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ABSTRACT

This paper addresses the problem of distributed coding of light fields
in camera networks. A novel distributed coding scheme with side in-
formation is presented, based on spherical image expansion over an
overcomplete dictionary of geometric atoms. We propose to model
the correlation between views with local geometrical transforma-
tions of corresponding features in the sparse representations of dif-
ferent views. We design a Wyner-Ziv encoder by partitioning the
dictionary into cosets of dissimilar atoms, with respect to their shape
and position on the image. The joint decoder finds pairwise cor-
respondences between atoms in the reference image and atoms in
cosets of the Wyner-Ziv image. It selects the most likely corre-
spondence among pairs of atoms that satisfy epipolar geometry con-
straints. This permits to estimate local transformations between cor-
related images that eventually help to refine the side information pro-
vided by the reference image. Experiments demonstrate that the pro-
posed method is capable of estimating the geometric transformations
between views, and hence to reconstruct the Wyner-Ziv image.

Index Terms— 3D scene, sparse approximations, DSC

1. INTRODUCTION

Vision sensor networks have recently gained a tremendous interest
among researchers as they find popular applications in 3DTV, sur-
veillance or robotics. Since information from cameras is most gen-
erally highly correlated, one can try to eliminate redundancy in or-
der to reduce the bit rate in such sensor networks. A distributed
approach to data compression in these networks then becomes very
appealing, since it does not require communication among cameras.
Interestingly, results from information theory show that the corre-
lation among sources can be exploited at the decoder, even with
independent encoders. Slepian and Wolf [1] proved in 1973 that
the lower bound of the total rate for separate encoding of corre-
lated sources is actually the joint entropy of the sources, just as it
is the case in the joint encoding scheme. Few years later, Wyner
and Ziv [2] extended the distributed framework to lossy compres-
sion with side information at the decoder. The first practical dis-
tributed source coding (DSC) schemes only appeared more than 2
decades later (e.g., [3, 4]), when the link of DSC with channel cod-
ing has been established. However, only a few works have addressed
the problem of distributed coding in camera networks (e.g., [5, 6]),
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mainly due to the difficulty of modeling the statistical correlation
among sources. Schemes based on channel codes assume the cor-
relation on the level of pixel bit planes, modeled by the statistics of
a virtual channel. However, as small camera movements can intro-
duce large variations in the pixel values, the choice of an appropriate
channel rate often becomes impossible without a feedback from the
decoder.

The correlation between images in camera networks mostly lies
in the motion of the objects in the scene, and motion estimation at
the decoder certainly improves the performance of the distributed
compression scheme. However, simple motion estimation is gener-
ally limited to translational motion of observed objects, and it cannot
cope with local transforms such as scaling or rotation. In this work
we propose a new correlation model for multi-view omnidirectional
images based on local geometrical transformations of corresponding
features in sparse image representations. Omnidirectional images
are very suitable for 3D scene representation as they offer a 360 de-
grees view of the scene. Moreover, they can be easily mapped and
processed on spherical manifolds. Sparse approximations, such as
the one obtained with the Matching Pursuit algorithm [7], offer very
good approximation performance at low bit rate as they are able to
capture the most prominent signal components with a few elements
selected in a redundant dictionary of atoms. Under the assumption
that these components are present in correlated views, possibly under
some local transform, we design a Wyner-Ziv coder by partitioning
the redundant dictionary into cosets, based on atom dissimilarity.
The joint decoder selects the best candidate atom within the coset
with help of the side information image. The correspondences that
are found during the decoding between atom expansions of both im-
ages, are further used to estimate local transformations and to build
a transform field between correlated views. These transformations
are used to refine the side information for decoding the following
atoms. Experimental results show that the proposed method success-
fully finds the geometric transforms between sparse image compo-
nents, and that the proposed scheme outperforms independent cod-
ing strategies at low bit rate.

2. CORRELATION IN SPARSE DECOMPOSITIONS

The main challenge in the design of an efficient distributed coding
scheme for correlated sources is primarily the modeling of the un-
derlying correlation. In the case of camera sensor networks, the cor-
relation between images comes from the 3D motion of the objects
in the scene, which results in local changes of image components
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that represent the moving objects. If we decompose each image into
sparse components that capture the objects in the scene, we can as-
sume with high probability that the most prominent components are
present in all images, possibly with some local transformations. We
therefore propose to model the correlation between views by local
geometrical transformations, which are estimated by pairing compo-
nents in sparse image decompositions.

