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ABSTRACT

The current de�nition of 3D digital lines3 , which uses the 2D digital lines of closest integer points (Bresenham's
lines) of two projections, has several drawbacks:

� the discrete topology of this 3D digital line notion is not clear,

� its third projection is, generally, not the closest set of points of the third euclidean projection,

� if we consider a family of parallel euclidean lines, we do not know how many combinatorially distinct digital
structures will be built by this process,

� and mainly the set of voxels de�ned in this way is not the set of closest points of the given euclidean line.

And these questions are the simplest ones; many others could be asked: dependence on the choice of the
projections, intersections with digital planes, intersections between 3D digital lines,...

This paper gives a new de�nition of 3D digital lines relying on subgroups of Z3, whose main advantage over
the former one is its ability to convert any practical question into rigorous algebraic terms. It follows previously
developed ideas1 but with a much simpler treatment and new results. In particular, we obtain a complete
description of the topology of these lines and a condition for the third projection being a 2D digital line as well
as a classi�cation of digital lines of the same direction into classes of equivalent combinatorial structure.
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1 INTRODUCTION

The general idea of our approach will be brie
y explained in this paragraph. Our de�nition is restricted to
the discretization of euclidean lines directed by integers vectors (a; b; c) satisfying the following hypotheses:

�
gcd(a; b; c) = 1
0 � a < b < c

The �rst one, motivated by arithmetical reasons, is not a real restriction: the general case can be easily
reduced to it. The second one is much more interesting as it comes from the symmetries of the space Z3 (or
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those of the cube). These inequalities describe what is called the standard simplex, which is nothing more than
the fundamental domain of the group of symmetries of the cube. Using this group, the study of 3D digital lines
directed by any vector (a; b; c), can be reduced to those directed by vectors belonging to this fundamental domain.

Let us consider the euclidean plane (P), normal to (a; b; c), whose equation is

ax+ by + cz = 0 (P )

and the orthogonal projection � ofZ3 to (P):
� :Z3 ! P

It is easy to prove that the image
L = �(Z3)

is a discrete and rational lattice.

An important consequence results from L discreteness. That is: bounded subsets of plane (P ) contain only
�nite numbers of points of L. If B is such a bounded set, its inverse image ��1(B) is made of a �nite number of
�bers all of which are in one to one correspondance with the subgroup

��1(0) = fk:(a; b; c) j k 2Zg

generated by vector (a; b; c). More precisely for any point x 2 L we know that its �ber ��1(x) is equal, within
translation, to ��1(0).

In this way we reduce the study of 3D digital lines to the study of the 2D lattice L. Lattices (or Z-modules)
are structures which are, at the same time, similar and distinct from vector spaces. The reader will �nd their
properties in any algebra treatise.4

We are more precisely interested in the study of the subset p of L contained in a fundamental domain of a
sub-lattice S of L. We show hereafter that the parameterization of L and p can be made extremely simple leading
to a particularly interesting representation of digital 3D lines. We show also that we can, among others, read the
topology of the line and recover usual algorithms from this representation.

We will use some results of the theory of numbers2 and the following usual notations:

� If u and v are two integers we recall that (u; v) is the common abbreviation for gcd(u; v) and lcm(u; v) is
their least common multiple.

� The brackets
�
u
v

�
denote the quotient of the euclidean division of u by v.

� The curly brackets
�
u
v

	
denote the euclidean remainder of the euclidean division of u by v.

2 SIMPLIFICATION OF TRIPLY GENERATED TWO

DIMENSIONAL LATTICES.

The main di�culty concerning Z-modules (or lattices or free abelian groups) is that one can �nd free families
of vectors whose cardinal is equal to the dimension of the ambient space and which do not generate this space.
One such example is given by the set f(1; 0); (3; 2)g of Z2, which is free, has cardinal two and is not generator
of Z2. We can see for instance that vector (2; 1) cannot be represented as a linear combination, with integer
coe�cients, of the given vectors.

Let us introduce the following de�nitions:



� If V1; V2; : : : ; Vi are integer vectors ofZ
3, L(V1; V2; : : : ; Vi) will denote the lattice generated by these vectors.

We shall restrict to i = 2 and i = 3 and say, respectively, in these cases that the lattices are doubly or triply
generated.

