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Abstract

The Fourier spectra of circular gratings having sine or cosine radial profiles are derived, and their particular properties are
discussed. These results are then extended to the most genera form of circular sinusoidal gratings, namely: circular sine or
cosine gratings with any arbitrary radial phase. © 1998 Elsevier Science B.V.

1. Introduction

Circular sine and cosine gratings are defined as radially
periodic functions whose radial profiles are, respectively,
sin(27 fr) or cos(27fr), r > 0 (see Fig. 1la and Fig. 2a).
These functions can be seen also as the 2D surface which
is obtained by revolving the positive x-direction of the 1D
function sin(27rfx) (respectively: cos(2#fx)) about the
vertical axis. These functions represent in optics circular
waves which emanate from a point source, or simple
circular gratings; their Fourier transforms may arise, for
example, in connection with the Fraunhofer diffraction
pattern generated by these circular gratings. However, in
spite of the simple appearance of these functions, their
Fourier transforms cannot be found in standard tables of
Fourier (or Hankel) transform pairs; the reasons for this
fact will become clear below. The derivation of these
Fourier transforms is, therefore, the main am of the
present paper.

Our work on this subject was motivated by our research
on the Fourier spectrum of radially periodic images. In a
previous paper describing our first results in this direction
[1], we already derived the Fourier spectrum of the circular
cosine function; this result is briefly presented here in
Section 2. Then, in order to complete the picture, we
derive in Section 3 the Fourier spectrum of the circular
sine function, and we compare its particular properties
with those of its cosine counterpart. Then, based on these
results, we derive in Section 4 the Fourier spectrum of the

most general circular sinusoidal functions, namely: g(r) =
sin27f(r + ¢)] or g(r) =cod27f(r + )], r >0, with
an arbitrary constant radia phase ¢, and we show how
these spectra gradualy evolve when the constant ¢ is
being varied throughout one full period of the sinusoidal
function, say, between O and T = 1 /f.

Note that the Fourier transform conventions throughout
this paper are based on Bracewell’s notations; thus, the
Fourier transform of a function f(x,y) is given by [2]:

F(uyv) = f:flf(x,y) exp( —i27 (ux+vy))dxdy

and

f(x,y)=fj fjc F(u,v)exp(i2m (ux+vy)) dudo.

Similarly, the Hankel transform, which is an equivalent
way to express the 2D Fourier transform of a circularly
symmetric function g(r)=f(x,y) based on its radius r
=/x?+y2, is given according to Bracewell’s notations
by [3]:

G(q) = waowg(r)\lo(zwqr)r dr
and
9(r) =27 6(a) J(2mar)ada,

where r=yx?+y2>0 and q=Vu®+0v2>0. For the
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Fig. 1. (&) Thecircular sine grating sin(27 fr). (b) Its Fourier spectrum as obtained by a two-dimensional DFT. (c) The average cross section
through the origin of this DFT (averaged through all directions 6= 0°, ..., 360°, in order to compensate for local DFT artifacts).

sake of convenience, the Hankel transform is also denoted
more compactly by #[g(r)]=G(q) and .# {G(q)] =

V4
g(r), or, in amore symmetric way, by: g(r) < G(q).

2. The spectrum of the circular cosine grating

The circular cosine grating can be expressed either in
Cartesian coordinates:

g(x,y)=cos(27rf x2+y2) D
or in polar coordinates:
g(r) =cos(2wxfr), 2

where f denotes the radial frequency. As we have shown
in Ref. [1], the closest ‘hint' one can find in the literature
for the Fourier spectrum of this function is hidden in the

following general Fourier (or rather Hankel) transform pair
[4]:

pn—1

1 T =1 q
—”JM(Zﬂfl’)zm(fz—qz) reCt(E),
(©)

where rect(q/2f) means truncation to zero beyond the
circle of radius f, and

r=yx?+y? >0, gq=vu*+0%2=>0. %

This general formula gives several interesting Hankel
transform pairs for various values of u. In particular, for
pn= —1/2 it gives the Hankel transform of the circular
cosine (2), since [5]

cosr=ymr/23_,,(r).