Given a certain basis, or a redundant dictionary of atomsD =
{φk}, k = 1, ..., N , in the Hilbert spaceH, every imagey can be
represented as:

y = Φx =

NX
k=1

xkφk, (1)

where the matrixΦ is composed of atomsφk as columns. When
the dictionary is over-complete,x is not unique. In order to find a
compact image representation one has to search for a sparse vector
x. We say thaty has asparserepresentation inD if the number of
non-zero components inx is much smaller than the dimension ofx.
Therefore, the sparse representation ofy is:

y = ΦIc =
X
k∈I

xkφk, (2)

wherec is the vector of non-zero elements ofx, I labels the set of
atoms{φk}k∈I participating in the representation, andΦI is a sub-
matrix ofΦ with respect toI.

In the case of two correlated imagesy1 = ΦI1c1 and y2 =
ΦI2c2, there exists a subset of atoms indexed respectively byJ1 ∈
I1 and J2 ∈ I2 that represent image projections of the same 3D
features in the scene. We assume that these atoms are correlated,
possibly under some local geometric transformation. DenoteF (φ)
the transform of an atom in the image decomposition that results
from the motion of an object in the 3D space, or equivalently, the
transformation imposed to atomφ in different views due to camera
displacement. Therefore, the correlation between the images can be
modeled as a set of transformsFi between corresponding atoms in
sets indexed byJ1 andJ2. The approximation of the imagey2 can
be rewritten as the sum of the contributions of transformed atoms,
and remaining atoms inI2 :

y2 =
X
i∈J1

c2,iFi(φi) +
X

k∈I2\J2

c2,kφk. (3)

3. TRANSFORMS IN OMNIDIRECTIONAL IMAGES

Motions of objects in the 3D space introduce various types of trans-
formations in the image projective space. Most of these transforms
can be represented by the 2-D similarity group elements, which in-
clude 2-D translation, rotation and isotropic scaling of the image
features. We also consider anisotropic scaling to further expand the
space of possible transforms among image features. In order to ef-
ficiently capture transforms between sparse image components, we
propose to use a structured redundant dictionary of atoms for image
representation. Atoms in the structured dictionary are derived from
a single waveform that undergoes rotation, translation and scaling.
Hence, the transformation of an atom by any of the 2-D similarity
group elements or anisotropic scaling, results in another atom in the
same dictionary: the dictionary is invariant with respect to any trans-
form action.

In particular, as we address the problem of distributed coding of
omnidirectional images, which can be precisely mapped on a sphere,
we use a dictionary of atoms on the 2-D unit sphere [7]. Given a
generating functiong defined in the space of square-integrable func-
tions on a unit two-sphereS2, g(θ, ϕ) ∈ L2(S2), the dictionary
D = {φk} = {gγ}γ∈Γ is constructed by changing the atom indexes
γ = (θ, ϕ, ψ, α, β) ∈ Γ, i.e., by applying a unitary operatorU(γ):
gγ = U(γ)g. The triplet(θ, ϕ, ψ) represents Euler angles that re-
spectively describe the motion of the atom on the sphere by angles
θ andϕ, and the rotation of the atom around its axis with an angle
ψ. The parametersα, β then represent anisotropic scaling factors. In
such a dictionary, the transform of one atom to another reduces to a
transform of its parameter setγ, i.e.,gγj = F (gγi) = U(γ′)gγi =
U(γ′ ◦ γi)g. Note that the size and redundancy of the dictionary is
directly driven by the number of distinct atom transformations.

We are interested in finding correspondences between atoms that
respectively represent the imagesy1 andy2, generated by two spher-
ical cameras that capture the same scene. Consider an atomgγi , γi ∈
J1 from the sparse decomposition of imagey1. The subset of trans-
formsV 0

i = {γ′|gγj = F (gγi) = U(γ′)gγi} allows to relategγi

to the atomsgγj in the expansion ofy2. However, not all these
transforms are feasible under epipolar constraints. These constraints
represent one of the fundamental relations in multi-view analysis,
and define the relation between 3D point projections (z1, z2 ∈ R3)
on two cameras, as:

zT
2 T̂Rz1 = 0, (4)

whereR andT are the rotation and translation matrices of one cam-
era frame with respect to the other, and̂T is obtained by repre-
senting the cross product ofT with Rz1 as matrix multiplication,
i.e., T̂Rz1 = T × Rz1. The set of possible transforms is there-
fore reduced to the transforms that respect epipolar constraints be-
tween the atomgγi in y1 and the candidates atomsgγj in y2. We
evaluate the constraints given in Eq. (4) on atom centers denoted
ml = [sinθlcosϕl sinθlsinϕl cosθl]

T with l ∈ {i, j}, and de-
fine the setV E

i ⊆ V 0
i of possible transforms of atomgγi as:

V E
i = {γ′|gγj = U(γ′)gγi , m

T
j T̂Rmi = 0}. (5)

