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Abstract

Undesired moiré patterns may appear in colour printing for various reasons. One of the

most important reasons is interference between the superposed halftone screens of the

different primary colours, due to an improper alignment of their frequencies or orientations.

In this article we explain the superposition moiré phenomenon using a spectral model

which is based on Fourier analysis. After examining the basic case of cosinusoidal grating

superpositions we advance, step by step, through the cases of binary gratings, square grids

and dot screens, and discuss the implications on moirés between halftone screens in colour

separation. Then, based on these results, we focus on the moiré phenomenon from a

different angle, the dynamic point of view: we introduce the  moiré parameter space, and

show how changes in the parameters of the superposed layers vary the moiré patterns in the

superposition. This leads us to an algorithm for moiré minimization which provides stable

moiré-free screen combinations for colour separation.

Keywords:  Moiré effect, moiré minimization, colour printing, halftoning, Fourier

analysis.
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1. Introduction

The moiré phenomenon is an optical effect which appears in some circumstances
when periodic or quasiperiodic structures (such as line gratings, dot screens, etc.) are
intersected. It consists of a visible pattern which is clearly observed at the intersection,
although it does not appear in any of the original structures [1]. While this phenomenon
has useful applications in several fields, such as in strain analysis or in the detection and
measurement of slight deflections or deformations [2, 3, 4], in other situations moiré
patterns may have an unwanted, adverse effect. Such is the case in the field of colour
separation: moiré patterns which appear in some circumstances between the dot screens
used for colour printing may severely deteriorate the quality of the resulting image. It is
therefore important to understand the nature and the causes of these moiré patterns in
order to know how to avoid, or at least minimize, their adverse effect on colour
printing.

Unwanted moiré patterns may appear in the printing process for several possible
reasons. For example, if the original image itself is already halftoned, or contains some
other periodic fine details, then a moiré pattern may be caused as an interference
between the periodic fine details of the original input image and either the input
scanning frequency or the printing halftoning frequency. This type of moiré may
already appear in black and white printing; but in the field of colour printing, by far the
most (in)famous moiré problem is due to the superposition of the halftone screens of the
different process colours. This last type of moiré phenomenon is the subject of the
present article.

The moiré effect between intersected structures occurs because of the geometric
distribution of dark and bright areas in the superposed image: areas in which the dark
elements of the original structures cross each other contain less colorant than areas
where the original structure elements fall between each other and fill the white spaces
better.

Several mathematical approaches have been used to explore the moiré phenomenon.
The geometric model [4, 5, 6], which is based on the geometric properties of the
superposed layers (their periods and angles) leads to formulas that can predict, under
certain limitations, the geometric properties of the moiré patterns. Another approach is
the indicial representation of sets of curves [7]; this is a pure algebraic approach, which
also yields the same formulas.

For a more founded treatment of the moiré phenomenon, however, an alternative
model is required, based on spectral analysis in the frequency domain rather than on a
geometric or algebraic analysis in the image domain. This spectral model has several
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advantages over the simple period-based geometric or algebraic approaches: (1) it lends
itself easily to a simple, illustrative graphic representation (the vector diagram); (2)
using the Fourier transform theory it introduces the possibility of exploring the
bidimensional spectrum of the superposed image from which not only the geometric
properties of the moiré pattern (angle and period) can be found, as in the other
approaches, but also the wave form (profile) of the moiré and its strength (perceptual
contrast); (3) this approach affords a better understanding of the more complex moiré
cases and provides an easy explanation of multiple grating moirés, where the geometric
analysis may become too complicated. All the above points and terms will be explained
and illustrated below.

In this article we will deal basically with the moiré cases which lead to superposition
moirés in colour separation. The explanation of this phenomenon is presented here step
by step, in a systematic way: we start with the simplest case, the intersection of
cosinusoidal gratings, and gradually proceed through the cases of binary gratings and
square grids to the intersection of dot screens — which is the basis for the moiré
phenomenon in colour separation. This is done based on a useful notational system that
we introduce for the identification, classification and labelling of the moiré effects; this
formalism is also used for the definition of fundamental terms such as the order of a
moiré, singular moiré states, etc. Then, based on these results, we focus in the second
part of the article on the moiré phenomenon from a different angle — the dynamic point
of view: we introduce the moiré parameter space, and show how changes in the
parameters of the superposed layers vary the moiré patterns in the superposition. This
leads us to an algorithm for moiré minimization which provides stable moiré-free
screen combinations for colour separation. We present the algorithm, and conclude by a
discussion of the results obtained.

2. The spectral model – background and basic notions

The spectral model is based on the duality between the original image in the image
domain and its spectrum in the frequency domain, through the Fourier transformation.
By analyzing properties both in the original image and in its spectral representation this
approach can benefit from the advantages of both domains.

In this article we are mainly interested in the bidimensional (2D) case, i.e. in 2D
images in the (x,y) plane and their 2D spectra in the (u,v) plane, which are obtained by
the 2D Fourier transform. The following paragraphs list the basic properties of the
image types we are concerned with and review the implications of these properties both
in the image and in the spectral domains.

First, it should be noted that we will only deal here with moiré effects in the
monochromatic case; moirés in colour separation will be simulated by the superposition
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of the 3 or 4 black-and-white separation films, without taking the ink colours into
consideration. In the monochromatic case each printed image can be represented in the
image domain by a reflectance function, which assigns to any point (x,y) of the image a
value between 0 and 1 representing its light reflectance: 0 for black (i.e. no reflected
light), 1 for white (i.e. full light reflectance), and intermediate values for in-between
shades. Since the superposition of black and any other shade always gives black, this
suggests a multiplicative model for the superposition of monochromatic images. Thus,
when N monochromatic images are superposed, the reflectance of the resulting image is
given by the product of the reflectance functions of the individual images:

r(x,y) = r 1(x,y) r 2(x,y) ... rN(x,y) (1)

According to the convolution theorem [9, p. 244; 8, p. 18] the Fourier transform of the
product function is the convolution of the Fourier transforms of the individual
functions. Therefore if we denote the Fourier transform of each function by the
respective capital letter and the 2D convolution by **, we get:

R(u,v) = R1(u,v) ** R2(u,v) ** ... ** RN(u,v) (2)

Second, here we are basically interested in periodic images, such as gratings or
screens, and their superpositions. This implies that the image spectrum is not a
continuous one but rather consists of discrete impulses, corresponding to the
frequencies which appear in the Fourier series decomposition of the image [9, p. 204].
A strong impulse in the spectrum indicates a pronounced periodic component in the
original image at the frequency and direction of that impulse.

Each impulse in the 2D spectrum is characterized by two properties: its geometric
location (or impulse location), and its amplitude (see Fig. 1). To the geometric location
of any impulse is attached a frequency vector f in the spectrum plane, which connects
the spectrum origin with the geometric location of the impulse. This vector can be
expressed either by its polar coordinates (f,α), where α  is the direction of the impulse

and f is its distance from the origin (i.e. its frequency in that direction); or by its
Cartesian coordinates (fu, fv), where fu and fv are the horizontal and vertical components

of the frequency. In terms of the original image, the geometric location of an impulse in
the spectrum determines the frequency f and the direction α  of the corresponding

periodic component in the image, and the amplitude of the impulse represents the
intensity of that periodic component in the image.

In addition to the periodicity of the original images we assume, unless otherwise
mentioned, that each of the original images is regular in the sense that its components
(lines or dots) are identical, parallel and equidistant.
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The periodic images with which we are dealing here are basically of a symmetric
nature (gratings, screens, etc.). For the sake of simplicity, we also assume that the given
images are not shifted, but indeed centered symmetrically about the origin. As a result,
we will deal with images (and image superpositions) which are real and symmetric, and
whose spectra are consequently also real and symmetric [9, pp. 14-15]. This means that
each impulse in the spectrum (except for the DC at the origin) is always accompanied
by a twin impulse of an identical amplitude, which is symmetrically located at the other
side of the origin as in Fig. 1 (their frequency vectors are f  and –f). The complex
spectra for the case of non-centered images can be readily obtained whenever required
by applying the shift theorem [9, pp. 104-107, 244].

Another important property of our images comes from the fact that most printing
devices are only bilevel, i.e. they are only capable of printing solid ink or leaving the
paper unprinted, but they cannot produce intermediate ink tones. (This is also true for
most colour printing devices, where each of the primary colours is bilevel). In such
devices the visual impression of intermediate tone levels is usually obtained by means
of the halftoning technique, i.e. by breaking the continuous-tone image into small dots
whose size depends on the tone level. Therefore, in most practical cases the reflectance
function of a printed image is binary, only taking values 0 and 1 (signifying the
existence or absence of ink on the white paper, respectively).1 For colour separation we
will basically be interested in images consisting of binary dot-screens and their
combinations; but before we get there we will first study the basic case of cosinusoidal
continuous-tone gratings, and then we will proceed through binary gratings and their
intersections to the case of binary dot screens.

