluster. Note that when
α = 0◦ and the frequency vectorf2 attains exactly the
point f2 = 3

2f1 each of the 1D clusters collapses into a
single point on theu-axis, and in particular, the main
cluster collapses into the spectrum origin, so that the
(3, −2)-moiré becomes singular (and hence invisible
in the layer superposition).

Let us analyze this example to illustrate the algebraic
discussion of the preceding sections. In this case the
indices-lattice (the lattice of all the indices of the im-
pulses obtained in the spectrum convolution) isZ2, and
the linear transformation9f1,f2 which maps each index
pair (k1, k2) ∈ Z2 into the geometric location of the
(k1, k2)-impulse in the (u, v)-plane is given according
to (15) by

9f1,f2(k1, k2) = k1f1 + k2f2

Figure 5(a) illustrates the indices-latticeZ2 and its
partition into equivalence classes induced by the sub-
lattice (3k, −2k). This sub-lattice itself becomes the
clustern = 0 of the partition, containing the indices
of the fundamental impulse of the (3,−2)-moiré and
all its harmonics. The indices of this 0th cluster are
given byL = {(3k, −2k) | k ∈ Z}, and the indices of
thenth cluster are given in this case by(−n, n) + L.
Figure 5(b) shows the image of the transformation9f1,f2

in the (u, v)-plane, i.e., the spectrum support, when
the vectorsf1, f2 arealmostin the singular position (α
is almost 0◦). Whenf1, f2 areexactlyin the singular
position,9f1,f2 maps each equivalence class ofZ2 into
a single point on theu-axis (the point into which the
respective 1D cluster in the spectrum collapses). But as
f1, f2 start moving off the singular state, each of these

1D clusters starts spreading out and gives a comb of
impulses in the spectrum (as in Fig. 5(b)).

Example 2. (1D clusters on a 2D support in the (u, v)-
plane): Consider the (1, 1, 1)-singular moir´e which oc-
curs between 3 gratings when their frequency vectors
are given, in polar coordinates, by:f1 = (0◦, 32), f2 =
(120◦, 32), f3 = (240◦, 32), i.e., in Cartesian co-
ordinates: f1 = (32, 0), f2 = (−16, 16

√
3), f3 =

(−16, −16
√

3) (see Fig. 6(a)).7 Since in this casef3

is a linear combination, both overZ and overR, of
f1 and f2 (i.e., f3 = − f1 − f2), we have here: rankZ
Md(f1, f2, f3) = dim Sp(f1, f2, f3) = 2. This means by
(24) thatd = 0, and the spectrum support, Md(f1,

f2, f3), is in this singular case a discrete lattice of rank
2 (see Fig. 6(a)). Furthermore, from (25) we learn that
each point of this lattice represents a collapsed lattice
(cluster) whose rank is: rankL = 3 − 2 = 1. And
indeed, when the 3 superposed gratings slightly move
away from the singular moir´e state (i.e., when their
frequency vectorsf i are slightly modified), each of the
1D clusters in the spectrum starts spreading out, and in
the image domain a 1D moir´e becomes visible in the
superposition, as indicated by the low frequencies of
the 1D spread-out cluster around the spectrum origin
(Fig. 6(b)).

In fact, this explanation already shows how the struc-
tural properties of the spectrum support can be deter-
mined using (24) and (25). However, in order to il-
lustrate the algebraic discussion of the preceding sec-
tions, and particularly, to illustrate the assignment of
impulses to each cluster, we will analyze this example
in full detail. The linear transformation9f1,f2,f3 is given
in this singular case by

9f1,f2,f3(k1, k2, k3) = k1f1 + k2f2 + k3f3

= k1(32, 0) + k2(−16, 16
√

3)

+ k3(−16, −16
√

3) (26)

Let us compare the transformation9f1,f2,f3 itself
with its continuous counterpart,8f1,f2,f3: R

3 → R2.
Ker8f1,f2,f3, i.e., the subspace ofR3 which is mapped
by8f1,f2,f3 into the origin (0, 0) of the (u, v)-plane, con-
tains all the points (k1, k2, k3) ∈ R3 which solve the
following set of two linear equations, obtained from
(26): {

32k1 − 16k2 − 16k3 = 0

16
√

3k2 − 16
√

3k3 = 0
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Figure 5. A schematic illustration of the transformation9f1,f2(k1, k2) = k1f1 + k2f2 which maps the indices-latticeZ2 (top) into the (u, v)-
spectrum plane (bottom), in the case of a two grating superposition withf2 = 3

2 f1 andα ≈ 0◦. (a) Schematic view of the indices-lattice,
Z2. The dashed lines illustrate the 2k1 + 3k2 = n diagonals (=equivalence classes). (b) The image of the mapping9f1,f2 in the (u, v)-plane,
showing the corresponding impulse clusters in the spectrum support, slightly beforeα reaches 0◦; black dots indicate the impulse locations. The
nth diagonal in (a) is mapped into thenth comb (1D-cluster) in the (u, v) spectrum (b).
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Figure 6. The singular 3-grating superposition of Example 2 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 2D lattice, each point of which represents a collapsed cluster. (b) Slightly off the singular state: each of the
clusters in the spectrum is spread out, clearly demonstrating its 1D nature. Encircled points denote the locations of the fundamental impulses of
the 3 original combs. Large points represent convolution impulses of the first order, and smaller points represent convolution impulses of higher
orders. Only impulses up to the 5th order are shown.

