
Computer-Assisted Generation of PVM/C++ Programs Using CAP

Benoit A. Gennart, Joaquín Tárraga Giménez and Roger D. Hersch
Ecole Polytechnique Fédérale de Lausanne, EPFL

gigaview@di.epfl.ch

Abstract. Parallelizing an algorithm consists of dividing the computation into
a set of sequential operations, assigning the operations to threads, synchronizing
the execution of threads, specifying the data transfer requirements between
threads and mapping the threads onto processors. With current software technol-
ogy, writing a parallel program executing the parallelized algorithm involves
mixing sequential code with calls to a communication library such as PVM,
both for communication and synchronization. This contribution introduces CAP
(Computer-Aided Parallelization), a language extension to C++, from which
C++/PVM programs are automatically generated. CAP allows to specify (1) the
threads in a parallel program, (2) the messages exchanged between threads, and
(3) the ordering of sequential operations required to complete a parallel task. All
CAP operations (sequential and parallel) have a single input and a single output,
and no shared variables. CAP separates completely the computation description
from the communication and synchronization specification. From the CAP
specification, a MPMD (multiple program multiple data) program is generated
that executes on the various processing elements of the parallel machine. This
contribution illustrates the features of the CAP parallel programming extension
to C++. We demonstrate the expressive power of CAP and the performance of
CAP-specified applications.

1 Introduction

Designing a parallel application consists of dividing a computation into sequential
operations, assigning the operations to threads, synchronizing the execution of the
threads, defining the data transfer requirements between the threads, and mapping the
threads onto processors. Implementing a parallel program corresponding to the design
specification involves mixing sequential code with calls to a communication library
such as PVM, both for communication and synchronization. While designing the paral-
lel program (i.e. dividing a problem into sequential operations) is an interesting task
which can be left to the application programmer, implementing the parallel program is
a time-consuming and error-prone effort, which should be automated. Moreover,
debugging a parallel program remains difficult.

Portable parallel libraries such as PVM have become widely available, making it much
easier to write portable parallel programs. Such libraries allow to write complex paral-
lel programs with a small set of functions for spawning and identifying thread, and for
packing, sending, receiving and unpacking messages. The simplicity of a library such
as PVM makes it easy to learn and to port to new architectures.

This contribution proposes a coordination language for specifying a parallel program
design. The Computer-Aided Parallelization (CAP) framework presented in this contri-
bution is based on decomposing high-level operations such as 2-D and 3-D image
reconstruction, database queries, or mathematical computations into a set of sequential
suboperations with clearly defined input and output data. The application programmer

fabienne
Proceedings of EuroPVM-96, LNCS 1156 Münich, Oct. 1996, 259-269

fabienne

uses the CAP language to specify the scheduling of sequential suboperations required
to complete a given parallel operation, and assigns each suboperation to a execution
thread. The CAP language is a C++ extension. The CAP preprocessor translates the
CAP specification into a set of concurrent programs communicating through communi-
cation libraries such as MPI, PVM, and TCP/IP, or communicating through shared
memory. The concurrent programs are run on the various processing elements of a par-
allel architecture. The CAP methodology targets coarse to medium grain parallelism.

Using CAP reduces the effort of implementing parallel programs. CAP specifications
produce programs that are deadlock free by construction. CAP programs can be
debugged using existing debuggers such as gdb. CAP has been developed in the con-
text of multiprocessor multidisk storage servers. Simple arguments show that careful
dataflow control in such architectures is necessary to achieve the best performance.
CAP gives the program designer control over the dataflow across threads in a parallel
architecture. Both shared- and distributed-memory architectures are supported by CAP.

Previous attempts to build computer-aided parallelization frameworks include the
Strand system [11], PCN [5] and the data-parallel fan approach [15] used in SPMD
systems. The Strand and PCN approaches are compositional parallel coordination lan-
guages with task synchronization mechanisms based on single assignment variables in
a global shared name-space. Compositional C++ (CC++) is a parallel programming
language based on C++ relying on the experiences made with Strand and PCN [4].

In contrast to Strand, PCN and CC++, CAP synchronization points are not named and
are implicitly described by the parallel pipeline constructor. CAP completely separates
computations and communications by allowing leaf threads to have only input and out-
put parameters (tokens), without communications. CAP offers more capabilities than
SPMD data parallel fans, since participating threads may differ one from another
(MPMD). While CAP translates to a static distribution of threads, the amount of data
processed by the different threads can vary according to the dynamic run time load
characteristics.

