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Fourier spectrum of curvilinear gratings
of the second order
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The class of second-order curvilinear gratings consists of all the curvilinear gratings that are obtained by
second-order spatial transformations of periodic gratings. It includes, for example, circular, elliptic, and hy-
perbolic gratings as well as circular, elliptic, and hyperbolic zone plates. Such structures occur quite fre-
quently in optics, and their Fourier transforms may arise, for instance, in connection with the Fraunhofer dif-
fraction patterns generated by these structures. I present the two-dimensional Fourier spectra of the most
important second-order curvilinear gratings for gratings having any desired intensity profile (cosinusoidal,
sawtooth wave, square wave, etc.). These analytic results are also illustrated by figures showing the various
gratings and their spectra as they are obtained on a computer by two-dimensional fast Fourier transform.
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1. INTRODUCTION
In a previous paper1 I investigated the structure and the
properties of the Fourier spectrum of radially periodic
functions, i.e., circularly symmetric images on the two-
dimensional (2D) plane whose intensity profile along the
radius is periodic. Such functions are obtained by apply-
ing a polar-to-Cartesian coordinate transformation on an
original onefold periodic function (grating) p(r), namely,
by replacing r by Ax2 1 y2: r(x, y) 5 p(Ax2 1 y2).
However, radially periodic images are in fact only one
particular case of a larger class of functions that consists
of all the second-order spatial transformations of periodic
gratings. This class includes, for example, parabolic, el-
liptic, and hyperbolic gratings; circular, elliptic, and hy-
perbolic zone gratings (zone plates), etc. Like radially
periodic images, such functions occur quite frequently in
optics,2–4 and their Fourier transforms may arise, for ex-
ample, in connection with the Fraunhofer diffraction pat-
terns generated by these structures. Other applications
in optics include gratings in various optoelectronic
applications5 and in moiré-related applications. The full
understanding of the structure and the properties of the
Fourier spectra of such functions may be very useful in
such cases.

In order to find analytically the Fourier spectrum of a
second-order curvilinear grating with any given intensity
profile (square wave, sawtooth wave, etc.) we need to
know first the Fourier spectra of the corresponding curvi-
linear gratings with a cosinusoidal or a sinusoidal inten-
sity profile. Therefore, after presenting the basic notions
about curvilinear gratings (Section 2) and about second-
order curvilinear gratings in particular (Section 3), we
start by finding the Fourier spectra of the main families of
second-order curvilinear gratings with a cosinusoidal or
sinusoidal intensity profile (Sections 4–7). Then in Sec-
tion 8 we generalize these results for gratings with any
0740-3232/98/040900-14$15.00 ©
desired intensity profile, using the Fourier decomposition
of their intensity profile.

Note that the Fourier transform conventions through-
out this paper have been adapted to Bracewell’s
notations6; thus the Fourier transform of a function
f(x, y) is given by

F~u, n! 5 E
2`

` E
2`

`

f~x, y !exp@2i2p~ux 1 ny !#dxdy.

2. CURVILINEAR GRATINGS
A curvilinear grating can be defined as the repetitive
structure that is obtained on the x,y plane by the appli-
cation of an appropriate nonlinear spatial transformation
on an initial uncurved, periodic grating. One may think
of this transformation as an operation that ‘‘bends,’’ or
nonlinearly stretches, the original periodic grating ac-
cording to a given mathematical rule.

Let r(x, y) (denoting the reflectance or the transmit-
tance at location x, y) be the curvilinear grating that is
obtained by bending the 2D onefold periodic grating
p(x8), i.e., by replacing x8 with the function g1(x, y):
r(x, y) 5 p@ g1(x, y)# (see various examples in Fig. 1).
The intensity profile of the original, uncurved periodic
grating, p(x8), or sometimes its one-dimensional (1D) sec-
tion along the x8 axis, is called the periodic profile of the
curvilinear grating r(x, y). The periodic profile of a cur-
vilinear grating may be cosinusoidal, a square wave, a
sawtooth wave, or any other periodic waveform. The
function x8 5 g1(x, y) that bends p(x8) into the curvilin-
ear grating r(x, y) is called the bending transformation.

A curvilinear grating r(x, y) 5 p@ g1(x, y)# is there-
fore characterized by two basic and independent proper-
ties: (a) its geometric layout in the x, y plane, i.e., the
locus of the centers of its curvilinear corrugations in the
x, y plane, which is defined by the bending transforma-
1998 Optical Society of America
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tion x8 5 g1(x, y), and (b) the intensity behavior across
each of the curvilinear corrugations, which is determined
by the periodic profile p(x8).

Example. Assume that we are given a 2D cosinusoidal
grating p(x8) 5 cos(2p fx8) over the x, y plane [Fig. 1(a)]
and that we bend its parallel straight corrugations into
parallel parabolas of the shape y 5 ax2 1 c, without
changing their cosinusoidal profile form [see Fig. 4(a) be-
low, in Appendix A]. This can be described mathema-
tically as a nonlinear transformation x8 5 g1(x, y)
5 y2 ax2, where a is a nonzero constant that defines
the bending rate of the parabolas.7 (Notice that the level
lines x8 5 n of the surface x8 5 y 2 ax2 over the x, y
plane are indeed the required parabolas y 5 ax2 1 n.)
The parabolic cosinusoidal grating obtained by applying
this bending transformation on the original grating
p(x8) is given, therefore, by r(x, y) 5 p( y
2 ax2) 5 cos@2p f ( y 2 ax2)#. Its geometric layout is
given by the locus of its maxima in the x, y plane,
namely, 2pf(y 2 ax2) 5 2pk, k P Z, and its periodic
profile is cos(2p fx8). j

Now, assuming that the spectrum of the original peri-
odic grating p(x8) is known, how does the application of
the transformation (coordinate change) x8 5 g1(x, y) on
this grating affect the spectral domain? Unfortunately,
if the coordinate change g1(x, y) in the image domain is
nonlinear, no general rule exists that tells how the spec-
trum will be influenced, and the spectra of p@ g1(x, y)#
must be individually found for each transformation
g1(x, y) on a case-by-case basis. It is therefore the aim
of this paper to present the Fourier spectra of the most
important second-order curvilinear gratings and thus to
open the way to a full understanding of the properties of
such gratings and of their spectra.

3. SECOND-ORDER CURVILINEAR
GRATINGS
As illustrated in the example above, the bending transfor-
mation z 5 g(x, y) (using here z rather than x8) can be
also considered a 2D curved surface in R3 whose level
lines z 5 n (n P Z), or their projection on the x, y plane,
determine the geometric layout of the curvilinear grating.
We will call this surface the generating surface of the cur-
vilinear grating. Note that the generating surface need
not necessarily be defined by an explicit function z
5 g(x, y), as in the examples above, and in the general
case it can be given implicitly in the form G(x, y, z)
5 0.

A curvilinear grating whose generating surface is a
surface of the second order8 will be called a second-order
curvilinear grating. In other words, a second-order cur-
vilinear grating is a curvilinear grating whose bending
transformation is given by an equation G(x, y, z) 5 0
that is a polynomial of the second degree in x, y, z. In
the most general case this equation has the form

a11x
2 1 a22 y2 1 a33 z2 1 2a12 xy 1 2a13 xz 1 2a23 yz

1 2a14 x 1 2a24 y 1 a34 z 1 a44 5 0.