The solution of this set of equations is: Ker8f1,f2,f3

= {(k1, k2, k3) | k1 = k2 = k3, ki ∈ R} which means
that Ker8f1,f2,f3 is the diagonal linez = y = x of R3.
Therefore,R3 is partitioned by8f1,f2,f3 into an infinite
2D set of translated lines (1D equivalence classes) par-
allel to the linez = y = x. Since dim Ker8f1,f2,f3 = 1
we have here dim Im8f1,f2,f3 = 3 − 1 = 2, and indeed
the continuous transformation8f1,f2,f3 maps into each
point of the 2D (u, v)-plane a whole 1D line from this
decomposition ofR3.

Returning now to the discrete case whereki ∈Z,
it is clear that in this example the latticeL =
Ker9f1,f2,f3 = Ker8f1,f2,f3 ∩Z3 is indeed a lattice of
rank 1 on the diagonal linez = y = x, given by
L = {(k1, k2, k3) | k1 = k2 = k3, ki ∈Z}, so there is

no loss of dimensions in this case. The latticeL con-
sists of the indices of all the impulses of the 1D clus-
ter which collapses, precisely at the singular state,
on the origin of the spectrum:{. . . , (−1, −1, −1),

(0, 0, 0), (1, 1, 1), . . .}. This cluster can be seen spread-
out around the spectrum origin in Fig. 6(b), which
shows the spectrum slightly off the singular state.

Each of the other clusters in this spectrum consists
of the impulses of one parallel translation ofL within
Z3: (n1, n2, n3) + L = {(n1, n2, n3) + (k1, k2, k3) |
k1 = k2 = k3, ki ∈Z}; each of these translated lattices
of rank 1 is mapped by9f1,f2,f3 into a single point
9f1,f2,f3(n1, n2, n3) within the (u, v) spectrum plane.
For example (see Fig. 6): on top of the funda-
mental impulse of the first grating, which is the
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(1, 0, 0)-impulse in the spectrum convolution (lo-
cated in the(u, v)-plane atf1 = (32, 0)), collapses the
whole 1D cluster(1, 0, 0) + L, i.e.,{. . . , (0, −1, −1),

(1, 0, 0), (2, 1, 1), . . .}. This cluster can be seen spread-
out around the impulsef1 in Fig. 6(b).

Example 3. (2D clusters on a 1D support in the (u, v)-
plane): Consider the (1, 1, 1)-singular moir´e which oc-
curs between 3 gratings whose frequency vectors are:
f1 = f2 = (32, 32), f3 = (−64, −64) (see Fig. 7(a)). In
this case the vectorsf1, f2, f3 in the (u, v)-plane are
collinear (linearly dependent overR), and also com-
mensurable (linearly dependent overZ). We have,
therefore: dim Sp(f1, f2, f3) = rankZMd(f1, f2, f3) =
1, so that the spectrum support, Md(f1, f2, f3), is in
this singular case a discrete lattice of rank 1. More-
over, from (25) we find that each point of this lattice

Figure 7. The singular 3-grating superposition of Example 3 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 1D lattice, each point of which represents a collapsed cluster. (b) Slightly off the singular state: each of the
clusters in the spectrum is spread out, clearly demonstrating its 2D nature. Only impulses up to the 3rd order are shown.

represents, in fact, a collapsed lattice (cluster) whose
rank is: rankL = 3 − 1 = 2. And indeed, when the
3 superposed gratings move a little from the singular
moiré state, each of the 2D clusters in the spectrum
spreads out, and in the image domain a 2D moir´e be-
comes visible in the superposition, as indicated by the
low frequencies of the 2D spread-out cluster around
the spectrum origin (see Fig. 7(b)).

Let us analyze this example in more detail. In this
case the linear transformation9f1,f2,f3 is given by

9f1,f2,f3(k1, k2, k3) = k1(32, 32) + k2(32, 32)

+ k3(−64, −64)

We will consider, again, both this transformation
and its continuous counterpart,8f1,f2,f3. The kernel of
8f1,f2,f3 is the solution of the equation 32k1 + 32k2 −
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64k3 = 0 with ki ∈ R, which is the 2D plane
2z = x + y in R3. ThereforeR3 is partitioned by
8f1,f2,f3 into an infinite 1D set of translated planes (2D
equivalence classes) which are parallel to the plane
2z = x + y. Since dim Ker8f1,f2,f3 = 2, we have
here dim Im8f1,f2,f3 = 3 − 2 = 1, and indeed the im-
age of8f1,f2,f3 is the 1D line which is spanned in the
(u, v)-plane byf1, f2, f3, namely:v = u. Therefore the
continuous transformation8f1,f2,f3 maps into each point
of this line in the (u, v)-plane a whole 2D plane from
the decomposition ofR3.