This contribution illustrates the features of the CAP parallel programming extension to
C++. We demonstrate the expressive power of CAP and the performance of CAP-spec-
ified applications. Section 2 explains CAP methodology through an example. Section 3
shows expressive power of CAP and the performance of its PVM implementation.

2 CAP overview

This section introduces the CAP framework : the concepts (section 2.1), the tokens
(section 2.2), the thread hierarchy (section 2.3) and the parallel operations (section
2.4). A scalar product example illustrates the concept. Although the example we use is
simple, all the concepts introduced can be generalized to arbitrarily complex computa-
tions, thanks to the hierarchical and compositional nature of the methodology.

2.1 Concepts
The abstract parallel server we consider consists of a set of threads. The clients con-
necting to the server are also modelled as execution threads. Figure 1 represents a par-
allel server with 3 disks and 3 processors. Each server processor executes two threads,

one for disk accesses (ExtentServer[*]) and one for data processing (Compute-
Server[*]). In our model, the client registers to the parallel server interface before start-
ing any computation. The client then connects directly to the server’s internal threads
(ExtentServer[*] and ComputeServer[*]) to perform parallel computations. The com-
plete server environment consists of the server threads and the client(s) threads.
Threads may (but need not) share a common address space.

Operations are defined by a single input, a single output, and the computation that gen-
erates the output from the input. Input and output of operations are called tokens. Com-
munication occurs only when the output token of an operation in transferred to the
input of another operation. The basic mechanism for transferring the output token of an
operation to the input of another operation is called redirection.

Using this terminology, parallelizing an operation consists of (a) dividing the operation
in suboperations, each of them with one input and one output (the output of a suboper-
ation is an intermediate result of the operation) ; (b) dividing the operation input token
into several input subtokens to be fed to the suboperations ; (c) providing the schedul-
ing of suboperations required to achieve the result of the original operation ; (d) assign-
ing suboperations to threads in the parallel machine ; (e) merging the result of the
suboperations to get the result of the parallelized operation. A schedule indicates the
ordering of suboperations required to complete the parallel operation, based on the data
dependencies between suboperations. The functions for dividing and merging values
are called partitioning and merging functions respectively.

Compute
Server[1]

Compute
Server[0]

ReadExtent
WriteExtent

Client

Server
Interface

Client

Server
Interface

Parallel
file
server

Extent-
Server[0]

Compute
Server[2]

Extent-
Server[1]

Extent
Server[2]

Client

Parallel
Server

Interface

Server
Interface

FIGURE 1. Parallel server software architecture

Thread

An operation specified as a schedule of suboperations is called a parallel operation.
Other operations are called leaf operations, are sequential, and are specified in a
sequential language such as C++. A leaf operation computes its output based on its
input. No communication occurs during a leaf operation. A parallel operation specifies
the assignment of suboperations to threads, and the data dependencies between subop-
erations. When two consecutive operations are assigned to different threads, the tokens
are redirected from one thread to the other. Parallel operations are described as commu-
nication and synchronization between leaf operations. Threads are organized hierarchi-
cally. A set of threads executing on the parallel server is a composite thread. The
sequential server threads are leaf threads. Composite threads execute parallel opera-
tions, and leaf threads execute sequential suboperations. Each leaf thread is statically
mapped to an OS thread running on a processing element. Each thread is capable of
performing a set of leaf operations, and usually performs many operations during the
course of its existence. For load balancing purposes, tokens are dynamically directed to
threads, and therefore operation execution can be made dependent on instantaneous
server load characteristics.

Each parallel application is defined by a set of tokens, representing the objects known
to the application, a set of partitioning and merging functions defining the division of
tokens into subtokens, a set of sequential operations, and a set of parallel operations.
Section 2.2 describes the tokens and partitioning/merging functions for the scalar-prod-
uct operation. Section 2.3 is a formal description of the threads active in the parallel
server. Section 2.4 describes the specification of the parallel scalar-product operation.

2.2 Tokens and partitioning/merging functions
A token consists of application-specific data, and a header indicating which operation
must be performed on the data, as well as the context of the operation. Tokens are akin
to C++ data structures with a limited set of types : the C++ predefined types, a generic
array type, a generic list type, or other token types. This guarantees that the CAP pre-
processor knows how to send tokens across any type of network.