Equivalently, the set of atomsgγj in y2 that are possible transformed
versions of the atomgγi is denoted as theepipolar candidate set. It
is defined by the set of atom indexesΓE

i ⊂ Γ, with

ΓE
i = {γj |gγj = U(γ′)gγi , γ

′ ∈ V E
i }. (6)

A graphical interpretation of the epipolar constraint for spherical
images is shown on the Figure 1, where we denote asS1 andS2
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Fig. 1. Illustration of epipolar constraints in the selection of atom
positions.



the two unit spheres corresponding to camera projection surfaces.
The centermj of the atomgγj , lies on the part of a great circle
Ci obtained by projecting the rayLi on the sphereS2. This ray
originates from the center of camera 1 and passes through the center
of atomgγi on the sphereS1.

Recall that corresponding atoms represent the same object in
the 3D scene. Hence, we assume that the 3D motion of an object re-
sults in a limited difference between shapes of corresponding atoms,
and we further restrict the set of possible transforms by constraints
on the similarity of candidate atoms. We measure the similarity
or coherence of atoms by the inner productµ(i, j) = |〈gγi , gγj 〉|,
and we impose a minimal coherence between candidate atoms, i.e.,
µ(i, j) > s.

This defines a set of possible transformsV µ
i ⊆ V 0

i with respect
to atom shape, as:

V µ
i = {γ′|gγj = U(γ′)gγi , µ(i, j) > s}, (7)

and a set of candidate atoms iny2, denoted theshape candidate set,
whose indexes belong toΓµ

i ⊂ Γ, with:

Γµ
i = {γj |gγj = U(γ′)gγi , γ

′ ∈ V µ
i }. (8)

Finally, we combine the epipolar and shape similarity constraints
to define the set of possible transforms for atomgγi , asVi = V E

i ∩
V µ

i . Similarly, we denote the set of possible parameters of the trans-
formed atom iny2 asΓi = ΓE

i ∩ Γµ
i .

4. DISTRIBUTED CODING SCHEME

4.1. Coding with side information

Based on the correlation model defined by the local transformations
of atoms, we propose an asymmetric scheme for coding with side
information. The sparse decomposition of the reference imagey1 is
independently encoded, while the decomposition of the Wyner-Ziv
imagey2 is encoded by coset coding of atom indexes and quantiza-
tion of their respective coefficients, as shown on the left side of the
Fig. 2. We propose to partition the set of atom indexesΓ into distinct
cosets, such that atoms that belong to the same transform candidate
setΓi are placed in different cosets. Under the assumption that an
atomgγj in the image decomposition has its corresponding atomgγi

in the side information expansion, the encoder does not need to send
the entireγj , but only the information that is necessary to identify
the correct atom in the transform candidate set given byΓi. The side
information and the coset index are therefore sufficient to recover the
atomgγj in the Wyner-Ziv image. The achievable bit rate for encod-
ing the atom indexγj is reduced therefore fromR ≥ H(γj |γj ∈ Γ)
to R ≥ H(γj |γj ∈ Γi).

Due to the independency of epipolar and shape constraints, the
cosets are constructed separately for atom positions(θ, ϕ) and atom
shape parameters(ψ, α, β). We therefore construct two types of
cosets, respectively

1. EPI cosets:KE
k = {(θkn , ϕkn)}, k = 1, ..., N1

2. Shape cosets:Kµ
l = {(ψln , αln , βln)}, l = 1, ..., N2.

The EPI cosets are designed based on the knowledge that the
centers of two corresponding atoms satisfy the epipolar constraint.
In practice however, epipolar constraints are rarely satisfied exactly
due to discrete atom positions. We therefore extend the epipolar

candidates setΓE
i to atoms whose centers satisfy the epipolar con-

straint within a certain precision (i.e., the atoms whose centermj

lies within a distanceδ from the great circleCi), and we form the
set:

Γ̃E
i = {γj |gγj = U(γ′)gγi , d[Ci, mj ] ≤ δ}, (9)

whered[·, ·] stands for the point-quadratic distance.
We finally construct EPI cosets by separating in different cosets

all atoms whose parameters belong toΓ̃E
i . Similarly, we design

shape cosets by distributing all atoms whose parameters belong to
Γµ

i into different cosets. The encoder eventually sends for each atom
only the indexes of the corresponding cosets (i.e.,kn andln in Fig-
ure 2).
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Fig. 2. Wyner-Ziv codec.