Returning now to the discrete case, it is clear that
the kernelL of the discrete mapping9f1,f2,f3 is the 2D
lattice: L = {(k1, k2, k3) | 2k3 = k1 + k2, ki ∈ Z}
which is imbedded in the plane 2z = x + y. Therefore
in this case there is no loss of dimensions, and the
cluster which falls on the spectrum origin (as well as
all the other clusters) is of a 2D nature (see Fig. 7(b),
which shows the spread-out clusters in the spectrum
slightly off the singular state).8

The support of all the collapsed clusters in the spec-
trum (precisely at the singular state) is the image of the
transformation9f1,f2,f3, i.e., the module given by (13):

Md(f1, f2, f3) = {k1(32, 32) + k2(32, 32)

+ k3(64, 64) | ki ∈ Z}

As we can see, in this case the support of the spec-
trum forms a lattice of rank 1; and each point of this
lattice consists of a whole 2D cluster of impulses, rep-
resenting one equivalence class (translation of the 2D
lattice L) from the partition induced by9f1,f2,f3 in the
indices-latticeZ3.

Example 4. (1D clusters on a 1D support in the (u, v)-
plane): This example illustrates what happens in a case
similar to Example 3 when the latticeL = Ker9f1,f2,f3

which collapses on the spectrum origin has a lower
rank than its continuous counterpart Ker8f1,f2,f3, due
to an irrational inclination of the plane Ker8f1,f2,f3

within R3. Consider the singular moir´e which oc-
curs between 3 gratings whose frequency vectors are:
f1 = f2 = (32, 32), f3 = q · f1 whereq, unlike in
Example 3, is an irrational number, say−√

2 (see
Fig. 8(a)). In this case the vectorsf1, f2, f3 in the (u, v)-
plane are linearly dependent overR, but only two of
them are linearly dependent overZ. We therefore have:
dim Sp(f1, f2, f3) = 1 < rankZMd(f1, f2, f3) = 2, so
that the spectrum support, Md(f1, f2, f3), is in this case
a dense module of rankZ = 2 imbedded on the 1D

line Sp(f1, f2, f3). Moreover, from (25) we get that
each point of this module is, in fact, a collapsed lat-
tice (cluster) whose rank is: rankL = 3 − 2 = 1.
And indeed, if the 3 superposed gratings move a little
from the singular moir´e state, each of the 1D clusters
in the spectrum spreads out, and in the image domain
a 1D moiré becomes visible in the superposition, as
indicated by the low frequencies of the 1D spread-out
cluster around the spectrum origin (see Fig. 8(b)).

Let us analyze this example in more detail, com-
paring it to Example 3. In the present case the linear
transformation9f1,f2,f3 is given by

9f1,f2,f3(k1, k2, k3) = k1(32, 32) + k2(32, 32)

+ k3(−32
√

2, −32
√

2)

The kernel of the continuous counterpart of this
transformation,8f1,f2,f3, is the solution of the equation
32k1 + 32k2 − 32

√
2k3 = 0 with ki ∈ R, which is the

2D plane
√

2z = x + y in R3. ThereforeR3 is parti-
tioned by8f1,f2,f3 into an infinite 1D set of translated
planes (2D equivalence classes) which are parallel to
the plane

√
2z = x+ y. The image of8f1,f2,f3 is the 1D

line which is spanned in the (u, v)-plane byf1, f2, f3,
namely:v = u. Therefore, like in Example 3, the con-
tinuous transformation8f1,f2,f3 maps into each point of
this line in the (u, v)-plane a whole 2D plane from the
decomposition ofR3.

Let us now return to the discrete case. Although the
kernel of the continuous8f1,f2,f3 is still a 2D plane in
R3, as in Example 3, we see that in the present case,
due to the irrational inclination of this plane, its discrete
restriction toki ∈ Z (i.e., the latticeL = Ker9f1,f2,f3

which collapses to the spectrum origin) has a lower rank
than 2. In fact, the only points of the indices-latticeZ3

which fall on the plane
√

2z = x+y are those for which
z = 0, so that we get:L = Ker9f1,f2,f3 = {(k1, k2, k3) |
k2 = −k1, k3 = 0, ki ∈Z}. Therefore, in this case the
cluster which falls on the spectrum origin is of rank
1: L = {. . . , (−1, 1, 0), (0, 0, 0), (1, −1, 0), . . .}
(see Fig. 8(b), which shows the spread-out clus-
ters slightly off the singular state). Similarly, a 1D
cluster which consists of one parallel translation of
L within Z3 collapses on each point in the spec-
trum support. For example (see Fig. 8(b)), on the
fundamental impulse of the first grating, which is
the (1, 0, 0)-impulse in the spectrum convolution,
collapses the whole 1D cluster(1, 0, 0) + L, i.e.,
{. . . , (0, 1, 0), (1, 0, 0), (2, −1, 0), . . .}.
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Figure 8. The singular 3-grating superposition of Example 4 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 1D module (of integral rank 2), each point of which represents a collapsed cluster. (b) Slightly off the singular
state: each of the clusters in the spectrum is spread out, clearly demonstrating its 1D nature. Only impulses up to the 3rd order are shown.

The support of all these collapsed clusters in the
spectrum (precisely at the singular state) is the image
of the transformation9f1,f2,f3, i.e., the module of rankZ
= 2 given by (13)

Md(f1, f2, f3) = {k1(32, 32) + k2(32, 32)

+ k3(−32
√

2, −32
√

2) | ki ∈ Z}

This module is imbedded in the image of the contin-
uous transformation8f1,f2,f3 in the (u, v)-plane, which
is the same 1D line as in Example 3:

Sp(f1, f2, f3) = {(u, v) ∈ R2 | v = u}.

