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ABSTRACT

In this work we present a method to jointly separate active audio
and visual structures on a given mixture. Blind Audiovisual Source
Separation is achieved exploiting the coherence between a video sig-
nal and a one-microphone audio track. The efficient representation
of audio and video sequences allows to build relationships between
correlated structures on both modalities. Video structures exhibiting  To summarize we want to solve a blind Single-Channel BASS
strong correlations with the audio signal and that are spatially closgroblem [8], but aided by the video. Since no hypothesis is made on
are grouped using a robust clustering algorithm that can count anle relationships between audio and video structures, video sources
localize audiovisual sources. Using such information and exploitinghave to be localized and separated at the same time, exploiting the
audio-video correlation, audio sources are also localized and sepgformation contained in the audio channel. In Sec. 2 we describe
rated. To the best of our knowledge this is the first blind audiovisuathe audio and video features used to represent both modalities, while
source separation algorithm conceived to deal with a video sequenggac. 3 details thBlind Audiovisual Source Separati¢BAVSS) al-
and the correspondingonoaudio signal. gorithm. In Sec. 4 we present the separation results obtained on real

Index Terms— Audiovisual processing, blind source separa-and synthesized audiovisual clips. Finally, in Sec. 5 achievements
tion, sparse signal representation. and future research directions are discussed.

3. Existing algorithms, except for [3], require off-line training to
build the audiovisual source model. This is mainly due to the
fact that the algorithms in [1, 2, 4, 5] try to map video infor-
mation into the audio feature space using techniques similar to
lip-reading (requiring moreover accurate mouth parameters that
are difficult to acquire). Here, in contrast, no training is required.

1. INTRODUCTION 2. AUDIO AND VIDEO REPRESENTATIONS

Few methods exist that exploit audiovisual coherence to separafudio Representation — The audio signak(t) is decomposed us-

sterecaudio mixtures [1, 2, 3, 4, 5]. All the existing algorithms con-
sider the problem from aaudio source separation point of vieire.

they use the audio-video synchrony as side information to improve
and overcome limitations of classical Blind Audio Source Separation

(BASS) techniques [6].
The approach we consider in this paper is very different from

ing the Matching Pursuit algorithm (MP) over a redundant dic-
tionary of Gabor atom®® [7]. Thus, the signak(t) is ap-
proximated usings< atoms as

K—-1
a(t) = > exdl”(t), 1)
k=0

existing ones. Itis inspired by [7], where audiovisual sources are lo-
calized using sparse geometric representations of video sequences. wherec;, are the coefficients for every atoa;&é“)(t).

Here we first localize and separate the visual sources exploiting aideo Representation — The video signal is represented using the
diovisual synchrony. We create several clusters of video strugtures video MP algorithm adopted in [7]. The sequence is decom-
each group corresponding to a detected source. Then, exploiting posed into a set of video atoms representing salient visual com-
this information and the correlations established between audio and ponents and their temporal transformations. The video signal
video entities we separate the audio mixture as well. We wantto  V(z,z»,t) is approximated usingy video atomgﬁgf) as

stress three important differences between the proposed approach
and existing audiovisual separation methods :

N—-1
V(I17$27t) ~ Z Cn(t)¢2v>(x13x27t)7 (2)

1. State-of-the-art audiovisual separation algorithms exploit stereo n=0

audio signals, using classic BASS techniques helped by visual

information. In contrast the audio signal we consider here comes
from only one microphonge

. Existing methods simplify the task of associating audio and video
information. Either the audio-video association is giagriori,
i.e. it is known which audio signal corresponds to which video
signal [3, 4], either it is considered the case where one audiovi-
sual source is mixed with audio-onlysource [1, 2, 5]. Here, in
contrast, we simultaneously separate audio-video sources buildj
ing correlations between acoustic and visual entities; '
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wherec, ) are the coefficients. The atort;t:éf) are edge-like
functions that are tracked across time. Each function is rep-
resented by a set of parameters describing its shape and po-
sition and that evolve through time [7]. We compute a fea-
ture describing the displacement of each video atépit) =

7 (t) +1t3, (t), fromits position parametets,,, (t), t2,, (t)).

BLIND AUDIOVISUAL SOURCE SEPARATION (BAVSS)

Figure 1 schematically illustrates the BAVSS process. First, video
sources are localized using a clustering algorithm that spatially groups
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1. Video Source
Localization

Fig. 2. Audio featuref, (¢) (a) and displacement functiah, (¢) with
correspondind\ctivation Vectory,, (¢) obtained for a video atom (b).

tion to the mixture is associated to the sources found in the video.
Moreover, we consider the video sources approximately static, i.e.
their positions over the image plane do not change too much. This
assumption is less stringent as it can be removed by analyzing the
sequences using shifting time windows.

