
   

Font Rasterization: the State of the Art

Roger D. Hersch

1 Introduction
Outlines are becoming the standard way of storing character fonts. In the late
seventies and early eighties, only fonts for photocomposers were stored by
their outline description. Screen fonts and printer fonts were generally stored
in bitmap form. The advent of resolution independent page description lan-
guages [Adobe85] and of outline grid fitting algorithms [Hersch87] provided
the means of printing a given document page with the same appearance on
middle-resolution laser printers as on high-resolution photocomposers. This
concept has recently been extended to display devices thanks to interactive
resolution-independent window interfaces such as NeWS [Gosling89] or Dis-
playPostScript [Holzgang90].

Due to competition on the marketplace, formats for the description of font
outlines and hints have been published [Karow87], [Adobe90], [Apple90].
The TrueType format, designed by Apple Computers, provides a complete
langage for the description and processing of hinting commands. In this lan-
guage, font manufacturers are responsible for specifying outline fonts and
associated hints. Therefore, creating hints for outline characters is no longer
restricted to a few specialists. Anyone willing to create a TrueType descrip-
tion for his outline font will need either an automatic tool [Hersch91b] or
will have to add the hints one by one to the outline description. This tu-
torial presents current outline character representation techniques, gives an
overview of basic and advanced grid constaints and describes the philosophy
behind the Adobe Type 1 hinting system and the TrueType character hinting
language defined by Apple Computers.

This survey relies on literature about splines [Farin88] and on previous
publications related to grid-fitting. It also includes an original algorithm for
converting cubic Bézier splines into quadratic splines, as required for the
production of TrueType characters. For a comparison of the different indus-
trial hinting and rasterization techniques, the reader is referred to [Deach92],
[Karow92].

Rendering of typographic outline characters involves three main steps:
outline grid fitting, outline scan-conversion and filling. Outline grid fitting
is based on the piecewise deformation and grid adaptation of outline parts

Visual and Technical Aspects of Type, Cambridge University Press,
(Ed. R.D. Hersch), 1993, 78-109

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147925063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


    

Font Rasterization 79

[Hersch89]. Grid constraints or hints are rules which specify how a charac-
ter outline should be modified in order to preserve features like symmetry,
thickness and uniform appearance on the rasterized character. Basic grid
constraints are responsible for keeping the characters aligned with the refer-
ence lines [Bétrisey89], for keeping the symmetry of stems and for producing
discrete arcs of acceptable quality [Hersch89].

Advanced grid constraints include snapping and dropout control for pro-
ducing regular and continuous characters at low resolutions (Fig. 1).

Figure 1. Character appearance with decreasing font size

2 Outline descriptions
Document description languages such as PostScript [Adobe85] require font
descriptions to be invariant under affine transformations. Therefore, commer-
cial font manipulation and rasterization systems describe character outlines
using cubic splines or, to some extent, quadratic splines. In the past how-
ever, straight line segments and circular arcs were considered to be sufficient
[Coueignoux81]. Several researchers advocate the use of conics [Pratt85] or
conic splines [Pavlidis85].
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Cubic splines are described by piecewise polynomial parametric curves.
Since they are able to generate very smooth contour forms [Rogers76], we use
them to describe character boundaries. Natural or clamped splines are given
by two extrema and n − 2 intermediate spline points. The different spline
segments are smoothly connected at the intermediate spline points. Mathe-
matically, smoothness is described by the continuity of the first and second
derivatives. A set of n − 2 equations [Rogers76, Farin88] can be established
by requiring continuity of second derivatives. At the spline extrema, either
the tangent vectors are given (clamped spline) or the second derivative is zero
(natural spline). Solving this set of equations leads to the first derivatives (tan-
gent vectors) at each intermediate spline point. Spline segments described by
two points and their tangent vectors are defined up to their parametrization
interval.

