
Perfect Diffusion Primitives for Block Ciphers?

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

École Polytechnique Fédérale de Lausanne (Switzerland)
{pascal.junod, serge.vaudenay}@epfl.ch

Abstract. Although linear perfect diffusion primitives, i.e. MDS matri-
ces, are widely used in block ciphers, e.g. AES, very little systematic work
has been done on how to find “efficient” ones. In this paper we attempt
to do so by considering software implementations on various platforms.
These considerations lead to interesting combinatorial problems: how to
maximize the number of occurrences of 1 in those matrices, and how to
minimize the number of pairwise different entries. We investigate these
problems and construct efficient 4×4 and 8×8 MDS matrices to be used
e.g. in block ciphers.

1 Introduction

Block ciphers are cascades of diffusion and confusion layers [9]. We usually for-
malize confusion layers as application of substitution boxes which are defined by
lookup tables. Since those tables must be as small as possible for implementation
reasons, confusion layers apply substitution in parallel on pieces of informations,
e.g. elements whose values lie in a set K of size 256. The goal of diffusion is to
mix up those pieces. One possibility for formalizing the notion of perfect dif-
fusion is the concept of multipermutation which was introduced in [8, 10]. By
definition, a diffusion function f from Kp to Kq is a multipermutation if for any
x1, . . . , xp ∈ K and any integer r such that 1 ≤ r ≤ p, the influence of modifying
r input values on f(x1, . . . , xp) is to modify at least q − r + 1 output values.
Another way to define it consists of saying that the set of all words consisting of
x1, . . . , xp concatenated with f(x1, . . . , xp) is a code of (#K)p words of length
p + q with minimal distance1 q + 1. This notion matches the Singleton bound
which relates to MDS codes. Indeed, if K is a finite field, a linear multipermuta-
tion is equivalent to an MDS code expressed in a systematic way, i.e. an arbitrary
word of length p is encoded by concatenating it with the linear mapping applied
to the word. Since this notion of perfect diffusion was introduced, several block
ciphers used the so-called “MDS-matrix” primitive, e.g. AES [2,5], Twofish [6,7],

? Reprint from: P. Junod and S. Vaudenay. Perfect diffusion primitives for block ci-
phers – building efficient MDS matrices. To appear in Selected Areas in Cryptography
2004: Waterloo, Canada, August 9-10, 2004. Revised papers, Lecture Notes in Com-
puter Science. Springer-Verlag.

1 Here the notion of distance is the number of different K-entries.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Khazad [1], or FOX [3], to name a few examples. It is furthermore noteworthy
that very few MDS codes are known and they are seldom used in practice. In
this paper, we will adopt the following definition of a linear multipermutation.

Definition 1. Let K be a finite field and p and q be two integers. Let x 7→ M×x
be a mapping from Kp to Kq defined by the q × p matrix M . We say that it is
a linear multipermutation (or an MDS matrix) if the set of all pairs (x,M × x)
is an MDS code, i.e. a linear code of dimension p, length p + q and minimal
distance q + 1.

The following theorem [4, Theorem 8 (page 321)] is another way to characterize
an MDS matrix.

Theorem 1. A matrix is an MDS matrix if and only if every sub-matrix is
non-singular.

It is very difficult to define what is “an optimal matrix” in terms of im-
plementation performances, since there exists a large number of criteria which
are very dependent of the platform. In this paper we investigate the problem
of constructing MDS matrices whose implementation is very efficient on most
low-cost platforms. For this, we isolate a few criteria which seemed important to
us, and we derive several optimality results on these criteria. Note that we only
considered one direction, which renders somewhat easier the problem of finding
good matrices. Their inverses may not be very efficient but this is not important
if we use these matrices with self-inverting constructions, like the Feistel or the
Lai-Massey schemes.

2 Performances of Linear Multipermutations

We consider linear multipermutations from Kp to Kq where K is a finite field of
characteristic 2. Typically, K is GF(256). We let M denote a matrix of type q×p
whose elements lie in K. We let Mi,j denote the element on row i and column j
with 1 ≤ i ≤ q and 1 ≤ j ≤ p. The multipermutation is simply x 7→ y = M × x
where x and y column vectors, i.e.

yi =
p∑

j=1

Mi,jxj for i = 1, . . . , q.

We consider several implementation strategies depending on the platform.

2.1 Software Implementation on 32/64-bit Platforms

Modern 32-bit (or 64-bit) microprocessors with large cache memory2 lead to
well-known and quite simple implementation strategies. Indeed, columns of M

2 By “cache memory”, we mean the fastest available cache memory, i.e. L1 cache. Most
modern CPUs have 16 kB available or more (current versions of the Intel Pentium
4, having 8 kB available, are an exception).

can be partitioned into several sub-columns whose size correspond to the word
size (or less). We let w denote the size of the words in terms of K elements. Then
all possible multiplications can be precomputed and put in a table. This means
that we consider M as a block matrix of type dq/we × p, y as a block vector of
dq/we elements, and where every block are vectors of w elements of K, except
the blocks in the last row which may be smaller if w does not divide q.