3. Superposition of 2      cosinusoidal gratings

Let us first look at the case of gratings with a cosinusoidal wave form. Since
reflectance functions always take values between 0 and 1, the cosinusoidal reflectance
function has the form (see Fig. 2(a)):

r 1(x,y) = 0.5 cos (2πf1x) + 0.5 (3)

This periodic function has a frequency of f1 cycles per unit, i.e. its period is T1=1/f1

units (in the x direction). Similarly, the reflectance function of a cosinusoidal grating
with a frequency of f2 which is rotated by an angle α  (Fig. 2(b)) is given by:

                                                
1 It should be noted that in reality, looking under a microscope, the border between black and white areas in an
image does not appear to be a sharp transition, but rather a gradual transition in the distribution of the microscopic
ink particles. This microscopic view should not, however, invalidate the binary property assumed in the macroscopic
view of the image.
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r 2(x,y) = 0.5 cos (2πf2[xcosα  + ysinα]) + 0.5 (4)

The 2D Fourier transform of each of these reflectance functions consists of exactly 3
impulses (Fig. 2(d), (e)). In fact, it is the sum of the Fourier transform of the
cosinusoidal term which consists of 2 symmetric impulses of amplitude 1/4, located at a
distance of fi=1/Ti from the origin at the respective angle; plus the Fourier transform of

the additional constant 0.5, which is an impulse of amplitude 1/2 at the origin (the DC
impulse).

According to Eqs. (1) and (2), the spectrum of the superposition of r 1(x,y) and r2(x,y)
is the Fourier transform of their product, i.e. the convolution of their individual spectra
R1(u,v) and R2(u,v). Since in our cosinusoidal case each of these spectra consists of 3
impulses, their convolution consists of 9 impulses (see Fig. 2(f)). Using the graphical
method of “move and multiply” [9, pp. 29-30; 8, pp. 13-14] we see that the convolution
is 0 throughout the (u,v) plane, except at the points where the impulses of the moving
copy of R2(u,v) fall whenever the origin of R2(u,v) is placed on top of an impulse of
R1(u,v). This means that the geometric location of the impulses in the convolution can
be found simply by placing on top of each impulse of R1(u,v) a centered copy of R2(u,v)
(or vice versa, since convolution is commutative). The amplitude of each impulse thus
received is the product of the amplitudes of the 2 impulses involved: the impulse in the
first spectrum on top of which the moving spectrum is centered, and the impulse in the
moving spectrum which then defines the location of the impulse in question. If a newly
generated impulse falls on top of an already existing impulse, their amplitudes are
summed up. The amplitudes received in our case are 1/4 for the DC impulse, 1/8 for the
2 impulse pairs of the original cosines, and 1/16 for the 2 new impulse pairs generated
by the convolution (see bottom row in Fig. 2).

The spectrum resulting from the convolution contains all the impulse pairs of the
original spectra (only their amplitudes have been modified, but not their geometric
locations). However, 2 new pairs of impulses which did not exist in any of the original
spectra have appeared in the convolution (see Fig. 2(f)). The geometric locations of
these new impulse pairs are determined by the vectorial sum and the vectorial
difference of the frequency vectors of the original impulse pairs, namely: f 1+f 2 , –f 1–f2,
and f1–f2, f2–f1.

Since each impulse pair in the spectrum reflects a periodic component with the
corresponding frequency and angle in the original image, these 2 new impulse pairs
suggest that the superposition of the 2 original images includes 2 new periodic
components which did not exist in either of the original images. And indeed, looking at
the superposed image (Fig. 2(c)) we can identify these new periodic components: The
more obvious one has the frequency and direction of the difference vector, f 1–f2; but the
other one, with the frequency and the direction of the sum vector, f1+f 2, can also be
identified. The first periodic component is more visible than the other since its
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frequency is lower, i.e. its period is larger. While the frequency of the vector sum is
always larger than the frequencies of each of the individual vectors, the frequency of
the vector difference may be significantly smaller than either of the original
frequencies. Consequently, the periodic component in the superposed image which
corresponds to the vector difference can have a significantly larger period, and therefore
be much more visible, than the cosines of the original images. This prominent periodic
component is, in fact, the moiré effect seen in the superposition of the 2 original images
(Fig. 2(c)).

The fact that the eye cannot distinguish fine details above a certain frequency (i.e.
below a certain period) suggests that the human visual system model includes a low-
pass filtering stage. This is a bidimensional bell-shaped filter whose form is anisotropic
(since it appears that the eye is less sensitive to small details in diagonal directions such
as 45° [10, p. 531]). However, for the sake of simplicity this low-pass filter can be
approximated by the visibility circle, a circular step function around the spectrum origin
whose radius represents the cutoff frequency (i.e. the threshold frequency beyond which
fine detail is no longer detected by the eye). Obviously, its exact radius depends on
several factors such as the contrast of the observed details, the viewing distance, light
conditions, etc. If the frequencies of the original image elements are beyond the border
of the visibility circle in the spectrum, the eye can no longer see them; but if the
frequency of the vectorial difference falls inside the visibility circle, then a moiré effect
appears in the superposed image. (In fact, the visibility circle has a hole in its center,
since very low frequencies cannot be seen, either).

4. Superposition of three or more      cosinusoidal gratings; singular
moiré states

If we now superpose a third cosinusoidal grating on top of the first two, the resulting
spectrum will be the convolution of all three spectra — i.e. the result of convolving the
third spectrum with the convolution of the first two spectra. The geometric location and
the amplitude of the impulses in the resulting spectrum can be found graphically in the
same manner as above: a centered copy of the new 3-impulse spectrum of the third
cosinusoidal grating is placed on top of each of the 9 impulses of the 2-layer
convolution, thus generating 9 additional impulse pairs in the combined spectrum (Fig.
3). The amplitude of each of the impulses of the copied spectrum is scaled by the
amplitude of the impulse on top of which it has been copied. If any of the newly
generated impulses fall inside the visibility circle, a new periodic component (or moiré
effect) can be seen in the image.

Generalizing this to the superposition of N cosinusoidal gratings, we see that the final
convolution contains the frequency vectors of each of the original images as well as all
the frequency vectors obtained in each successive convolution. This means that the final



9

convolution contains all the frequency vectors which can be obtained as a vectorial sum
of 1, 2, ... or N frequency vectors, one (or none) from each original spectrum. If we
consider the DC impulse of each spectrum as having a zero frequency vector, it can be
said that each of the individual spectra contributes one of its frequency vectors to every
vectorial sum. In other words, the frequency vector f  of any individual impulse in the
final convolution (i.e. in the spectrum of the superposition of the N images) is a
vectorial sum of N frequency vectors f ' i, where f' i is one of the 3 frequency vectors

contained in the spectrum of the i-th image:

f  = f '1 + f '2 + ... + f 'N
(5)

If θi are the angles that the N original cosinusoidal images form with the positive
horizontal axis and fi are their frequencies, then the two Cartesian components of the

above vectorial sum can be written as:
fu = f1 cosθ1 + f2 cosθ2 + ... + fN cosθN

fv = f1 sinθ1 + f2 sinθ2 + ... + fN sinθN

and the frequency, the period and the angle of the impulse in question are given by the
length and the direction of the sum vector f:

f = f u
2
+ f v

2

T = 1/ fϕ = arctan(fv / fu) (6)

The way in which any frequency vector f in the spectrum of the superposition is
obtained from frequency vectors fi in the individual spectra of the original images can

be shown graphically using the geometric rules of vector addition, as shown in Fig. 10.
Such vector diagrams can be drawn for any frequency vector f  in the spectrum of the
superposed image, but they are of particular interest for those impulses in the spectrum
which correspond to moirés in the superposed image. The vector diagrams provide a
clear illustrative explanation of the nature of any moiré in question.

If the impulse whose frequency vector is f  falls inside the visibility circle and
represents a visible moiré in the superposition of the N original images, the above
formulas (6) in fact express the frequency, the period and the angle of this moiré. Note
that in the special case of N=2, where a moiré effect occurs due to the vectorial sum of
the frequency vectors f 1 and –f 2, these formulas are reduced to the familiar

geometrically obtained formula of the moiré effect between 2 layers [4]:

 T = T1T2

T1
2 + T2

2 – 2T1T2 cosα
(6.1)

(where T1 and T2 are the periods of the 2 original images and α  is the angle difference
between them, θ1–θ2).
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Eqs. (5) and (6) only describe the geometric properties of an impulse in the spectrum
of the superposition (and of the periodic component or moiré which it represents in the
image domain). The amplitude of any individual impulse, which represents the strength
of the corresponding periodic component in the image, is a product of the amplitudes of
the N impulses from which it has been received in the convolution, one from each of the
N spectra:

a = a1a2 ... aN (7)

Note however that if 2 or more impulses in the convolution happen to fall on top of
each other in the same location, their individual amplitudes are summed up.

As can be seen from Eqs. (5) and (7), the spectrum convolution can be seen as an
operation in which frequency vectors of the original spectra are added vectorially,
whereas the corresponding impulse amplitudes are multiplied. Note that since all the
convolved spectra are real and symmetric about the origin (see Sec. 2), the resulting
spectrum is also real and symmetric, and contains for each impulse at location f an
identical twin impulse at –f.

We have seen that if one or several of the new impulse pairs in the convolution fall
close to the origin, inside the visibility circle, they imply the existence of one or several
moirés with significant periods in the superposed image (Fig. 3(b), (d)). An interesting
special case occurs when some of the impulses of the convolution fall exactly on top of
the DC impulse at the origin. This happens for instance in the superposition of 2
identical gratings at the same angle, or when 3 identical gratings are superposed at
angle differences of 120° between each other. As can be seen from the vector diagrams,
these are limit cases in which the vectorial sum of the frequency vectors is exactly 0.
This means that the moiré frequency is 0 (i.e. its period is infinitely large), and therefore
the moiré is not visible. This situation is called a singular moiré state; but although the
moiré effect in a singular state is not visible, this is a very unstable moiré-free state
since any slight deviation in the angle or frequency of any of the superposed images
may cause the new impulses in the spectrum to move slightly from the origin, thus
generating a moiré effect with a very significant period [6, Figs. 6,8].