As is well known in three-dimensional (3D) analytic ge-
ometry, second-order surfaces can be classified into 17 dif-
ferent types depending on the coefficients in this general
equation. In other words, one may transform this gen-
eral equation by parallel translations and rotations in R3

into one of 17 canonical forms, each of which corresponds
to a certain class of surfaces. The full list of these 17 sur-
faces is given, for example, in Refs. 8 and 9. However,
since five of these surfaces are purely imaginary and
three others are degenerate cases consisting of planes, we
are left, in fact, with only nine different types of interest-
ing second-order surfaces: an ellipsoid (including a
sphere), a one-sheet hyperboloid, a two-sheet hyperboloid,
an elliptic paraboloid, a hyperbolic paraboloid (‘‘saddle’’),
a conic surface, an elliptic cylinder, a hyperbolic cylinder,
and a parabolic cylinder (the last three surfaces have one
constant dimension).

It should be noted, however, that although in analytic
geometry all the different 3D rotations and translations of
a given surface within R3 result in equivalent surfaces,
the curvilinear gratings these surfaces generate by their
level lines may be completely different. For instance, dif-
ferent orientations of a conic surface within R3 may give
rise to circular, elliptic, parabolic, or hyperbolic curvilin-
ear gratings, depending on the inclination angle of the
conic surface.

In fact, from the point of view of the Fourier transform,
only the application of affine transformations (such as ro-
tations and translations) in the x and y coordinates will
give equivalent gratings, while the application on the sur-
face of any nonaffine transformation in x and y or any
transformation involving the z coordinate may result in
substantial changes in the generated gratings and in
their spectra. Even a simple translation of the surface
along the z axis will, in general, influence the relative
phase of the curvilinear grating and its spectrum in a
nontrivial way (see Appendix B).

We see, therefore, that the nine different types of
second-order surfaces may give rise to many different
types of second-order curvilinear gratings. Although the
geometric layout of these gratings may consist only of
curves of the second order (circles, ellipses, parabolas, hy-
perbolas, and possibly straight lines), these layouts may
still differ in parameters such as the rules governing the
curve spacing [cf. circular grating versus circular zone
grating in Figs. 1(i) and 1(b), respectively; as we will see
below, their spectra are indeed substantially different].

However, many of these different second-order curvi-
linear gratings are of limited practical interest; such are,
for example, the highly oscillatory grating cos@2p f (1/x)#

or the grating cos(2p fAy 2 x2), which is defined only in-
side the parabola y 5 x2. Therefore we will concentrate
here only on classes of second-order curvilinear gratings
that present a certain theoretical interest or that are
most likely to occur in optics and in applications. We
start in Sections 4–7 with gratings that have a cosinusoi-
dal or a sinusoidal periodic profile, and only then, in Sec-
tion 8, will we generalize these results to gratings with
any desired periodic profile. We start in Section 4 with
gratings obtained from parabolic surfaces, which include
the various forms of zone gratings. Then, in Sections 5, 6
and 7 we proceed to gratings obtained, respectively, from
elliptic, conic, and hyperbolic surfaces. Each case is il-
lustrated by a figure of one representative grating, and its
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Fourier spectrum is illustrated and validated by 2D fast
Fourier transform. (Note that FFT artifacts that occur
in some of the spectra are explained in the figure leg-
ends.)

4. GRATINGS OBTAINED FROM
PARABOLIC SURFACES, AND THEIR
SPECTRA
In this section I discuss gratings that are obtained from
parabolic surfaces: the elliptic paraboloid, the hyperbolic
paraboloid (‘‘saddle’’), and the parabolic cylinder. In fact,
the gratings obtained from parabolic surfaces have a spe-
cial significance in optics, since they constitute the impor-
tant grating family known as zone gratings or zone
plates, which are often used as focusing devices based on
diffraction.2,3,10,11

A. Circular Zone Grating
The cosine circular zone grating [Fig. 1(b)] is defined by

r1~x, y ! 5 cos@2p f~x2 1 y2!#.

Its generating surface is the top-opened circular parabo-
loid z 5 x2 1 y2.
Let us find the spectrum R1(u, v) of this function. Ac-
cording to the trigonometric identity cos(a 1 b)
5 cos a cos b 2 sin a sin b, we have

r1~x, y ! 5 cos~2p fx2!cos~2p fy2!

2 sin~2p fx2!sin~2p fy2!.

Consider first the 1D function rc(x) 5 cos(2p f x2). The
1D spectrum of this function is (see Fig. 2):

Rc~u ! 5
1

2Af
FcosS p

2 f
u2D 1 sinS p

2 f
u2D G

5
1

A2 f
cosS p

2 f
u2 2

p

4 D (1)

[adapted from Eq. (7) in Ref. 12]. Thanks to the
separable-product theorem13 we obtain
Fig. 1. Continues on facing page.
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cos~2p fax2!cos~2p fby2!

↔
1

2Af
FcosS p

2 f
u2D 1 sinS p

2 f
u2D G

3
1

2Af
FcosS p

2 f
v2D 1 sinS p

2 f
v2D G ,

which gives, after some trigonometric simplifications,

5
1
4f Fcos

p

2 f
~u2 2 v2! 1 sin

p

2 f
~u2 1 v2!G .

Similarly, thanks to the separable-product theorem we
have
sin~2p fax2!sin~2p fby2!

↔
1
4f Fcos

p

2 f
~u2 2 v2! 2 sin

p

2 f
~u2 1 v2!G ;

and therefore we finally obtain

R1~u, v ! 5
1

2 f
sinF p

2 f
~u2 1 v2!G .

Similarly, using the spectrum of the 1D function rs(x)
5 sin(2p f x2) (see Fig. 2),
Fig. 1. Various curvilinear gratings r(x, y) with a periodic-profile waveform of cos(2p fx) (with f 5 1), and their spectra R(u, v) as
obtained on computer by 2D discrete Fourier transform (DFT): (a) straight grating, cos(2p fx); (b) circular zone grating, cos@2p f (x2

1 y2)/8#; (c) elliptic zone grating, cos@2p f ( 1
4x2 1 y2)/8#; (d) hyperbolic zone grating, cos@2p f ( x2 2 y2)/8#; (e) linear zone grating,

cos(2p fx2/8); ( f ) sphere projection grating, cos(2p fA64 2 x2 2 y2); (g) ellipsoid projection grating, cos(2p fA64 2 x2 2 2y2); (h) cylinder

projection grating, cos(2p fA36 2 x2); (i) circular grating, cos(2p fAx2 1 y2); ( j) elliptic grating, cos(2p fA1
4x2 1 y2); (k) hyperbolic grat-

ing, cos(2p fAx2 2 y2); (l) one-sheet hyperboloid projection grating, cos(2p fAx2 1 y2 2 4); (m) two-sheet hyperboloid projection grating,
cos(2p fAx2 1 y2 1 16); (n) laterally opened hyperbolic cylinder projection grating, cos(2p fAx2 2 1); (o) top-opened hyperbolic cylinder
projection grating, cos(2p fAx2 1 16). Since all these cases are centrosymmetric, their spectra have no imaginary parts. The right-
hand figure in each row shows a cross section through the horizontal u axis of the spectrum. Note that the oscillations in the spectra
of the zone gratings (b)–(e) fade out short of the spectrum border since the DFT cannot find higher frequencies in the corresponding
finite-sized, sampled functions in the image domain; in reality these spectra oscillate ad infinitum without fading out. Note also the
DFT rippling artifacts in some of the spectra.
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Rs~u ! 5
1

2Af
FcosS p

2 f
u2D 2 sinS p

2 f
u2D G

5
1

A2 f
sinS p

2 f
u2 1

p

4 D (2)

[adapted from Eq. (1) in Ref. 14], we find that the sinu-
soidal counterpart of r1(x, y), r2(x, y) 5 sin@2p f ( x2

1 y2)#, has the Fourier spectrum R2(u, v)
5

1
2f cos@

p
2f (u2 1 v2)#.