For instance, let us consider 32-bit words, the set K of bytes (i.e. w = 4 and
#K = 256), and p = q = 8. We let Tk,j be a table of 256 4-words vectors such
that

Tk,j(u) =

M4k−3,j · u
M4k−2,j · u
M4k−1,j · u
M4k,j · u

for all u ∈ K and k = 1, 2. Then we can compute y = M × x by computing
vk = Tk,1(x1)⊕· · ·⊕Tk,p(xp) for k = 1, 2. Then y is simply the concatenation of
v1 and v2. Using this approach, we can implement the computation of the linear
multipermutation by using dq/we×p tables of #K entries where each entry is of
w log2 #K bits. For typical applications such as p = q = 8, #K = 256 and w = 4
or 8, we have tables of p× q×#K bytes, i.e. 16 kB of tables. This fits in the fast
cache memory of nowadays microprocessors. So this means that we can compute
y from x by using only (p− 1)×dq/we XOR operations, i.e. 14 XORs for w = 4
or 7 XORs for w = 8, and table lookups. With this approach, performances only
depends on p, q, w,#K and are independent on the structure of M .

2.2 Software Implementation on 8-bit Platforms

Low-cost 8-bit microprocessors cannot afford to use precomputed data with a
size of 16 kB: the matrix multiplication has to be computed on-the-fly. Obviously
no Mi,j elements can be equal to zero, since this would lead to a singular sub-
matrix of type 1 × 1 in M and thus would contradict Theorem 1; so we really
have to implement p× q operations. For #K = 256 we cannot even consider all
multiplication tables since this would require naively 64 kB of memory. Another
solution would be to express each element x of K as x = gi, where g is a generator
of K∗, and to store the precomputed mappings x 7→ i and i 7→ x (one needs
512 bytes of memory). Any multiplication in K can then be computed using
3 table lookups and 1 addition. However, this approach remains costly. Some
multiplication tables are quite simple though. For instance the multiplication by
1 — the neutral element in K∗ — is trivial. Since we need to make multiplications
by Mi,j only, we may need a small number of tables. Our basic approach is to
have all multiplication tables by Mi,j elements except for the multiplication table
by 1. This leads to the following definitions.

Definition 2. Let K∗ be a set including a distinguished one denoted 1. Let M
be a q × p matrix whose entries lie in K∗.
1. We let v1(M) denote the number of (i, j) pairs such that Mi,j is equal to 1.

We call it the number of occurrences of 1.

2. We let c(M) be the cardinality of {Mi,j ; i = 1, . . . , q; j = 1, . . . , p}. We call
it the number of entries.

3. If v1(M) > 0 we let c1(M) = c(M) − 1. Otherwise we let c1(M) = c(M).
We call it the number of nontrivial entries.

With this basic implementation approach we need tables of total size c1(M)×#K
entries in K in order to implement M . The number of operations consists of
(p−1)×q XORs and number of table lookup’s which is equal to c1(M1,.)+ · · ·+
c1(Mq,.) where Mi,. denotes the ith row of M . Indeed, for each row we can look at
all equal entries, XOR the corresponding xj element, look up at the appropriate
table, and XOR everything. So the number of CPU operations is within the order
of pq− q + qc1(M). Hence the key metrics for this implementation approach are
c1(M) (for the memory complexity) and v1(M) (for the time complexity). Note
that we may save extra multiplication tables using “efficient GF elements”. Here
are four typical examples.

– With K = GF(256) we can represent a polynomial a0 + a1x + · · · + a7x
7

by the bitstring a7 · · · a1a0. The multiplication by the x element can be
implemented by a shift by one bit to the left and a conditional XOR with a
constant when a carry bit is set3.

– Similarly, the multiplication by the x−1 element can be implemented by a
shift by one bit to the right and a conditional XOR with a constant when a
carry bit is set.

– If M includes two elements α and α + 1, we can omit the multiplication
table by α + 1. Multiplication by α + 1 is performed by one table lookup (a
multiplication by α) and a XOR.

– If M includes two elements α and α2, we can omit the multiplication table
by α2. Multiplication by α2 is performed by two consecutive table lookup’s.

We can also optimize implementations afterward.

3 Bi-Regular Arrays as Candidates for MDS Matrices

In this section we concentrate on making MDS matrices with high v1 and low c.
The following definition introduces bi-regular arrays which are useful objects to
build MDS matrices.

Definition 3. Let K∗ be a set including a distinguished one denoted 1.