� We shall denote any fundamental domain of L(V1; V2) by Par (for parallelogram) and by p the set of points
of L(V1; V2; V3) contained in Par, (keep in mind that the points V1; V2 and V1 + V2 are not members of p).

� We also denote by �(p) the cardinal of p.

Our goal is parameterize in the most simple way the set p. Let us start with a 2D version of this problem,
that is we suppose vectors V1; V2; V3 are in Z

2.

V1 = (x1; y1) and V2 = (x2; y2) either generate a rank one subgroup, if det

�
x1 x2
y1 y2

�
= 0, or a rank two

subgroup of Z2 otherwise. We suppose this last hypothesis is satis�ed in what follows.

If V3 = (x3; y3) is a third vector ofZ2 we also suppose that:

� gcd(xi; yi) = 1 for i = 1; 2; 3 and that

� All three determinants det(V1; V2), det(V1; V3) and det(V3; V2) are non zero and that the �rst one is positive.

With these hypotheses the lattice L(V1; V2; V3) is a rank two submodule of Z2 and we are interested, as
explained above, in the set p of its points contained in a fundamental domain, Par, of L(V1; V2).

Obviously the parallelogram Par and its translations by the vectors k1:V1 + k2:V2; k1; k2 2Zinduce a tiling
of Z2. So any integer point of Z2 belonging to one such tile has a reduction (homologous point) in Par. Thus,
after reduction, the sequence k:V3; k 2 Zgives a subset of the integer points of Par; this inclusion is generally
strict. In the remaining the following two notations will be used for this reduction modulo Par: either \mod
Par" or \mod fV1; V2g".

The following lemma results immediately.

Lemma 2.1. The set p is given by the reduction modulo Par of the integer multiples of vector V3, that is of
fk:V3 j k 2Zg:

p = fk:V3 j k 2Zg mod fV1; V2g

It is well known that the number of integer points contained in Par = card(Par), is equal to � = x1y2�x2y1.
So the cardinal of p is bounded by �. It is also well known that there exists one integer value k such that k:V3
belongs to the lattice generated by V1 and V2. This comes from the following observation. As card(Par) is �nite,
there must be two distinct integer values m and n such that m:V3 and n:V3 have the same reduction mod fV1; V2g.
Thus for k = m � n we have

k:V3 � 0 mod fV1; V2g

which is equivalent to this assertion.

Figure 1 illustrates the principle contained in lemma 2.1, showing the tiling and the �rst multiples of a third
vector. The reductions can be placed in any parallelogram.

It can then be deduced that there exists a smallest integer value, still denoted k, such that k:V3 belongs to
the lattice generated by V1 and V2. It can be proved that this number k is exactly the cardinal of p.



Figure 1: A doubly generated lattice and the multiples of a third vector.

We introduced above the determinant: � = x1y2�x2y1 (which can be supposed to be > 0). Let us also consider
the values of the two other determinants reduced modulo �: � � x1y3 � x3y1 (mod �) and 
 � x3y2 � x2y3
(mod �).

With a little knowledge from group theory about elements order, we can deduce that

Lemma 2.2. The cardinal of p, �(p) can be expressed as

k = �(p) = lcm

�
�

(�; �)
;

�

(
; �)

�
:

( admitted).

The set p can be constructed in �(p) steps, each one involving a mod fV1; V2g reduction. The components �; �
of the mod fV1; V2g reduction of an arbitrary vector (x; y) can be expressed as:

�
�

�

�
=

�
x

y

�
�
�
xy2�x2y

�

�� x1
y1

�
�
�
x1y�xy1

�

�� x2
y2

�

Even if this formula is �ne, we will look for a yet simpler and faster way of generating the set p. In fact we
have the following lemma, where �; �; 
 are as above.

Lemma 2.3. There is an integer 2 � 2 matrix R which maps the lattice L(V1; V2; V3) bijectively to
L((�; 0); (0; �); (�; 
)).

Proof. Using the classical identity for euclidean division

a =
�
a
b

�
b+

�
a
b

	
;



the preceding identity can be simpli�ed as follows:

�
�

�

�
=

1

�

��
xy2�x2y

�

	� x1
y1

�
+
�
x1y�xy1

�

	� x2
y2

��

But this can be written in matrix notation as�
�

�

�
=

1

�

�
x1 x2
y1 y2

�� �
xy2�x2y

�

	
�
x1y�xy1

�

	
�

revealing the rational unimodular matrix

U =
1

�

�
x1 x2
y1 y2

�

We can then transform the situation and map the lattice L(V1; V2; V3) to another lattice with the help of the

matrix R = �U�1 =

�
y2 �x2
�y1 x1

�
.