B. Elliptic Zone Grating
The elliptic zone grating [Fig. 1(c)], a generalization of the
circular zone grating, is obtained by scaling in x and y:

r1~x, y ! 5 cos$2p f @~bx !2 1 ~cy !2#%.

Therefore its generating surface is the top-opened elliptic
paraboloid z 5 (bx)2 1 (cy)2, and its spectrum is given,
according to the 2D similarity theorem,15 by

R1~u, v ! 5
1

2 fubcu
sinH p

2 f F S u
b D 2

1 S v
c D 2G J .

Similarly, the spectrum of the sinusoidal counterpart of
r1(x, y), r2(x, y) 5 sin$2p f @(bx)2 1 (cy)2#%, is given by
R2(u, v) 5

1
2f ubcucos$ p

2f@(
u
b)2 1 ( v

c)
2#%.

C. Hyperbolic Zone Grating
The hyperbolic zone grating16 [Fig. 1(d)], another gener-
alization of the circular zone grating, is given by

r1~x, y ! 5 cos$2p f @~bx !2 2 ~cy !2#%

Its generating surface is the hyperbolic paraboloid z
5 (bx)2 2 (cy)2, and its spectrum is

Fig. 2. Rc(u) and Rs(u), the 1D Fourier transforms of the func-
tions rc(x) 5 cos(2p fx2) and rs(x) 5 sin(2p fx2) (with f 5 1).
R1~u, v ! 5
1

2 fubcu
cosH p

2 f F S u
b D 2

2 S v
c D 2G J .

Similarly, for the sinusoidal counterpart of r1(x, y),
r2(x, y) 5 sin$2p f @(bx)2 2 (cy)2#%, we obtain R2(u, v)
5

1
2fubcusin$ p

2f@(
u
b)2 2 ( v

c)
2#%.

D. Linear Zone Grating
The 2D functions r1(x, y) 5 cos(2p fax2) and r3(x, y)
5 cos(2p fay2) are called by analogy linear cosine zone
gratings [see Fig. 1(e)]. Their generating surfaces are
the parabolic cylinders z 5 ax2 and z 5 ay2, which are
constant in the y or in the x direction, respectively.

To find the 2D spectra of these gratings, we first con-
sider their 1D counterpart, rc(x) 5 cos(2p fax2), whose
spectrum Rc(u) has been given in Eq. (1). The 2D spec-
trum of the linear zone grating r1(x, y) is, therefore, the
continuous horizontal line impulse: R1(u, v)
5 Rc(u)d (v), and the spectrum of the linear zone grat-
ing r3(x, y) is the continuous vertical line impulse:
R3(u, v) 5 Rc(v)d (u).

As for the sinusoidal counterparts, r2(x, y)
5 sin(2p fax2) and r4(x, y) 5 sin(2p fay2), their respec-
tive spectra are the horizontal and the vertical line im-
pulses R2(u, v) 5 Rs(u)d (v) and R4(u, v)
5 Rs(v)d (u), respectively, where Rs(u) is the 1D spec-

trum of sin(2p fax2) given in Eq. (2).

5. GRATINGS OBTAINED FROM ELLIPTIC
SURFACES, AND THEIR SPECTRA
This section includes gratings that are obtained from the
sphere, the ellipsoid, and the elliptic cylinder.

A. Sphere Projection Grating
The sine and cosine sphere projection gratings [Fig. 1(f )]
are given by

r1~x, y ! 5 H sin~2p fAa2 2 r2! 0 < r , a

0 a < r , `
,

r2~x, y ! 5 H cos~2p fAa2 2 r2! 0 < r , a

0 a < r , `
,

where r2 5 x2 1 y2; their generating surface is the
sphere of radius a, z 5 Aa2 2 r2.

The spectrum R1(u, v) of r1(x, y) is given by

R1~u, v ! 5 p fa3/2
1

~f 2 1 q2!3/4 J3/2~2paAf 2 1 q2!,

where q2 5 u2 1 v2 and Jp(x) is the Bessel function of
the first kind of order p. We obtain this result from Eq.
2.57 in Ref. 17 by adapting it to our conventions and using
the known relation18 J3/2(x) 5 A2/px(sin x/x 2 cos x).
Similarly, the spectrum of the cosinusoidal counterpart,
r2(x, y), is given by

R2~u, v ! 5 2p fa3/2
1

~f 2 1 q2!3/4 Y3/2~2paAf 2 1 q2!,

where Yp(x) is the Bessel function of the second kind of
order p.
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B. Ellipsoid Projection Grating
The sine and cosine ellipsoid projection gratings [Fig.
1(g)] are generalizations of the sphere projection gratings
that are obtained by scaling in x and in y: r3(x, y)
5 r1(bx, cy), r4(x, y) 5 r2(bx, cy). They are given by
the same equations as r1(x, y) and r2(x, y) above where
r2 5 (bx)2 1 (cy)2, and their generating surface is the

ellipsoid z 5 Aa2 2 r2.
Therefore by the 2D similarity theorem15 we obtain

R3~u, v ! 5
1

ubcu
R1S u

b
,

v

c D
5

1

ubcu
pfa3/2

1

~f 2 1 q2!3/4J3/2~2paAf 2 1 q2!,

R4~u, v ! 5
1

ubcu
R2S u

b
,

v

c D
5 2

1

ubcu
pfa3/2

1

~f 2 1 q2!3/4Y3/2~2paAf 2 1 q2!,

where q2 5 (u/b)2 1 (v/c)2.

C. Cylinder Projection Grating
The sine and cosine cylinder projection gratings [Fig.
1(h)] are given by

r1~x, y ! 5 H sin~2p f Aa2 2 x2! 0 < uxu , a

0 a < uxu , `
,

r2~x, y ! 5 H cos~2p f Aa2 2 x2! 0 < uxu , a

0 a < uxu , `
,

and their generating surface is the cylinder of radius a,
z 5 Aa2 2 x2, which is constant in the y direction.

The spectrum R1(u, v) of r1(x, y) is given by the hori-
zontal line impulse:

R1~u, v ! 5 p fa
1

Af 2 1 u2
J1~2paAf 2 1 u2!d~v !.

This result can be obtained by adaptation of Eq. (37) in
Ref. 19. Similarly, the spectrum of the cosinusoidal
counterpart, r2(x, y), is given by the horizontal line im-
pulse:

R2~u, v ! 5 2p fa
1

Af 2 1 u2
Y1~2paAf 2 1 u2!d~v !.

6. GRATINGS OBTAINED FROM CONIC
SURFACES, AND THEIR SPECTRA
Owing to their straight walls, conic surfaces give gratings
with constant local radial frequency in each direction.