1. We say that a 2× 2 array with entries in K∗ is bi-regular if at least one row
and one column have two different entries.

2. We say that a q×p array with entries in K∗ is bi-regular if all 2×2 sub-arrays
are bi-regular.

3. An array which is not bi-regular is called bi-singular.

3 With a special care about side-channel attacks.

4. Two arrays are equivalent if we can obtain the second by performing a finite
sequence of simple operations on the first one. Simple operations are per-
mutation of rows, columns, transpose, and permutation of K∗ elements for
which 1 is a fixed point.

Note that an MDS matrix is necessary a bi-regular one (otherwise one 2×2 sub-
determinant is singular). Equivalence keeps the bi-regularity. Finally, equivalent
arrays have the same v1 and c metrics. So we can first focus on making bi-regular
arrays with high v1 and low c.

Definition 4. Let K∗ be a set including a distinguished one denoted 1. We let
vq,p
1 (resp. cq,p) be the maximal (resp. minimal) value of v1(M) (resp. c(M)) for

a bi-regular array M of type q × p.

Note that when K∗ has not enough elements for bi-regular arrays to exist, then
vq,p
1 and cq,p are undefined. Otherwise vq,p

1 and cq,p do not depend on K∗ at all.
One approach for constructing MDS matrices with high v1 and low c1 is first

to construct a bi-regular array, second to assign elements to some non-zero field
values until we get an MDS matrix. We can e.g. look at random values until it
succeeds or concentrate on efficient GF elements.

3.1 Highest v1 for Bi-Regular Arrays

Here are easy facts about vq,p
1 .

1. We have vq,p
1 = vp,q

1 since we can transpose bi-regular arrays.
2. We have v1,p

1 = p for p ≥ 1.
3. vq,p

1 increases with p and q.

Lemma 1. The following facts hold:

• v2,p
1 = p + 1 for any p ≥ 1.

• v3,p
1 = p + 3 for any p ≥ 3.

• v4,4
1 = 9, v4,5

1 = 10, and v4,p
1 = p + 6 for any p ≥ 6.

• v5,5
1 = 12, v5,6

1 = 13, v5,7
1 = 14, v5,8

1 = 17, v5,9
1 = 18, and v5,p

1 = p + 10 for
any p ≥ 10.

Proof. For the 2 rows case, the 2× p array

1 1 1 · · · 1
1 a2 a3 · · · ap

is bi-regular when 1, a2, . . . , ap are pairwise different. We cannot have more oc-
currences for 1, otherwise we must have two different columns whose entries are
only 1, which leads to a bi-singular 2× 2 sub-array.

For the 3 rows case, if one column has three occurrences of 1, all other
columns must have at most one occurrence of 1 which leads to p + 2 in total.
If no column has three occurrences of 1, we notice that at most three columns
can have two occurrences, which leads to the following construction with p + 3
occurrences in total.

1 1 a1 1 1 · · · 1
1 a1 1 a2 a3 · · · ap−2

a1 1 1 a3 a4 · · · ap−1

For the 4 rows case, we similarly prove that no column has four occurrences of
1 in optimal solutions. We cannot have two different columns with 3 occurrences
of 1 so we easily notice that the constructions below are optimal.

a1 1 1 1
1 a1 a2 1
1 a2 1 a2

1 1 a2 a1

a1 1 1 1 1
1 a1 a2 1 a3

1 a2 1 a2 a3

1 1 a2 a1 a3

When we have more than 5 columns we notice that we get better results when
we limit the occurrence number to 2 in every column as done in the following
construction.

1 1 1 a1 a2 a3 1 1 1 · · ·
1 a3 a1 1 1 a2 a4 a5 a6 · · ·
a1 1 a2 1 a3 1 a5 a6 a7 · · ·
a2 a1 1 a3 1 1 a6 a7 a8 · · ·

For the 5 rows case, we similarly prove that having five occurrences of 1
in the same row leads to sub-optimal solutions. Having a single row with four
occurrences, four others with two occurrences, and the others with a single oc-
currence yields v5,5

1 = 12, v5,6
1 = 13, and v5,7

1 = 14. We can have at most two
columns with three occurrences and up to four others with two occurrences, all
others being limited to a single occurrence. If we keep a single column with three
occurrences then we can have up to seven other columns with two occurrences,
all others being limited to a single occurrence. This yields v5,8

1 = 17. Finally,
limiting the occurrences number to two is optimal when we have more than 8
columns since we achieve v5,9

1 = 18, and v5,p
1 = p + 10 for any p ≥ 10. ut

We could continue the proof further and obtain v6,6
1 = 16, v6,7

1 = 18, v6,8
1 = 19,

v7,7
1 = 21, v7,8

1 = 22, v8,8
1 = 24. The optimal solutions with 6 rows consist of the

following array. (For 6 or 7 columns, restrict on the first columns.) Blank cells
need to be filled with elements other than 1.