4.2. Decoder

The central decoder (CD) illustrated in the right side of Figure 2,
uses the correlation model based on local atom transformations, in
order to establish correspondences between atoms in the reference
image and atoms within the cosets of the Wyner-Ziv image decom-
position. It also uses the information provided by the quantized coef-
ficients of atoms, along with the help of epipolar distance computed
on the full atom support, in order to improve the atom matching
process. Once a correspondence is identified, the decoder updates
the transform field, which describes estimates of local transforma-
tion at each pixel in the image. The transformation of the reference
image with respect to the transform field provides an approximation
of the Wyner-Ziv image that is used as a side information. After
checking all atoms in the Wyner-Ziv expansion for possible corre-
spondences, the ones that do not have a correspondence in the ref-
erence image are simply decoded based on the maximal projection
on the residual image, which is evaluated as a difference between
the side information and previously decoded atoms. Finally, the WZ
image reconstruction̂y2 is obtained as a linear combination of the
decoded imageyd, formed of recovered atoms fromΦI2 , and the
transformed reference imageytr, i.e.,:

ŷ2 = yd + λΨd ytr, (10)

whereΨd denotes the orthogonal complement to the basis formed by
the decoded atoms inΦI2 , andλ is an optimization parameter. The



reconstructed Wyner-Ziv image benefits from both the decoded in-
formation and the transformed features that are not present in the de-
coded data. We estimate the value ofλ from the energy conservation
principle. Namely, under the assumption that‖Ψd ytr‖ ≈ ‖Ψd y2‖,
we getλ from Eq. 10 asλ ≈

p
1− ‖yd‖2/‖y2‖2, where the energy

of the original image‖y2‖2 is send to the decoder as side informa-
tion.

5. EXPERIMENTAL RESULTS

This section presents the performance of the proposed distributed
scheme for a set of two128 × 128 spherical imagesy1 andy2 that
represent a synthetic room (see Figure 3), where the relative pose
of one camera with respect to the other is given withR = I and
T = [0 0.3 0]T . The sparse image decomposition is obtained us-
ing the Matching Pursuit algorithm on the sphere with a dictionary
based on two generating functions that respectively consist in a 2D
Gaussian function, and a 2D function built on a Gaussian and the
second derivative of a 2D Gaussian in the orthogonal direction (i.e.,
edge-like atoms) [7]. The position parametersθ andϕ can take 128
different values (Nt = Np = 128), while the rotation parameter
uses 16 orientations, between 0 andπ. The scales are distributed
in a logarithmic scale from 1 toNt/8 for the Gaussian atoms and
from 2 toNp/2 for edge-like atoms, with 3 scales per octave. The
choice of the dictionary is mainly driven by its good approximation
properties demonstrated in [7].

The imagey1 is encoded independently at 0.23bpp with a PSNR
of 30.95dB. The atom parameters for the expansion of imagey2

are coded with the proposed scheme. The coefficients are obtained
by projecting the imagey2 on the atoms selected by MP, in order
to improve the atom matching process, and they are quantized uni-
formly. We have used EPI cosets of size1024 and shape cosets of
size128. The number of cosets depends on the correlation parame-
tersδ (for the epipolar correlation) ands (for the shape correlation).
In our simulations we have usedδ = π/5, sG = 0.85 (for Gaussian
atoms) andsA = 0.75 (for anisotropic atoms), such that the atoms
in the same coset are sufficiently different. In the cases where the
center of an atom is close to the epipoles (i.e., degenerative case
of epipolar constraints), its parameters are encoded independently.
The rate-distortion (RD) performance of the proposed scheme for
the Wyner-Ziv image is shown on the Figure 4. The dashed line
represents the RD performance of independent coding with Match-
ing Pursuit, while the solid line represents our distributed coding
scheme, given by the RD curve of the reconstructed imageŷ2. The
proposed scheme clearly outperforms the independent coding, espe-
cially at low rates. The dash-dotted line represents the RD curve of
the side information image, obtained by the application of the trans-
form field on the reference image (dotted line with circles), showing
that the transform field significantly improves the side information.
Moreover, it can be noted that the combination ofyd (dotted line
with triangles) andytr results in a better overall PSNR of theŷ2. We
can thus conclude that these results are very encouraging, since the
coset construction and the decoder are not fully optimized.

6. CONCLUSIONS

We have presented an algorithm for coding with side information
networks of omnidirectional cameras. It relies on a novel corre-
lation model between omnidirectional views that is based on local

(a) y1 (b) y2

Fig. 3. Original Room images (128x128).
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Fig. 4. RD performance of the proposed Wyner-Ziv coding scheme.

geometrical transforms of signal components given in sparse image
decompositions. The distributed coding strategy exploits this corre-
lation through the design of cosets of dissimilar atoms with respect
to shape and epipolar matching. Correspondences between images
allow to build a transform vector field, which is further used to con-
struct the side information at decoder. Encouraging results show
good approximation performance for the Wyner-Ziv image at low
bitrate.
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