In the case of the scalar product operation, there are two token types : the VectorPairT
token, and the ResultT token. The VectorPairT token consists of two arrays of floating
point values, with the first index and size being First and Size respectively. The Compu-
teServerIndex filed of the VectorPairT indicates on which ComputeServer the scalar prod-
uct must be computed. The ResultT token consists of a single floating point value called
ScalarProduct. There is one partitioning function called SplitVectorPair, that divides a
VectorPairT in several VectorPairT slices, and one merging function called AddResult,
that accumulates the results of the scalar product operations applied to vector slices.

PROGRAM 1. Scalar product tokens

token VectorPairT {
int First ;
int Size ;
int ComputeServerIndex ;
ArrayT<double> Left ;
ArrayT<double> Right ;

} ;

token ResultT {
double ScalarProduct ;

} ;

2.3 Thread hierarchy
When connecting to the parallel server, the client requests from the parallel server the
list of server threads, the set of operations each thread can perform, and which input
parameters must be provided for each operation. Program 2 is a formal representation
of the parallel-server threads. The formal representation is captured by the CAP process
construct. The process construct consists of the keyword process, the process name, an
optional list of subprocesses, and a list of operations. In this example, the parallel
server is called ParallelServerT. It contains two ExtentServer threads, two Compute-
Server threads, and one Client thread. The set of threads making up the server (process
ParallelServerT) can itself be seen as a high-level composite thread : the thread
description is hierarchical. In the thread hierarchy, non-composite threads are referred
to as leaf threads. Leaf threads perform sequential operations. Composite threads per-
form parallel operations. The ParallelServerT composite thread can perform one oper-
ation : the scalar product one a vector pair. The input and output tokens for the
ScalarProduct operation are VectorPairT and ResultT tokens.

Threads run an infinite loop that receives tokens. The thread decodes the CAP header
and executes the required operation on the data. The context information contained in
the header both the operation that must be started after the current operation, and the
address space in which the new operation will run. Communication between threads is
asynchronous. Each thread has a mailbox for tokens. A token is kept in the mailbox
until the thread is ready to execute it.

2.4 CAP parallel operation
As an example of operation parallelization, consider a scalar product of two vectors.
The input token consists of two vectors of real numbers. The output token consists of a
single real number, and the computation characterizing the operation is

. A parallelization of this computation would con-
sists of dividing the input vectors in a number of slices sent to the threads in the parallel
machine, computing the scalar product on each of the slices, and adding the slices’ sca-
lar products to find the vectors’ scalar product. In this case, the suboperations are scalar
product computations, the partitioning function selects slices in each of the two input
vectors, and the merging function adds the slices’ scalar product to the vectors’ scalar
product.

Figure 2 shows the data dependencies and an assignment of suboperations to threads
for the scalar product operation, on two vectors with 256 elements each. The Client pro-
cess splits the vector pair in slices ; the ComputeServers carry out the scalar product

process ParallelServerT {
subprocesses :
ExtentServerT ExtentServer[2] ;
ComputeServerT ComputeServer[2] ;
ClientT Client ;

operations :
ScalarProduct in VectorPairT Input

out ResultT Output ;
} ;

process ComputeServerT {
operations:
SliceScalarProduct
in VectorPairT Input
out ResultT Output ;

} ;

PROGRAM 2. Parallel server thread hierarchy

SP V 1 V 2,() V 1 i() V 2 i()⋅
i 1=
n∑=

operation on the slices ; the Client adds the intermediate results to compute the slices’
scalar product. From this assignment of suboperations to threads, it is easy to figure out
the communication requirements for the proposed parallel scalar product algorithm.
The slices have to be transferred from the Client to the ComputeServers, and the scalar
products from the ComputeServers back to the Client. In the proposed methodology, the
application programmer specifies the division of operations into suboperations, the par-
titioning functions, the scheduling of suboperations (the data dependencies), and the
assignment of suboperations to threads. The CAP environment automatically generates
the required messages and synchronizations between threads.

The basis for CAP semantics are directed acyclic graphs (DAGs), which allow to spec-
ify the data dependencies for any algorithm. The CAP extension language is rich
enough to support the specification of any DAG.