1 1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

The optimal solutions with 7 rows and 7 or 8 columns, and 8 rows and columns
are the first rows and columns of the following array.

1 1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1

The following lemma (with α = 2) indicates that vn,n
1 can be close to n

√
n

since we can put
√

n occurrences of 1 in every row.

Lemma 2. If p is a prime power, for any integers α > 1 and q ≤ pα−1(pα −
1)/(p− 1) we have vq,pα

1 ≥ q × p.

Proof. This comes from the following construction. We let K = GF(p) and we
consider the affine space Kα. We have pα−1(pα−1)/(p−1) straight lines in total
each containing exactly p points. We consider that every column corresponds to
a point and that every row corresponds to a straight line. We put 1 in cells in
which the corresponding point belongs to the straight line. We fill other cells so
that it does not introduce bi-singular sub-arrays. Since straight lines intersect
to at most one point, we have a bi-regular array. ut

The following lemma provides optimal constructions for small p and q.

Lemma 3. We have vq,p
1 ≥ p + 2q − 3 for any p, q such that q ≤ p.

Proof. This lemma comes from the following construction:

ap−1 1 1 1 1 · · ·
1 1 a2 a3 a4 · · ·
1 ap−1 1 a2 a3 · · ·
1 ap−2 ap−1 1 a2 · · ·
1 ap−3 ap−2 ap−1 1 · · ·
...

...
...

...
...

. . .
ut

In summary, Table 1 gives the first values of vq,p
1 . Underlined numbers are

obtained with the construction of Lemma 3.

3.2 Lowest c for Bi-Regular Arrays

Here are easy facts about cq,p.

1. We have cq,p = cp,q since we can transpose bi-regular arrays.
2. We have c1,p = 1 for p ≥ 1. Indeed, the 1× p array

1 1 1 · · · 1

2 3 4 5 6 7 8

2 3 4 5 6 7 8 9
3 4 6 7 8 9 10 11
4 5 7 9 10 12 13 14
5 6 8 10 12 13 14 17
6 7 9 12 13 16 18 19
7 8 10 13 14 18 21 22
8 9 11 14 17 19 22 24

Table 1. Values of vq,p
1 .

is bi-regular and we cannot have more occurrences for 1.
3. cq,p increases with p and q.

Let us now demonstrate other results.

Lemma 4. We have c2,p = d√pe for any integer p ≥ 1.

So we deduce that cq,p ≥ d√pe for any q ≥ 2 and any p ≥ 1.

Proof. Let s = d√pe. Let a0, . . . , as−1 be pairwise different. For any j = 1, . . . , p
we first let j − 1 = qs + r be the Euclidean division of j − 1 by s, i.e. 0 ≤ r < s.
Note that 0 ≤ q < s. We set M1,j = aq and M2,j = ar. We notice that M is a
2× p bi-regular array. We have v1(M) = s and c(M) = s. Hence c2,p ≤ s.

Given an arbitrary 2 × p bi-regular array, let us assume that there are no
more than s− 1 pairwise different elements in the first row. Since we have more
than s(s−1) columns, one element at least occurs at least s times. Let us extract
a 2× s sub array whose first row is a constant element. Note that this sub-array
must be bi-regular as well. Obviously the second row must have pairwise different
elements. So there are at least s pairwise different elements in the array. Hence
c2,p ≥ s. ut
Lemma 5. For any k > 1 we have ck2−k+1,k!+2 > k.

As an application we deduce that c3,4 > 2 and c7,8 > 3.

Proof. Let M be a (k2 − k + 1) × (k! + 2) array of k elements. We notice that
the first column must have an element a with k occurrences. Let us extract the
k × (k! + 2) sub-array M ′ corresponding to these occurrences. All elements in
the first column of M ′ are equal. If M was bi-regular, M ′ would be bi-regular
as well, so no other column could have two occurrences of the same element b.
Hence all columns but the first one would be permutations of the set of elements.
Since there are k elements and k! permutations, then two of the other columns
would be equal which would contradict the bi-regular property. ut
Lemma 6. For any k we have c2k−1,2k−1 ≤ k.

As an application we deduce that c3,3 ≤ 2, c5,5 ≤ 3, c7,7 ≤ 4, and c9,9 ≤ 5.

Proof. We construct a bi-regular (2k−1)× (2k−1) array by using matrices. Let
Ar be the (2k − 1)× (2k − 1) matrix with integral elements defined by

Ar
i,j =

{
1 if |i + j − 2k| = 2k − r − 1 or |i− j| = r
0 otherwise.