Cubic spline segments Pi(ti) have the following parametric equation:

xi(ti) = axi + bxi · ti + cxi · t2
i + dxi · t3

i

yi(ti) = ayi + byi · ti + cyi · t2
i + dyi · t3

i . (1)

Care must be taken when choosing the parameter ti. On an ideal curve, t

should be proportional to the arc length [Farin88]. To minimize computations,
ideal parametrization is only applied on circular arc segments. In the case of
cubic spline segments, the parameter range is generally chosen so that it is
proportional to the chord length.

A character with outlines described by cubic splines and straight line seg-
ments is completely defined. For ease of scan-conversion and filling, the
simple cubic spline description (1) is generally converted into an equivalent
form based on the Bézier-Bernstein basis.

A spline segment with parameter t varying from 0 to 1, given by its in-
terpolation points V0, V3 and by its tangent vectors T0 and T3 in V0 and V3

can be described in the following way as a Bézier spline segment. Two new
control points V1 and V2 are computed:

V1 = V0 +
1
3

T0 (2)

V2 = V3 − 1
3

T1 . (3)
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Points V0, V1, V2 and V3 are the control points of the Bézier control poly-
gon (Fig. 2).

Figure 2. Interpolation points V0, V3, tangents and corresponding Bézier control
points V1, V2

The corresponding spline segment in Bézier form is given by the following
parametric equation for P(u) = (x(u), y(u)):

P(u) = V0 · (1 − u)3 + V1 · 3 · u(1 − u)2 + V2 · 3 · u2(1 − u) + V3 · u3

with u ∈ [0, 1] . (4)

One can easily verify, by differentiating P(u), that the tangents at the
departure point P(0) and at the arrival point P(1) correspond to equations (2)
and (3).

In order to convert a spline segment from (1) to (4), it is necessary to convert
first the original spline segment with arbitrary parametrization (0. . tk) into an
equivalent description with uniform parametrization. For this purpose we
introduce the parameter transformation u = t

tk
. The intermediate spline

equation will be

P(u) = P(
t

tk
) . (5)

The tangent P(u) is :

dP

du
=

dP

dt
· dt

du
=

dP

dt
· tk . (6)
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Parameter normalization multiplies the length of the original tangent vector
by a factor tk. This is natural, since by reducing the available time (parameter
t) by a factor tk, an object flying along the curve needs to travel tk times as
quickly to get from departure point P0 to arrival point P1.

Once spline segments with uniform parametrization have been obtained,
it is easy to describe each of them in Bézier form by applying equations (2)
and (3).

Quadratic Bézier splines are given by a Bézier triangular control polygon
(Fig. 3).

Figure 3. A quadratic Bézier spline segment given by its control polygon

W(u) = W0 · (1 − u)2 + 2 · W1 · u · (1 − u) + W2 · u2

with u ∈ [0, 1] .

One can check that its tangents at the spline departure and arrival points
are:

W ′(0) = 2 · (W1 − W0)

W ′(1) = 2 · (W2 − W1) .

In the TrueType format, outlines are described by quadratic B-splines.
Curve segment support points are either off the curve or on the curve. Off the
curve points belong to the B-spline control polygon. On the curve points are
tangential locations where the quadratic B-spline curve touches its B-spline
polygon made up of two phantom vertices at the ends [Bartels87] and the
intermediate off the spline vertex sequence (Fig. 4).
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Figure 4. TrueType curve given by points (TT0, B1, B2, TT3)

Quadratic B-splines with a given parametrization (knot sequence) can eas-
ily be converted into series of quadratic Bézier splines having continuous first
derivatives [Farin88]. For example, a quadratic B-spline with control points
(TT0, B1, B2, TT3) having a uniform knot sequence produces the following
two quadratic Bézier splines:

First quadratic Bézier spline:

S0 = TT0

S1 = B1

S2 =
1
2

· (B1 + B2)

Second quadratic Bézier spline:

T0 =
1
2

· (B1 + B2)

T1 = B2 (7)

T2 = TT3 .