The CAP formal specification of the parallel ScalarProduct operation (Program 3) con-
sists of a single pipeline expression. The CAP pipeline expression consists syntacti-
cally of the keyword pipeline, 4 parameters between parentheses, and a parenthesized
body. The pipeline expression divides the input token into 4 slices, using the SplitVec-
torPair partitioning function (first pipeline parameter, called the pipeline-initialization
parameter). The VectorPairT tokens are sent to the first operation of the pipeline body.
In this example, the pipeline body consists of a single CAP operation : Compute-
Server[Input.ComputeServerIndex].SliceScalarProduct. The ComputeServer index is
dynamically selected, thanks to the notation ComputeServer[Input.ComputeServerIndex].
Input refers to the input token of the current operation, in this case a VectorPairT token.
The SplitVectorPair partitioning function assigns the ComputeServerIndex field of the
input token. The allocation of extents to the various servers is application dependent.
This allows to optimize dataflow for each application.

ComputeServer[1].

ComputeServer[0].

ComputeServer[1].

Client.Split-

Client.

Client.

Client.

Client.

SliceScalarProduct

SliceScalarProduct

ComputeServer[0].
SliceScalarProduct

SliceScalarProduct

VectorPair

AddResult

AddResult

AddResult

AddResult

Slice0

Slice1

Slice2

Slice3

SP1

SP0

SP2

SP3

ParallelServerT::ScalarProduct

FIGURE 2. Data dependencies and assignment of
suboperations to threads, for the scalar product of

2 vectors of 256 elements each

SPi : scalar product for slice i

(V1(1..64),V2(1..64))

(V1(65..128),V2(65..128))

(V1(129..192),V2(129..192))

(V1(193..256),V2(193..256))

(V
1(

1.
.2

56
),

V
2(

1.
.2

56
))

The vector pair slices are redirected to the ComputeServers (pipeline body : Compute-
Server[Input.ComputeServerIndex].SliceScalarProduct). Slice scalar products are redi-
rected to the Client (third pipeline expression parameter, called the target-thread
parameter), to be merged using the AddResult merging function (second pipeline
expression parameter, called the pipeline-termination parameter) into the Result image
(fourth pipeline parameter, called the pipeline-result parameter).

The sequential ComputeServerT::SliceScalarProduct (bottom of Program 3) consists of a
CAP leaf-operation interface, consisting of two keywords (leaf and operation), the oper-
ation thread, the operation name, and the operation input and output tokens. The body
of a CAP leaf-operation consists of C++ sequential statements, used to compute the
output token value based on the input token value.

In the CAP methodology, operations are distinct from threads. Threads are allocated
once (usually at the server initialization, or when a new client becomes active), typi-
cally remain bound to a single processing element, and execute a large number of oper-
ations. Load balancing is achieved by careful allocation of operations to threads. The
allocation of operations to threads occurs when setting the ComputeServerIndex of each
VectorPairT token generated by the SplitVectorPair partitioning function. The distinction
between operations and threads makes for a low overhead in thread management : the
creation and destruction of a thread is a rare occurrence. Operations themselves entail
little overhead. A typical operation descriptor is small (24 bytes in a PVM implementa-
tion), and easy to decode (little mode than a pointer-to-function dereferencing).

operation ParallelServerT::ScalarProduct
in VectorPairT Input
out ResultT Output

{
pipeline (SplitVectorPair, AddResult, Client, ImageT Result)

(ComputeServer[Input.ComputeServerIndex].SliceScalarProduct);
}

leaf operation ComputeServerT::SliceScalarProduct
in VectorPairT Input
out ResultT Output

{ // this is straight C++ code
int i ;
Output.ScalarProduct = 0 ;
for (i = 0 ; i < Input.Size ; i++) {
Output.ScalarProduct += Input.Left[i] * Input.Right[i] ;

}
}

PROGRAM 3. Parallel ScalarProduct operation

#include “cap.h”
#include “cap-scalar-product.h”
void main ()

{
ParallelServerT Server (“ServerName”) ;
VectorPairT* VectorPairP =
new VectorPairT (... /* initialization parameters */) ;

ResultT* ResultP ;
call Server.ScalarProduct in VectorPairP out VectorP ;

}

PROGRAM 4. Client program

A typical client program is described in Program 4. It opens the server called “Server-
Name”, and declares two tokens (VectorPairP, and ResultP). Using the call instruction,
the client runs the parallel ScalarProduct operation. From the client standpoint, the par-
allel scalar product library looks like almost a sequential library : the only exception is
that the client must use the call instruction to call a parallel library operation.