5. Binary square waves and their spectra

Let r(x) be a one dimensional binary (0, 1 valued) periodic square wave. We will
denote the period of this function by T and the width of its white square pulse (the
opening) by τ (see Fig. 4). As usual, we assume that the square wave is symmetrically

centered around the origin, so that both the original image and its spectrum are real and
symmetric.
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A periodic square wave can be expressed by means of its Fourier series expansion, as
an infinite series of weighted sine and cosine functions, at the fundamental frequency of
1/T and all its harmonics. The general expansion (or decomposition) of a one
dimensional periodic function into a Fourier series is given by:

r(x)  =  a0 + 2
∞

∑
n=1

 an cos(2πnx/T) + 2
∞

∑
n=1

 bn sin(2πnx/T) (8)

[9, p. 205], where the Fourier series coefficients are given by:

an = 1
T

 r(x) cos(2πnx/T) dx
0

T

 bn = 1
T

 r(x) sin(2πnx/T) dx
0

T

 

(the integration may be done over any 1-period interval, such as -T/2...T/2, etc). In the
special case of a symmetric binary square wave, where r(x)=1 between -τ/2...τ/2 and 0

elsewhere (see Fig. 4), these coefficients are:
a0 = τ/T

an = (1/nπ) sin(nπτ/T) = (τ/T) sinc(nτ/T)
(9) bn = 0

(there are no sine components here, due to the symmetry of the square wave). The fact
that the square wave can be expressed as a constant a0 plus an infinite sum of cosine

functions, implies that the Fourier transform of the square wave contains a DC impulse
whose amplitude is a0, plus an infinite series of impulse pairs located at the frequencies

of ±n/T. Since the n-th impulse pair is the Fourier transform of the n-th cosine in the
Fourier series decomposition of the square wave (the n-th harmonic), its amplitude is
given by the n-th cosine coefficient, an (Eq. 9). The spectrum of the square wave is

therefore:

R(u)  =  
∞

∑
n=–∞

 an δ(u–n/T) (10)

(where δ(u) is the impulse symbol). This is an impulse train (or a “Dirac comb”)

which samples the continuous function (“envelope”) g(u)=(τ/T)sinc(τu) at the

fundamental frequency u=1/T and all its harmonics, u=n/T (Fig. 4). The amplitude of
the impulses oscillates and fades out symmetrically in both directions from the center.

Note that the period T of the square wave determines the interval 1/T between each
two successive impulses of the comb in the spectrum, while the opening τ  (0 ≤ τ  ≤ T)

determines the length of the lobes in the envelope sinc function. The height of the
envelope at the origin, i.e. the amplitude of the DC impulse, is determined by the
opening ratio of the square wave, τ/T  (0 ≤ τ/T ≤ 1).

An interesting observation from the formula of an (Eq. 9) is that when the opening

ratio τ/T of a given square wave is rational, i.e. if it can be expressed as l/k where l and
k are integers, then for any n which is a multiple of k the impulse amplitude an is zero.
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For instance, if τ/T=1/2 then every even impulse in the comb has a 0 amplitude, and if

τ/T=1/4 or 3/4 then every fourth impulse in the comb is zero.

Let us mention here one more result that will be used later: If R(u) is the Fourier
transform of a symmetric square wave r(x), then the Fourier transform of the “negative”
wave 1–r(x) is given by:

F(1–r(x)) = F(1) –F(r(x)) = δ(u) – R(u) = { 1–R(0) u=0
–R(u) u≠0

(11)

Therefore, if an are the impulse amplitudes in the spectrum of r(x), then the impulse
amplitudes in the spectrum of 1–r(x) are: c0 = 1–a0,  cn = –an.

Proceeding now to the 2D case, the general expansion of a periodic function r(x,y)
with periods Tx and Ty in the x and y directions into a 2D Fourier series is given by:

r(x,y) = ∑
m = -∞

∞

∑
n = -∞

∞

am,n  cos2π(mx/Tx + ny/Ty)   + ∑
m = -∞

∞

∑
n = -∞

∞

bm,n  sin2π(mx/Tx + ny/Ty) 

where:am,n = 1
TxTy

  
0

Tx

r(x,y) cos2π(mx/Tx + ny/Ty) dx dy 
0

Ty

 

bm,n = 1
TxTy

  
0

Tx

r(x,y) sin2π(mx/Tx + ny/Ty) dx dy 
0

Ty

 

 If r(x,y) is symmetric, the infinite sum only contains cosine terms, each of which is a
function of both mx and ny. Each of these cosine terms, multiplied by a coefficient am,n,

gives (isolates) the contribution to the image r(x,y) of the cosinusoidal periodic
component in the direction and frequency of the (m,n)-th harmonic. The spectrum
(Fourier transform) of r(x,y) is, therefore, an impulse nailbed which contains for each of
the (m,n)-th harmonics an impulse of amplitude am,n. The frequency vector of each

impulse in the nailbed denotes the direction and the frequency of the corresponding
periodic component in the image. In the following section we will discuss the special
case where r(x,y) is a binary square wave. Note that since a 2D square wave is basically
a constant extension of a 1D square wave into the perpendicular direction, its 2D
Fourier series representation (and therefore its 2D spectrum) are in fact of 1D nature.
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6. Superposition of binary gratings; higher order       moirés; the
notational system

The reflectance function of a binary grating is a bidimensional binary periodic square
wave; for the sake of convenience we will assume it is also symmetric. The reflectance
function of a binary grating with period T1 and opening τ1 in direction x (Fig. 5(a)) is

given by the Fourier series:

r1(x,y)  =  a  0
(1) + 2

∞

∑
n=1

 a  n
(1) cos(2πnx/T1) (12)

where the coefficients a(1)
0 and a(1)

n  are similar to a0 and an in Eq. (9) above, with only

T1 and τ1 replacing T and τ. Similarly, the reflectance function of a binary grating with

period T2 and opening τ2, which is rotated by angle α  (Fig. 5(b)), is given by the Fourier

series:

r2(x,y)  =  a  0
(2) + 2

∞

∑
n=1

 a  n
(2) cos(2πn[xcosα + ysinα]/T2) (13)

where  a(2)
0 and a(2)

n  are similar coefficients with T2 and τ2.

The Fourier transform R1(u,v) of the reflectance function r1(x,y) is a symmetric 1D
impulse train on the u axis (Fig. 5(d)), whose envelope is g(u) = (τ1/T1)sinc(τ1u). The
intervals between the impulses are 1/T1 and their amplitudes are a(1)

n. Similarly, the

Fourier transform R2(u,v) of the reflectance function r 2(x,y) is a 1D symmetric impulse
train with an envelope shape of g(u) = (τ2/T2)sinc(τ2u) on a line in the u,v plane which

has been rotated by angle α , with an impulse interval of 1/T2 and an impulse amplitude
of a(2)

n  (Fig. 5(e)).

Let us now consider the superposition of the 2 binary gratings, r(x,y) = r 1(x,y)r 2(x,y).
According to the convolution theorem (Eq. 2) its spectrum R(u,v) is the convolution of
spectra R1(u,v) and R2(u,v). This convolution can be carried out graphically by the
“move and multiply” method as in the case of 2 cosinusoidal functions, the only
difference being that now each of the individual spectra contains an infinite number of
impulses (a “comb”) rather than only 3 impulses. The result of the convolution, in terms
of impulse locations, is an infinite oblique lattice of points (frequency vectors) which
results from placing a centered, parallel copy of the comb R2(u,v) on top of each
impulse of the comb R1(u,v), or vice versa (see Fig. 5(f), and compare with the
cosinusoidal case shown in Fig. 2(f)). More precisely, the results of the convolution can
be formulated as follows:
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(a) The frequency vectors of the impulses in the spectrum of the superposed gratings are
the vectorial sums of each frequency vector on the comb of the first grating and each
frequency vector on the comb of the other grating. All these frequency vectors (or
rather their corresponding impulse locations) form the above-mentioned lattice.

(b) The amplitude of the (m,n)-th impulse on this oblique lattice is the product of the
amplitudes of the m-th impulse in the first comb and the n-th impulse in the second
comb:

    am,n = a(1)
m a(2)

n

= (1/ π2mn) sin(πmτ1/T1) sin(πnτ2/T2)

(14)
= (τ1τ2/T1T2) sinc(mτ1/T1) sinc(nτ2/T2)

As in the cosinusoidal case, we see that here too the superposition of gratings
introduces new impulses in the spectrum. If any of these impulses fall inside the
visibility circle, as in Fig. 5(f), it indicates that in the superposed image there is a visible
periodic component (i.e. a moiré effect) at the corresponding direction and frequency.

Results (a) and (b) above lead to the following interesting observations:

(1) The angle difference between the two gratings only influences the geometric
location of the impulses, but not their amplitudes. In the image domain this means that
the angle difference between the two gratings only influences the angle and period of
each moiré, but not its amplitude. (In case of more than 2 superposed gratings, however,
angle changes may cause some impulses to fall on top of each other, in which case their
amplitudes are summed up).

(2) Varying the opening τ of any of the gratings while the period T remains fixed only

influences the amplitude of the impulses, but not their location. In the image domain
this means that only the amplitude of the moiré is influenced, but not its angle or period.