In this example we therefore have: dim Sp(f1, f2, f3)

= 1< rankZMd(f1, f2, f3) = 2. This means that in this

case the support of the spectrum forms a dense mod-
ule of rankZ = 2 which is imbedded on the 1D line
v = u; and each point of this module consists of a
whole 1D cluster, representing one equivalence class
(translation of the 1D latticeL) from the partition in-
duced by9f1,f2,f3 in the indices-latticeZ3.

As we can see in this example, the “loss” of one di-
mension in the discrete Ker9f1,f2,f3 due to an irrational
inclination of the 2D plane Ker8f1,f2,f3 in R3 (i.e., the
loss of one dimension in each cluster) is “compensated”
in the image of9f1,f2,f3 in the (u, v)-plane by an incre-
ment of 1 in the integral rank of this module: whereas
in Example 3 Im9f1,f2,f3 was a module of rankZ = 1
imbedded on the 1D line Im8f1,f2,f3 (namely a lattice
of rank 1), in the present case Im9f1,f2,f3 is a dense
module of rankZ = 2 which is imbedded on the same
line Im8f1,f2,f3. (Note that the continuous Ker8f1,f2,f3
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and Im8f1,f2,f3 have both the same dimensions as in
Example 3; only the dimensions of their discrete coun-
terparts have changed).

Example 5. (2D clusters on a 2D support in
the (u, v)-plane): Consider the(2, 0, −1, 1)-singular
moiré which occurs between 2 screens (or 4 grat-
ings) when their frequency vectors are given by:f1 =
(32, 0), f2 = (0, 32), f3 = (32, 32) andf4 = (−32, 32)
(see Fig. 9(a)). It is easy to see that in this casef3,
f4 are linear combinations, both overZ andR, of f1,
f2 (namely: f3 = f1 + f2, f4 = f2 − f1), while f1 and
f2 are independent. Therefore, we have here: rankZ
Md(f1, f2, f3, f4) = dim Sp(f1, f2, f3, f4) = 2. This
means that the spectrum support, Md(f1, f2, f3, f4), is
in this singular case a discrete lattice of rank 2. And
furthermore, from (25) we get that each point of this

Figure 9. The singular 4-grating superposition of Example 5 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 2D lattice, each point of which represents a collapsed cluster. (b) Slightly off the singular state: each of the
clusters is spread out, clearly demonstrating its 2D nature. Only impulses up to the 3rd order are shown.

lattice represents, in fact, a collapsed lattice (cluster)
whose rank is: rankL = 4 − 2 = 2.

It should be noted that in general it is not always
practical to find arithmetically the Cartesian coordi-
nates of the frequency vectorsf i and to determine the
lattice L. In such cases, a computer program which
calculates the comb convolutions in the spectral do-
main can be helpful. Given the polar coordinates of the
frequency vectorsf i (i.e., the frequencies and the direc-
tions of each superposed layer) this program calculates
the spectral convolution (up to a specified number of
harmonics on each impulse comb), using the rules of
comb convolution (Eqs. (3) and (4)). The resulting im-
pulse configuration (= spectrum support) is graphically
displayed in the (u, v)-spectrum, showing the location
(and optionally also the index) of each impulse. This is
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how the figures illustrating the examples of this section
have been prepared. This method is useful both for get-
ting a general overview of the spectrum support, and
for determining the indices of any particular impulses
in the spectrum. This is demonstrated in the following
example:

Example 6. (1D clusters on a dense 2D support in
the (u, v)-plane): Consider the(1, 1, 1, 1, 1)-singular
moiré which occurs in the superposition of 5 gratings
with identical frequencies, and angle differences of
360◦/5 = 72◦. In this case the arithmetic calculation
of the Cartesian coordinates is more tricky (the values
sin 72◦ = 1

4

√
10+ 2

√
5 and cos 72◦ = 1

4(
√

5− 1) can
be obtained from the radiuses of the circumscribed and
the inscribed circles in a regular polygon [17, Vol. 7,
p. 221, “Polygon”]). However, the spectrum support

Figure 10. The singular 5-grating superposition of Example 6 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here an everywhere dense 2D module, each point of which represents a collapsed cluster. The spectrum in (b) shows
an enlarged view of the central part of the spectrum (a), slightly off the singular state: each of the clusters in the spectrum is spread out, clearly
demonstrating its 1D nature. Only impulses up to the 3rd order are shown.

obtained by computer immediately gives us an insight
into the nature of this case. Figure 10(a) shows the
spectrum support exactly at the specified singular con-
figuration (taking the frequency of each layer to be
32). Visibly, this spectrum support isnot a discrete
lattice, but rather an everywhere dense module on the
(u, v)-plane. In order to visually identify the individ-
ual impulses belonging to each of the collapsed clusters
in the singular state, we move slightly off the singular
state (by modifying the values of one or more of the fre-
quency vectors) so that the impulse clusters in the spec-
trum become fully spread out (see Fig. 10(b)). As we
can see here, each cluster is only of rank 1; this implies
(according to (25)) that rankZ Im9f1,...,f5 = 5− 1 = 4,
and since dim Im8f1,...,f5 is obviously only 2, it follows,
indeed, that the spectrum support of this singular state
is everywhere dense on the (u, v)-plane (see Table 2).
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Example 7. (2D dense clusters on a discrete 2D sup-
port in the (u, v)-plane): Consider the singular ratio-
nal superposition of 3 dot-screens, whose frequency
vectors are given by:f1 = (32, 0), f2 = (0, 32), f3 =
( 4