3 Generating parallel PVM programs using CAP

This section gives information on the status of the CAP project in terms of implementa-
tion and performance. It gives the current status of the CAP preprocessor implementa-
tion (section 3.1), presents an overview of CAP’s performance (overhead, and
throughput, section 3.2), and lists applications of CAP (section 3.3).

3.1 CAP status
CAP is an extension language to C++. The semantics of CAP parallel expression is
based on Directed Acyclic Graphs (DAGs). The CAP language extension supports the
specification of any DAG, and the specification of tokens to be exchanged between
operations. The translation of DAGs into MPMD programs is explained in [13]. CAP
semantics is geared toward the both shared- and distributed-memory machines.

A prototype CAP preprocessor has been implemented, translating mixed CAP/C++
code into straight C++ code calling PVM library routines. The CAP preprocessor gen-
erates a program matching the MPMD (Multiple Program Multiple Data) paradigm.

We have tested the preprocessor on a set of examples including an imaging library
capable of storing, zooming and rotating 2-D images divided in square tiles, the Jacobi
algorithm for the iterative resolution of systems of linear equations, the travelling sales-
man problem, and a pipelined matrix multiplication.

3.2 CAP performance
To evaluate the CAP overhead, we compare the performance of an actual CAP program
with the theoretically achievable performance of the same program. For the theoretical
analysis, we measure communication and computation performance, we establish tim-
ing diagrams, and derive from the timing diagram the theoretical performance of the
parallel program.

Thread management introduces no overhead in CAP. OS threads are initialized when
the parallel server is started up, and are statically bound to a specific processing ele-
ment. The only overhead CAP introduces is due to the token header, representing 24
bytes in our prototype implementation. To evaluate the importance of the token header
we compare the token header size to the number of bytes that could be transferred dur-
ing a typical communication latency (section 3.2.1). We show that on a wide variety of
machines, the overhead due to the CAP header is at most 15%, and in most cases below
1%. We then show that the CAP pipeline construct introduces an insignificant amount
of overhead, for a wide range of message sizes and computation times.

This section analyses two aspects of CAP performance : the CAP message overhead
(section 3.2.1), and the performance of CAP for a simple data fan parallel operation
(section 3.2.3). The performance of the CAP construct measured on a network of DEC

workstations connected by an FDDI network. The performance of the FDDI network is
experimentally measured in section 3.2.2.

3.2.1 Theoretical CAP token overhead

CAP attaches a header to application-programmer-defined data. In the PVM prototype
implementation of the CAP preprocessor, the header size is 24 bytes. In order to evalu-
ate the overhead due to the CAP token header, we compare the header size with the
byte latency cost, i.e. the number of bytes which could be transmitted during latency
time on various parallel architectures and network protocols (Table 1). The numbers in
the first two columns of Table 2 are all derived from Dongarra[6]. The third column is a
measure of the network quality (throughput divided by latency). The lower the latency
and the higher the throughput, the higher the quality. The last column list the byte
latency cost of the various communication channels. In the last column, the * entries
show the three lowest byte latency cost of all communication channels. The worst-case
relative cost of CAP headers for zero-byte synchronization messages on channels hav-
ing the smallest byte latency cost is thus around 15%. In all other cases, the CAP
header overhead will be smaller. In the case where 1KBytes messages are transmitted,
the token header represent only 2.4% of the total message size, and in the case of larger
messages typical of storage servers (50KB), the token header size is insignificant.
Notice also that the byte latency cost is completely independent of the network quality.

Machine/
Network

latency
(µs)

throughput
(MB/s)

quality
(thr./lat.)

lat. byte cost
(B)(thr.*lat.)

Convex SPP1200 (sm 1-n) 2.2 92 41.82 202.4*

Convex SPP1200 (sm m-n) 11 71 6.45 781

Cray T3D (sm) 3 128 42.67 384

Cray T3D (PVM) 21 27 1.29 567

Intel Paragon SUNMOS 25 171 6.84 4275

Intel iPSC/860 65 3 0.05 195*

IBM SP-2 35 35 1.00 1225

Meiko CS2 (sm) 11 40 3.64 440

nCUBE 2 154 1.7 0.01 261.8

NEC Senju-3 40 13 0.33 520

SGI 10 64 6.40 640

Ethernet 500 0.9 0.00 450

FDDI 900 9.7 0.01 8730

ATM-100 900 3.5 0.00 3150

TABLE 1. Communication performance

3.2.2 Experimental FDDI throughput with PVM protocols

We measure the throughput of the communication channel using a simple ping-pong
test, sending of message of a given size back and forth between two workstations. We
plot the delay for various sizes and linearize the curve to find latency and throughput
figures. The program used to measure the network performance uses the PVM library
for communication. The PvmRouteDirect option is turned on, to minimize the number
of hops between threads. The delay represents the minimum elapsed time the first mes-
sage is sent to the time the second message is received, over 20 experiments. Both mes-
sages have identical size (ranging from 0 KBytes to 48 KBytes). After linearization of
the experimental results, the approximated experimental transfer time tt is given by the
formula :