2. Video Source
Separation

3.1. Video Source Localization
3.1.1. Audio and Video Atoms Association

Audio and video structures are associated computingctineela-
tion scoresy,», between each audio at ) and each video atom

(") These scores measure the degree of synchrony beteieen
vant eventsn both modalities : the presence of an audio atom (en-
ergy in the time-frequency plane) and a peak in the video atom dis-
placement (oscillation from an equilibrium position).

Audio feature — The featurefy () that we consider is the energy
distribution of each audio atom projected over the time axis. In
the case of Gabor atoms it is a Gaussian function whose position
and variance depend on the atoms parameters (Fig.2(a)).

Video feature — An Activation Vectory, (t) [7] is built for each
atom displacement functiod, (¢) by detecting the peaks loca-
tions as shown in Fig. 2(b). The Activation Vector peaks are fil-

Fig. 1. Schema of the audiovisual source separation algorithm. tered by a window of width = 13 samples in order to model
Phase 1 in (a) audio entities (green dot on the right spectrogram)  delays and uncertainty.

are correlated with video atoms (green and yellow footprints on  Finally, a scalar product is computed between both features to
the left image) and exploiting this information on picture (b) video ghtain thecorrelation scoresxi» = (f ()Y, (t)), Vk,n. This

sources are localized (blue and red crossBbjse 2 video atoms  yja|ue is high if the audio feature and the video displacement peak
are classified into the corresponding sources (c), as highlighted Ryhibit a big temporal overlap. Thus, a high correlation score means

the footprints colorsPhase 3 audio atoms (red dot on the right) are high probability for a video structure of having generated the sound.
classified into the corresponding audio sources using the audiovisual

association information (d), detecting periods with only one audiovi-3 12 cl .
sual active sourcé?hase 4 in temporal periods with a single active ~—< ustering

source (blue and red markers) the probability for each frequency tghe idea, now, is to spatially group all the structures belonging to
belong to one source is estimated (e). These probabilities are usedi@: same speaker in order to estimate its position on the image. We
separate the sources in mixed periods (green markers). define the empiricatonfidence value,, of the n-th video atom as

the sum of the MP coefficients, of all the audio atoms associated to

the video structures that are correlated with the audio atoms. Seft-in the whole sequences,, = 3-,, cx, with & such thatyx,, # 0.

ond, a spatial criterion is used to separate the sources. Then the clis value is a measure of the number of audio atoms related to this
deo structure and their weight in the MP decomposition of the au-

relations between audio and video events are employed to identifgl ' : > - "
temporal periods with only one active source. Finally, the source§i0 rack. Each video atom thus is characterized by its position over
frequency behavior is learned in time periods during which sourceff® image plane and by its confidence value, (€.,,,t2,), fn).
are active alone in order to separate them in the mixed periods. Tﬁé(e cluster all the \{ldeo atoms correla}ted with the audio signal (i.e.
interested reader should also refer to [10] for additional details abol¥ith % 7# 0) following these three main steps :
the proposed BAVSS procedure. 1 Clusters Creation —The algorithm createg clusters{C;}Z ,,

Two main assumptions are made on the type of analyzed se- by iteratively selecting the video atoms with highest confidence
quences. First, for each detected video source there is one and only value and aggregating to them atoms closer thatuster size
one associated source in the audio mixture. This means that au- D, whose value is set according to the video characteristics;
dio “distractors” in the sequence (e.g. a person speaking out of the2 Centroids Estimation — The center of mass of each cluster is
camera’s field of view) are considered as noise and their contribu- computed taking the confidence value of every atom as the mass.

3. Audio Source
Localization

4. Audio Source
Separation

Frequency




The resulting centroids are the coordinates in the image wherahere P¢. (#) is the probability of an audio atom with time indéx

the algorithm locates the audio sources; to belong to source;, and PS’ () is the probability for an audio
3 Unreliable Clusters Elimination — We define theeluster confi-  atom with frequency inde® to belong to sourcs;.
dence valuei'o; as the sum of the confidence valugsof the Frequency probabilitie®$’ () are computed considering tem-

atoms belonging to the cluster, i.&(c, = > .., ;. Based  poral slots during which the sources are active alone (red and blue
on this measureynreliable clustersi.e. clusters with small markers in Fig. 1(e)), so that a reliable association between audio
confidence valueKc; (here smaller than 0.2 times the maxi- atoms and sources can be established. For every valusvefkeep
mum value ofK¢, found) are removed, obtaining the final set the set of atomsty 4. = {(ur, & = &), {Xt.n}n}x and we esti-

of Ng < Z cIusters,{C{}ﬁle. mate the frequency probability as :
At this stage a good speaker localization is achieved. The num- o card(As res, )
ber of sources does not have to be specified in advance since a con- P, (@) = ===zl (4)

fidence measure is introduced to automatically eliminate unreliable card(Az .n)
clusters. The algorithm is robust and the localization results do navhere card.) is the cardinality function. Not all the frequency val-

critically depend on the parameters choice. ues necessarily have a probability associated and, in this case, the
closest frequency with a probability value associated is used in (3).
3.2. Video Source Separation Temporal probabilitiesPd, (£) are estimated in periods during