5 · 32, 3
5 · 32), f4 = (− 3

5 · 32, 4
5 · 32), f5 = ( 4

5 · 32,
− 2

5 · 32) andf6 = ( 2
5 · 32, 4

5 · 32). The linear transfor-
mation9f1,...,f6 is given here by

9f1,...,f6(k1, k2, k3, k4, k5, k6)

= k1(32, 0) + k2(0, 32)

+ k3
(

4
5 · 32, 3

5 · 32
) + k4

(− 3
5 · 32, 4

5 · 32
)

+ k5
(

4
5 · 32, − 2

5 · 32
) + k6

(
2
5 · 32, 4

5 · 32
)

In order to find Ker8f1,...,f6 for the continuous case,
we have to solve the following set of two linear

Figure 11. The singular 3-screen superposition of Example 7 (top) and its spectrum support (bottom). (a) Exactly at the singular state: the
spectrum support forms here a 2D lattice, each point of which represents a collapsed cluster. The spectrum in (b) shows an enlarged view of the
central part of the spectrum (a), showing the spread-out main cluster slightly off the singular state: this cluster forms in the (u, v)-plane a dense
2D module. Only impulses up to the 3rd order are shown.

equations fork1, . . . , k6 ∈ R:

{
32k1 + 4

5 · 32k3 − 3
5 · 32k4 + 4

5 · 32k5 + 2
5 · 32k6 = 0

32k2 + 3
5 · 32k3 + 4

5 · 32k4 − 2
5 · 32k5 + 4

5 · 32k6 = 0

The solution of this set of equations is:{(k1, k2,
k3, k4, k5, k6) | 2k5 = −2k1 + k2 − k3 + 2k4, 2k6 =
−k1 − 2k2 − 2k3 − k4, ki ∈ R}. This is clearly a 4D
volume (with 4 free variables) in the 6D spaceR6. Fur-
thermore, the latticeL, which is the discrete solution
for9f1,...,f6 (i.e., withki ∈ Z), is also a 4D lattice imbed-
ded in this volume; this means that there is no loss of
dimensions, so that the spectrum support is indeed a
discrete lattice, and each cluster in the 2D spectrum is
a dense module with rankZ = 4.
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Figure 12. The singular 3-screen superposition (top) and the spectrum support (bottom) of Example 8: the traditional 3-screen combination
used for color printing. (a) Exactly at the singular state: the spectrum support forms here an everywhere dense 2D module, each point of which
represents a collapsed cluster. The spectrum in (b) shows an enlarged view of the central part of the spectrum (a), slightly off the singular state:
each of the clusters is spread out, clearly demonstrating its 2D lattice structure. Only impulses up to the 3rd order are shown.

If we closely look at the points (impulses) of the
main cluster around the origin (for example, all the
cluster impulses up to order 2), we can see that in
this case there occur simultaneously several different
moirés (isocentric moir´es, i.e., moir´es which have the
same singular state): first, we have a 3-screen moir´e,
spanned by the(0, 1, −1, 0, 1, 0)-impulse and its or-
thogonal counterpart,(1, 0, 0, 1, 0, −1); and then we
have a 2-screen moir´e between each of the 3 screen
pairs: a moiré spanned by the(1, 2, −2, −1, 0, 0)-
impulse and its orthogonal counterpart; a moir´e
spanned by the(2, 0, 0, 0, −2, −1)-impulse and its
orthogonal counterpart; and a moir´e spanned by
the (0, 0, 2, 0, −1, −2)-impulse and its orthogonal
counterpart. To each of these moir´es belongs a 2D

sub-cluster (sub-lattice of the 4D latticeL); obviously,
all of them collapse together onto the spectrum origin
at the singular state.

Example 8. (2D discrete clusters on a dense 2D sup-
port in the (u, v)-plane): Consider the singular super-
position of 3 screens with identical frequencies and
equal angle differences of 30◦ (this is the conventional
screen combination traditionally used in color printing;
see Fig. 12(a)). It is interesting to note that this super-
position manifests a 12-fold symmetry, which is clearly
seen both in the image domain and in the spectrum. And
yet, whenever the 3 superposed screens move slightly
off the singular state, the generated moir´e is two-
dimensional and it only presents a 4-fold symmetry.
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The algebraic analysis of this example provides the
explanation of this phenomenon: the cluster which is
collapsed on the spectrum origin in this singular su-
perposition is indeed a 2D lattice (see the spread-out
cluster in Fig. 12(b)).