If we compare with the performance numbers presented in Table 1, our performance
measurements are a little under half the best FDDI performance, as measured in [6]. It
represents the best performance we could achieve on the FDDI network through the
PVM communication library.

3.2.3 CAP data fan performance

In this section, we measure the performance of a ‘data fan’ parallel program, where (1)
a master thread sends input data of size S to several slave threads running on separate
processors, (2) the threads perform an active loop for duration tc, and (3) the threads
return a result of size S back to the master. The analyzed configuration consists of 4
threads receiving one message each. We perform a theoretical analysis for this pro-
gram, and compare the result of the theoretical analysis to experimental results.

tt a
S
b
---+= where

a latency 2.2msec= =

b throughput 4.3MB/s= =

S message size=

M.tt
M.tt

M.tt
M.tt

M.tt
M.tt

M.tt
M.tt

S0.tc
S1.tc

S2.tc
S3.tc

tc 4tt«

tpipe 8tt=

M : master
Si : slave i

t pipe

M.tt
M.tt

M.tt
M.tt

M.tt
M.tt

M.tt
M.tt

S0.tc
S1.tc

S2.tc
S3.tc

tc 4tt»

tpipe 5tt tc+=

tt : transfer time
tc : computation

t pipe

FIGURE 3. Timing diagrams for the pipeline operation

(a)

(b)
time

Theoretical analysis. Figure 3 shows timing diagrams for the pipeline operation
described in the previous paragraph. Two situations are considered : the large-message
situation, i.e. the case where the transfer time is larger than the computation time ; and
the small-message situation, i.e. the case where the transfer time is smaller than the
computation time. From the diagrams of Figure 3, we derive two total execution times t

datafan for large messages (Figure 7(a)) ; and small messages::
 (Figure 7(b)).

Experimental results confirm these formulas, as shown in Figure 4. Figure 4 plots the
delay of the data fan parallel program as a function of the message size S, and the
sequential computation time T. The message size S ranges from 0 to 48KB. The com-
bined computation time of all four threads (4*tc) ranges from 0s to 1s. We discuss a
few data points in Figure 4. Consider a 48KB message and 0 computation time. The
transfer time is tt = a + S/b = 13msec. The computation tc = 0. We are clearly in the
‘large message’ situation, therefore the total time should be 8tt or 104msec. The exper-
imental measurement in this situation is 89.7msec, slightly better than anticipated by
our simple evaluation. In the situation where the message size is 8KB and the computa-
tion time per slave is 275msec, we get a communication time tt = 4.2ms. We are in the
‘small message’ situation. Therefore the total time should be 5tt + tc, or 296msec, for a
maximum achievable speed-up of 4tc / 5tt + tc = 3.72. This is the theoretically achiev-
able speed-up, considering the computation and communication costs described above.
The experimental results show a total time of 296msec. These results suggest that for

tc 4tt«() tpipe 8tt=()⇒
tc 4tt»() tpipe 5tt tc+=()⇒

CAP data fan parallel operation

0

20

40
Message Size (KB)

0

0.25

0.5

0.75

1
total computation

time 4*tc (s)

0

0.1

0.2

0.3

data fan execution
time (s)

0

20

40
Message Size (KB)

0

0.25

0.5

0.75

1
computation
e 4*tc (s)

FIGURE 4. Experimentally measured delay

problems with medium to coarse granularity, CAP does not introduce any noticeable
overhead.

The data fan operation performance shown in Figure 4 is application independent. If a
given parallel application fits the data fan paradigm, it is sufficient for the application
programmer to know the size of the tokens exchanged between operations, as well as
the computation time of each of its sequential operations to know the speed-up achiev-
able by a given application. The CAP run-time environment will then deliver close to
the theoretically achievable speed-up.