) o . which several sources are supposed to be active (green part I{&)g.
This step cI_as_snfleaII the video ator_ns closer the_m the c_Iuster dre  These probabilities are estimated exploiting the correlation scores
o a centroid into the corresponding source (in previous step On|¥Xk » }n between audio atoms and video atoms classified into a source.
atoms withx,, # 0 are considered). Each such group of video g each time instaritwe recover the set of atonk , . — {(u —
atoms, S;, describes the video modality of an audiovisual source,f &), 1 1.} and we compute the temporal "roﬂkl)abilities’ as -
achieving thus the Video Separation objective. 1Sk )y WXk, sn Sk p p p :

- . (5)
ZkeAik‘n Xk,n

3.3. Audio Source Localization PSTi (f) =

The objective of this phase is to determine the temporal periods dur-

ing which the sources are active. First, each audio aztﬁi’rhis clas- _This_, probability acts like a "‘?S" : .if itis Ot means that no chance
sified into its corresponding source in the following way : is given to sources; to be active, since no correlation between the

. ) . . a). video sourceS; and the audio signal is detected at this time instant.
1. Take all video a_tom$n cor_related V.V'th the audio ?toﬁa“fc ’ Thus, according to thislap of Probabilitiesanambiguousudio
2. Each of these video atoms is associated to an audiovisual sourge . centered in coordinatés o) is classified into sourc; if
S;; for each source; compute a valudds, that is the sum of !
the correlation scores between the audio até?ﬁ and the video Ps, (t,&) = max{Ps; ({,)},withj=1,...,Ns. (6)

atoms¢>§.’“) stj€ S Hs, =3 cq Xk

3. Classify the audio atom into the soureif the value Hs, is Reconstruction of the separated signals -Finally, the signal com-

twice as big as any other valués,, for the other sources. If this ing from the-th audio sourceas, (), can be reconstructed
condition is not fulfilled, this audio atom can belong to several ~ PY Simply adding the audio atoms classified in this source as

sources and further processing is required. as, () = Y yes, cx & (1), wherec, are the MP coefficients

Using this labelling time periods during which only one sourceis  of ¢, (t) andsS; indexes the atoms attributed to théh source.
active are clearly determined. This is done using a simple criterion :

if in a continuous time slot longer thdh seconds all audio atoms 4. EXPERIMENTS

are assigned t§;, then during this period only sourc® is active. '

In all experiments the value @t is set to 1 second. The proposed BAVSS method is evaluated on synthesized audiovi-
_ _ sual mixtures, in order to have an objective evaluation of the algo-

3.4. Audio Source Separation rithm’s performances. Sequences are synthesized using clips taken

from thegroupspartition of the CUAVE database [9] with one girl
and one boy uttering sequences of digits alternatively. The video
data is at 29.97 frames/sec with a resolutiont®) x 720 pixels,

End the audio at 44 kHz. The video has been resized & 176

An audio atomqsﬁf) is characterized by its position on the time-
frequency plangu, &), and by a set of correlation SCorggy 1 } .
Thus the set of pointsl = {(uk, &), {Xkn}n ey collects the

Iﬁ audio a@ost of the ?et::o]{fnpgsition.dOur aim isl tosassosciés\te 3bixels and the audio has been sub-sampled to 8 kHz. The video sig-
t.e points n .to one o t.e 5 .etecte SOUrCes. N Sec. 5.5 au- g jg decomposed inty = 100 video atoms and the soundtrack is
dio atoms in time slots with a single source present (red and b'“ﬁecomposed intd’ — 2000 atoms. The video clustering algorithm
markers in the spectrogram of Fig. 1(e)) have been assigned 0 Aes a value 0b — 80 pixels
source. However, Wh?n severgl sources are presgnt (gf‘“‘?@a Ground truth mixtures are obtained by temporally shifting audio
In Fig. .1(6))‘ tempqral |nf0rma_t|on alon_e IS not sufﬁ_ment_to discrim- and video atoms of one speaker in order to obtain time slots with both
inate different aud|o_ SOUrces in the mixture. T.h? 'def?‘ IS to use thgpeakers active simultaneously. For further details on the adopted
frequency characteristics of each source when itis active alone in O[)'rocedure please refer to [10]. Figures 3(a)-(b) show resulfing s
der to cla53|fy_thamb|guou_satoms be_lo_ngmg to a mixture. T_hese thetic clips generated by shifting by 150 frames the sequence part
atoms are assigned according to their time-frequency coordinates Bth the male speaker in clig20 of the CUAVE database. At the
?NMapt.Of Protzja}talhnes which Ibs tt))lfltlt COTpUt'Eg the prOdl_JCt be- beginning of the clip, both persons speak at the same time, then only
een time an requ%ncy proba 'A' 1es of each source as - the boy or the girl speak alone. Figures 3(c)-(d) show the sources
Ps, (t,&) = Pgi(t) . Pg?i (@), 3) extracted by the proposed algorithm. It is interesting to note that the