The following algorithm converts one cubic Bézier spline segment (V0, V1,

V2, V3) into a quadratic B-spline with four control points. The resulting
quadratic B-spline will have at its extremity a tangent (first derivative) which
is very close to the tangent of the original cubic Bézier spline segment. There-
fore, the proposed algorithm almost keeps continuity of first derivative at ex-
tremity points. The resulting quadratic B-spline given by its TrueType control
polygon (TT0, B1, B2, TT3) can be considered as two consecutive quadratic
Bézier splines (S0, S1, S2) and (T0, T1, T2) having first-order continuity be-
tween them (Fig. 5).
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Figure 5. Conversion of cubic Bézier spline into quadratic B-spline

Quadratic Bézier spline support points S2 and T0 are identical and they
lie on the straight line segment S1T1. Due to (7), the TrueType control points
of the desired quadratic B-spline are:

TT0 = S0

B1 = S1 (8)

B2 = T1

TT3 = T2 .

The unknown quadratic Bézier spline support points S1 and T1 are com-
puted so that the tangents at the departure and arrival points of the cubic
Bézier spline and of the quadratic Bézier spline become similar. When seek-
ing the quadratic Bézier spline support point S1, one should consider the first
cubic Bézier polygon (W0, W1, W2, W3) obtained by the DeCasteljou subdi-
vision (see section 4) of the original cubic Bézier polygon (V0, V1, V2, V3).
From this cubic Bézier spline we know that:

W0 = V0

W1 =
1
2

· (V0 + V1) . (9)

This cubic Bézier polygon obtained by subdivision describes a spline seg-
ment having approximately the same length as the unknown quadratic Bézier
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spline (S0, S1, S2). Therefore, their parametrization intervals can be consid-
ered as identical and their tangents made equal. The tangent at departure
point W0 is

W ′(0) = 3 · (W1 − W0) =
3
2

· (V1 − V0) .

The tangent of the unknown quadratic Bézier spline (S0, S1, S2) at depar-
ture point S0 is

S ′(0) = 2 · (S1 − S0) .

By making tangents S ′(0) and W ′(0) equal, S1, the intermediate control
point of the first quadratic Bézier control polygon becomes:

S1 =
3
4

· (V1 − V0) + V0 =
3
4

· V1 +
1
4

· V0 . (10)

Applying similar considerations, one obtains the intermediate control point
of the second quadratic Bézier control polygon T1:

T1 =
3
4

· (V2 − V3) + V3 =
3
4

· V2 +
1
4

· V3 . (11)

The support point B1 of the resulting quadratic B-spline is identical to
S1 and the support point B2 is identical to T1 for uniform parametrization
intervals.

The deviation of the quadratic spline segments from the original subdivided
cubic spline segments can be computed at the center of the parametrization
intervals. In order to lower this deviation, one can further subdivide the
original cubic Bézier spline (see section 4) and convert each new subdivided
cubic Bézier spline segment separately into one B-spline having four control
points.

3 Scan-conversion and filling: the basics
The outline scan-conversion and filling algorithm developed for character
generation is an extension of the well-known flag fill algorithm [Ackland81].
It is based on the assumption that any pixel whose center lies within the
continuous border of a shape is to be considered as an interior pixel. This as-
sumption is derived from the fact that shape boundaries are relatively smooth.
The shape boundary part which intersects a pixel can generally be approx-
imated by a straight line segment. Therefore, pixels are selected as interior
pixels if their surface coverage is more than 50% (Fig. 6).
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Figure 6. Interior of filled shape

The bitmap which will be generated by the flag fill algorithm can be con-
sidered as a set of black horizontal spans for the inside of the outline and as
white horizontal spans for the outside. The first pixel of each span is marked
by a flag (Fig. 7). Once all the flags corresponding to an outline have been
set, the flag fill algorithm scans the flag image memory from left to right. Each
flag encountered indicates the start of a new horizontal interior or exterior
span.