The generalization of the results obtained above to the superposition of N binary
gratings is straightforward. In fact, the geometric location of each impulse in the
resulting spectrum is determined by the vectorial sum of frequency vectors, one from
each of the superposed gratings, while the amplitude of the individual impulses is the
product of the amplitudes of the involved impulses. This is very similar to the case of
cosinusoidal gratings, except that the spectrum of a binary grating consists of an infinite
comb of impulses rather than only 3 impulses, and therefore in the case of binary
gratings the convolution of N spectra gives an infinite nailbed of impulses rather than
just a finite number (3N) of impulses. This means that in the case of binary gratings each
of the components f ' i  in Eq. (5) may come from any impulse of the comb of the i-th
spectrum. In fact, if f i is the frequency vector of the fundamental impulse in the i-th
spectrum, then the frequency vector of its ki-th harmonic impulse is kifi, and Eqs. (5)
and (7)  for the general (k1,k2, ... ,kN)-impulse in the convolution become:



15

f k1,k2,...,kN
 = k1f 1 + k2f 2  + ... + kNfN

(15)

ak1,k2,...,kN
 = a(1)

k1
 a(2)

k2
 ... a(N)

kN

(16)
  = 1

πNk1k2...kN

  sin (πk1τ1/T1) ... sin (πkNτN/TN)

  = τ1τ2...τN
T1T2...TN

  sinc (k1τ1/T1) ... sinc (kNτN/TN)

where ki are integer numbers. If 2 or more impulses in the convolution happen to fall

on the same point (i.e. they have identical frequency vectors), their individual
amplitudes are summed up.

The Cartesian components of the vectorial sum in (15) are:

fu k1,k2,...,kN
 = k1f1 cosθ1 + k2f2 cosθ2 + ... + kNfN cosθN

fv k1,k2,...,kN
 = k1f1 sinθ1 + k2f2 sinθ2  + ... +  kNfN sinθN

       (

17)

and as in the cosinusoidal case they can be inserted into Eq. (6) in order to obtain the
frequency, the period and the angle of the impulse in question (and of the moiré it may
represent, in case it falls inside the visibility circle).

As a result, two main differences emerge between the superpositions of cosinusoidal
or binary gratings: first, in the case of binary gratings, each impulse in the visibility
circle (like any other impulse in the spectrum) belongs to an infinite comb of impulses,
in the same direction, through the origin (see Fig. 5(f)). This means that each moiré is
represented in the spectrum by an infinite series of impulses. The fundamental impulse
(i.e. the first impulse next to the DC) in this comb determines the period and the
direction of the moiré, and therefore it is still sometimes called, as in the cosinusoidal
case, “the impulse of the moiré”. If further harmonic impulses of this comb also fall
inside the visibility circle, the profile shape of the moiré is no longer perceived as a
pure cosinusoidal function, but rather as a more complex form (a sum of cosines).

Second, in the case of binary grating superposition, the visibility circle may also
contain impulses which originate from higher harmonic impulses in the combs of the
individual spectra. This means that, unlike in the cosinusoidal case, moiré effects
between binary gratings can also be obtained from higher harmonics of the fundamental
grating frequencies. Such moiré effects are called higher order moirés [11]. This is
demonstrated for the case of 2 superposed gratings in Fig. 6; note that the visible moiré
effect is caused here by the vectorial sum (or rather difference) of f 1, the fundamental
frequency of the first grating, and twice f2, i.e. the second harmonic of the other grating,
while the vectorial difference f 1–f2 is outside the visibility circle. In the image domain
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this means that the visible moiré is actually due to the intersection of every second line
in the first grating with each line of the second grating. If both f1–f2 and f 1–2f2 were

inside the visibility circle, then both the first and the second order moirés could be
observed simultaneously in Fig. 6(c). Fig. 7 shows some of the various order moirés
which may exist between 2 superposed gratings.

It will be useful to present at this point the systematic notational formalism that we
introduce for the following discussions, which provides an unambiguous means for the
identification, classification and labelling of the moiré effects. We will call the N-
grating moiré whose fundamental impulse is the (k1,k2, ... ,kN)-impulse in the spectrum
convolution (see above) a (k1,k2, ... ,kN)-moiré; its comb contains the convolution
impulses (nk1,nk2, ... ,nkN) for any integer n (this can be seen for N=2 in Figs. 5, 6).
This moiré is singular if ∑kifi = 0. Note that sometimes, when no confusion may occur,

it is convenient to use a shorthand notation in which zero indices and negative signs are
omitted. For instance, the (2,0,-1,1)-moiré between 4 gratings may be simply called a
{2,1,1}-moiré, and both the 4 grating (1,0,-1,0)-moiré and the 2 grating (1,-1)-moiré
may be called in short {1,1}-moirés. This shorthand notation is sometimes more
convenient than enumerating all the possible similar variants. The highest absolute
value in the list is called the order of the moiré.

7. The profile of the moiré and its perceptual contrast

As has been shown above, each moiré in the superposition of binary gratings is
represented in the spectrum by an infinite series of impulses (a Dirac comb). The
amplitudes of these impulses are the coefficients of the Fourier series development of
the function which represents the profile of the moiré (i.e. the intensity of the moiré at
any point along a cross-section of the image in the moiré direction). The exact profile
shape of the moiré in the image domain can be reconstructed as an infinite sum of
cosines, by inserting the amplitudes an=ank1,nk2,...,nkN

  of the moiré comb impulses given

by Eq. (16) into Eq. (8) (with bn=0 for any n, since we are dealing with symmetric

cases). An approximate profile shape of the moiré can be obtained from the first few
impulse pairs of the comb which fall inside the visibility circle, i.e. as a sum in the
image domain of only the first few cosine terms in the Fourier series (8) (plus a constant
term due to the DC impulse, which represents the average level of the profile). A
coarser, cosinusoidal shaped approximation of the moiré profile can already be obtained
from the DC and the fundamental impulse pair alone (whose frequency vector gives the
basic angle and frequency of the moiré).

As we have seen, our mathematical model assigns to each point of the image a
reflectance value between 0 and 1, where 0 means black, 1 means white, and
intermediate values represent in-between reflectance values. This applies, in particular,
to the moiré profiles and the image projections which are calculated as described above
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based on this model.2 Note that although the original images and their superpositions
are all binary and only take values 0 and 1, their moiré profiles may also have
intermediate values. In fact, the value of each point on a profile represents the average
ratio of white per unit of length (or area), i.e. the average reflectance at that point. For
example, in the (1,-1)-moiré between 2 identical gratings where the width of the black
and white lines is identical (i.e. the opening ratio is τ/T=0.5; see Fig. 8(b)), then the

value of the moiré profile along the center of the dark moiré bands is 0 (no white at all),
and this value gradually climbs up to 0.5 at the center of the bright moiré bands (where
black and white are equally distributed, and therefore the white ratio is 0.5). This is
shown graphically in the reflectance profile of the moiré, in Fig. 8(e); similar profiles
are shown in Figs. 8(d),(f) for other opening ratios corresponding to the moirés of Figs.
8(a),(c).

However, the difference between the maximum and the minimum reflectance of the
moiré profile does not represent correctly the degree of contrast as it is perceived by the
human eye. For example, in the (1,-1)-moiré between 2 identical gratings, the difference
between the maximum and the minimum reflectance profile values are identical for
gratings with opening ratios of τ/T=0.75 and τ/T=0.25, while the eye clearly sees a

much higher contrast in the second (darker) case (compare Figs. 8(a),(c) with their
reflectance profiles 8(d),(f)).3 The reason for this phenomenon is that the response (or
sensibility) of the human visual system to light intensity is not linear in its nature, but
rather close to logarithmic [12, pp. 27-29]. If we plot the intensities or the moiré
profiles logarithmically, i.e. in terms of density rather than in terms of reflectance, we
get a more realistic representation of the perceptual contrast of the moiré which better
corresponds to the human perception (see Fig. 8(g)–(i)). A still better correspondence
can be achieved by replacing the logarithmic approximation of the human visual
response by an empiric function based on the experimental data obtained from
physiological research [13, pp. 62–69].

8. Square grids and their superpositions

A square grid is in fact an orthogonal superposition (multiplication) of two identical
binary gratings, which together form a pattern of identical squares. Therefore the
spectrum of a square grid is the convolution of two identical but perpendicular combs,
and its impulses are located on a square lattice. The amplitude of each impulse in the

                                                
2 The range of [0,1] is respected, of course, only by the precise profile functions which take into account

all the impulses till infinity. An approximation using only a finite number of terms, such as the DC plus

the first harmonic cosine (x2), may somewhat exceed the range of [0,1].
3 Note that even the Michelson contrast [13 p. 34], defined as: (max–min)/(max+min), which is widely

used in literature, is not appropriate here — since for both cases 8(e),(f) it yields the same value, 1.
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spectrum is given by Eq. (14); as we can see, the spectrum has the form of a nailbed
which samples the continuous bidimensional function (“envelope”) g(u,v) =
(τ/T)2sinc(τu)sinc(τv)  at the points  (u,v) = (m/T,n/T), where T and τ are the period and

the opening of both gratings. The shape of such a spectrum can be seen in Fig. 11(f).

The spectrum of a superposition of two square grids is the convolution of 2 such
nailbeds: a centered copy of one of the nailbeds is scaled and placed on top of each
impulse of the other nailbed. But the superposition of 2 square grids can also be seen as
a special case of 4 binary grating superperposition with two pairs of gratings, each pair
consisting of 2 identical but perpendicular gratings. It is clear, therefore, that each
impulse pair in the spectrum of the superposition is accompanied by an identical,
perpendicular impulse pair. This means that every moiré effect which occurs between
any of the gratings involved always has a perpendicular twin; the visual effect in the
superposed image therefore has a 90° symmetry (such as a square grid or screen).