It should be noted that transform pair (3) is usualy
given in the literature only for u > 0 (probably since for

(a)

()

Fig. 2. (@ The circular cosine grating cos(2 fr). (b) Its Fourier spectrum as obtained by a two-dimensional DFT. (c) The average cross
section through the origin of this DFT (averaged through all directions = 0°, ..., 360° in order to compensate for local DFT artifacts).
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w < 0 the functions on the left hand side of (3) do not
properly decay, and consequently their Hankel transforms
include a ‘wild’ (impulsive) behaviour on the border of
their circular spectrum support). However, according to
Ref. [6] formula (3) is also valid for non-integer negative
values of w, including our case of w=—-1/2. For u=
—1/2 formula (3) gives, therefore (remembering that
r(=1/2)=-2ym):

7z f 1 q
COS(27Tfr)<—> —Zmrect E

(r,g=0). (5)

The Fourier spectrum of the circular cosine (1), as
obtained by 2D DFT (see Fig. 2b, 2¢), confirms this result
for the interior of the ring, {g<f}. However, it aso
indicates, as we have indeed expected, that the behaviour
of the spectrum on its singular support, {q="f}, is more
complicated: in addition to the negative peak at the inter-
nal side of the ring, as predicted by Eq. (5), it clearly
shows also a positive impulsive behaviour at the external
side of the ring, so that a vertica section through the
spectrum origin would look like in Fig. 4. Note that the
external impulsive border of this ring is sharp, whereas the
internal, negative peak of the ring is characterized by a
smooth decay transition in the form of a continuous wake.
As we have shown in Ref. [1] this peculiar impulsive
behaviour is not an artifact due to the limitations of the
discrete Fourier transform in representing the non-decay-
ing circular cosine function (1), and it indeed represents an
inherent feature of this Fourier transform. Moreover, we
have shown there that this peculiar impulsive behaviour
corresponds to that of the half-order derivative of the Dirac
impulse 8(x), which is given in the literature by:

1 1
8YI(x) = — —= —— step( x 6
(x) o x3/2 ep(x) (6)
as a special case of the general formula [7]:

1 1

8N (x) = (=) X1 step( x), (7
where step(x) is defined as 0 for x< 0 and 1 for x> 0.

As shown in Appendix B of Ref. [1], Eq. (6) describes
the properties of 6/?(x) to the right of x = 0; but when
we approach §/2(x) by a sequence of functions which
are defined to both sides of x=0, it becomes apparent
that 8/?(x) has at the point x =0 a peculiar impulsive
behaviour: it has a positive impulsive peak at the left-hand
side of x =0, while to the right-hand side of x=0it hasa
negative peak, which smoothly decays in the form of a
negative continuous wake trailing off asymptaticaly to the
positive direction of the x-axis (see Fig. 3). The connec-
tion between these properties of §/2(x) and the peculiar
impulsive behaviour of the spectrum of cos(27 fr) can be

0| /
Fig. 3. Schematic plot of 8?/?(x), the half-order derivative of
the impulse §(x).

seen now from the following expression, which is obtained
from Eq. (6):

_ 2¢1F (f2_1q2)3/2 rect(%)
(8

(note the truncation beyond the radius f, due to the
inside-out inversion of 8®/?(f2—qg?) with respect to
81/2(g% —£2)). Using Eq. (8) the spectrum (or the Han-
kel transform) of the circular cosine function can be
expressed in terms of 8®/?( ) as follows, thus emphasiz-
ing its impulsive behaviour:

5(1/2)( £2_ qz) _

7 f
cos(2mfr) & T(SWZ)( f2—g?). 9
aT

This expression can be further simplified by expressing
85@/2(£2 - g?) in terms of the half-order derivative of the
simple impulse ring, 8Y?(f—q): It is known that for
any integer k and constant ¢ > O there exists the relation
[8]:

8M(r2—=c?)= ———
( ) (r+c)f?
However, this relation turns out to be valid aso for
non-integer values of k, denoted below by A, since by Eq.
(7) we have (for r,c> 0):

8M(r—c).

1 1
8M(r2-c?) = r(-x) (rz_cz)HlStep(rz—Cz)
1 1
= e (r+c)”1(r—c)”l
X step(r —¢)
= Wﬁ(“(r—c). (10)

And hence, since 8%/?(—x) is the mirror-image of

8/2(x):

8/I(c?2—r2)= ———=8%I(c—r).
( ) 10 ( )
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Fig. 4. Schematic plot of a cross section through the spectrum of
the circular cosine function cos(2# fr). Notice the positive im-
pulse on the externa border of the ring.

Therefore we obtain the following expression for the spec-
trum of the circular cosine with radia frequency f > O:

sen) & = sea(i—g). ()
cos(27fr) & ——1— -q).