A. Circular Grating
The cosine circular grating [Fig. 1(i)] is given by r1(x, y)
5 cos(2p fAx2 1 y2), and its generating surface is the
top-opened cone z 5 Ax2 1 y2. In a previous paper1 I
showed that the spectrum R1(u, v) of this function is
given by
R1~u, v ! 5 H 2
f

2p

1

~f 2 2 q2!3/2 0 < q , f

0 f , q , `

, (3)

where q2 5 u2 1 v2; or, using a notation based on the
half-order derivative of the Dirac impulse d ( ),

R1~u, v ! 5
f

Ap

1

~f 1 q !3/2 d ~1/2!~f 2 q !.

This is a circular impulse ring with a particular dipole-
like impulse behavior on the perimeter of a circle of ra-
dius f, with a negative continuous wake, which gradually
trails off towards the center.1

Similarly, the spectrum of the sine circular grating
r2(x, y) 5 sin(2p fAx2 1 y2) is given by

R2~u, v ! 5 H 0 0 < q , f

2
f

2p

1

~q2 2 f 2!3/2 f , q , `

,
(4)

where q2 5 u2 1 v2; or, in terms of the half-order deriva-
tive of the Dirac impulse d ( ),

R2~u, v ! 5
f

Ap

1

~f 1 q !3/2 d ~1/2!~q 2 f !.

This is a circular impulse ring with a particular dipole-
like impulse behavior on the perimeter of a circle of ra-
dius f, with a negative continuous wake, which surrounds
it and gradually trails off outward, asymptotically to the
x, y plane.

B. Elliptic Grating
The cosine and sine elliptic gratings [Fig. 1( j)] are gener-
alizations of the circular gratings that are obtained by
scaling in x and in y:

r3~x, y ! 5 r1~bx, cy ! 5 cos@2p fA~bx !2 1 ~cy !2#,

r4~x, y ! 5 r2~bx, cy ! 5 sin@2p fA~bx !2 1 ~cy !2#.

Their generating surface is the top-opened elliptic cone
z 5 A(bx)2 1 (cy)2.

Therefore by the 2D similarity theorem15 we obtain

R3~u, v ! 5
1

ubcu
R1S u

b
,

v

c D
5 H 2

1

ubcu

f

2p

1

~f 2 2 q2!3/2 0 < q , f

0 f , q , `

,

R4~u, v ! 5
1

ubcu
R2S u

b
,

v

c D
5 H 0 0 < q , f

2
1

ubcu

f

2p

1

~q2 2 f 2!3/2 f , q , `

,

where q2 5 (u/b)2 1 (v/c)2; or, in terms of the half-order
derivative of the Dirac impulse d ( ),
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R3~u, v ! 5
f

Ap

1

~f 1 q !3/2 d~1/2!~f 2 q !,

R4~u, v ! 5
f

Ap

1

~f 1 q !3/2 d~1/2!~q 2 f !.

It is interesting to note that the intensity of the elliptic
impulse ring in these spectra is higher toward the ends of
the major axis of the ellipse; this phenomenon is ex-
plained for a similar case in Ref. 20.

C. Hyperbolic Grating
The cosine and sine hyperbolic gratings [Fig. 1(k)], an-
other generalization of the circular gratings, are given by

r3~x, y !

5 H cos@2p fA~bx !2 2 ~cy !2# ~bx !2 2 ~cy !2 . 0

0 ~bx !2 2 ~cy !2 < 0
,

r4~x, y !

5 H sin@2p fA~bx !2 2 ~cy !2# ~bx !2 2 ~cy !2 . 0

0 ~bx !2 2 ~cy !2 < 0
.

Their generating surface is the laterally oriented cone
z 5 A(bx)2 2 (cy)2, which is opened in the 6x direc-
tions. The spectra of these functions are

R3~u, v ! 5
1

ubcu
R1S u

b
,

v

c D
5 H 2

1

ubcu

f

2p

1

~f 2 2 q2!3/2 0 < q , f

0 f , q , `

,

R4~u, v ! 5
1

ubcu
R2S u

b
,

v

c D
5 H 0 0 < q , f

2
1

ubcu

f

2p

1

~q2 2 f 2!3/2 f , q , `

,

where q2 5 (u/b)2 2 (v/c)2; or, in terms of the half-order
derivative of the Dirac impulse d ( ),

R3~u, v ! 5
f

Ap

1

~ f 1 q !3/2 d ~1/2!~f 2 q !,

R4~u, v ! 5
f

Ap

1

~ f 1 q !3/2 d ~1/2!~q 2 f !.

These spectra consist of hyperbolic curvilinear impulses
that have a profile shape similar to that of their circular
or elliptic counterparts (Subsections 6.A and 6.B): they
have a particular dipole-like impulse behavior on their
hyperbolic perimeter and a continuous wake that gradu-
ally trails off from their concave side (in the cosinusoidal
grating) or from their convex side (in the sinusoidal grat-
ing).
7. GRATINGS OBTAINED FROM
HYPERBOLIC SURFACES,
AND THEIR SPECTRA
In this section we discuss gratings that are obtained from
the one-sheet hyperboloid, the two-sheet hyperboloid, and
the hyperbolic cylinder. Note that any hyperboloid is
asymptotic to a conic surface and that any hyperbolic cyl-
inder is asymptotic to a pair of intersecting planes. We
will see below the consequences of this fact on the grat-
ings generated by these surfaces and on their spectra.

A. One-Sheet Hyperboloid Projection Grating
The sine and cosine one-sheet hyperboloid projection grat-
ings [Fig. 1(l)] are given by

r1~x, y ! 5 H 0 0 < r , a

sin~2p fAr2 2 a2! a < r , `

,

r2~x, y ! 5 H 0 0 < r , a

cos~2p fAr2 2 a2! a < r , `

,

where r2 5 x2 1 y2; their generating surface is the one-
sheet hyperboloid z 5 Ar2 2 a2.

The spectrum R1(u, v) of r1(x, y) is given by

R1~u, v ! 5 H 0

p fa3/2
1

~q2 2 f 2!3/4 J23/2~2paAq2 2 f 2!

,

0 < q , f, f , q , `,

where q2 5 u2 1 v2. This result is obtained by adapta-
tion of Eq. (24) in Ref. 21, assuming there n 5 0 [note
that Eq. (24) is originally given there for n . 1/2, to avoid
cases with impulsive spectra]. Similarly, the spectrum of
the cosinusoidal counterpart r2(x, y) is

R2~u, v ! 5 5 22 fa3/2
1

~f 2 2 q2!3/4 K23/2~2paAf 2 2 q2!

p fa3/2
1

~q2 2 f 2!3/4 Y23/2~2paAq2 2 f 2!

,

0 < q , f, f , q , `,

where Kp(x) is the modified Bessel function of the second
kind of order p.

Note that when a → 0 the gratings r1(x, y) and
r2(x, y) tend to the circular sine and cosine gratings of
Subsection 6.A. And indeed, it is interesting to note that
when a → 0 the spectra R1(u, v) and R2(u, v) tend to
the spectra of the circular sine and cosine gratings [Eqs.
(4) and (3) in Subsection 6.A]. This can be verified by re-
placing the Bessel functions inside R1(u, v) and R2(u, v)
with their series developments18 and proceeding to the
limit.