In the case where x = x3 and y = y3 the numbers
�
xy2�x2y

�

	
and

�
x1y�xy1

�

	
become respectively the values �

and 
 already introduced. Operator R maps L(V1; V2) bijectively to the subgroup f(m;n)� j m;n 2Zg and the
lattice L(V1; V2; V3) to the lattice generated by (�; 0); (0; �); (�; 
); which is the assertion of lemma 2.3.

The lattice RL(V1; V2; V3) is doubly periodic of periods � and �. Through R the set p is mapped to the modular
sequence

(k� mod �; k
 mod �)

which can be written also as �h
k�
�

i
;
h
k

�

i�
; k = 0; 1; 2; : : : ; �(p):

Thus the complexity in generating the set p is reduced to the computation of two modular sequences, which
can be done with additions and comparisons only, avoiding divisions. This can even be reduced once more by
introducing the particular value of k, say �, for which

�� � (�; �) (mod �)

.

For this value of k, the other sequence is equal to �
 (mod �), that we shall denote �. Obviously the set of
points Rp can be built by the sequence

�
k(�; �);

�
k�
�

	�
; k = 0; 1; 2; : : :; �(p)

which now needs only one modular computation for each step. Finally, with the former notations, we obtain:

Theorem 2.4. The set p can be built in lcm
�

�
(�;�) ;

�
(
;�)

�
computations of a modular arithmetical sequence

of type
�
k�
�

�

3 DEFINITION OF 3D DIGITAL LINES

The lattice L introduced in 1 is a rational lattice contained in the plane (P ) ax+ by + cz = 0. It is generated
by the three vectors V1 = �(1; 0; 0); V2 = �(0; 1; 0) and V3 = �(0; 0; 1), where � is the orthogonal projection on
(P ). These vectors can be easily written in terms of a; b; c and !2 = a2 + b2 + c2:



V1 =
1

!2

0
@ b2 + c2

�ab
�ac

1
A V2 =

1

!2

0
@ �ab

a2 + c2

�bc

1
A V3 =

1

!2

0
@ �ac

�bc
a2 + b2

1
A

As these vectors are coplanar, we are in a situation almost similar to that of section 2. To reduce it exactly
to this case, we just have to clear out the denominator !2. The lattice generated by !2V1 and !2V2 is a rank two
group isomorphic to L(V1; V2) of section 2. The only di�erence between both situations is that vectors V1; V2; V3
now belong to Z3 instead ofZ2, but all the preceding results go through, with the obvious modi�cations.

Theorem 3.1. There is a 3 � 3 rational matrix R, which maps the lattice L bijectively on the sub-lattice
L((c; 0); (0; c); (a; b)) of Z2. This operator maps � �bers on lines which project on direction (a; b).

This image RL is called the simpli�cation (or reduction) of L and it is denoted by L̂.

In the same way image Rp is denoted p̂ and image RPar is denoted by ^Par. Of course ^Par = [0; c[�[0; c[ is
the new tile of the simpli�ed lattice.

Proof.

The projection � is not invertible, but we can still �nd operators which are almost inverses of it. (The map �

being a �bration, such inverses are usually called sections of �). A possible section is given by the mapping

8<
:

V1 ! (1; 0; 0)
V2 ! (0; 1; 0)

(0; 0; 1) ! (0; 0; 1)

As � is the operator de�ned by

8<
:

(1; 0; 0) ! V1
(0; 1; 0) ! V2
(0; 0; 1) ! V3;

its matrix (still denoted �) is

� =
1

a2 + b2 + c2

0
@ b2 + c2 �ab �ac

�ab a2 + c2 �bc
�ac �bc a2 + b2

1
A

Thus our problem is to �nd the inverse of the matrix � :

� =
1

a2 + b2 + c2

0
@ b2 + c2 �ab 0

�ab a2 + c2 0
�ac �bc a2 + b2 + c2

1
A:

A simple computation gives

��1 =
1

c2

0
@ a2 + c2 ab 0

ab b2 + c2 0
ac bc c2

1
A

If we let R = c:��1 and evaluate the images of V1; V2 and V3 by R we respectively �nd the vectors

(c; 0; 0); (0; c; 0); (�a;�b;0)

.