Note that the (i, j) coordinates which lead to Ar
i,j = 1 lie in a rectangle whose

edges are parallel to the diagonals of the matrix and whose (virtual) corners
have coordinate

(
1
2
, r +

1
2

)
,

(
2k − r − 1

2
, 2k − 1

2

)
,

(
2k − 1

2
, 2k − r − 1

2

)
,

(
r +

1
2
,
1
2

)
.

Finally we let
M = a1A

0 + a2A
2 + · · ·+ akA2k−2

with pairwise different a1, . . . , ak. As examples, here are the 5 × 5 and 9 × 9
arrays obtained with k = 3 and k = 5.

a b b c c
b a c b c
b c a c b
c b c a b
c c b b a

a b b c c d d e e
b a c b d c e d e
b c a d b e c e d
c b d a e b e c d
c d b e a e b d c
d c e b e a d b c
d e c e b d a c b
e d e c d b c a b
e e d d c c b b a

We first notice that for any 1 ≤ i, j ≤ 2k− 1 there exists a single even r such
that Ar

i,j = 1. Thus for every cell in M there exists one and only one Ar matrix
with r even with the corresponding cell containing 1.

Second we consider a 2× 2 sub-array corresponding to positions (i, j), (i, j′),
(i′, j) and (i′, j′). We assume that Mi,j = Mi,j′ and Mi′,j = Mi′,j′ and we want
to lead to a contradiction.

If i ≡ j ≡ j′ (mod 2) then |i−j| = |i−j′|. Since j 6= j′ we deduce j+j′ = 2i.
If i 6≡ j ≡ j′ (mod 2) then |i + j − 2k| = |i + j′ − 2k|. Since j 6= j′ we deduce
j + j′ = 4k − 2i. Since i ≤ 2k − 1, we obtain that j ≡ j′ (mod 2) implies
i = k−|(j+j′)/2−k|. The same holds for i′. Since i 6= i′ we have a contradiction
for the j ≡ j′ (mod 2) case.

If i ≡ j 6≡ j′ (mod 2) then |i − j| = 2k − 1 − |i + j′ − 2k|. So we have
2i = j− j′− 1. Similarly, if i 6≡ j 6≡ j′ (mod 2) then 2i = j′− j− 1 thus if j 6≡ j′

(mod 2) we have 2i = |j − j′| − 1. The same holds for i′. Since i 6= i′ we have a
contradiction for the j 6≡ j′ (mod 2) case as well.

So we cannot have Mi,j = Mi,j′ and Mi′,j = Mi′,j′ . By using the transpose,
we cannot have Mi,j = Mi′,j and Mi,j′ = Mi′,j′ . So M is bi-regular and c(M) =
k. ut
Lemma 7. We have c4,6 ≥ 4.

Proof. The proof can be found in the Appendix.

Lemma 8. Let q be a prime power. We have cq,q2−q+1 ≤ q.

As an application we deduce that c3,7 ≤ 3, c4,13 ≤ 4.

Proof. Let K be a finite field of cardinality q. We let f be a bijective mapping
from {2, . . . , q2− q +1} to K∗×K. We let f(i) = (ai, bi) for i = 2, . . . , q2− q +1.
We let x1, . . . , xq be a numbering of all K elements. We define Mi,1 = 1 and
Mi,j = aixj + bi for i = 1, . . . , q and j = 2, . . . , q2 − q + 1. Obviously M is a
q× (q2− q +1) array of q elements. As an example, here is the array with q = 3.

a a a b b c c
a b c c a a b
a c b a c b a

Since ai 6= 0 the x 7→ aix + bj mappings are permutations so all 2 × 2
sub-array containing the first column are bi-regular. Let us now consider a 2×2
sub-array containing columns j and j′ such that 1 < j < j′. Assuming that
aix + bi = ai′x + bi′ and aiy + bi = ai′y + bi′ we have (ai− ai′)(x− y) = 0. Since
(ai, bi) 6= (ai′ , bi′) we must have x = y. Hence the sub-array is bi-regular. ut

Lemma 9. We have c3,8 ≥ 4.

Proof. Here we must have at least one column which is not a permutation of
(abc). Let us assume without loss of generality that the first column is (aax).
Then for every other column the entries at row 1 and 2 must be different. But
there are only 6 possibilities which is not enough to fill all columns. ut

Lemma 10. We have c6,8 ≥ 5.

Proof. Assuming that we have a 6 × 8 array with c ≤ 4 then for every column
we can produce at least two different pairs {i, j} corresponding to two equal
elements in row i and row j. If the array were bi-regular all pairs would be
pairwise different so we would have 16 pairs in total. But we have only

(
6
2

)
= 15

possible pairs in total so this is impossible. ut

In summary Table 2 provides the obtained cq,p values. Underlined numbers
are obtained from Lemma 4, 5, 6, 7, 8, 9, and 10. Other value come from basic
properties such as symmetry and monotonicity. The missing element c5,8 ≤ 4
result is obtained by the following construction.

a a a a d d b b
a d c b b a a d
b a d c b c d c
c b a d a b d a
d c b a c b c d

2 3 4 5 6 7 8

2 2 2 2 3 3 3 3
3 2 2 3 3 3 3 4
4 2 3 3 3 4 4 4
5 3 3 3 3 4 4 4
6 3 3 4 4 4 4 5
7 3 3 4 4 4 4 5
8 3 4 4 4 5 5 5

Table 2. Values of cq,p.