B. Two-Sheet Hyperboloid Projection Grating
The sine and cosine two-sheet hyperboloid projection
gratings [Fig. 1(m)] are given by r1(x, y)

5 sin(2p fAr2 1 a2) and r2(x, y) 5 cos(2p fAr2 1 a2),
where r2 5 x2 1 y2, and their generating surface is the
one-sheet hyperboloid z 5 Ar2 1 a2.
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The spectrum R1(u, v) of r1(x, y) is given by

R1~u, v ! 5 5 2p fa3/2
1

~f 2 2 q2!3/4 J3/2~2paAf 2 2 q2!

22 fa3/2
1

~q2 2 f 2!3/4 K3/2~2paAq2 2 f 2!

,

0 < f, f , q , `,

where q2 5 u2 1 v2. Similarly, the spectrum of the co-
sinusoidal counterpart r2(x, y) is

R2~u, v ! 5 H p fa3/2
1

~f 2 2 q2!3/4 Y3/2~2paAf 2 2 q2!

0

,

0 < q , f, f , q , `.

This result is obtained by adaptation of Eq. (43) in Ref.
22, assuming there n 5 0 [note that Eq. (43) is originally
given there for 21 , n , 21/2 to avoid cases with impul-
sive spectra]. Note that the remark at the end of Subsec-
tion 7.A applies here, too.

C. Laterally Opened Hyperbolic-Cylinder
Projection Grating
The sinusoidal and cosinusoidal versions of this grating
[Fig. 1(n)] are given by

r1~x, y ! 5 H 0 0 < uxu , a

sin~2p fAx2 2 a2! a < uxu , `

,

r2~x, y ! 5 H 0 0 < uxu , a

cos~2p fAx2 2 a2! a < uxu , `

and their generating surface is the laterally opened hy-
perbolic cylinder z 5 Ax2 2 a2, which is constant in the
y direction.

The spectrum R1(u, v) of r1(x, y) is given by the hori-
zontal line impulse

R1~u, v ! 5 5 2 fa
1

Af 2 2 u2
K21~2paAf 2 2 u2!d~v !

2p fa
1

Au2 2 f 2
Y21~2paAu2 2 f 2!d~v !

,

0 < u , f, f , u , `.

Similarly, the spectrum of the cosinusoidal counterpart
r2(x, y) is given by the horizontal line impulse:

R2~u, v ! 5 H 0

p fa
1

Au2 2 f 2
J21~2paAu2 2 f 2!d~v !

,

0 < u , f, f , u , `.

Note that when a → 0 the gratings r1(x, y) and
r2(x, y) tend to sin(2p f uxu) and cos(2p fx), respectively.
And indeed, when a → 0 the spectra R1(u, v) and
R2(u, v) tend to the spectra of these functions, which are,
respectively, (f/p)@1/(f 2 2 u2)# and (1/2)d(x 2 f )
1 (1/2)d(x 1 f ). This can be verified, again, by replac-
ing the Bessel functions inside R1(u, v) and R2(u, v)
with their series developments18 and proceeding to the
limit.

D. Top-Opened Hyperbolic-Cylinder
Projection Grating
The sinusoidal and cosinusoidal versions of this grating
[Fig. 1(o)] are given by r1(x, y) 5 sin(2p fAx2 1 a2) and
r2(x, y) 5 cos(2p fAx2 1 a2), and their generating sur-
face is the top-opened hyperbolic cylinder z 5 Ax2 1 a2,
which is constant in the y direction.

The spectrum R1(u, v) of r1(x, y) is given by the hori-
zontal line impulse:

R1~u, v ! 5 5 2p fa
1

Af 2 2 u2
Y1~2paAf 2 2 u2!d~v !

22 fa
1

Au2 2 f 2
K1~2paAu2 2 f 2!d~v !

,

0 < u , f, f , u , `.

This result is obtained from formula 5.93 in Ref. 23, as-
suming there v 5 1 (note that formula 5.93 is originally
given there for 21 , v , 1 to avoid cases with impulsive
spectra). Similarly, the spectrum of the cosinusoidal coun-
terpart r2(x,y) is given by the horizontal line impulse:

R2~u,v ! 5 H 2pfa
1

Af 2 2 u2
J1~2paAf 2 2 u2!d~v !

0
,

0 < u , f, f , u , `.

This result is obtained from formula 5.94 in Ref. 23, as-
suming there v 5 1. Note that the remark at the end of
Subsection 7.C applies here, too.

E. Other Cases
Finally, it should be noted that more general second-order
curvilinear gratings can be obtained from each of the
above cases by translations, rotations, shears, or any
other first-order coordinate transformations of the x, y
plane. The influence of a first-order transformation on
the Fourier domain is well known and rather
straightforward.24 Some additional interesting cases
that are obtained by other transformations are given in
the appendices.

8. SPECTRUM OF CURVILINEAR
GRATINGS WITH ANY GIVEN PERIODIC
PROFILE

A. Fourier Decomposition of Curvilinear Gratings
The analysis of curvilinear gratings with any arbitrary
periodic profile is based on the Fourier series decomposi-
tion of the gratings’ periodic profile. Assume that the
curvilinear grating r(x, y) is obtained by bending a peri-
odic grating p(x8), i.e., by replacing x8 by a function
x8 5 g1(x, y): r(x, y) 5 p@ g1(x, y)#. A few examples
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of curvilinear gratings r(x, y) with a square-wave
periodic-profile p(x8) are shown in Fig. 3. If the Fourier
development of the original grating p(x8) is

p~x8! 5 (
n52`

`

cn exp~i2pnfx8!, (5)

then the Fourier decomposition of our curvilinear grating
r(x, y) is25

r~x, y ! 5 p@ g1~x, y !# 5 (
n52`

`

cn exp@i2pnfg1~x, y !#.

(6)

Note that the exponential form of the Fourier series
[Eq. (5)] can be equivalently expressed in terms of cosine
and sine series as follows:

p~x8! 5 a0 1 2(
n51

`

an cos~2pnx8/T !

1 2(
n51

`

bn sin~2pnx8/T !, (7)

where a0 5 c0 , an 5 (cn 1 c2n)/2, bn 5 i(cn 2 c2n)/2
(n > 1), and T 5 1/f; and vice versa, knowing the cosine

Fig. 3. Some examples of curvilinear gratings r(x, y) with a
square-wave periodic profile (with opening ratio t/T 5 0.6), and
their respective spectra R(u, v): (a) parabolic grating,
g1(x, y) 5 y 2 0.15x2; (b) circular grating, g1(x, y)
5 Ax2 1 y2; (c) circular zone grating, g1(x, y) 5 (x2 1 y2)/8.
The amplitudes of the different harmonics in the spectra are
weighted by the Fourier series coefficients an of the square wave
[see Eq. (12)]: a1 5 0.303, a2 5 20.094, a3 5 20.062, etc; the
sign inversions in the second and third harmonics are clearly vis-
ible in the spectra of cases (a) and (b). Notice the various DFT
artifacts in the spectra (folding over due to aliasing; rippling).
and sine Fourier decomposition (7), one obtains the expo-
nential form (5) by taking c0 5 a0 , cn 5 an 2 ibn , c2n
5 an 1 ibn (n > 1).