3.3 CAP application examples
CAP is developed in the context of storage servers. Data stored on the server is divided
in extents, i.e. data sets with good locality. For example 2-D (3-D) images are divided
in 2-D (3-D) tiles. Algorithms have to be parallelized so as to take into account the
striping of the data onto the disks. Example of algorithms that benefit from such paral-
lelization are :

• Zooming and rotation on 2-D images.

• Overlay of 2-D maps with different resolutions.

• 3-D image visualization, such as volume rendering by ray tracing [14].

Other more mathematical algorithms would also benefit from parallelization, but we
selected spatial problems which require parallelism both at the processing and the stor-
age levels (data striping of files over multiple disks). Such problems involve the use of
separate threads for data access (Figure 1, ExtentServer) and data processing (Figure 1,
ComputeServer). We have also tested the expressive power of CAP on examples such
as the travelling salesman problem and the Jacobi iterative method for solving systems
of linear equations.

4 Benefits of the CAP approach

CAP supports pipelining effectively. This is due to the asynchronous nature of commu-
nications between threads. Threads leave messages in each other mailboxes, and con-
sult their mailbox when ready to do so. Communication between threads is implicit.
The communication is generated automatically from the operation construct schedul-
ing specification.

CAP supports the hierarchical specification of concurrent behavior. An operation spec-
ifies the scheduling of suboperations required to achieve an operation. A suboperation
can be specified as a scheduling of lower-level operations or as a sequential operation
written in C++.

The CAP language constructs are compositional. OS Threads can be grouped in com-
posite threads using the process construct ; parallel operations are described as schedul-
ing of suboperations ; parallel operations can themselves be instantiated in higher-level
parallel operations. Compositionality is essential in storage servers, where multiple
users have to access “simultaneously” data on the server. Compositionality ensures that
multiple parallel operations can run simultaneously on the server threads, and return
data to the appropriate clients. It also ensures that any CAP operation can be called in
another CAP operation, making CAP operations completely reusable.

CAP supports shared-memory and distributed-memory architectures. It is capable of
sending tokens between threads located in different address spaces. On the other hand,
if two threads run in the same address space, the CAP runtime environment will only
transfer token references between threads.

The CAP methodology makes for a clean separation between the low level file system
(physical blocks storing bytes, messages exchanged between the parallel file system
threads at the byte level), and the parallel application-level libraries. The extent servers
store contiguous sets of bytes on local disks, and transfer sets of bytes between the var-
ious threads of the server. On the other hand, all high-level application-specific func-
tions are created with CAP, which generates the typed high-level messages required by
each application, and coordinates the exchange of messages between the various
threads in the server to execute parallel operations.

CAP produces applications that are deadlock-free by construction. The specification of
a CAP parallel operations is a directed acyclic graph (DAGs), representing the schedul-
ing of suboperations required to achieve the operation. Such a specification is both gen-
eral and cycle free : all algorithms can be specified so that no earlier step requires the
result of a latter step. The lack of cycles ensures deadlock freedom, provided sufficient
memory is available. This assertion remains true regardless of the allocation of subop-
erations to threads. Of course, due to other causes (e.g. infinite loop in a sequential
operation, shortage of memory, unreliable communication) a CAP specified parallel
program may not terminate, but these are not deadlock situations.

CAP does not entail overhead due to thread management. Threads are initialized at the
beginning of the execution of the parallel program. The allocation of threads to archi-
tecture components is static and depends on the architecture. During the execution of a
CAP operation, the allocation of suboperations to threads is derived from CAP parallel
operation specification and is dynamic : thread selection can be a function of the sub-
operation-instance input-data). The CAP token header for each operation can be made
small (24 bytes in a prototype PVM implementation), compared to the typical latency
of a communication network. Experiences show (see section 3.2) that the time to trans-
fer the CAP token header is at most 15% of the network latency, and in many case of
the order of 1%.

CAP constructs feature a clean separation between parallel and sequential code. The
parallel code is concentrated in CAP’s process and operation constructs, which repre-
sent a small part of an application.

CAP requires a small interface to the communication library. Only a few routines are
required by the CAP preprocessor to generate parallel code. These routines are :
spawn-new-thread, attach-to-existing-thread, send-message, receive-message, pack-
data-structure-into-message, unpack-data-structure-from-message.

CAP supports the automatic generation of application-specific protocols, for exchang-
ing messages between client and server threads. The CAP preprocessor can generate
code for transferring a fairly complete set of data structures consisting of a hierarchy of
C++ basic types, generic list types, and generic array types.