4 MDS Matrices Constructions for p = q = 4

We study constructions with p = q = 4 over the field K = GF(256). Elements
are represented as polynomials of degree at most 7 over GF(2). The a0 + a1x +
· · · + a7x

7 polynomial is represented by the bitstring a7 · · · a1a0. Formally, x
represents a root of an irreducible polynomial of degree 8.

4.1 The AES Matrix

Here is the MDS matrix4 taken from AES [2,5] with a = x and b = x + 1:

a b 1 1
1 a b 1
1 1 a b
b 1 1 a

 (1)

Multiplication by a is a shift and a conditional XOR. In this case, c = 3 is optimal
according to our criteria, but v1 = 8 is not. As described in [2], a multiplication
by (1) can be implemented (in a pseudo-C notation) using 15 XORs, 4 table
lookups and 3 temporary variables:

t = a[0] ^ a[1] ^ a[2] ^ a[3]; /* a is the input vector */
u = a[0];
v = a[0] ^ a[1]; v = time[v]; a[0] = a[0] ^ v ^ t;
v = a[1] ^ a[2]; v = time[v]; a[1] = a[1] ^ v ^ t;
v = a[2] ^ a[3]; v = time[v]; a[2] = a[2] ^ v ^ t;
v = a[3] ^ u; v = time[v]; a[3] = a[3] ^ v ^ t;

Note that AES also requires to implement the inverse MDS matrix.

4 In order to check that this is indeed an MDS matrix, we compute all sub-
determinants. They can be expressed as polynomials in terms of x. We can check
that none of these polynomials is zero. Since they are all of degree at most 4 and
that x is of degree 8, they cannot vanish so we have an MDS matrix.

4.2 An Efficient Matrix

As we have seen, v4,4
1 = 9 and c4,4 = 3 and we can hit both optimal criteria with

the array of Lemma 3 (M1 in (2)); let us furthermore consider a second matrix
M2, which is a permuted version of M1.

M1 =

a 1 1 1
1 1 b a
1 a 1 b
1 b a 1

 M2 =

a 1 1 1
1 a 1 b
1 b a 1
1 1 b a

 (2)

One can easily verify that necessary conditions for M2 being a MDS matrix are,
for any a 6= b which are not equal to 0 or 1, a 6= b2, a 6= b + 1, and a2 6= b. If
we dispose of two multiplication tables (namely, by a + 1 and by b + 1), we can
implement a multiplication by M2 in the following way:

u = a[0] ^ a[1] ^ a[2] ^ a[3]; /* a is the input vector */
a[0] = u ^ timeap1[a[0]]; v = timeap1[a[1]];
a[2] = timeap1[a[2]]; a[3] = timeap1[a[3]];
a[1] = u ^ v ^ timebp1[a[3]]; a[3] = u ^ a[3] ^ timebp1[a[2]];
a[2] = u ^ a[2] ^ timebp1[v];

This implementation needs 10 XORs, 2 temporary variables, 7 table lookups in
two tables. This allows us to decrease the overall number of temporary variables
and of operations (at the cost of a supplementary precomputed table), if the
XOR operations and table lookups generate identical costs. Note that the same
matrix (up to a permutation) forms the diffusive block of FOX64 [3].

5 MDS Matrices Constructions for p = q = 8

Here, we give explicit constructions with p = q = 8 over K = GF(256).

5.1 Circulating-Like Matrix

By using the construction of Lemma 3 with p = q = 8, we obtain v1 = 21
and c = 7 which, are not optimal. Many different possibilities for filling the
coefficients exist; we give here as illustration two different examples.

f 1 1 1 1 1 1 1
1 1 a b c d e f
1 f 1 a b c d e
1 e f 1 a b c d
1 d e f 1 a b c
1 c d e f 1 a b
1 b c d e f 1 a
1 a b c d e f 1

For GF(256) represented by the irreducible polynomial x8 +x4 +x3 +x2 +1 over
GF(2), a possible combination is given by a = x + 1, b = x3 + 1, c = x3 + x2,
d = x, e = x2 and f = x4. Note that we need a single precomputed table, namely
the multiplication by x. If we can afford two precomputed multiplication tables
(by x and by x−1, in this case), when using x8 +x7 +x6 +x5 +x4 +x3 +1 as field
representation, another possible combination is a = x+1, b = x−1 +x−2, c = x,
d = x2, e = x−1 and f = x−2. An implementation using 29 table lookups, 71
XORs is given in Appendix. Note that the same matrix (up to a permutation)
forms the diffusive block of FOX128 [3].