In the special case where p(x8) is symmetric, the series
developments (5) and (7) reduce into a pure cosine devel-
opment:

p~x8! 5 a0 1 2(
n51

`

an cos~2pnx8/T !, (8)

and Eq. (6) becomes

r~x, y ! 5 p@ g1~x, y !#

5 a0 1 2(
n51

`

an cos~2png1~x, y !/T ! (9)

with the same coefficients an as in Eq. (8). This cosine
series development lends itself more easily to graphic in-
terpretation. However, it cannot be used for gratings
with nonsymmetric periodic-profile forms such as saw-
tooth waves, and in such cases the general exponential
development (5) (or equivalently, the development (7) into
cosine and sine series) must be used.

B. Spectrum of Curvilinear Gratings
We have seen in Subsection 8.A that a curvilinear grating
r(x, y) can be represented in the image domain as a cur-
vilinear Fourier series, i.e., as a sum of curvilinear co-
sines and sines (or exponentials) that were all subjected
to the same transformation g1(x, y) as the curvilinear
grating r(x, y) itself. This fact reduces the problem of
finding R(u, v), the spectrum of the curvilinear grating
r(x, y), into the question of finding the Fourier transform
of the curvilinear cosine and sine (or exponential). In the
classical case of periodic functions, the Fourier transform
pair

cos~2p fx ! ↔ 1
2 d~u 2 f ! 1

1
2 d~u 1 f !

gives us

p~x ! 5 (
n52`

`

an cos~2pnx/T !

↔ P~u ! 5 (
n52`

`

and~u 2 n/T !.

In a similar way, if we know here the spectrum Rn(u, v)
of the curvilinear cosine rn(x, y) 5 cos(2png1(x, y)/T ), we
obtain from Eq. (9)

r~x, y ! 5 (
n52`

`

an cos~2png1~x, y !/T !

↔ R~u, v ! 5 (
n52`

`

anRn~u, v !.

(10)

Similarly, using the more general exponential notation,
we obtain from Eq. (6)
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r~x, y ! 5 (
n52`

`

cn exp@i2pnfg1~x, y !#

↔ R~u, v ! 5 (
n52`

`

cnRn~u, v !,

(11)

where Rn(u, v) is the spectrum of the curvilinear expo-
nential function rn(x, y) 5 exp@i2p n fg1(x, y)#.

In other words, the spectrum of the curvilinear grating
r(x, y) is the sum of the spectra of the individual curvi-
linear cosines and sines (or exponentials), where an , bn
(or cn) are the same coefficients as in the Fourier series
decomposition of r(x, y) and hence, according to Subsec-
tion 8.A, the same coefficients as in the decomposition of
its periodic profile p(x8).

Therefore, to investigate the spectrum of the curvilin-
ear grating r(x, y) we first have to understand what hap-
pens to the spectra of the 2D cosine and sine functions
cos(2p f x) and sin(2p f x) [or, equivalently, to the spectrum
of an exponential function exp(i2p fx)] when the image do-
main undergoes a transformation (or coordinate change)
g1(x, y). Unfortunately, there exists no such general
rule when the transformation g1(x, y) is nonlinear.
However, for many cases of interest the Fourier trans-
form of cos@2p fg1(x, y)# and sin@2p fg1(x, y)# (or of
exp@i2p fg1(x, y)#) can be found on the basis of Fourier
transform tables in the literature (such as in Refs. 17, 19,
21, and 23) that include Fourier transforms of functions of
the forms cos@ g(x)#, sin@ g(x)#, or exp@ g(x)#. Some particu-
lar cases of interest have been discussed above in Sections
4–7 and illustrated in Fig. 1. As we have seen, in some
cases (cylinder projection gratings: Subsections 4.D, 5.C,
etc.) the spectra of the curvilinear cosine and sine func-
tions are impulsive, whereas in other situations their
spectra may become semi-impulsive (Section 6) or even
completely nonimpulsive (e.g., Subsections 4.A–4.C).

Equations (10) and (11) are particularly useful when
the individual spectra Rn(u, v) of the curvilinear cosines
(or exponentials) are impulsive. In this case the spec-
trum R(u, v) is composed of isolated, separately localized
entities (impulses), and each of the terms Rn(u, v) in the
series represents indeed one of these isolated entities in
the spectrum. If the individual spectra Rn(u, v) are con-
tinuous [as in the case of Figs. 1(b)–(d)], Eqs. (10) and (11)
are still valid—but they lose much of their practical use-
fulness: In this case the spectrum R(u, v)
5 (n52`

` anRn(u, v) is a sum of continuous functions
with overlapping supports, and its series representation
no longer reflects a partition of the spectrum into spa-
tially separated entities Rn(u, v) with mutually exclusive
supports on the u, v plane that can be individually local-
ized, isolated, and manipulated. Nevertheless, in many
cases one can still make use of such continuous spectra,
for example in questions involving the synthesis or recon-
struction of the functions R(u, v) and r(x, y).

Example 1. The spectrum of a parabolic grating with a
square-wave periodic profile:

We recall that the Fourier series decomposition of the
square wave p(x8) with period T and opening t is
p~x8! 5 (
n52`

`

an cos~2pnx8/T !, (12)

with

an 5 ~t/T !sinc~nt/T !.

Now let r(x, y) be a parabolic grating that has the
square-wave periodic profile p(x8) with period T and
opening t [see Fig. 3(a)]. This curvilinear grating is ob-
tained by bending p(x8), i.e., by applying on p(x8) the
nonlinear transformation (or coordinate change) x8
5 y 2 ax2. The Fourier decomposition of r(x, y) is ob-
tained by replacing x8 with y 2 ax2 in Eq. (12):

r~x, y ! 5 p~y 2 ax2! 5 (
n52`

`

an cos~2pn~y 2 ax2!/T !.

Therefore the spectrum of this grating is

R~u, v ! 5 (
n52`

`

anRn~u, v !,

where R0(u, v) 5 d (u, v) is the dc impulse and
Rn(u, v), the spectrum of cos@2 p n( y 2 ax2)/T #, is a pair
of continuous horizontal line impulses that are vertically
located at v 5 6n/T (see Subsection A.1 in Appendix A):

Rn~u, v ! 5
1
2 @Rc~u ! 1 iRs~u !#d~v 2 nf !

1
1
2 @Rc~u ! 2 iRs~u !#d~v 1 nf !,

with

Rc~u ! 5
1

2Anfa
FcosS p

2nfa
u2D 1 sinS p

2nfa
u2D G ,

Rs~u ! 5
1

2Anfa
FcosS p

2nfa
u2D 2 sinS p

2nfa
u2D G ,

where a is the bending rate of the parabolic grating
r(x, y) and f is its fundamental frequency 1/T.

The spectrum of the parabolic grating with a square-
wave periodic profile consists, therefore, of a dc impulse
plus a series of such horizontal line impulses that are ver-
tically situated at v 5 n/T, n 5 61, 62, ..., and whose
amplitudes are weighted by the coefficients an [see Fig.
3(a)]. j

Example 2. The spectrum of a circular grating with a
square-wave periodic profile:

The Fourier decomposition of the circular grating
r(x, y) into a series of circular cosines with radial fre-
quencies of fn 5 n/T ( 5 radial periods of T/n) is

r~x, y ! 5 p~Ax2 1 y2!