The moiré effects which occur in the superposition of two square grids may originate
from 2, 3, or from all of the 4 gratings involved. This means that the frequency vector
of the fundamental moiré impulse in the visibility circle of the spectrum may be a
vectorial sum of 2, 3, or 4 frequency vectors.4 Examples of these types of moirés
between 2 square grids are shown in Fig. 9; their vector diagrams are shown in Fig. 10.
In each case, the low frequency vectorial sum of the indicated frequency vectors from
the 2 original spectra gives the fundamental frequency vector of the visible moiré effect,
and therefore determines the angle and the frequency of the moiré. (Note that in order to
determine the exact profile shape of the moiré, its higher harmonic impulses are also
required, insofar as they are situated inside the visibility circle).

The generalization into the case of 3 or more superposed square grids is
straightforward. The general expressions for the frequency vector and the amplitude of
an impulse in the spectrum of the superposition are given by Eqs. (15, 16), where N is
the number of gratings involved, i.e. twice the number of the square grids.

9. Dot screens and their superpositions

A regular dot screen is a dot screen with perpendicular axes and equidistant, identical
dots. This is in fact a generalization of a square grid, since the square grid can be
considered as a special case of a screen having square, white dots on black background
(see Fig. 11(e)). A regular screen r(x,y) of white dots on a black background can be

                                                
4 A grating which does not explicitely participate in the generation of the moiré effect in fact contributes

its DC impulse: it contributes a zero frequency vector to the vectorial sum of the frequency vectors, and

the amplitude of its DC impulse to the product amplitude (see Eqs. 15, 16).
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seen as a convolution of a “spot function” d(x,y) which describes a single white dot,
with a nailbed of period T (see Fig. 11). Therefore, according to the convolution
theorem, the spectrum of such a dot screen is the product of the continuous function
D(u,v) (the Fourier transform of the spot function), and the Fourier transform of the
nailbed which is itself a scaled and stretched nailbed. This product is a nailbed which
samples the “envelope” function D(u,v) at intervals of 1/T, scaling its amplitude by 1/T2

(see Fig. 11). In the case of a square white dot whose side is τ (as in Fig. 11), the spot

function is: d(x,y) = 2Π(x/τ,y/τ)  (where 2Π(x/τ,y/τ)  denotes the function whose value

is 1 within the square –0.5≤x,y≤0.5 and 0 elsewhere), and therefore the envelope of the
spectrum is: D(u,v) = τ2 sinc(τu) sinc(τv) [9, p. 246]. In the case of a circular dot with

radius τ, the envelope D(u,v) is given by a Bessel function [9, p. 248], which is

sometimes called the sombrero function due to its circular symmetry.

As we can see, the shape of an individual dot d(x,y) of the screen determines the
shape of the envelope function D(u,v) in the spectrum, and therefore it determines the
amplitude of each of the impulses in the spectrum of the screen. However, the
geometric locations of the impulses in the spectrum of the screen are not influenced by
the dot shape, and they are determined only by the nailbed with which the dot is being
convolved.

A regular screen of black dots on white background, which represents a halftone
screen with dot area coverage of less than 50%, can be seen as the “negative” of the
above white-on-black screen r(x,y), namely: 1 – r(x,y). Following Eq. (11), the Fourier
transform of 1–r(x,y) contains exactly the same impulses as R(u,v), the spectrum of the
square grid r(x,y),  where only the sign of their amplitudes have been inverted:
cm,n =  –am,n, and the DC impulse has an amplitude of: c0,0 = 1–a0,0. Here again, only the

impulse amplitudes have been influenced, but not their geometric locations.

The spectrum of the superposition of 2 dot screens is the convolution of the 2 bell-
shaped nailbed spectra of the individual screens, as in the special case of square grids.
Such a convolution process in the spectrum is repeated for each additional dot screen
which is superposed in the image domain. If after the convolution the spectrum contains
new impulses inside the visibility circle which yield sufficiently strong perceptual
contrasts, then new visible periodic components with the respective angles and
frequencies appear in the superposed image as moiré effects. This is very similar to the
special case of square grids discussed above (i.e. the case of square white dots on a
black background), and in fact the moiré effects received in both cases have very
similar macroscopic properties (see Fig. 9). Note however that the microscopic
properties of the two cases may be quite different. The microscopic structure in the
superposition of dot screens is distinguished by a fine pattern of small dot clusters,
called rosettes [5], which can be seen even when no visible moirés are present.
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The fact that the geometric location of the impulses in the spectrum of the screen does
not change when the form of the individual dot is modified (or when the negative of the
screen is taken) is fundamental for the understanding of the moiré effects between
superposed screens. It means that the period and the direction of the moiré do not
depend on the shape of the individual dots of the superposed screen; changing the dot
shape (including the dot size) may only affect the intensity and the profile of the moiré
effect. This is shown in Fig. 12.

10. The implications on moirés between halftone screens in colour
separat ion

A halftoned image with clustered screen elements is a screen of equidistant dots, in
which the dot size is not constant but rather varies (according to the tone values in the
original image). The moirés between halftoned images are therefore based on the case
of regular dot screens which has already been described above. Since the colour
separation technique involves overprinting 3 or 4 halftoned images, one for each of the
primary colours [10, Sec. 26.6], undesired moiré patterns may occur between these
halftone screens if special care is not taken.

In order to be clearly visible, a moiré between 2 or more screens should have a large
enough period (i.e. its fundamental impulse in the spectrum must be inside the visibility
circle), and its perceptual contrast (see Sec. 7) should be relatively strong. However, it
is important to note that in colour separation not only strong moirés with large periods
may be harmful. Weaker moirés with large periods (say, 10 times the screen period or
more) can still be visible, as well as strong moirés with small periods (3-5 times the
screen period); the latter may cause a rough linen-like texture and give the printed
image a grainy aspect. As a rule of thumb it can be said that pronounced moiré
structures which are larger than 1 mm are already clearly visible in normal viewing
conditions and therefore undesirable.

The minimization of moirés between superposed screens consists of finding
parameter combinations for the superposed layers which give as far as possible moiré-
free results. But the task of finding a good moiré-free combination of more than 2
halftone screens is not an easy one, since many different moirés may appear at each
angle and frequency combination (this is illustrated in Figs. 7 and 13 for the case of 2
superposed layers). Minimizing one of these moirés (by varying the screen frequencies
and angles) does not guarantee the minimization of the others, and in fact the task of
finding a good screen combination is a trade-off between the contradictory tendencies
of the various moirés involved.

It should also be noted that not all the moiré minima are indeed stable solutions. As
described in Sec. 4 many of the moiré-free combinations are in fact singular moiré
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states; therefore any small deviation in the angle or frequency of any of the dot screens
may cause the reappearance of the moiré pattern in its full strength. Singular moiré-free
states may be used in colour separation only if high accuracy can be guaranteed for the
screen angles and frequencies; in fact, such is the case in the traditional screens with
equal frequencies and equal angle distribution (30°-30°-30°). But moiré-free
combinations which are not singular should be preferable, since they are more stable
and much less sensitive to small inaccuracies in the reproduction and printing process.

In halftoned images, different gray levels are obtained by variations in the size and
sometimes also in the shape of the screen dots. But as we have seen, the envelope shape
and therefore the amplitude of each impulse in the nailbed spectrum of a dot screen are
strongly influenced by the shape of the dot, as well as by the opening ratio τ/T or the

dot size. This means that the intensity and the profile of the moirés between halftone
screens (but not their angles or periods!) are influenced by the shape and size of the
dots, since they depend on the amplitude of the new impulses received in the
superposition of these screens. In other words, even at a fixed frequency and angle
screen combination the intensity and the profile of the generated moiré (or moirés) may
still vary significantly (within their fixed periods and angles) as the halftone gray levels
are being changed. Furthermore, when several moirés are present simultaneously, each
of them may be dominant in a different combination of gray levels. These facts are
clearly demonstrated in Fig. 13. It is therefore not sufficient to look for good screen
combinations only at some predefined gray levels, since an innocent moiré in one gray
level may prove to be much stronger in another gray level. However, an exhaustive run
through a large range of screen parameters and gray levels in order to find the best
screen combinations proves to be impractical: due to the large amount of calculation,
and also due to the fact that for most of the practically used halftone cells (such as black
circles which gradually grow into squares at 50% and then gradually turn into white
circles) we have no precise expressions for the impulse amplitudes. We therefore
selected a simpler approach for the moiré minimization, which is only based on
geometric parameters such as angles and frequencies (although perceptual intensities of
the moirés are also taken implicitly into account by experimental measurements). This
approach will be explained in the following sections.

11. Dynamics of the moiré phenomenon; the moiré parameter space

In the foregoing sections we analyzed the moiré phenomenon between superposed
layers only from the static point of view. That is, given a fixed combination of angles
and frequencies for the individual layers we analyzed the effects of their superposition,
both in the image domain and in the spectral domain (like in Figs. 5, 6, 9-10).

Based on these results, in the present section we will consider the dynamic aspects of
the moiré phenomenon between superposed layers, i.e. how changes in the parameters
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of the superposed layers affect the moiré phenomena in the superposition, both in the
image and in the spectral domains.5 Understanding these dynamic aspects will give us a
more profound insight into the behaviour of the moiré phenomenon, and lead us to a
method for finding moiré-free screen combinations for colour separation.