5.2 Matrix with Rectangle Patterns

We use the construction of Lemma 6 with k = 5 and we remove the first row
and the last column. We obtain v1 = 15 and c = 5 so this is optimal for c.

b a c b d c 1 d
b c a d b 1 c 1
c b d a 1 b 1 c
c d b 1 a 1 b d
d c 1 b 1 a d b
d 1 c 1 b d a c
1 d 1 c d b c a
1 1 d d c c b b

Representing GF(256) with x8+x7+x6+x5+x4+x3+1 as irreducible polynomial,
a possible combination is given by a = x−3+x−1, b = x−2+x−1+1, c = x4+x and
d = x. With x8 +x4 +x3 +x2 +1 as irreducible polynomial, a valid combination
is a = x + 1, b = x4 + 1, c = x4 + x and d = x. Using these coefficients, we
are able to implement this matrix multiplication with the same amount of table
lookups (i.e. 16), 54 XORs instead of 56 and two less temporary variables than
the matrix used by the designers of Khazad (as described in [1]), for instance.
We might do even better by dedicated optimizations.

6 Conclusion

MDS matrices are a well-known way to build linear multipermutations, i.e. opti-
mal diffusion components which can be used as building blocks of cryptographic
primitives, like block ciphers and hash functions. Although their implementa-
tion is quite straightforward on 32/64-bit architectures, which have large data
L1 caches and thus allow to store large precomputed tables, we need to evaluate
the matrix multiplication on-the-fly on low-cost 8-bit architectures, and we can
afford only a very limited amount of precomputed data. In this paper, we have
studied MDS matrices under the angle of efficiency, defined mathematical crite-
ria and proven several optimality results relatively to these criteria; furthermore,
we give new constructions of efficient 4× 4 and 8× 8 matrices over GF(256).

Future potential investigations may go in the direction of hardware im-
plementations of linear multipermutations, which are not covered by this pa-
per. Furthermore, we may extend our mathematical considerations with criteria
specifically dedicated to SPNs; such matrices must have inverses which are also
efficient, for fast decryption operations. Finally, we studied bi-regularity of ma-
trices as a necessary condition for being MDS. It is however not sufficient. We
indeed have found optimal bi-regular arrays but no instances which are MDS.
This problem is left as future work.

Acknowledgments The work presented in this paper was initiated by a project
supported by MediaCrypt AG, and supported (in part) by the National Compe-
tence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322.

References

1. P. Barreto and V. Rijmen. The Khazad legacy-level block cipher. First Open
NESSIE Workshop, Leuven, 2000. See https://www.cryptonessie.org.

2. J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and
Cryptography. Springer, 2002.

3. P. Junod and S. Vaudenay. FOX: a new family of block ciphers. In Proceedings of
SAC’04. Springer-Verlag, 2004.

4. F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-
Holland, 1977.

5. National Institute of Standards and Technology, U. S. Department of Commerce.
Advanced Encryption Standard (AES), 2001.

6. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. Twofish:
A 128-bit block cipher. In The First AES Candidate Conference. National Institute
for Standards and Technology, 1998.

7. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. The
Twofish encryption algorithm. Wiley, 1999.

8. C. Schnorr and S. Vaudenay. Black box cryptanalysis of hash networks based
on multipermutations. In A. De Santis, editor, Advances in Cryptology - EU-
ROCRYPT ’94. Proceedings, volume 950 of LNCS, pages 47–57. Springer-Verlag,
1995.

9. C. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28(4), 1949.

10. S. Vaudenay. On the need for multipermutations: cryptanalysis of MD4 and
SAFER. In B. Preneel, editor, Fast Software Encryption. Proceedings, volume
1008 of LNCS, pages 286–297. Springer-Verlag, 1995.

A Proof of Lemma 7

First we demonstrate that a 4×6 bi-regular array such that c = 3 has no column
equivalent to the pattern (aabb). Indeed, let M be a 4× 6 array of 3 elements a,
b, and c whose first column is (aabb). If the first row has two other occurrences of

a and two occurrences of another element x, we can permute columns in order to
get a first row equal to (aaaxx·). Then M2,2 and M2,3 must be pairwise different,
and different from a for M to be bi-regular. Similarly, either M2,4 or M2,5 must
be equal to a. We may permute columns 2 and 3, and columns 4 and 5 and
obtain the array below.

a a a x x
a b c a
b ? ? ?
b ? ? ?