In this example we have:f1 = (32, 0), f2 = (0, 32),
f3 = (16

√
3, 16), f4 = (−16, 16

√
3), f5 = (16

√
3,

−16) andf6 = (16, 16
√

3). Therefore the linear trans-
formation9f1,...,f6 is given in this case by

9f1,...,f6(k1, k2, k3, k4, k5, k6)

= k1(32, 0) + k2(0, 32) + k3(16
√

3, 16)

+ k4(−16, 16
√

3) + k5(16
√

3, −16)

+ k6(16, 16
√

3)

In order to find Ker8f1,...,f6 for the continuous case,
we have to solve the following set of two linear equa-
tions fork1, . . . , k6 ∈ R:

{
32k1 + 16

√
3k3 − 16k4 + 16

√
3k5 + 16k6 = 0

32k2 + 16k3 + 16
√

3k4 − 16k5 + 16
√

3k6 = 0

The solution of this set of equations is:{(k1, k2,
k3, k4, k5, k6) | 2k5 = −√

3k1 +k2 −k3 +√
3k4, 2k6 =

−k1−√
3k2−√

3k3−k4, ki ∈ R}. This is clearly a 4D
volume (having 4 free variables) in the 6D spaceR6.
However, the latticeL, which is the discrete solution
for 9f1,...,f6 (i.e., with ki ∈ Z), is not a 4D lattice but
rather only a 2D lattice (since fork5 andk6 to be integers
it is required thatk3 = −k5 andk4 = −k6 in order that
all the roots be cancelled out). This means that in this
case there is a loss of 2 dimensions inL = Ker9f1,...,f6

with respect to Ker8f1,...,f6, and therefore the spectrum
support of this singular case is an everywhere dense
module. And furthermore, according to (25) we see
that each point of this module (at the singular state)
represents, in fact, a collapsed lattice (cluster) of a 2D
nature: rankL = 6 − 4 = 2.

9. The Interpretation of the Spectrum Structure
Back in the Image Domain

In the previous sections we analyzed the properties of
the spectrum convolution (i.e., the spectrum of the layer
superposition) from a pure algebraic point of view,
concentrating only on the spectrum support, and ig-
noring the impulse amplitudes. Let us now “augment”

these algebraic foundations by reintroducing the im-
pulse amplitudes on top of their geometric locations in
the spectrum. We will see how both the structural and
the amplitude properties of the spectrum are related
to properties of the layer superposition and its moir´e
effects in the image domain.

9.1. The Image Domain Interpretation of the Global
Structure of the Spectrum Support

As we have seen in Eq. (4) the amplitude of the
(k1, . . . , km)-impulse in the spectrum convolution is a
product of the amplitudes of the individual impulses
contributed by the spectrum of each of the layers. By
reintroducing the amplitude values of the spectrum im-
pulses on top of their geometric locations, we get again
a full description of the spectrum. This permits us to
use the Fourier theory to transform the structural results
we have algebraically obtained in the spectral domain
back into the image domain as well. We start by con-
sidering the structure of the global spectrum support
and interpreting its influence on the image domain.
The structure of the individual impulse clusters and
its image domain interpretation will be discussed in
Section 9.2.

As we have seen in Table 2, the spectrum convolu-
tion (i.e., the spectrum of the layer superposition) can
have four different types of spectrum support, which
are denoted in the table by 2D-L, 2D-M, 1D-L and
1D-M. These four types are the four possible combi-
nations of two basic and independent properties of the
spectrum support: (a) it can be either 2D or 1D; (b) it
can be either a discrete lattice or a dense module. Let
us see now what is the image domain interpretation of
each of these two basic independent properties.

(a) Clearly, a 2D spectrum support indicates that the
image superposition is indeed of a 2D nature. A
1D spectrum support in the (u, v)-plane means that
all the “action” in the image domain takes place
only in one direction, while in the perpendicular
direction the image is constant. This happens in a
grating superposition where all the original gratings
are parallel (their frequency vectors are collinear);
this is in fact a case of one-dimensional nature
which is artificially extended to the 2D (x, y) image
plane.

(b) The support of the spectrum convolution is a dis-
crete latticeiff the layer superposition in the image
domain is a periodic function (either 1D or 2D).
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Table 3. The four possible spectrum support types
and their interpretation in the image domain.

Spectrum Superposition in
support the image domain Examples

2D-L 2-fold periodic Sec. 8 Ex. 2

1D-L 1-fold periodic Sec. 8 Ex. 3

2D-M 2-fold almost-periodic∗ Sec. 8 Ex. 8

1D-M 1-fold almost-periodic Sec. 8 Ex. 4

∗Note that the case of 2D-M includes also a special
case in which the 2D spectrum is dense in one direc-
tion and discrete in the other; this case corresponds in
the image domain to a 2D function which is almost-
periodic in one direction and periodic in the other. This
hybrid case may occur, for instance, in the superposi-
tion of 3 gratings, 2 of which have the same direction,
but with incommensurable frequencies.

This follows from the decomposition of the peri-
odic function into a Fourier series. When the spec-
trum support is a dense module, it is clear that the
layer superposition is not periodic; but on the other
hand the spectrum is still impulsive and not con-
tinuous, meaning that the superposition is not ape-
riodic, either. In fact, such cases belong to an in-
termediate class of functions which is known as
almost-periodicfunctions [20]; a spectrum formed
by a dense module of impulses represents a gener-
alized Fourier series expansion which belongs to an
almost-periodic function. This means that in such
cases the layer superposition back in the image do-
main is an almost-periodic function.

The four possible types of spectrum support and their
interpretations in the image domain are summarized in
Table 3.