% correct atoms | % correct energy
o Sequence - X
N girl boy girl boy
o g12 shift 100 frames| 86 54 73 42
o 920 shift 150 frames| 92 90 92 86
o g21 shift 130 frames| 83 81 81 75
_ ! g21 shift 169 frames| 82 78 84 73
(a) Ground truth, girl (b) Ground truth, boy Table 1. Results obtained with synthetic sequences generated for
different clips of CUAVE database.
b Several tests are performed on real and synthetic sequences. The
MHWW— speaker spatial localization is successfully performed in challenging
N clips involving two persons speaking simultaneously. Concerning
the audio source separation part, the audible quality of the sepa-

Time Time

) ) ) rated audio signals is also reasonably good. However, the proposed
(c) Estimated source, girl (d) Estimated source, boy method should be improved using more sophisticated audio source
separation techniques in time slots presenting source mixtures. The
J[amework developed in this paper seems to be appropriate to im-
gyove the proposed system by considering HMM-based models [11]
or audio feature tracking techniques [8] at the audio separation stage.

Fig. 3. Comparison between real (a)-(b) and estimated (c)-(d) soun
tracks for a synthetic sequence generated by applying a shift of 1
frames to the male speaker in cig0 of the CUAVE database.

separated signals present a perfect reconstruction when the boy or

the girl speak alone, indicating a correct detection of these periods.
The quantities used to evaluate the algorithm are the percentagv[el] D. Sodoyer, L. Girin, C. Jutten, and J.-L. Schwartz, “De-

of correctly classified atoms for each audio source and the percent* véloping an’au-dio-vis,ual.speech’ source-selparation aI’gorithm "

age of acoustic energy of the source_that these correctly classified Speech Commununicatiorol. 44, no. 1-4, pp. 113-125, 2004.
atoms represent. For each source, this second measure is computed

as the sum of the coefficients of all the atoms correctly assigned byl2] R. Dansereau, “Co-channel audiovisual speech separation us
the algorithm to the source divided by the sum of the coefficients of ~ INd Spectral matching constraints,” Proc. IEEE ICASSP

all the atoms belonging to this source. Therefore, this percentage can 2004, pp. 645-648.

be seen as the part of the estimated signal belonging to the original3] S. Rajaram, A. V. Nefian, and T.S.; Huang, “Bayesian separa-
one. The remaining energy is due to the assignation of audio atoms  tion of audio-visual speech sources,” RPmoc. IEEE ICASSP

to the incorrect speaker and represents the noise of the separated sig- 2004, pp. 657-660.

nal estimated by the algorithm. [4] W. Wang, D. Cosker, Y. Hicks, S. Saneit, and J. Chambers,
Results obtained analyzing different synthesized sequences are  “\ideo assisted speech source separation,” Pinc. |IEEE
summarized in Table 1. Classification results are satisfactory, except |CASSP 2005, pp. 425-428.

for sequencgl2. The values obtained for the percentage of correct 5
atoms and the percentage of energy that these atoms represent a[re-I
similar, which means that the errors are distributed over audio atoms
of all sizes. The obtained results seem to be independent of the shif} Proc?. EEE ICASSPZO(.)S' Pp. 533-536.

introduced (sequenag21, last two lines of Table 1). Lower perfor- 6] E. V|ncent,. M. G J_afan, S'_ A. Abdallah, M. D P’I’umbley, and
mances in sequencg.2 are due to errors done in the sequence part M. E. Davies, “Blind audio source separatlon, Tech. Rep.
during which both speakers are active and they are caused by the low ~ C4PM-TR-05-01, Queen Mary University of London, 2005.
discriminative power of the simple source separation method based?] G. Monaci, O. Divorra, and P. Vandergheynst, “Analysis of
on probability maps. However, for all tested sequences the time peri- ~ multimodal sequences using geometric video representations,”
ods during which the sources are active alone are correctly localized ~ Signal Processingvol. 86, no. 12, pp. 3534-3548, 2006.
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