This proves that the operator R bijectively maps L(V1; V2; V3) on the integer lattice L((c; 0; 0);
(0; c; 0); (�a;�b; 0)). We also remark that this last one is the same as the lattice L((c; 0; 0); (0; c; 0); (a; b; 0)).

By de�nition (cf. 1), points of p are the projections of � �bers. In this sense the image L̂ can be seen as the
feet of all these �bers. But this strict planar interpretation is not the only one which can be deduced from the

preceding computations. What is really lucky is the result of the computation of R

0
@ a

b

c

1
A = !2

c

0
@ a

b

c

1
A, because

it proves that the lines directed by (a; b) are actually the projections of the images of the �bers by operator R,
on xOy plane. Besides, as V3 = �(0; 0; 1), the points of the form k:RV3 = k(a; b), where k 2 Z, represent the
sections of these �bers by the horizontal planes z = cst.

Moreover the set p of points of L(V1; V2; V3) contained in the parallelogram built on V1 and V2 is mapped, by
R on the set p̂ of points of the 2D lattice L((c; 0); (0; c); (a; b)) contained in the square [0; c[�[0; c[= ^Par which is
much simpler to study.

Figure 2 shows the simpli�cation of the lattice L associated to a = 9; b = 15 and c = 23. The smallest
points are integer points ofZ2, the medium ones are the images of L, while the largest ones belong to the lattice
L((c; 0); (0; c)). Set p̂ is made of the medium points contained in the square ^Par = [0; 23[�[0;23[.

0 9 23 46 69

15

23

46

69

Figure 2: The reduction of the lattice L associated to a=9, b=15, c=23.

The points located on the line, (of slope 15/9=5/3), are the �rst multiples of the third vector (a; b) = (9; 15).
Their reduction modulo c = 23 give some of the points of [0; 23[�[0; 23[.

Finally we obtain the following:

The simpli�ed lattice L̂ gives the intersection scheme of the euclidean line, directed by (a; b; c), with all the
voxels of space.

Of course the unit cubes ofZ3 are seen as the tiling induced by ^Par = [0; c[�[0; c[.

A closer look at �gure 2 reveals this nice interpretation. The line directed by (9; 15; 23) goes through the



origin, then cuts the plane z = 1 in the square [0; 1]� [0; 1], the plane z = 2 in the square [0; 1]� [1; 2], the plane
z = 3 in the square [1; 2]� [1; 2],...

This gives a �rst notion of 3D digital line.

Definition 3.2. The naive line through the origin, directed by (a; b; c), (where 0 � a < b < c; gcd(a; b; c) = 1),
is given by the parameterization �

x =
�
az
c

�
y =

�
bz
c

�
it is denoted by D(a; b; c).

We remark immediately that this notion is identical with the usual 3D discrete line built by the double 2D
Bresenham algorithm.3 The set made by the feet of the �bers forming D(a; b; c) is exactly p.

0 2 4 6 810 0

5

10

15

20

0

5

10

15

20

Figure 3: The digital line D(9; 15; 23).

4 THE TOPOLOGY OF D(a; b; c)

4.1 Reading the topology of D(a; b; c) from L̂

From the previous de�nition of D(a; b; c) we can see that the only points of the �ber in the lattice L̂ that
generate an x increment are those taken from the points in a vertical strip [c � a[�[0; c[. Similarly the only
ones that generate a y increment are taken from an horizontal strip [0; c[�[c � b; c[ and the only points that
generate both x and y increments at the same time are those in the common region [c � a; c[�[c� b; c[. Thus
the fundamental square ^Par = [0; c[�[0; c[ of lattice K̂ = L((c; 0); (0; c)) can be divided into 4 zones that we will



denote as (1); (2); (3) and (4). (See �gure 4). This gives a partition of p̂ wich governs the topology of the line
D(a; b; c).

0 9 14 23

8

15

23

(1)

(2)

(3)

(4)

Figure 4: The four zones of interest in D(9; 15; 23).