5 a0 1 2(
n51

`

an cos~2pnAx2 1 y2/T !

with the same coefficients an as in the square-wave pro-
file: an 5 (t/T)sinc(nt/T). Therefore the spectrum of
this circular grating is

R~u, v ! 5 a0R0~u, v ! 1 2(
n51

`

anRn~u, v !,
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where R0(u, v) is the dc impulse and Rn(u, v), the spec-
trum of cos(2pnAx2 1 y2/T), is a peculiar dipole-like im-
pulse ring with a weak continuous wake trailing off to-
ward the center, as we have seen in Subsection 6.A (see
Ref. 1 for more details). The spectrum of a circular grat-
ing with a square-wave periodic profile is, therefore, a
concentric series of such circular dipole-like rings with ra-
dii of n/T, whose amplitudes are weighted by the coeffi-
cients an of the square-wave profile [see Fig. 3(b)]. Note
that in this case the rings Rn(u, v) are not completely
spatially separable, since their weak, continuous wakes,
which trail off toward the spectrum center, are overlap-
ping. However, for many practical needs these continu-
ous wakes can be considered negligible, and we can say
that the main frequency contribution of each of the rings
Rn(u, v) is concentrated on its impulsive ( 5 singular)
support, namely, on the perimeter of a circle with radius
n/T around the spectrum origin. Note, however, that
even on this singular support the impulsive behavior of
Rn(u, v) is dipole-like and hence more complex than that
of a simple impulse ring d(Au2 1 v2 2 f ). j

Example 3. The spectrum of a zone grating with
square-wave periodic profile:

As we have seen in Section 4, a zone grating (zone
plate) is a concentric circular grating where the radius of
the nth circle is proportional to An. In most optical ap-
plications the periodic profile of the zone grating has a bi-
nary (black/white) square-wave form. The Fourier devel-
opment of this function is therefore [see Fig. 3(c)]

r~x, y ! 5 a0 1 2(
n51

`

an cos@2pn~x2 1 y2!/T#,

with the same coefficients an as in the square-wave pro-
file: an 5 (t/T)sinc(nt/T). Therefore the spectrum of
this circular grating is

R~u, v ! 5 a0R0~u, v ! 1 2(
n51

`

anRn~u, v !,

where R0(u, v) is the dc impulse d(u, v) and Rn(u, v),
the spectrum of cos(2pn(x2 1 y2)/T), is, according to Sub-
section 4.A, Rn(u, v) 5

1
2nf sin@

p
2nf (u2 1 v2)#, where f is

the fundamental frequency 1/T. Note that the terms
Rn(u, v) of the spectrum R(u, v) are not spatially sepa-
rable, since each of them is a continuous sinusoidal zone
grating that is centered on the origin and extends
throughout the whole spectrum, and hence all of them are
mutually overlapping at every point of the u, v plane. j

9. SUMMARY
Second-order curvilinear gratings are mathematically ob-
tained by the application of a second-order spatial trans-
formation on a straight, periodic grating. Such curvilin-
ear structures occur quite frequently in optics (circular
gratings, various zone plates, etc.), and their Fourier
transform may arise, for example, in connection with the
Fraunhofer diffraction patterns generated by these struc-
tures. However, owing to the nonlinearity of the spatial
transformations involved, the analytic expressions of the
Fourier transforms of most second-order curvilinear grat-
ings are not easy to find.

In this paper are provided the analytic spectra of the
most important families of second-order curvilinear grat-
ings, and their main properties are shown. We started
with second-order curvilinear gratings with a cosinusoi-
dal or a sinusoidal intensity profile. Then we generalized
these results for curvilinear gratings with any desired in-
tensity profiles, using the Fourier decomposition of their
intensity profile. These results open the way to a better
understanding of the properties of many important curvi-
linear gratings and their Fourier spectra.

APPENDIX A: EFFECTS OF THE
TRANSFORMATION g(x, y) 5 g1(x, y)
1 bx 1 cy
Let g1(x, y) be the bending transformation of the curvi-
linear gratings r1(x, y) 5 cos@2p f g1(x, y)# and r2(x, y)
5 sin@2p fg1(x, y)#; the generating surface associated with
this bending transformation is z 5 g1(x, y). Assume
that we add to g1(x, y) a term of the form bx, cy or
bx 1 cy; this is equivalent to an incrementation of the
generating surface z 5 g1(x, y) by a plane z 5 bx,
z 5 cy or z 5 bx 1 cy, namely, a linear inclination of the
generating surface in the x direction, in the y direction, or
in both. How does this affect the spectrum of the grat-
ings r1(x, y) and r2(x, y)?

Using the trigonometric identity cos(a 1 b)
5 cos a cos b 2 sin a sin b, we obtain

r3~x, y ! 5 cos$2p f @ g1~x, y ! 1 ~bx 1 cy !#%

5 cos@2p fg1~x, y !#cos@2p f~bx 1 cy !#

2 sin@2p fg1~x, y !#sin@2p f~bx 1 cy !#.

However, according to the 2D modulation theorem,15 we
have

r1~x, y !cos@2p f~bx 1 cy !#

↔ 1
2 R1~u 1 bf, v 1 cf ! 1

1
2 R1~u 2 bf, v 2 cf !,

r2~x, y !sin@2p f~bx 1 cy !#

↔ 1
2 iR2~u 1 bf, v 1 cf ! 2

1
2 iR2~u 2 bf, v 2 cf !,

where R1(u, v) is the spectrum of r1(x, y) and R2(u, v)
is the spectrum of r2(x, y). Therefore the spectrum of
the grating r3(x, y) is

R3~u, v !

5
1
2 @R1~u 1 bf, v 1 cf ! 1 R1~u 2 bf, v 2 cf !#

1
1
2 i@R2~u 1 bf, v 1 cf ! 2 R2~u 2 bf, v 2 cf !#

Similarly, the spectrum of the grating r4(x, y)
5 sin$2p f @ g1(x, y) 1 (bx 1 cy)#% is

R4~u, v !

5
1
2 @R2~u 1 bf, v 1 cf ! 1 R2~u 2 bf, v 2 cf !#

1
1
2 i@R1~u 1 bf, v 1 cf ! 1 R1~u 2 bf, v 2 cf !#.
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We obtain, therefore, the following general result:

Result 1. If the spectra of the curvilinear
gratings r1(x, y) 5 cos@2p f g1(x, y)# and r2(x, y)
5 sin@2p fg1(x, y)# are, respectively, R1(u, v) and
R2(u, v), then

(a) The spectrum R3(u, v) of the grating r3(x, y)
5 cos$2p f @ g1(x, y) 1 bx 1 cy#% consists of a copy of
1
2 @R1(u, v) 1 iR2(u, v)# that is shifted to the point
(u, v) 5 (bf, cf ) and a copy of 1

2 @R1(u, v)
2 iR2(u, v)# that is shifted to the symmetric point
(u, v) 5 2(bf, cf ).

(b) The spectrum R4(u, v) of the grating r4(x, y)
5 sin$2p f @ g1(x, y) 1 bx 1 cy#% consists of a copy of
1
2 @R2(u, v) 1 iR1(u, v)# that is shifted to the point
(u, v) 5 (bf, cf ) and a copy of 1

2 @R2(u, v)
1 iR1(u, v)# that is shifted to the symmetric point
(u, v) 5 2(bf, cf ). j
Several examples that give rise to interesting curvilin-
ear gratings are given in the subsections that follow.