Figure 7. Example of the flag fill algorithm applied to a character
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Figure 8. Illustration of parity flag fill

Filling horizontal spans lying between starting pixels can be carried out
very efficiently with the help of table accesses. Each word of image memory
is checked for the existence of one or more starting pixels. Each starting pixel
has the effect of reversing the colour of the following horizontal scanline part.
Therefore, an image memory word containing a starting pixel will be put back
into memory with the run from the starting pixel to the last pixel of the word
written in a complementary colour. Each subsequent starting pixel within
the current word will have the effect of inverting the colour of the remaining
horizontal pixel run (Fig. 8). The same rules apply to starting pixels lying in
the next words of the same image memory scanline.

4 Outline scan-conversion
Rasterization algorithms described in computer graphics books [Newman79]
are inadequate for the rendering of raster characters. They suggest rounding
segment coordinates to integer grid values before scan-conversion. Shapes
can be so rendered, but rasterization effects cannot be adequately controlled.
Intermediate approaches suggest overlaying a higher resolution grid over the
basic pixel grid [Pratt85]. High-resolution grid overlay may provide better
rasterization control but it requires more scan-conversion steps to generate
the same graphic primitive.

The last and in our eyes most successful approach is to scan-convert char-
acter contour segments with a digital differential analyzer [Rogers85] working
with real fixed-point numbers [Hersch88].
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4.1 Vertical Scan Conversion
The Bézier splines and line segments which make up an outline have to be
converted into flags for the filling algorithm. Two strategies can be adopted to
scan-convert a Bézier spline: recursive subdivision and forward differencing
[Newman79]. Both strategies have been developed in order to reduce the
number of required operations without reducing the precision of the scan
conversion.

Ordinary forward differencing has one main drawback: the incremental
step of the parameter used to describe the curve is a constant. Adaptive
forward differencing (AFD) corrected this problem [Lien87]. AFD ensures that
most of the points which are generated will be used to trace the curve. Integer
AFD further improved the algorithm by using fixed- or pseudo floating-point
arithmetic instead of floating-point arithmetic [Lien89] [Gonczarowski89].
The resulting algorithm is even faster.

Recursive subdivision has also been optimized [Hersch91a]. It presents
several advantages over adaptive forward differencing. First, computation er-
rors aren’t amplified in the same way as in AFD. In order to get the same quality
result, recursive subdivision requires a significantly smaller amount of preci-
sion bits than AFD [Morgan91]. Second, recursive subdivision can be carried
out with the control points of a Bézier curve rather than its polynomial equa-
tion. This allows for a better understanding and monitoring of the algorithm.
On the other hand, the recursive aspect of subdivision has to be implemented
with a stack. Stack access will slow down subdivision. This problem can be
partially eliminated by working with an iterative version of the DeCasteljou
subdivision algorithm, where the Bézier polygon control points obtained by
subdivision [Hersch91a] are explicitly stored on a dedicated data stack. If this
data stack resides in cache memory, recurrent subdivision of Bézier control
polygons will be as fast as adaptative forward differencing.

4.2 Scan conversion subdivision of Bézier splines
Recursive subdivision of Bézier splines is based on the DeCasteljou’s theo-
rem [Farin88]. As Figure 9 shows, a Bézier spline represented by its control
polygon (V0, V1, V2, V3) can be subdivided into two smaller Bézier splines,
(V0, S1, S2, S3) and (S3, T1, T2, V3).

The smaller splines will have their control polygons closer to the spline.
Therefore, if a spline is subdivided often enough, the resulting control poly-
gons can be assimilated to the spline.
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Figure 9. DeCasteljou’s subdivision of Bézier splines

One of the delicate points of the algorithm is the criterion for stopping
subdivision. It is based on the convex hull property of Bézier curves: a Bézier
curve always lies within the convex hull formed by its control polygon.