We can see that along a naive 3D digital line of direction (a; b; c) as previously de�ned there are three types
of adjacency only:

� strict 6-adjacency when two voxels share one common face. 6-adjacency occurs along the z-axis only, i.e.
shared faces are always parallel to the (xOy) coordinate plane.

� strict 18-adjacency or edge-adjacency when two voxels share one common edge. This type of adjacency
occurs along the y-axis, (when the shared edge is parallel to the x axis) or along the x-axis (when the
shared edge is parallel to the y axis).

� strict 26-adjacency or corner-adjacency when two voxels share one common vertex. This can occur for two
of the eight vertices of a voxel only: the closest and the furthest from the origin.

We immediately deduce the following results from our description of 3D digital lines.

Proposition 4.1. The number of face-adjacencies in one period of a naive 3D digital line of direction (a; b; c)
is equal to the number of points of L̂ contained in the rectangle [0; c� a[�[0; c� b[ (zone (1)).

Proposition 4.2. The number of edge-adjacencies along the y-axis in one period of a naive 3D digital line
of direction (a; b; c) is equal to the number of points of L̂ contained in the rectangle [0; c[�[c� b; c[ (zone (2)).

Proposition 4.3. The number of edge-adjacencies along the x-axis in one period of a naive 3D digital line
of direction (a; b; c) is equal to the number of points of L̂ contained in the rectangle [c� a; c[�[0; c[ (zone (3)).

Proposition 4.4. The number of corner-adjacencies in one period of a naive 3D digital line of direction
(a; b; c) is equal to the number of points of L̂ contained in the rectangle [c� a; c[�[c� b; c[ (zone (4)).

Theorem 4.1. The three projections onto the main planes (xOy) (yOz) and (xOz) of the naive 3D digital
line D(a; b; c) are naive 2D digital lines i� p̂ \ [c� a; c[�[0; c� b[= ;.

4.2 Combinatorially distinct 3D digital lines

De�nition 3.2 shows that our approach contains the former classical digital lines, but also many others that
we can build by an extension of the previous notion. This situation is similar to that of 2D lines.5 Up to this
point we have de�ned and built 3D digital lines from the points of L̂ contained in one of the fundamental domains



of K̂ = L((c; 0); (0; c)). In fact we can also consider the collections of �bers whose feet are contained in other
fundamental domains B of K̂. We can prove that each time B \ L̂ is 8-connected for the topology of the minimal
basis of L̂ then ��1(B) is a valuable notion of a 3D digital line.

We can extend the idea even further and consider domains over L̂ other than fundamental domains of K̂.
An especially interesting case consists of fundamental domains of lattices T̂ (s; t) generated from integer a�ne
translations of K̂. As the fundamental domain ^Par of K̂ contains c2 integer points, there exists c2 such lattices
T̂ (s; t) (s; t) 2 [0::c[�[0::c[. For each possible integer translation of vector (s; t) of ^Par it is possible to build a
new 3D digital line leading to c2 di�erent digital lines of direction (a; b; c). Actually these c2 di�erent lines can
be grouped into c classes of c digital lines having an equivalent structure within integer 3D translation. Thus
given an integer direction (a; b; c) there exist c combinatorially distinct possible structures of the corresponding
digital line. This is due to the fact that any fundamental domain of L̂ has an integer area of c and tiles ^Par into
c subtiles.

Figure 5: Combinatorially distinct 3D digital lines directed by (3,4,5)

Figure 5 shows the 5 combinatorially distinct possible structures of the digital line of direction (3,4,5). Two
periods are represented in each example.

5 CONCLUSION

We have presented in this paper an original approach to the study of digital 3D lines which extends considerably
the classical notion based on Bresenham 2D lines. We have shown that the projection ofZ3 onto an euclidean plane
of rational direction yields a planar lattice, of which the parameterization can be extremely simpli�ed. Simple
geometric properties of this lattice are in direct correspondence with the topological structure of the associated
3D digital lines, leading to an interesting de�nition of such discrete objects and thus reducing their study from
dimension 3 to dimension 2. Such an analysis proves to be particularly powerful, yielding new interesting results
such as the classi�cation of lines of a given direction into classes of combinatorially distinct structure. It could
also certainly lead to a solution to the problem of the closest digital connected set to an euclidean line, though
this is still under study.
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