Vo (f+q)%?
Note that in the degenerate case of f=0, in which the
cosine becomes identically 1, the spectrum is given by the
well-known transform pair [9]:

7 1

leo ——

W|q|5(<1)-

Eq. (11) indeed confirms observations by 2D DFT
which clearly show that as f increases — not only the
radius of the impulse ring increases, but aso its wake
becomes weaker. Note that 6§/2(f — q) is the inside-out
inverted counterpart of the 8/?(q— f) ring, where the
negative wake trails off inwards, towards the centre, and
the positive impulsive peak is located in the outer side (see
Fig. 4).

3. The spectrum of the circular sine grating

The circular sine grating is expressed in Cartesian
coordinates by:

g(x,y)=sin(27rf x2+y2) (2
and in polar coordinates

g(r) =sin(2wfr), (13)

where f denotes the radial frequency. Like in the case of
the circular cosine function the Fourier spectrum of this
function cannot be found in standard tables of Fourier (or
Hankel) transform pairs. The closest ‘ hint’ one can find in
the literature for this case is hidden in another general

Fourier (or rather Hankel) transform pair, which we adapt
here from Ref. [10]:

u K4 ® 1 q
T A (q2_f2)”+1$ep(§?)'

14

where step(q/2f) means truncation to zero inside the
circle of radius f, and

r=yx2+y? >0, gq=vVu?+0v?>0. (15)

Like formula (3), this general formula too gives several
interesting Hankel transform pairs for various values of .
In particular, for = 1/2 it gives the Hankel transform of
the circular sine (13), since [5]:

snr=ymwr/23;,(r).

It should be noted that transform pair (14) is usualy
given in the literature only for —1 < u < 0 (note that for
w = 0 the functions on the left hand side of (14) do not
properly decay, and consequently their Hankel transforms
include a ‘wild’ (impulsive) behaviour on the border of
their circular spectrum support). However, according to
Ref. [6] formula (14) is also valid for non-integer values of
w, including our case of w=1/2. For u=1/2 formula
(14) gives, therefore:

. Z 1 q
sin(2nwfr) & — ;(qz_—fz)wstep >f

X(r,q=0). (16)

Like in the case of cod(27 fr), the Fourier spectrum of
the circular sine (12), as obtained by 2D DFT (see Fig. 1b,
1c), confirms this result for the exterior of the ring,
{g> f}. However, it also indicates, as we have indeed
expected, that the behaviour of the spectrum on its singu-
lar support, {q="f}, is more complicated: in addition to
the negative peak at the external side of the ring, as
predicted by Eq. (16), it clearly shows also a positive
impulsive behaviour at the internal side of the ring, so that
a vertical section through the spectrum origin would look
like in Fig. 5. Note that the internal impulsive border of

+ 0 1]

— =

Fig. 5. Schematic plot of a cross section through the spectrum of
the circular sine function sin(27 fr). Notice the positive impulse
on the internal border of the ring.
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this ring is sharp, whereas the external, negative peak of
the ring is characterized by a smooth decay transition in
the form of a continuous, asymptotic wake.

The connection between this peculiar impulsive be-
haviour of the spectrum of sin(2 fr) and the properties of
81/2(x) can be seen now from the following equation,
which is obtained from Eq. (6):

1 1 q
- step| — |.
P (qz_fz)3/2 ep( Zf)
Using this equation, the spectrum of the sine function can

be expressed in terms of 6/?( ), emphasizing thus its
impulsive behaviour:

8(1/2)(q2 _fZ) —

7z f
sin(2wfr) & Tﬁ(lm(qz—fz). (17
o

This expression can be further simplified by expressing
81/2(g2 —£2) in terms of the half-order derivative of the
simple impulse ring, 6/?(q — ), using Eq. (10).

We obtain, therefore, the following expression for the
spectrum of the circular sine (with radial frequency f > 0):

Ve

sn(2wfr) & 8/2(q-1). (18)

f 1
Vo (f+q)*?
In the degenerate case of f= 0 the sine becomes identi-
cally 0 and its spectrum vanishes, too.

By comparing Egs. (11) and (18) we can see the
remarkable symmetry between the Fourier spectra of the
circular sine and cosine functions. In fact, the only differ-
ence between them is that in the spectrum of the circular
sine function the impulse ring §/2(q— f) is not inside-
out inverted as in the case of the circular cosine function.
This means that its negative wake trails off outwards,
while the positive impulsive behaviour is located in the
inner side of the ring (compare Figs. 4 and 5). (Note that
unlike the simple impulse 8(x) which is symmetric, i.e.
5(—x) = 8(x), and its derivative §'(x) which is antisym-
metric, i.e. 8'(—x)= —8'(x), 8%?(x) is asymmetric:
5®/2(—x) is the mirror-image of 8®/2(x).)