Repeated subdivision of Bézier splines can result in three types of Bézier
splines:

• splines which don’t intersect any scan line, and which can be discarded
since they won’t generate any flag (Fig. 10a),

• splines which don’t intersect any vertical grid lines, and can be assimi-
lated to vertical line segments (Fig. 10b),

• splines which still intersect a scan line and a vertical grid line (Fig. 10c).

Figure 10. The three possible final outcomes of a Bézier subdivision
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The third case raises the problem of knowing when to stop subdividing a
spline and how to choose the position of the corresponding flag. The choice
of stopping a subdivision has to take into account the level of error tolerated
and the precision used in the computations.

The criterion we chose is to have the spline’s bounding box smaller than
the parameter MinFracLength along both the x and y axis. When this criterion
is met, the small spline is assimilated to the three line segments which make up
its control polygon. Experience shows that a good trade-off for MinFracLength
is 1/8 of a pixel. Such a precision is generally sufficient for outline character
generation, since most hinting algorithms work with a grid precision lower
then 1/16 of a pixel.

5 Basic grid constraints
Rasterization algorithms working with real fixed- or floating-point numbers
allow us to predict the discrete outlook of the rasterized shape. Fractional
displacements of the continuous shape in respect to the grid will produce
different discrete shape boundaries (Fig. 11).

Figure 11. Rasterized curved shapes having different phase at horizontal or vertical
tangential points

On vertical bars, phase determines the discrete width of the bar. In order
to be able to respect original relationships between different horizontal and
vertical bars, it is necessary to fix their phase relative to the pixel grid. The
phase is computed so as to minimize the difference between the width of the
continuous bar and the width of the resultant discrete bar (Fig. 12).

Basic grid constraints are sufficient to produce normal quality characters
at 300 dpi. Each grid constraint contains a definition part and an application
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part. The definition part consists of a pair of points and of parameters speci-
fying a given character part which will have to be fitted in the allowed phase
range. Grid-fitting rules for fitting stems and bowls require two outline support
points specifying the stem or bowl width.

Figure 12. Phase placement of bars

Figure 13. Support points for the specification of grid constraints
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The evaluation of a given hint produces a subpixel displacement which
must be applied to certain parts of the outline. The application part specifies
the character parts on which the computed displacement is applied by giving
their starting and ending outline support points (Fig. 13).

Proportional deformation of curved outline parts can be produced by spec-
ifying a fixed point and a point on which the full displacement is applied
(Fig. 14).

Figure 14. Proportional application of a computed subpixel displacement

Basic constraints provide facilities to center pairs of horizontal reference
lines (base line, x-height line, caps line) on the grid (Fig. 15).

Figure 15. Phase control of reference lines
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These constraints produce a vertical displacement which is used to center
the character between the base line and the given reference line. The charac-
ter is slightly rescaled in order to place the horizontal reference lines halfway
between pixel centers.

Figure 16. Result of reference lines phase control application

The initial horizontal positioning of characters on the grid is also highly
important. Completely different rasterizations will be obtained if the center
of a symmetric character is placed on a pixel center or half-way between two
pixels (Fig. 17).

Figure 17. Different phase positioning for the center of symmetry of a character
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Horizontally, curvilinear letters are centered between their two extremal
points. For characters like “C” having a curve only on one side, the width of
character “O” found in the standard width table is used in order to guess the
position of the character center.

Figure 18. Horizontal centering constraints

These constraints use the width of character “o”, or “O” respectively, in
order to center in the same way the curvilinear letters “o”, “c”, “p”, “d”, “b”,
“q”, or characters “O”, “C”, “D”, “Q”. They should, at small sizes, provide a
uniform appearance.

Figure 19. Uniform appearance of similar characters at small sizes
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Figure 20. Specifying an allowed phase range for the bowl’s extremities

Figure 21. Rasterized Haas Unica: optimal corrections at different sizes
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Horizontal stems are controlled individually or in relation to a given ref-
erence line. Bowls and curved character parts are controlled by keeping
the phase of the vertical or horizontal extremity of arcs within a given phase
range. The phase range influences the flatness of the produced discrete arc
(Fig. 20).