We can now reformulate Proposition 2 as a crite-
rion for the periodicity of the superposition of periodic
layers (functions):

Proposition 3. The superposition of m gratings
(or m/2 2D dot-screens, etc.) is periodic iff
rankZMd(f1, . . . , fm) = dim Sp(f1, . . . , fm). The su-
perposition is almost-periodic iffrankZMd(f1, . . . ,

fm) > dim Sp(f1, . . . , fm). (Note that the case of
‘<’ is impossible. This means that the two condi-
tions above are exhaustive; and indeed, the superposi-
tion of periodic functions is either periodic or almost-
periodic).

9.2. The Image Domain Interpretation
of the Clusters in the Spectrum

We have already mentioned that the main cluster in the
spectrum (the impulse cluster which is centered on the
spectrum origin) is the Fourier transform of the iso-
lated (extracted) moir´e. When this cluster is slightly
spread-out and its fundamental impulses are located
within the visibility circle, the corresponding moir´e
may be clearly visible in the image domain (if the am-
plitudes are not too weak); but when the singular state is
reached and the cluster impulses collapse onto the DC,
the moiré in the image domain gets an infinite period
and disappears.

However, the support of this cluster in the (u, v)-
plane is not necessarily a discrete lattice, and in the
more general case it can even be a dense module (like
in Example 7 of Section 8). In fact, here too there exist
four different cases, whose interpretation back in the
image domain is summarized in Table 4.

It is interesting to note that the algebraic structure of
the moiré cluster is not necessarily the same as the alge-
braic structure of the overall spectrum of the superpo-
sition. The moiré cluster may have a lower dimension
(a 1D cluster imbedded in an overall 2D spectrum, as in
Example 2 in Section 8) or a simpler structure (a 2D-L
cluster within a 2D-M spectrum, such as in Figs. 4(b)
and (c), or in Example 8 of Section 8), or even both (a
1D-L cluster within a 2D-M spectrum, as in Example 6
of Section 8).9 This means, back in the image domain,
that even when the overall superposition of the peri-
odic layers is not periodic but rather almost-periodic, a
moiré generated in this superposition may still be peri-
odic. This is, in fact, a very common situation, which is
clearly illustrated, for instance, in the superposition of
Fig. 12(b): although the overall superposition is not pe-
riodic (notice the micro-structure!), the intensity profile
of the isolated moir´e is indeed periodic.

Our algebraic approach provides also information
regarding the other clusters which are formed in the

Table 4. The four possible cluster support types
and their interpretation in the image domain.

Main Extracted moir´e in
cluster the image domain Examples

2D-L 2-fold periodic Sec. 8 Ex. 5

1D-L 1-fold periodic Sec. 8 Ex. 2

2D-M 2-fold almost-periodic Sec. 8 Ex. 7

1D-M 1-fold almost-periodic
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spectrum simultaneously with the main cluster: the
support of each of these clusters in the (u, v)-plane
is simply a shifted replica of the support of the main
cluster. However, the impulse amplitudes within each
cluster are calculated according to Eq. (4), meaning that
the impulse amplitudes in the shifted clusters arenot
simply shifted replicas of the impulse amplitudes in the
main cluster. These clusters contribute higher frequen-
cies to the global structure of the spectrum support, and
in terms of the image domain, they take part in the gen-
eration of micro-structure details in the superposition.

9.3. The Amplitude of Compound Impulses
in the Singular States

As the superposed layers gradually approach a singu-
lar state, the spectrum undergoes an “inverse playback”
of the cluster spreading-out process. The singular state
itself is the limit case where each of the spread-out im-
pulse clusters collapses down into a singlecompound
impulse. The question is, what happens to the ampli-
tudes of the impulses of each cluster at the limit point
when the singular state is attained, and each of the
impulse clusters fuses down into a single compound
impulse in the spectrum?

Since the spectrum of the superposed layers is al-
ways the convolution of the individual spectra (by the
Convolution Theorem), the answer to this question fol-
lows from the properties of convolution. The convolu-
tion of a function f (x, y) with an impulsive function
such as a comb is simply a sum of replicas off (x, y),
which are copied on top of each impulse of the comb
[21, pp. 295–296]; so if an overlapping occurs between
several replicas, the overlap behavesadditively. Since
in our case,f (x, y), too, is impulsive, we obtain the
following result:

When an impulse cluster collapses down into a sin-
gle impulse, the amplitude of the resulting compound
impulse is the sum of the individual amplitudes of all
the collapsed impulses10.

10. Summary

The superposition of periodic layers (such as line-
gratings, dot-screens etc.) and the phenomena related
thereto, such as the superposition moir´e effects, can
be fully explained by analyzing the Fourier spectrum
of the superposition. In the present article we pro-
vide a solid algebraic foundation for the analysis of

the Fourier spectrum of the superposed layers and
their moiré effects. We introduce an algebraic for-
malization of the structure of the Fourier spectrum,
based on the theory of geometry of numbers. The key
point is the fundamental relationship between the index
(k1, . . . , km) of each impulse and its geometric location
in the spectrum, which is given by the transformation
9f1,...,fm(k1, . . . , km) = k1f1 + · · · + kmfm. By analyz-
ing this algebraic relationship we acquire a full under-
standing of the structural properties of the spectrum of
the superposition. These spectral domain properties
are then reflected back to the layer superposition in the
image domain and interpreted there by means of the
Fourier theory.