4. The spectra of the phase-shifted circular sine or
cosine gratings

The most general form of a circular sinusoidal grating
can be expressed in the form of a phase-shifted circular
sine or cosine function, namely:

g(r)=sn[27f(r+ ¢)] (19)
or
o(1) = cos[ (2 f(1 + ¢)], (20)

where f denotes the radia frequency, ¢ is an arbitrary
constant radial phase-shift, and r > 0. In fact, since these

functions are radially periodic with radial period T = 1/f,
it is enough to consider the range of values 0 < ¢ < 1/f.

Let us find now the Fourier spectrum of the phase-
shifted sine function (19). For this end we express the
phase-shifted sine function in terms of sine and cosine
functions with phase-shifts of ¢ = 0, whose Fourier spec-
tra we have already derived in Sections 2 and 3. This can
be done by means of the well-known trigonometric iden-
tity sin(a + B) = sin « cos B + cosa sin B:

sin[27f(r + ¢)] =sn@2nfr + 27 fp)
= cos(2mfe)sin(2wfr)
+ sin(2mr fe) cos(2 fr).

Since cos(27fe) and sin(2wfe) are constants we obtain
according to the elementary theorems on the Hankel trans-
form [11]:

Z[sn[2mf(r + ¢)]] = #[cos(2mfo) sin(2w fr)

+sin(27 fo) cos(2w fr)]
= cos(2m fp)#Z[sin(2mfr)]
+ sin(2wfo)#[cos(2m fr)],
so that
sn[27f(r + ¢)]
b4 f 1
© -5 cos(27rf<p)m step(%)

1 q
+sin(2mp) —————— rect| —
snene) )|
or in terms of §@/2(x):
sin[27f(r + ¢)]

z | ! as2)
eﬁW[COS(ZWﬂP)B (a—"1)

+san2rfe)s2(f—q)]. (21)

We see, therefore, that the Fourier spectrum of the
phase-shifted circular sine sin27f(r + ¢)] is a circular
impulse ring whose radial profile is a weighted sum of the
spectra of the circular functions sin(2 fr) and cos(27r fr).
Fig. 6, which has been obtained by 2D DFT, shows the
spectra of sinf27 f(r + ¢)] for various values of ¢ within
the one-period range of ¢ =0, ..., 1/f. Asshownin Fig.
6, these spectra consist of a dipole- or quadrupole-like [12]
impulse ring on the perimeter of a circle of radius f, which
is surrounded in genera by two wakes: one wake which
trails off outwards (which is contributed by the spectrum
of sin(27 fr)), and a second wake which trails off towards
the centre (which is contributed by the spectrum of
cos(27 fr)).
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Fig. 6. One full evolution cycle of the spectrum of sinf27f(r + ¢)], ¢ =0, ..., 1/f, illustrated by the average cross sections through the
centre of the two dimensional DFT of sin[2a f(r + ¢)] (averaged through all directions = 0°, ..., 360°). (@ ¢ =0; (b) o= z7; (©) o= 2;
(D o=2:0 o=7;0 o=2:(@ o=2:(h) o= 2; () = 1. Note that in each case the spectrum is a weighted sum of the spectra of

sin(2# fr) (Fig. 1c) and cos(2 fr) (Fig. 2c); the corresponding weights are given in Table 1.
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Table 1

The weighting coefficients sin(27 f¢) and cos(27 fo) for the values of ¢ which appear in Fig. 6
1 1 3

® 0 i af Gi

2mie 0 i i i

sinmfe) 0 12 1 12

cos2m fe) 1 V2 0 52

7 o i o 7
m % % ¥ 2
0 —12 -1 -2 o
-1 -42 0 12 1

Similarly, using the trigonometric identity cos(a + 8)
=Ccosa cosB—sinasinB we obtain that the Fourier
spectrum of the phase-shifted circular cosine function is
given by:

cos[27f(r + ¢)]

Z _ 1 |cosant ! ect( d
o - — —_— —
o COs( T §0)(f2_q2)3/2 2f

. 1 q
_gn(ZWf@)m Step(z)}
or in terms of 8§/2(x):

cos[27f(r + ¢)]

7w f 1

v W [C05(2Wf¢)8(1/2)( f—q)

—sn(2rfe)8/2(q-1)]. (22)

Let us now see in detail how the spectrum (21) is
influenced when the constant radial phase-shift ¢ gradu-
aly varies throughout one full radial period of the sinu-
soidal function sin27f(r + ¢)], say, between 0 and T =
1/f.