Let us start with the simple case of two superposed regular dot screens. As we have
seen, any of the convolution impulses in the spectrum which fall within the visibility
circle represent a moiré phenomenon between the two screens. Let the frequencies of
the 2 screens be f1 and f2 and the angles they form with the positive horizontal axis be

θ1 and θ2. Then according to Eq. (17) the geometric location of the (k1,k2,k3,k4)-impulse
in the spectrum is given by the Cartesian coordinates (fu k1,k2,k3,k4 

, fv k1,k2,k3,k4
) where:

fu k1,k2,k3,k4  
=  k1f1 cosθ1 + k2f1 cos(90°+θ1) + k3f2 cosθ2 + k4f2 cos(90°+θ2)

fv k1,k2,k3,k4  
=  k1f1 sinθ1 + k2f1 sin(90°+θ1) + k3f2 sinθ2 + k4f2 sin(90°+θ2) 

         (18)

or equivalently, in vector form:

fu
fv k1,k2,k3,k4  

= 
 

cosθ1 -sinθ1

sinθ1 cosθ1  
k1

k2
 f1 

+
 

cosθ2 -sinθ2

sinθ2 cosθ2  
k3

k4
 f2

Obviously, if we now let the parameters fi and θi vary, the geometric location of the

(k1,k2,k3,k4)-impulse varies accordingly in the spectrum. For the sake of simplicity we

may assume without loss of generality that the first screen is fixed, with the angle
θ1 = 0° and the frequency of f1, and only the second screen is free to vary. Thus, in the

superposition of 2 regular dot screens there are only 2 independent parameters (degrees
of freedom); it is convenient to choose them to be the angle difference between the 2
screens, α  = θ2–θ1 = θ2, and their frequency ratio, q = f2/f1. Expression (18) for the

geometric location of the (k1,k2,k3,k4)-impulse in the spectrum can be rephrased,

therefore, as a function of the 2 variables α  and q, as follows:

fu k1,k2,k3,k4  
=  k1f1 + q f1[k3 cosα  + k4 cos(90°+α)]

fv k1,k2,k3,k4  
=  k2f1 + q f1[k3 sinα  + k4 sin(90°+α)]

           

(19)

The distance of this impulse from the spectrum origin (i.e. the frequency of the
impulse) is given, according to Eq. (6), by:

                                                
5 We will restrict ourselves here only to dynamics of the geometric parameters, i.e. to the influence of

varying the angles and frequencies of the superposed layers on the resulting moirés. The effects of

varying the gray levels or the dot shapes in the superposed layers have already been discussed above (see

Figs. 8, 12, 13).
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f k1,k2,k3,k4 
=  fu k1,k2,k3,k4

2  +  fv k1,k2,k3,k4

2

and its period is:  Tk1,k2,k3,k4 
=  1/ f k1,k2,k3,k4 

.

Let us take as an example the (1,1,-1,0)-moiré of Fig. 9(b), i.e. the impulse with k1=1,
k2=1, k3=–1 and k4=0. As we can see in Fig. 10(b), the geometric location of this

impulse (denoted in the figure as the vectorial sum) is quite close to the spectrum
origin; and in fact, if we rotate and scale the free screen so that α  and q vary towards

the values of α=45° and q=√2, the impulse will gradually approach the origin, and

finally reach it. At this precise point the period of the moiré is infinitely large, but at
any values of α  and q around this point the impulse in the spectrum will still be located

within the visibility circle, so that the moiré will have a large, visible period. It can be
said, therefore, that in the 2D parameter space defined by all the possible values of the
parameters α  and q, the point (α ,q)=(45°,1.4142) represents a singular state of the

(1,1,–1,0)-moiré. Moreover, this is the only singular point of the moiré, as a glance at
Fig. 10(b) shows: since the first screen is fixed, so is the sum of its two f 1 vectors; and
only at α=45°, q=√2 the vector –f2 of the second (varying) screen cancels it out and

brings the vectorial sum (the small arrow) to zero. A similar reasoning shows that any
(k1,k2,k3,k4)-moiré between 2 screens has a single singular point in the 2D parameter

space.

However, every (k1,k2,k3,k4)-moiré may have a different singular point in the

parameter space. This is demonstrated in Fig. 14, which gives a panoramic view of the
parameter space (α ,q) and illustrates the dynamics of the most important moirés (up to

the second order) which appear between the 2 superposed screens. Note that different
moirés may have an identical singular point in the parameter space; this is the case, for
instance, in the (1,1,-1,0)- and (2,0,-1,1)-moirés (see Fig. 14). We will call such moirés
isocentric since they share the same central (singular) point. The contour line around
each moiré in the figure delimits the parameter combinations (α ,q) for which the

fundamental impulse of the moiré is located inside the visibility circle.

Having illustrated the dynamics of moiré effects between two superposed dot screens,
we are now ready to examine the case of 3 superposed screens, which is the basic
configuration for colour separation.

For the sake of clarity, let us adopt the following notational conventions: we will call
the 3 dot screens, in descending order of their frequencies, the K-screen, the M-screen
and the C-screen (shorthand for: black, magenta and cyan). We suppose without loss of
generality that the K-screen is fixed, with the angle θ1 = 0° and the frequency of fK, and

that only the C- and M-screens are free to vary. The angle between the K- and the M-
screens will be denoted by α and the angle between the K- and the C-screens by β (see

Fig. 15).
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The case of 3 superposed screens therefore has 4 independent parameters: the angles
α  and β, and the frequency ratios qMK=fM/fK and qCK=fC/fK. The geometric location of the

(k1,k2,k3,k4,k5,k6)-impulse in the spectrum of the superposition can be expressed

(according to Eq. 17) as a function of these 4 parameters, as follows:

fu k1,...,k6  
=  k1fK + qMKfK [k3 cosα + k4 cos(90°+α)]  + qCKfK [k5 cos(–β) + k6 cos(90°–β)]

fv k1,...,k6  
=  k2fK + qMK fK [k3 sinα + k4 sin(90°+α)]

 
 + qCKfK [k5 sin(–β) + k6 sin(90°–β)]

       (20)

with   fk1,...,k6 
=  fu k1,...,k6

2  +  fv k1,...,k6

2    and   Tk1,...,k6 
=  1/ fk1,...,k6 

.

Since the parameter space in this case is 4-dimensional, (α , β, qMK, qCK), a full graphic

description (like Fig. 14 for the 2D case) is no longer possible. But, except for the
abstraction due to the 4 dimensions, the situation remains basically similar. The main
difference is that unlike in the 2D case, the locus of the singular points of a
(k1,k2,k3,k4,k5,k6)-moiré in the 4D parameter space is no longer a single point, but rather

consists of a 2D manifold (a curved surface) within the 4D space. This is illustrated in
Figs. 16-17.

As the parameters (α , β, qMK, qCK) vary away from this singular manifold, the period

of the moiré becomes smaller until at a certain distance from the singular manifold the
moiré fades out and becomes practically invisible. If we “draw” in the 4D space the
locus of all the points  (α , β, qMK, qCK) at which the (k1,k2,k3,k4,k5,k6)-impulse is located
inside the visibility circle in the spectrum (i.e. f k1,...,k6 

< visibility circle radius), we will get

around the singular manifold a 4D zone (which is analogous to the spherical zone
around each singular point in the 2D case of Fig. 14). We will call this zone the
forbidden zone of the moiré in question. In 2D sections taken through the 4D parameter
space this forbidden zone may appear as a thick, curved or straight line (Fig. 17(a)), or
as an elliptic or egg-like shape (Fig. 17(b)).

Now, if we “draw” in the 4D space the forbidden zones belonging to all the
(k1,k2,k3,k4,k5,k6)-impulses in the spectrum which represent perceivable moirés, we will

get the following image: the singular manifolds of these moirés will appear dispersed in
the 4D space, each of them serving as a skeleton which is surrounded by the forbidden
zone of the corresponding moiré. These forbidden zones are sometimes intersected, and
sometimes they only almost touch in the 4D space. The spaces left between these
forbidden zones include the parameter combinations for which no disturbing moiré
occurs between the 3 screens.
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12. Finding moiré-free screen combinations for colour separation

The above discussion immediately suggests a practical way of searching for moiré-
free combinations (or moiré minimization) for the C,M,K dot screens in colour
separation. In principle, any parameter combination in which no significant moiré is
visible is a solution to the problem, including the singular states at the centers of the
forbidden zones (unless such a singular point is also covered by a forbidden zone
belonging to another moiré). As we have already seen in Sec. 10, the traditional
combination of α=β=30° and qMK=qCK=1 is an example of such a singular point. But

when the accuracy of the printing process is not enough to guarantee the high precision
required for the use of a singular screen combination, it may be preferable to use a
stable moiré-free solution, i.e. a screen combination which is located in the 4D space at
the center of a moiré-free zone, with as high as possible tolerances in each of the 4
parameters involved. Therefore, rather than looking for singular points (in the center of
the forbidden zones), as proposed in [14], we will be looking for stable solutions in the
center of the moiré-free zones.

Before we proceed to describe the algorithm itself, a word about the useful ranges of
the 4 parameters is in order. It is clear from Fig. 15 that the angles α  and β are limited

to the range 0° ≤ α+β ≤ 90°, but since we know experimentally that any angle

difference lower than 20° inevitably generates strong {1,1}-moirés (such as in Fig. 9(a))
we may limit ourselves only to cases in which all of the 3 angles, α , β and γ, are larger

than 20°. This implies the following angle range (see Fig. 18):  20° ≤ α  ≤ 50°,

20° ≤ β ≤ 70°–α. As for the frequency ratios, since we suppose that fC,fM ≤ fK  it follows
that the useful ranges for qMK and qCK are: qCK,qMK ≤ 1. But since it is inappropriate to mix

within the same color image C,M,K screens of very different periods or frequencies we
will restrict ourselves to the following period ranges: TK ≤ TM,TC ≤ 1.5*TK,  which means
in terms of frequency ratios:  2/3 ≤ qCK,qMK  ≤ 1.