Using this new approach we show that the spectrum
support can be either a discrete lattice or a dense mod-
ule; in the first case the layer superposition in the im-
age domain is periodic, while in the second case it is
almost-periodic. Furthermore, we obtain a criterion
for the periodicity of the superposition of any number
of periodic layers: the superposition is periodiciff the
continuous and the discrete dimensions of the spec-
trum support are equal; otherwise the superposition is
almost-periodic. We also show that a singular case
occurs in the superpositioniff the frequency vectors
f1, . . . , fm of the superposed layers are linearly depen-
dent overZ, i.e., iff rankZMd(f1, . . . , fm) < m. When
more than two gratings are superposed, the spectrum
support can be a discrete lattice (and hence the super-
position can be periodic) only if the superposition is
singular; but singular superpositions may have either a
discrete or a dense support (and hence be either peri-
odic or almost-periodic).

Other important results concern the formation of im-
pulse clusters in the spectrum of the superposition. We
show that this clusterization of the spectrum support re-
flects the partition of the lattice of the impulse indices
(i.e.,Zm) into equivalence classes, which is induced by
9f1,...,fm (or simply, by the frequency vectorsf1, . . . , fm

which define the layer superposition). The main im-
pulse cluster which is centered on the spectrum origin is
the spectral representation of a moir´e effect in the image
superposition, and the other clusters are simply trans-
lated replicas (in terms of impulse indices and impulse
locations) of this cluster. When the layer superposition
is singular, each of the clusters is collapsed down into
a single point in the spectrum, but when moving a lit-
tle out of the singular state (by slightly modifying the
frequency vectorsf1, . . . , fm of the superposed layers),
each of the clusters in the spectrum starts “spreading



P1: SDLP1: SDL

Journal of Mathematical Imaging and Vision KL537-01-Amidror January 6, 1998 14:19

Analysis of the Superposition of Periodic Layers 129

out”, thus revealing its internal structure. Several ex-
amples of superposed periodic layers are provided to
illustrate our results, both in the spectrum and in the
image domains.
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Notes

1. It should be noted however that not every singular state is neces-
sarily moiré-free: although the (k1, . . . , km)-moiré itself is not
visible in its singular state, other impulses may be present in the
same time within the visibility circle and cause other moir´es to
be visible.

2. Vectorsv1, . . . , vm in Rn are calledlinearly independentover
R (or overZ, etc.) if t1v1 + · · · + tmvm = 0 with ti ∈ R
(respectively,ti ∈ Z) implies thatt1 = · · · = tm = 0.

3. Note thatz < r is impossible, since linear independence overR
implies linear independence overZ (and linear dependence over
Z implies linear dependence overR).

4. Formally, a subsetD of Rn is calleddiscreteif there exists a
numberd > 0 such that for any pointsa, b ∈ D the distance
betweena andb is larger thand. A subsetSofRn is calleddense
or everywhere densein Rn if [ S] = Rn, where [S] denotes the
closure ofS, i.e., the set containingSand all its limit points [17,
Vol. 3, p. 434]. Examples: (1) The set of all integer numbers is
discrete. (2) Both the set of all rational numbers and the set of
all irrational numbers are dense inR, although none of them is
continuous inR.

5. Two vectorsv1, v2 ∈ R2 (or real numbers inR) are called
commensurableif there exist non-zero integersm, n such that
v2 = (m/n)v1. This means that bothv1 andv2 can be measured
as integer multiples of the same length unit, say(1/n)v1. More
generally,k vectorsv1, . . . , vk in Rn (or real numbers inR) are
calledcommensurableif they are linearly dependent overQ (the
set of all rational numbers); note that this is identical to linear
dependence overZ. And conversely, vectors (or real numbers)
which are linearly independent overQ (or overZ) are called
incommensurable[17, Vol. 7, p. 436]. Note thatv1, . . . , vk are
commensurableiff rankZ Md(v1, . . . , vk) < k; they are incom-
mensurableiff rankZ Md(v1, . . . , vk) = k.

6. Formally speaking, when the superposition moves out of the sin-
gular state Ker9 becomes{0}, so that each point inZm becomes
its own one-member equivalence class. Therefore the spread-
out clusters no longer correspond to the current equivalence
classes. However, we will still consider the “spread-out clus-
ters” in the spectrum to be traces of the clusters of the singular
state that we have just left, and we will continue to call them
“clusters” in this sense.

7. Note that the choice off1 = (32, 0) for the first layer is arbitrary,
and for any other choice,f2 andf3 could be adapted accordingly.
However, for the sake of consistency and to facilitate compar-
isons between the spectra we will use the same convention in
most of the following examples, too.

8. Note that(1, 1, 1) and(1, −1, 0) form a basis of the 2D lattice
L (see Fig. 7(b)). This means that in the superposition of this
example not only the 3-layer(1, 1, 1)-moiré is singular, but also
the 2-layer(1, −1, 0)-moiré. And indeed, slightly out of the
singular state both of them are simultaneously visible.

9. Obviously, since the moir´e cluster is a subset of the overall spec-
trum, its structure can never bemorecomplex than that of the
overall spectrum.

10. Thisadditivebehaviour of the impulse amplitudes should not
be confused with themultiplicativebehaviour of the individual
impulse amplitudes in the convolution process: Each individ-
ual impulse amplitude in the convolution process is obtained
by Eq. (4) as aproduct; but if several impulses thus obtained
happen to fall on the same geometric location, their individual
amplitudes are thensummed.
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