CAP separates the concepts of computation, communication and execution thread. The
communication pattern can be modified easily without changing the computation, by

modifying a CAP parallel operation. The assignment of computation to thread can also
be modified easily, again by modifying a CAP parallel operation.

5 Conclusion

We have presented in this contribution a methodology for specifying parallel programs,
based on hierarchical directed acyclic graphs. The methodology lets the designer spec-
ify a parallel problem decomposition in terms of tokens (C++ structures), data-parti-
tioning functions specified in C++, sequential operations specified in C++, and CAP
parallel operations specified as schedulings of sequential suboperations. The methodol-
ogy allows to generate deadlock free parallel program.

This contribution shows that the overhead introduced by CAP is very low, and that the
CAP preprocessor delivers the speed-up predicted by theoretical analyses. We have
developed a simple library for parallel imaging, capable of performing zooming and/or
rotation on images divided in square tiles stored on multiple disks. We have also
applied the CAP methodology to the specification of parallel solutions to the travelling
salesman problem and the Jacobi iterative method for solving systems of linear equa-
tions.

Future work will aim at demonstrating the performance of more complex parallel
applications written in CAP, applying CAP toward distributed systems, and the devel-
oping parallel libraries for imaging, video and numerical applications.

References
[1] American National Standard Institute. The programming language Ada reference manual.

Lecture Notes in Compute Science 155. Springer-Verlag, 1983.

[2] Prithviraj Banerjee, John A. Chandy, Manish Gupta, Eugene W. Hodges IV, John G. Holm,
Antonio Lain, Daniel J. Palermo, Shankar Ramaswamy and Ernesto Su. The Paradigm
Compiler for Distributed-Memory Multicomputers. In IEEE Computer 28(10), October 95,
pages 37-47.

[3] Per Brich Hansen. Model programs for computational science : a programming methodol-
ogy for multicomputers. Concurrency: Practice and Experience, Vol. 5(5), p. 407-423
(August 1993).

[4] K. M. Chandy and C. Kesselman. CC++ : a declarative concurrent object-oriented program-
ming notation. Research directions in Object Oriented Programming. MIT Press, 1993.

[5] K. M. Chandy and S. Taylor. An introduction to parallel programming. Jones and Bartlett
(1992).

[6] Jack Dongarra and Tom Dunigan. Message-Passing Performance of Various Computers.
University of Tennessee and Knoxville,Tech report 95-299, 1995. URL: http://
www.netlib.org/utk/people/JackDongarra.html.

[7] Ian Foster. Designing and building parallel programs : concepts and tools for parallel soft-
ware engineering. Addison-Wesley publishing company. Reading, Massachussets, 1995.
ISBN : 0-201-57594-9.

[8] I. Foster and K. M. Chandy. Fortran M : a language for modular parallel programming. In
Journal of Parallel and Distributed Programming.

[9] Ian Foster and Carl Kesselmann. Language constructs and runtime systems for composi-
tional parallel programming. In Proc. COMPAR94 - VAPP VI (B. Buchberger and J. Volk-
ert, Eds.). LCNS 854, Springer-Verlag, p. 5-16, Sep. 1994.

[10] Ian Foster, Robert Olson, and Steven Tuecke. Productive parallel programming : the PCN
approach. In Scientific Programming, Vol. 1, p. 51-66, 1992.

[11] Ian Foster and Stephen Taylor. Strand : new concepts in parallel programming. Prentice
Hall, Englewood Cliffs, New Jersey 07632. 1990.

[12] B. A. Gennart and R. D. Hersch. Comparing multimedia storage architectures. In Proc. Int.
Conf. on Multimedia Computing and Systems, IEEE Press, p. 323-329, Washington 1995.

[13] R. D. Hersch. Parallel storage and retrieval of pixmap images. In Proceedings of the 12th
IEEE Symposium on Mass Storage System, pages 221-226, Monterey, 1993.

[14] Philippe Lacroute and Marc Levoy. Fast volume rendering using shear-warp factorization of
the viewing transformation. In SIGGRAPH’94 : Computer Graphics Proceedings, Annual
Conference Series, pahes 451-458, Orlando, FL, July 24-29 1994. ACM.

[15] Albert Y. Zomaya. Parallel Computing : paradigm and applications. International Thomson
Computer Press, London 1996. URL : http://www.thomson.com/itcp.html