The method we adopted for finding moiré-free combinations of screens for colour
separation is a straightforward search, which runs with the specified steps through all
the parameter combinations, within their admitted ranges. It first searches for good
combinations for the C,M,K screens, and only then, for each good solution it attempts
to find appropriate parameters for the Y screen. Here are the main steps of the
algorithm:

Step 1:   Generating a list of the “dangerous” impulses in the spectrum of the
superposition.

The aim of this step is to select from the list of impulses generated in the spectral
convolution of the C,M,K screens a relatively small subset which contains only the
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“potentially dangerous” impulses. This will be further explained below. It should
be noted that what is needed here is not the actual impulse locations or amplitudes,
but just their indices, such as: (2,0,-1,0,0,1).

Step 2:    Scanning the 4D parameter space for moiré-free combinations.

In this stage we run through all combinations of the 4 parameters α , β, qMK, qCK

(within their admitted ranges, as described above). The step size should be small
enough to ensure that no moiré-free zones escape through the mesh, but not too
small either in order to avoid excessive running time. For each parameter
combination the program runs through the list of “dangerous” impulses and
calculates for each of them its actual coordinates in the spectrum, using Eq. (20). If
any of the impulses fall inside the corresponding visibility circle, the current
parameter combination is rejected. Only if all the dangerous impulses fall outside
their visibility circle is the parameter combination accepted and registered in a file
which accumulates the potentially good moiré-free combinations.

Step 3:    Finding the best solutions inside the detected moiré-free zones.

Having completed the scanning of all the 4 parameter combinations in step 2, we
are left with a file containing all the potentially good combinations found. As we
have seen above, these points are located within the moiré-free zones in the 4D
parameter space. In this step we search for the best solutions among these points,
according to the tolerances they offer. Then each of the best solutions found must
be experimented on high resolution films, in order to exclude the possible
existance of residual moirés which are still visible but have not been detected by
the program (for instance, higher order moirés).

Step 4:    Finding for each good C,M,K combination an appropriate Y screen.

After the proposed moiré-free combinations for the C,M,K screens have been
tested and verified as good solutions, a similar approach is taken to find for each
of them a good Y screen. In this case the values of α , β, qMK and qCK are already

known, and the varying parameters are the angle δ and the frequency ratio qYK of

the Y screen. (Obviously, the list of “dangerous impulses” as well as Eq. (20)
must be adapted to the case of 4 superposed screens).

The reason why the best Y screen is found separately is double: first, the introduction
of a fourth screen in steps 1–3 would significantly increase the number of moirés which
occur between the different layers, and make it practically impossible to find good
moiré-free combinations between all 4 layers simultaneously. As a compromise, it is
better to find the best possible moiré-free combinations for the C,M,K screens first,
even at the expense of having somewhat stronger moirés with the Y screen (which are



27

anyway much less visible due to the light nature of the Y colour). As a second benefit,
the separation of the Y screen from the others reduces from 6 to 4 the number of
dimensions to be scanned in step 2; this significantly reduces the complexity of the
program, particularly in terms of running time.

Let us return now in more detail to step 1, concerning the number of impulses
involved. Since each of the C,M,K screens contributes 2 perpendicular Dirac-combs to
the convolution, the total number of impulses in the convolution, if only N impulses
(harmonics) are considered from each side of the DC, is (2N+1)6.  For N=2 this gives
56=15625 impulses, and for N=3 the impulse number becomes as high as 76=117649.
Fortunately, however, the actual number of impulses to be considered can be
significantly reduced by means of 3 different considerations:

First, according to our practical experience, an impulse generated by a harmonic
higher than 2 very rarely contributes a significant visible moiré. It is therefore more
efficient to search for good solutions taking into account only 2 harmonics, and only
then test each of the received solutions for possible higher order moirés.

Second, since we only deal with real images having no imaginary part, each impulse
in the spectrum is accompanied by a twin impulse, symmetric with respect to the DC
(see Sec. 2). Judicious consideration enables us to leave in the impulse list only one
impulse from each such pair, thus reducing by half the number of impulses in the list.

Third, even after the above cut-downs in the number of impulses, most of the
impulses remaining in the list have no practical significance from the moiré point of
view since they represent moirés which are far too weak to be perceived, even when
they appear at low frequencies (for instance, such are all the impulses having more than
2 indices with the value of ±2). After discarding all these negligible impulses, we are
left with a list of only about 2000 “potentially dangerous” impulses, i.e. impulses which
may represent, when they fall inside the visibility circle,  significant moirés that should
be rejected.

However, as we already know, even these 2000 impulses are not all of the same
importance. For example (see Fig. 9), a (1,0,-1,0,0,0)-moiré is much stronger than a
(1,2,-2,-1,0,0)-moiré, and consequently its cutoff frequency (i.e. the frequency at which
it becomes invisible to the eye) is higher. In fact, strong moirés may still cause a rough
and clearly visible linen-like structure even at very small periods, where the weaker
moirés already disappear completely. Therefore the 2000 impulses in the list have been
classified into several categories, according to the relative strength of their moirés. Each
category has been assigned its own visibility circle, according to its cutoff frequency.
The cutoff frequency for each type of moiré has been found experimentally by
measurements performed on a light-table, using various high-resolution films with
different screen frequencies, cell shapes and gray levels. In each case the observer
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looked at the corresponding screen combination from a normal reading distance, and he
rotated the films slightly so as to decrease the period of the moiré in question (i.e. to
increase its frequency) until, at a certain moment, the moiré completely disappeared.
The highest visible frequency of the moiré, just before its disappearance, was measured
and taken as its cutoff frequency (allowing for some extra safety margins). Moiré types
with similar cutoff frequencies have been grouped into the same category. In our
specific implementation we had 4 impulse categories: one for the strongest moirés (of
the {1,1} type), a second one for the slightly weaker moirés of the {1,1,1} type, a third
category for the medium-strength moirés such as {1,1,2} and {1,2,2}, and the last
category for all the weaker cases still in the list. It is interesting to mention that if no
classification of the impulses is carried out and all of them use the visibility circle of the
strongest moirés, the forbidden zones they generate in the 4D parameter space become
larger and cover the whole of the space, so that no solutions can be found.

Note that these experimental measurements of the cutoff frequency have the
advantage of being performed using real halftone screen superpositions, thus taking into
account the irregular background and the masking effects which influence the moiré
visibility. This is much better than using standard data taken from literature, which have
been measured on ideal sinusoidal images, free of noise such as rosettes or textures due
to other moirés in the background.

13. Results and discussion

An important advantage of the above moiré minimization method is that, due to the
relative simplicity of the calculations involved, it is capable of scanning the full
admitted ranges of the 4 parameters. This provides a global, panoramic view of the
whole 4D parameter space, including the forbidden zones inside it and the moiré-free
zones between them. Note that every large enough moiré-free zone should be detected
by this scan; moiré-free zones which “escape” through the scanning mesh (the sampling
points in the 4D space) are inevitably smaller than the scanning step, which means that
their tolerance margins are very low so that anyway they do not correspond to our
requirements. (Such are, for example, all the singular points). Obviously, after an
important moiré-free zone is discovered, the program may be used again to rescan the
interesting zone alone in greater detail (“zoom in”).

The results obtained by this method are quite interesting. Several good screen
combinations have been found, which gave in experimental tests a very satisfactory,
uniform appearance with no evident apparition of moirés or other disturbing structures
(some of these solutions correspond to previously known cases listed in [15]). An
example of such a good solution is shown in Fig. 19. Note that each solution in fact
represents a whole family of equivalent screen combinations which can be received
from each other by various symmetries and transformations (such as mirror-images,
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rotations, scalings, flipping the colour labels between the 3 screens, etc...). The
tolerance obtained around a typical good solution is in the order of at least ±0.5° for the
angles α  and β and ±1% for the screen periods or frequencies (these values are

indicated for the narrowest dimension of the moiré-free zone; in its more prolonged
directions the tolerances may be even higher). This is significantly better than the
tolerance required by the traditionally used singular screen combination of α=β=30°
and qMK=qCK=1 (or any ather singular case), which is ±3´ (minutes of arc) for the angles

(DIN No. 16547). And moreover, since our good solutions are not singular states, even
when the specified tolerances are somewhat exceeded, the visual effect only consists of
weak, small-period moirés which gradually start to appear, while in singular moiré-free
cases the slightest deviations immediately bring back from infinity large-period, highly
objectionable moirés. In other words: our solutions are stable moiré-free states rather
than unstable moiré-free states.

Another interesting result observed is that the best solutions in the moiré-free zones,
according to our criteria of maximal tolerance, were systematically located on a
symmetry axis of the 4D parameter space, such as: α=β, qMK=qCK (or any of its

symmetric counterparts, like: β=γ, qCK=qCM etc.). Perhaps this is not so surprising, after

all, since there is no a-priori reason why one side of the symmetry axis should be
preferred to the other. But the interesting thing is that these highly symmetric cases
were not necessarily the winners during the experimental tests, and often the cases
found most suitable for practical use were slightly off the symmetry axes. The reason
for this result appears to be the following: in highly symmetrical cases the dots of the 3
screens form together in the superposition a fine uniform geometrically ordered micro-
structure which appears very regular to the eye. Now, even very weak moirés (including
moirés due to higher harmonic orders!), which are normally completely negligible on
the irregular, noisy background of the screen superposition (even if their period is
relatively large), may become quite disturbing here. Even the slightest perturbation on a
uniform, geometrically ordered background is very clearly perceived by the human eye
which is very sensitive to such periodic irregularities on a uniform background.