Bowls can be further constrained to produce a discrete optical correc-
tion from a given size [Bétrisey89]. Separate control is provided for optical
correction on baseline, x-height line and caps line (Fig. 21).

6 Advanced grid constraints
The previously shown basic constraints are sufficient for generating raster
characters at 300 to 800 dpi as long as highly regular character outlines are
provided. Manual or automatic digitizing of master artwork does not provide
highly regular outlines. The width of stems may be subject to some variations;
curves at stem junctions may also be slightly different. At rasterization time,
slight outline variations sometimes produce important variations on digitized
raster characters (Fig. 22).

Figure 22. Small stem width variation produces different rasterizations

Therefore, for systems incorporating only basic hints, a work-intensive
interactive character regularization step is required in order to produce highly
regular outlines. The designers of Ikarus [Karow87] and of the TrueType char-
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acter hinting language [Apple90] provided a solution to the problem of slight
shape differences: they introduced a set of reference values called snapping
values for important character metrics like stem widths. When grid contraints
applied on the original outline are liable to produce an ambiguous rasteriza-
tion (Fig. 22), instead of using the width specified by the constraint parameters,
the reference values are consulted and the corresponding snapping value is
taken.

Centering stems having slightly different stem widths will therefore pro-
duce the same rasterization, since at each hint displacement computation,
identical stem widths will be taken from the reference value table (Fig. 23).

Figure 23. Rasterization of unregularized Haas-Unica

Snapping can be generalized for controlling serif appearance and diagonal
line width. At digitizing time, serifs should start to appear on characters larger
than a given font size. At smaller sizes, all serifs should disappear. Control
of serif appearance can be mastered by snapping half-serif widths (Fig. 24) to
predefined values. At very small sizes, the half-serif width can snap to zero
and the serif will disappear.

Phase control of diagonal bars is necessary in order to ensure a constant
bar width. At small sizes, snapping will also help to maintain identical thick-
nesses of diagonal and vertical bars. In order to be effective, phase control of
diagonal bars must also ensure that bars are given by a pair of strictly parallel
lines.
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Figure 24. Control of half-serifs

Parallelizing diagonal bars given by their four extremities implies a slight
rotation of one of the bar’s border lines (Fig. 25). At small character sizes,
the bar width in the horizontal direction can be snapped with a predefined
value taken from the reference values table. This bar width is used to apply a
horizontal translation to one or to both borders in order to obtain an integer
horizontal bar width, which ensures that both border lines have the same
phase. This means that the produced discrete bar will be of constant width.

Figure 25. Control of diagonal bars: parallelization, snapping, phase control
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Control of diagonal bars is only effective if the border lines are straight
line segments. In many fonts, border lines are defined by flat curves. Since
diagonal control is not effective on flat curves, either no control is applied
at all, or flat curves must be replaced by staight line segments in an off-line
process.

Italic characters can be hinted in the same way as normal characters. The
rasterizer is informed by the font header whether or not the current font is
italic. It will interpret standard hints found in italic characters in a slightly
different, but appropriate, way. For the vertical phase control of horizontal
bars, hint specifications of italic characters remain essentially the same: the
current displacement direction will follow the direction of the vertical stems
(Fig. 26).

Figure 26. Common hints for upright and italic characters

Support points used for horizontal phase control of vertical or italicized
stems can be defined in such a way that the same hints produce acceptable
rasterizations in both cases.