1. Equispaced Parabolic Grating
Assume that we add the term 2y to the generating sur-
face z 5 ax2 of the linear zone grating (Subsection 4.D).
We obtain the generating surface z 5 ax2 2 y, which is
an inclined version of the original parabolic cylinder.
The level lines z 5 n (n P Z) of this surface consist of a
series of equispaced parabolas y 5 ax2 2 n, and there-
fore the generated gratings r5(x, y) 5 cos@2p f (ax2 2 y)#
and r6(x, y) 5 sin@2p f (ax2 2 y)# are equispaced para-
bolic gratings [Fig. 4(a)].

Now, according to result 1, the Fourier spectrum of
grating r5(x, y) is

R5~u, v ! 5
1
2 @R1~u, v 2 f ! 1 R1~u, v 1 f !#

1
1
2 i@R2~u, v 2 f ! 2 R2~u, v 1 f !#,
Fig. 4. Some further curvilinear gratings r(x, y) with a periodic-profile waveform of cos(2p fx) (with f 5 1), and their spectra R(u, v)
as obtained on computer by 2D DFT: (a) equispaced parabolic grating, cos @2 p f (0.15x2 2 y)#; (b) equispaced circle-arc grating,
cos@2p f (A36 2 x2 1 y)#; (c) equispaced hyperbola-arc grating, cos@2p f (Ax2 1 16 2 y)#; (d) eccentric equispaced parabolic grating,
cos@2p f (Ax2 1 y2 2 y)#; (e) eccentric equispaced elliptic grating, cos@2p f (Ax2 1 y2 2 y/2)#; (f ) eccentric equispaced hyperbolic grating,
cos@2p f (Ax2 1 y2 2 1.5y)#; (g) eccentric ellipsoid projection grating, cos@2p f (A64 2 x2 2 2y2 1 x)#. In each case the central column
shows the real part of the spectrum, and the right-hand column shows the imaginary part of the spectrum. Note the DFT rippling
artifacts in some of the spectra.
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and by inserting the spectra R1(u, v) and R2(u, v) from
Subsection 4.D,

5
1
2 @Rc~u ! 1 iRs~u !#d~v 2 f !

1
1
2 @Rc~u ! 2 iRs~u !#d~v 1 f !,

where Rc(u) and Rs(u) are given by Eqs. (1) and (2). As
we can see in Fig. 4(a), this spectrum consists, indeed, of a
pair of continuous horizontal line impulses (‘‘blades’’),
situated at a distance of 6f from the u axis. Their con-
tinuous, modulated amplitudes are given by 1

2 @Rc(u)
1 iRs(u)# and 1

2 @Rc(u) 2 iRs(u)#, respectively.
Similarly, the spectrum of the sinusoidal grating

r6(x, y) is

R6~u, v ! 5
1
2 @Rs~u ! 1 iRc~u !#d~v 2 f !

1
1
2 @Rs~u ! 1 iRc~u !#d~v 1 f !.

2. Equispaced Circle- and Hyperbola-Arc Gratings
In a similar way, if we add the term y to the generating
surface z 5 Aa2 2 x2 of the cylinder projection gratings
r1(x, y) and r2(x, y) of Subsection 5.C, we obtain the eq-
uispaced circle-arc gratings [Fig. 4(b)]:

r5~x, y ! 5 H sin@2p f~Aa2 2 x2 1 y !# 0 < uxu , a

0 a < uxu , `
,

r6~x, y ! 5 H cos@2p f~Aa2 2 x2 1 y !# 0 < uxu , a

0 a < uxu , `
.

Their spectra consist, again, of a pair of horizontal line
impulses situated at a distance of 6 f from the u axis;
their modulated amplitudes are determined, according to
result 1, by the spectra R1(u, v) and R2(u, v) of Subsec-
tion 5.C.

Similarly, by adding the term y to the generating sur-
face of the hyperbolic-cylinder projection grating (Subsec-
tion 7.D), one gets in the image domain an equispaced
hyperbola-arc grating [Fig. 4(c)]. Its spectrum consists,
again, of a pair of horizontal line impulses.

3. Eccentric Equispaced Parabolic, Elliptic, and
Hyperbolic Gratings
Assume that we add the term bx 1 cy to the generating
surface z 5 Ax2 1 y2 of the circular grating (Subsection
6.A). We obtain the generating surface z 5 Ax2 1 y2

1 bx 1 cy, which is an inclined version of the original
top-opened cone. The level lines z 5 n (n P Z) of this
surface, and hence also the resulting gratings r5(x, y)
5 sin@2p f (Ax2 1 y2 1 bx 1 cy)# and r6(x, y)
5 cos@2p f (Ax2 1 y2 1 bx 1 cy)#, consist of a series of
eccentric equispaced parabolas, ellipses, or hyperbolas,
depending on the parameters b and c [see Figs. 4(d), 4(e),
and 4(f)].

According to result 1, the Fourier spectrum of each of
these gratings consists of two impulse rings (copies of the
spectra of the original circular gratings of Subsection 6.A)
that are shifted to the symmetric points (u, v)
5 (bf, cf ) and (u, v) 5 2(bf, cf ). It is interesting to
note that when the two shifted rings intersect each other
(i.e., when A(bf )2 1 (cf )2 is smaller than the ring’s ra-
dius f, namely, b2 1 c2 , 1), the eccentric equispaced
grating obtained in the image domain is elliptic [Fig.
4(e)]; when the two shifted rings are tangential (i.e., b2

1 c2 5 1) the grating obtained in the image domain is
parabolic [Fig. 4(d)], and when the two shifted rings are
mutually exclusive (i.e., b2 1 c2 . 1), the grating is hy-
perbolic [Fig. 4(f )].

In a similar way, result 1 can be also used to obtain the
spectra of eccentric zone gratings, eccentric sphere projec-
tion gratings, eccentric ellipsoid projection gratings [Fig.
4(g)], etc.

APPENDIX B: EFFECTS OF THE
TRANSFORMATION g(x, y) 5 g1(x, y) 1 c
Let g1(x, y) be the bending transformation of the curvi-
linear gratings r1(x, y) 5 cos@2p fg1(x, y)# and r2(x, y)
5 sin@2p fg1(x, y)#. The addition of a constant c to
g1(x, y) is equivalent to a translation of the generating
surface z 5 g1(x, y) by a constant c along the z axis.
This affects in the image domain the phase of the gratings
r1(x, y) and r2(x, y). However, the influence of such a
phase change on the spectral domain is more complex:

Using the trigonometric identity cos(a 1 b)
5 cos a cos b 2 sin a sin b, we obtain

r3~x, y ! 5 cos~2p f @ g1~x, y ! 1 c# ! 5 r1~x, y !cos~2p fc !

2 r2~x, y !sin~2p fc !.

Since cos(2p fc) and sin(2p fc) are constants, the spectrum
of the grating r3(x, y) is

R3~u, v ! 5 cos~2p fc !R1~u, v ! 2 sin~2p fc !R2~u, v !,

namely, a weighted sum of the spectra R1(u, v) and
R2(u, v), with the weighting coefficients cos(2p fc) and
sin(2p fc).

Similarly, the spectrum of the grating r4(x, y)
5 sin$2p f @ g1(x, y) 1 c# % is

R4~u, v ! 5 sin~2p fc !R1~u, v ! 1 cos~2p fc !R2~u, v !.
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