Therefore, even if the most promising cases obtained by the program are located on a
symmetry axis, it might be adviseable to prefer a neighbouring case slightly off that
axis, in order to break the symmetry of the micro-structure generated in the
superposition.

14. Conclusions

In this article a spectral approach for the analysis of superposition moiré effects is
presented. Using this approach, the development of the moiré analysis is systematically
surveyed starting from the simplest, cosinusoidal grating case, through binary gratings
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and square grids to the case of dot screen superposition, and then further to the case of
superposition moirés in colour separation. This is done based on a useful notational
formalism introduced for the identification, classification and labelling of the moiré
effects. Interesting results which have been demonstrated include the fact that the
angles and periods of the moiré patterns are determined only by the angles and periods
of the superposed structures, while the intensity and the profile shape of the moiré
patterns are basically determined by the opening ratios or the dot shape of the
superposed structures. We also define the visibility circle for each type of moiré, the
radius of which depends on several factors, including the perceptual contrast of the
moiré.

Then, based on this background, in the second part of the article we analyze the moiré
phenomenon from a different angle — the dynamic point of view. We introduce the
moiré parameter space and show that the good parameter combinations are located in it
within isolated moiré-free zones. This leads us to an algorithm for finding stable moiré-
free screen combinations for colour separation, which have much better tolerances than
singular moiré-free screen combinations.
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Fig. 1: The geometric location and amplitude of impulses in the 2D spectrum. To each
impulse is attached its frequency vector, which points at the geometric location of the
impulse in the spectrum plane (u,v).
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Fig. 2: (a) and (b) Cosinusoidal gratings and (c) their superposition in the image
domain. (d) and (e) Top views of the respective spectra and (f) their convolution. Black
dots in the spectra indicate the geometric location of the impulses; the line segments
connecting them have been added only to clarify the geometric relations. (g), (h) and (i)
Side views of the same spectra, showing the impulse amplitudes.
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Fig. 3: (a) A third cosinusoidal grating and (b) its superposition with Fig. 2(c), in the
image domain; (c) and (d) a top view of their respective spectra in the spectral domain.
The strongest visible moirés in (b), which are best seen from a distance of about 3 m,
belong to the two impulse pairs marked by arrows in the spectrum (d).
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Fig. 4: A symmetric square wave with period T and opening τ  and its Fourier
transform. The dotted line indicates the envelope of the impulse train.



36

Fig. 5: (a) and (b) Binary gratings and (c) their superposition in the image domain;
their respective spectra are the infinite combs shown in (d) and (e) and their convolution
(f). (The scale in the image domain was reduced for the sake of clarity). The circle in
the center of spectrum (f) represents the visibility circle. It contains the impulse pair
whose frequency vectors are f 1– f2 and f2 – f1; this is the fundamental impulse pair of the
moiré seen in (c). The dotted line in (f) shows the infinite comb of impulses that
represents the moiré.
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Fig. 6: (a) and (b) Binary gratings as in Fig. 5 but with (b) having half the frequency,
and (c) their superposition; (d), (e) and (f) their respective spectra. (The scale in the
image domain was reduced for the sake of clarity). The visibility circle in the center of
the spectrum (f) contains the impulse pair with frequency vectors f 1 – 2f2 and 2f2 – f1,
which originate from the second harmonic of f 2, and represent the fundamental impulse
pair of the moiré. Note that the moiré seen in (c) is a (1,-2)-moiré, but it still has the
same angle and frequency as the (1,-1)-moiré of Fig. 5, and only its intensity is weaker.
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Fig. 7: (a) Some of the different order moirés between two superposed gratings, and
(b) enlarged view.
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Fig. 8: A (1,-1)-moiré between two identical binary gratings. All three cases have the
same periods and angles, but their opening ratios are (a) 0.75, (b) 0.5, and (c) 0.25. (d),
(e) and (f) The respective moiré profiles in terms of reflectance, as received from the
mathematical model. (g), (h) and (i) The same moiré profiles after their adaptation to
the human visual perception, i.e., in terms of density.
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Fig. 9: Three types of moirés between two square grids (left) or two dot-screens
(right), which are generated by (a) two, (b) three, or (c) four of the gratings involved.
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Fig. 10: The spectral interpretation of the three types of moirés between two square
grids shown in Fig. 9, which are generated by two, three or four of the gratings
involved. For the sake of clarity, only the frequency vectors of one of the two
perpendicularly symmetric moirés are shown in each case. The low frequency vectorial
sum which corresponds to the fundamental impulse of the moiré in each of these cases
can be graphically found by the parallelogram law (the dashed axes here denote the
rotated layers).

(a):  (1,0,-1,0)-moiré (b):  (1,1,-1,0)-moiré (c):  (1,2,-2,-1)-moiré
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Fig. 11: (a) A square white dot d(x,y) with side τ ; (b) its continuous spectrum D(u,v) =
τ 2 sinc(τu) sinc(τv); (c) a nailbed with period T and amplitude 1; (d) its spectrum — a
nailbed with period 1/T and amplitude 1/T 2; (e) a screen of square white dots — the
convolution of (a) and (c); and (f) the spectrum of the screen — the product of (b) and
(d): a nailbed that samples the “envelope” (b) at intervals of 1/T, scaling its amplitude
by 1/T 2.
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Fig. 12: The influence of the size and shape of the screen dots on the moiré between
two superposed screens. Only the size and the shape of the “spot function” of the moiré
are affected, but not the period and the direction of the moiré. In both images two
similar screens, with identical frequencies and gradually increasing dots, are superposed
at an angle difference of 2°. (a) The superposition of two screens with increasingly
large circular dots gives circular moiré spots of increasing size. (b) The superposition of
two screens with increasingly large square dots give square moiré spots of increasing
size.

Fig. 13: The influence of the dot size and of the dot shape of the superposed screens
on the moiré intensity. Both images show the superposition of two screens, one at 28.3°
and with frequency f1 and the other at 51.34° and with frequency f2 = 1.153 f1. In both
images the gray level of the first screen is varied vertically from 0 to 1 (by modifying
the dot size within the fixed screen period), and the gray level of the second screen
varies horizontally from 0 to 1. This means that each image contains all the possible dot
size combinations of the two screens. The only difference between images (a) and (b) is
in the shape of the screen dots: the dots are circular in (a), and rhombic (i.e., squares
rotated by 45°) in (b). In each of the images two distinct moirés appear: The large
square pattern at –10.4°, which belongs to a {1,2,2}-moiré, and the small square pattern
at 20.6°, which is a {1,1}-moiré. Note that the intensity of each of the two moirés
within each of the images varies with the gray-level combination of the two screens,
and reaches its maxima in different gray-level combinations. The influence of the dot
shape is demonstrated by the significant difference in the moiré intensities between the
two images.
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Fig. 14: A panoramic view of the 2D parameter space (α ,q) within the range
0° ≤ α  ≤ 45°, 1 ≤ q ≤ 2. It shows the most significant moirés between two superposed
regular screens in this range, and illustrates how their period varies as a function of the
angle difference α  and the frequency ratio q between the two screens. Darker shades
represent bigger moiré periods. Each moiré is centered at a singular point in which its
period is infinitely large; this point is surrounded by a spherical zone in which the
period of the moiré gradually decreases from the center outwards. The contour line
around each moiré delimits the parameter combinations (α,q) for which the
fundamental impulse of the moiré is located in the spectrum inside the visibility circle.
Note that the (1,0,-1,0)-moiré is clearly more dominant than the others. Note also that
the (2,2 ,-2,-1)-moiré is already too weak to be visible; in practice it is assimilated by the
residues of the strong (1,0,-1,0)-moiré.
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Fig. 15: A schematic view of the three superposed C,M,K screens (each represented
by its two main axes) showing the conventional notations used in the text.

K

K

M

CM

C

α
β

α β
γ



46

Fig. 16: A (0,1,-1,0,1,0)-moiré between three screens (a), and its vector diagram (b).
By convention it is assumed that the K screen is fixed, and only the M and C screens
are free to vary. For any choice of α and β there exists one set of qMK and qCK (i.e., one
set of f M and fC) for which fM+ f C falls on –f K, thus yielding a singular case (where the
vectorial sum is 0). This means that the locus of all the singular points of this moiré
forms a 2D manifold in the 4D space (α , β, qMK, qCK). Note that one of these singular
points, the point with α  = β = 30° and qMK = qCK = 1, is the case used in traditional
colour printing.
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Fig. 17: Two 2D sections through the 4D parameter space (α , β, qMK, qCK) showing
their intersections with the singular manifold of the  (0,1,-1,0,1,0)-moiré and the
forbidden zone surrounding it. (a) A section along the diagonal plane α  = β, qMK = qCK.
(b) A section along the (α ,β) plane with qMK = qCK = 1. Darker shades represent higher
moiré periods. Note that the singular point α  = β = 30°, qMK = qCK = 1 is included in this
singular manifold.

Fig. 18: The admitted range for the angles α , β and γ. Any point outside the gray
range violates at least one of the conditions α  ≥ 20°, β  ≥ 20°, γ  = 90° –  (α   + β) ≥ 20°.
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Fig. 19: An example of a stable moiré-free combination of three screens obtained by
the algorithm. Small, irregular rosettes, of about the same size as in the conventional
30°-30°-30° singular (unstable) moiré-free case, can be seen in the superposition, but no
significant moirés (such as in Fig. 9) are present.