Using the same hints for upright and italic typefaces gives acceptable re-
sults (Fig. 27).
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Figure 27. Rasterization of automatically hinted italic outline characters

7 Dropout control
At screen resolution it is difficult to render outline characters. Thanks to snap-
ping techniques, it is possible to ensure that the appearance of the characters
throughout different font sizes remains quite regular. But since some stroke or
bowl parts are thinner than one pixel, the produced raster character may have
some holes (drops). Since holes disturb the perception of the character, an
artifact called dropout control is used in order to detect the location of drops
and to insert one dot at the site of the drop. Dropout control is executed at
rasterization time. The rasterization algorithm mentioned in section three is
able to detect dropouts: a dropout may occur if the scan-conversion of two
contour lines leads to the selection of the same span starting pixel.

Depending on the direction of the scan-converted contour lines and on
their respective intersection location with the current scanline, the dropout
is either an interior null-span or an exterior null-span segment (Fig. 28). An
interior null-span will produce an active dot at its nearest pixel location. The
inserted dropout pixel has its pixel center closest to the middle of the two
contour scanline intersections responsible for the null-span. At rasterization
time, fractional values of contour scanline intersections are stored in auxiliary
pixmap memory locations.
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Dropout control must be applied horizontally and vertically. For fast ap-
plication of vertical dropout control, one can rotate the original outline by 90
degrees, rasterize it with horizontal dropout control and add the new set of
dropout points to the original rasterized shape.

Figure 28. Dropout control

8 The “TrueType” hinting language
TrueType is a character description and hinting language [Apple90] which
provides a general-purpose framework for the definition of outline fonts and
grid-fitting rules. A TrueType interpreter has to apply the grid-fitting rules asso-
ciated to the character description by deforming and adapting its outline to the
grid. After grid-fitting, the TrueType interpreter carries out scan-conversion
and filling as described in the previous sections.

In addition to normal filling, the interpreter is capable of detecting and
correcting dropouts which occur when some stroke or bowl parts are thinner
than one pixel width. Without dropout control, characters rasterized at screen
resolution may have holes (Fig. 29).
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Figure 29. Characters at low resolution with and without dropout control

Fonts described in the TrueType language provide information about met-
rics, reference and overhang lines as well as snapping values. The original
outline description (current glyph) can be completed by adding some posi-
tional information about reference points (shadow glyph). At grid-fitting time,
the current grid-fitted glyph and the original glyph remain available.

Outline descriptions are given by points defining quadratic B-splines and
straight line segments. TrueType-spline segment extremities lie on the outline.
Intermediate control points define the spline behavior. Outline points are
numbered according to the contour orientation (Fig. 30).

Glyph element pointers are used as pointers to given outline support points.
The hint description language is a stack-based binary-encoded language in-
corporating instructions to initialize glyph element pointers, to compute dis-
tances between outline points pointed by glyph element pointers, to apply
mathematical operations on values previously pushed onto the stack, and to
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displace individual or series of outline support points by values found on the
stack.

Outline support points can be displaced vertically, horizontally or in any
direction given by the current freedom vector. Furthermore, the language
includes instructions for measuring values along a given projection vector,
for adjusting the angle of diagonals, for snapping to values stored in the
control value table and for defining character size ranges for certain special
instructions.

TrueType is a relatively comprehensive hinting language, but it does not
provide any solution for the hinting of outline characters. Font makers must
develop their own hinting strategy. They can either apply their hints manually
on each font, or resort to an automatic tool for producing hints [Hersch91b].

Figure 30. Example of TrueType outline description

9 The “Adobe Type 1” hinting philosophy
The Adobe approach to hinting is quite different from the hinting strate-
gies described in earlier sections. The previously described grid-fitting tech-
niques are based on deforming and adapting the outline to the grid. Adobe
[Adobe90] and Bitstream [Appley87] apply techniques which are based on
optimal distribution of grid rows and columns within the space of an outline
character.
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In Type 1 terminology, hints are merely specifications of horizontal and
vertical bands over the character space. Such bands (Fig. 31) are given for
example by pairs of reference lines (BlueValues) such as BaseLine and Base-
LineOverhang, XHeightLine and XHeightLineOverhang, CapsLine and Cap-
sLineOverhang. Further parameters (BlueScale, BlueShift) define the limit in
point size or arc depth from which optical correction affects the rasterized
character.