Positions with question mark cannot be equal to b, so we must fill them with
a and c elements. We have three pairs of question marks. Since we only have
two elements, either two different pairs are equal, or one pair consists of the
same element twice. In both case we contradict the bi-regular property. This
means that row 1 cannot be equivalent to (aaaxx·). Obviously row 1 cannot be
equivalent to (aaaa · ·) (otherwise we have not enough elements to put in row
2 below the a occurrences). For similar reasons row 1 cannot be equivalent to
(axxx · ·). Thus row 1 must be equivalent to (aabbcc). Since the same arguments
hold for row 2, both rows are equivalents. Now let us assume that row 1 is
(aabbcc). Looking at what we can put in row 2 we obtain (after potential column
permutations) the following array.

a a b b c c
a ? a c a b
b
b

So row 2 cannot be equivalent to (aabbcc) which leads to a contradiction. Hence
no column can be equivalent to (aabb) in a 4×6 bi-regular array of three elements.

Second, we show that no column can be equivalent to (xxxy). Indeed, if the
first column is (xxxy), the elements in row 1, 2, and 3 must be pairwise different
in every other column, which leads to 6 possibilities. Let us assume without loss
of generality that the array is

x a a b b c
x b c a c a
x c b c a b
y ?

If the entry at the position of the question mark is b, then the entry at position
(4, 3) must be different from b and different from the entry at position (2, 3), i.e.
it must be a. Similarly, if the entry at the position of the question mark is c, the
entry at position (4, 3) must also be a. After an eventual permutation of column
2 and 3 we can assume that the entry at the position of the question mark is a.
But then entries at position (4, 4) and (4, 5) must be c and a respectively which
lead to a singular sub-array.

In conclusion all column must be equivalent to (xxyz). Let us assume that
we have the following shape.

x x′ x′′ ?
x y′ y′′ ?
y x′ z′′ ?
z z′ x′′ ?

Then all entries in column 4 must be pairwise different, which is impossible.

B Implementation of the Circulant Matrix

The input is in x[0..7], and the output in y[0..7]. We use two precomputed tables,
namely xtime[.] (multiplication by x) and xm1time[.] (division by x).

y[0] = x[0]^x[1]^x[2]^x[3]^x[4]^x[5]^x[6]^xtime[x[7]];
y[1] = x[1]^x[0]^x[7]^xtime[x[1]^x[3]^xtime[4]]^

xm1time[x[2]^x[5]^xm1time[x[2]^x[6]];
y[2] = x[0]^x[6]^x[7]^xtime[x[0]^x[2]^xtime[3]]^

xm1time[x[1]^x[4]^xm1time[x[1]^x[5]];
y[3] = x[6]^x[5]^x[7]^xtime[x[6]^x[1]^xtime[2]]^

xm1time[x[0]^x[3]^xm1time[x[0]^x[4]];
y[4] = x[5]^x[4]^x[7]^xtime[x[5]^x[0]^xtime[1]]^

xm1time[x[6]^x[2]^xm1time[x[6]^x[3]];
y[5] = x[4]^x[3]^x[7]^xtime[x[4]^x[6]^xtime[0]]^

xm1time[x[5]^x[1]^xm1time[x[5]^x[2]];
y[6] = x[3]^x[2]^x[7]^xtime[x[3]^x[5]^xtime[6]]^

xm1time[x[4]^x[0]^xm1time[x[4]^x[1]];
y[7] = x[2]^x[1]^x[7]^xtime[x[2]^x[4]^xtime[5]]^

xm1time[x[3]^x[6]^xm1time[x[3]^x[0]];

C Implementation of the Matrix with Rectangle Patterns

The input is in x[0..7], and the output in y[0..7]. We use two precomputed tables,
namely xtime[.] (multiplication by x) and x4time[.] (multiplication by x4).

t0 = x[0]^x[1]; t1 = x[0]^x[2]; t2 = x[3]^x[5];
t3 = x[1]^x[4]; t4 = x[2]^x[4]; t5 = x[5]^x[7];
t6 = x[3]^x[6]; t7 = x[4]^x[6];
r1 = t1^t5; r2 = t2^t4; r3 = t3^t6; r4 = t2^t6;
y[0] = t0^t6^xtime[t3^t5^x[2]]^x4time[t1^t2];
y[1] = r1^x[4]^xtime[t6^x[1]^x[2]]^x4time[t0^t7];
y[2] = r4^t3^xtime[r1^t2]^x4time[t0^t5];
y[3] = r2^x[6]^xtime[t0^x[4]^x[7]]^x4time[t1^x[6]];
y[4] = r2^x[7]^xtime[t1^x[5]^ x[6]]^x4time[x[2]^x[3]^x[7]];
y[5] = r3^xtime[r1^x[7]]^x4time[t4^x[7]];
y[6] = r1^xtime[r3^x[7]]^x4time[r4];
y[7] = t0^x[6]^x[7]^xtime[r2]^x4time[t5^t7];