When ¢ = 0 the coefficients cos(27 f¢) and sin(27 fo)
are, respectively, 1 and 0, and therefore we obtain, in
accordance with Eq. (18) (see Fig. 6a):

_ F 4
sn(2rfr) & ——

1
\/;(f+q)3/2

Now, when ¢ starts increasing the coefficient cos(2 fe)
starts to decrease, while the coefficient sin(2w fo) starts to
increase. This means that in the spectrum the weight of the
outwards-oriented impulse ring 6Y/2(q — f) starts to de-
crease, while the weight of the inwards-oriented impulse
ring 8&/2(f— q) starts to increase. The two coefficients
reach the point of eguaity when ¢=1/8f, where
cos2mfp) = sin(2mfe) = /2 /2 (see Fig. 6b), and then
they continue their respective increase (decrease) until
¢ =1/4f, where cos(2mfp) =0 and sin(2wfep) = 1. At

5(1/2)(q _ f)_

this point sinf27 f(r + ¢)] equals cos(2# fr), and indeed
we obtain, in accordance with Eq. (11) (see Fig. 6¢):

1
sn|27flr+ —
Af

} =cos(2mfr)

7 f
z -
Vo (f+q)*?

Fig. 6 illustrates one full cycle of evolution for the
spectrum of sin[27f(r + ¢)], where the radial phase ¢
varies throughout the full period between ¢ =0, ..., 1/f.
The coefficients sin(2 fo) and cos(2wfe) for the corre-
sponding values of ¢ are given in Table 1. Note that the
same figure also illustrates one full cycle of evolution for
the spectrum of cod 27 f(r + ¢)], where the radial phase ¢
varies throughout a full period between ¢ =
—1/4f,...,3/4f.

84/2(f—q).

5. Conclusions

The Fourier transforms of the circular sine and cosine
functions do not appear in standard tables of Fourier (or
Hankel) transform pairs, since these functions do not prop-
erly decay and consequently their Fourier transforms in-
clude a‘wild' (impulsive) behaviour on the border of their
circular spectrum support. We have shown that this impul-
sive behaviour can be expressed mathematically in terms
of the half-order derivative of the impulse ring §(q— f).
The spectrum of the circular sine function sin(27 fr) con-
sists of a circular ring of radius f with a positive impul-
sive behaviour in itsinternal side, and a negative impulsive
behaviour in its external side which gradualy trails off
outwards in the form of a negative, continuous wake. The
spectrum of the circular cosine function cos(27 fr), on its
way, consists of a circular ring of radius f with a positive
impulsive behaviour in its outer side, and a negative
impulsive behaviour in its inner side which gradually trails
off towards the spectrum centre in the form of a negative,
continuous wake. In fact, the spectrum of the circular
cosine can be seen as an inside-out inversion of the
spectrum of the circular sine; thisis so due to the inside-out
inversion of the haf-order derivative of the impulse ring in
the spectrum of the circular cosine (compare Egs. (11) and
(18)).
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Generalizing these results to the most general form of
circular sinusoidal functions, namely: circular sine or co-
sine functions with any arbitrary phase, we have shown
that their spectra are obtained as a weighted sum of the
spectra of the pure circular sine and cosine functions. In
general, their spectra consist, therefore, of an impulse ring
of radius f which has some peculiar properties, notably a
wake which trails off outwards (the weighted contribution
of the spectrum of sin(27 fr)), and a second wake which
trails off towards the centre (the weighted contribution of
the spectrum of cos(21r fr)).

Finally, we have shown that the transitions undergone
by the spectrum as the radial phase is being varied
throughout one full period are continuous and gradual.

Appendix A. A further verification

It is interesting to note that the Hankel transforms of
cos(27fr) and sin(2# fr) (Egs. (5) and (16)) can be also
verified in an independent way by means of the identity:
exp(—i2wfr) = cos(2wfr) —isin(2wfr).

According to Ref. [13] the Hankel transform of exp(—ar)
is given by:
2m7a

( ),7
exp(—ar)o ————
(4772q2+a2)3/2

i27f we obtain:
1

w7 if
exp(—i2mfr) o — —————. (A1)
27 (q2_f2)3/2

and therefore by taking a =

Now, using Egs. (5) and (16) we obtain:
cos(2m fr) —isin(2wfr)

%—[ﬁ ( d

and since —i =i®=(-1%2;

i f 1 q
7z
+——— rect| —
(q- )7 L2
if 1
_Z—(qz_fz)a/z

and this is, indeed, identical to the right hand side of Eq.
(AD).
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