Figure 31. Bands defined by reference lines and individual stem hints

Individual hints required to produce regular straight and curved stems
(bowl parts) are specified by a pair of x-coordinates for horizontal stems
(hstem) and a pair of y-coordinates for vertical stems (vstem). For a given
set of hints, the bands defined by pairs of horizontal or vertical coordinates
should not overlap.

The Type 1 rasterizer is capable of optimizing, for each separate character,
the distribution of rows and columns of discrete pixels among the bands
specified by font reference lines and individual hints.
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If a given character requires overlapping hints, a first set of hints is de-
scribed and applied to the character. Afterwards, a new set of hints with
bands overlapping those described by the first set of hints can be used to
further improve the rasterized discrete shape.

This hinting philosophy is not as flexible as the hinting philosophy offered
by the Apple TrueType language. Hints contain only information about ver-
tical and horizontal bands within the character glyph space. It is up to the
rasterizer to use this information in an intelligent way and to optimize the
distribution of pixel rows and columns along the glyph space. Distribution of
pixel rows and columns is equivalent to stretching or compressing character
outlines within given horizontal or vertical bands.

Due to its extended analyzing and decision capabilities, the Type 1 ras-
terizer will perform more operations than a rasterizer which has to grid-fit
outlines along predefined rules. But since Type 1 hints are very simple, it is
easy to develop an automatic hinting package capable of recognizing vertical
and horizontal stems and bowl parts [Andler90].

10 Remaining problems
Basic and advanced grid constraints are nice tools for controlling the raster-
ization of simple shape parts such as straight line and diagonal bars, bowls
and serifs. However, they are inadequate for solving more complex shape
rasterization problems, such as the rasterization of slightly curved character
parts (Fig. 32).

Figure 32. Characters in Optima font, given by slightly curved shape parts

As already mentioned, many shapes incorporate straight line segments
for vertical and horizontal bars, but slightly curved arc segments for diagonal
lines. At small sizes, and especially for bi-level screen characters, regularized
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straightened outlines are required. A preprocessing step is needed to gener-
ate regularized and straightened low-resolution outlines. This regularization
program can make use of a priori information about location of nearly straight
outline parts [Hersch91b]. These locations can be checked and low-curvature
curves can be replaced by straight line segments.

At low resolution, many of the original font features are lost by grid-fitting
and scan-conversion (Fig. 33). Essential features disappear and important
geometric relationships are destroyed. Completely different fonts appear to
be very similar.

Figure 33. Nimbus Roman and Haas Unica rendered at low resolution (size: caps-
height in pixels)

Since most workstations have colour displays capable of displaying 256
colours or gray levels out of 24 million, current hardware provides the op-
portunity to use gray levels for rendering outline fonts at low resolution.

Grayscale characters produced by filtering a large size character master
[Naiman87] have not found wide acceptance in the computer industry: the
characters look too fuzzy to be used for interactive work. They may however
find applications for proofing purposes. Recent research has shown that it is
possible to regularize the appearance of grayscale fonts and to remove some
of their fuzzy appearance [Abe91].
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11 Conclusions
Basic and advanced grid constraints are needed for controlling the rasteriza-
tion of outline characters at low resolution. Research efforts led by indus-
try have brought solutions for the generation of outline characters on page
printers and displays. At low resolution, grid-fitting introduces significant
shape distortion. Some features of the original font can hardly be recognized.
Grayscale displays and variable dot size printers provide the technology for
improving the appearance of fonts at low or middle resolution. Grayscale
character rasterization uses hints to provide perceptually uniform stems, serifs
and bowls across characters. Hints also ensure that hairlines do not disappear
completely.

Further research efforts are required in order to produce more legible char-
acters automatically at small sizes (optical scaling) and to compensate certain
printer effects such as ink traps.
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