
Fair Exchange with Guardian Angels

Gildas Avoine and Serge Vaudenay

Swiss Federal Institute of Technology (EPFL)
lasecwww.epfl.ch

Abstract. In this paper we propose a new probabilistic Fair Exchange
Protocol which requires no central Trusted Third Party. Instead, it relies
on a virtually distributed and decentralized Trusted Third Party which
is formalized as a Guardian Angel: a kind of Observer e.g. a tamper
proof security device. We thus introduce a network model with Pirates
and Guardian Angels which is well suited for Ad Hoc networks.
In this setting we reduce the Fair Exchange Problem to a Synchronization
Problem in which honest parties need to eventually decide whether or
not a protocol succeeded in a synchronous way through a hostile network
which does not guaranty that sent messages will be eventually received.
This problem can be of independent interest in order to add reliability
of protocol termination in secure channels.

Key words: Fair Exchange, Security Module, Synchronization, Distributed
Systems.

1 Introduction

In the Fair Exchange problem, two participants A and B wish to exchange
items kA and kB in a fair way, i.e. such that either both participants receive
the expected item, or nobody can obtain anything valuable. In addition to the
fairness property, we generally require that a fair exchange protocol should obey
the following properties:

– Completeness: the exchange always succeeds when the involved partici-
pants behave honestly.

– Timeliness: the participants always have the ability to reach, in a finite
amount of time, a step in the protocol where they can fairly stop the ex-
change.

The completeness property avoids the trivial fair protocol where no informa-
tion at all is exchanged. On the other hand, protocols with infinite commu-
nication complexity are avoided by the timeliness property. With regard to
the fairness property, literature brings a lot of general or specific definitions
[16,22,23,26,29,36,37].

The basic exchange scheme, where the participants send their items one after
the other, is obviously unfair: neither A and B would like to be first to send its

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


item since the first receiver can disrupt the protocol without sending its own
item.

Non-perfect fair exchange protocols were proposed in the early eighties in
order to decrease the unfairness, involving a complexity cost in term of exchanged
messages. These gradual protocols are based on the following scheme: each entity
alternatively transmits successive bits of the item to exchange until the last bit
of each item was sent (the lengths of the items are supposedly equal). (See for
example [8,10,11,25,30].) In order to improve this kind of protocol, fractions of
bits can be transmitted instead of real bits [31,32]. When the protocol aborts
and one party receives the exchanged item, the a posteriori computation of the
missing bits is made possible to the other party by the protocol. This induces
a computation cost. Hence, real fairness of gradual protocols relies on A and B
having approximately the same computational power.

The introduction of perfect fairness in these protocols faces to the impossi-
bility result of Even-Yacobi [13], without the help of third parties.

One can achieve perfect fairness with the help of a Trusted Third Party
(TTP) in the scheme. The first proposed protocols used an on-line Trusted
Third Party which assures the fairness during the exchanges. The main drawback
with this kind of protocol is that it creates a communication bottleneck: TTP
must interfere at least once during the protocol. A great improvement of TTP
protocols is to use off-line Trusted Third Party. Asokan introduced the notion of
optimistic fairness where the TTP is required only in case of dispute. (See e.g.
[1,2,3,4,5,24,28,29,33].) The efficiency of this approach relies on the fact that the
environment is mostly honest.

Even if there exists a great body of literature on fair exchange, only one fair
exchange protocol, up to our knowledge, tries to take advantage of the presence
of security modules [34,35] to enforce fairness, by devising an optimistic fair
exchange protocol for electronic commerce. We briefly describe it here. In this
protocol, four entities interfere in the exchange: the client, his security module
(e.g. a smart card), the vendor (which does not have security module), and
the vendor’s bank (which is called only in case of conflict). The sketch of the
protocol is the following. (1) The vendor sends the item and its description to
the client’s security module. (2) The client sends the payment and the expected
item’s description to his security module. (3) After checking item and payment,
the security module sends the payment to the vendor. (4) Finally, if the payment
is correct, then the vendor must send a payment acknowledgment to the security
module, and then later gives the expected item to the client. If the vendor does
not send the acknowledgment (he already has the payment), the bank is called
in order to restore the fairness. Thus this falls into the optimistic fair exchange
protocols category which requires an (off-line) TTP and the assumption that
vendors are mostly honest.

All those protocols rely on the assumption that both parties can have ac-
cess to the TTP though a channel which achieves timeliness: any request to
the TTP gets addressed, eventually. This is quite a strong assumption, for in-
stance in mobile systems where an adversary may control all communications

2



in one network cell. In some environments, like mobile ad hoc networks [19,20],
introducing a timely-available unique Trusted Third Party is not desirable nor
possible; therefore optimistic protocols are not suitable. We rather concentrate
on a Chaum et Al.’s observer-based third party. We assume that all participants
have one timely-available observer (e.g. a smart card). The originality of this
model for fair exchange is that one party may not be able to contact the ob-
server of another party though a timely channel. We can still propose a protocol
which ensures probabilistic fairness, without centralized Trusted Third Party,
and without assumption on the participants’ computational power.

This paper is organized as follow: in Section 2 we first describe the Synchro-
nization Problem, design a probabilistic protocol — the Keep-in-Touch (KiT)
Protocol — and analyze it. Section 3 addresses the fair exchange problem in the
Pirates and Guardian Angels model. Section 4 illustrates this protocol bringing
applications to the Mobile Ad Hoc Networks. We finally conclude.

2 Synchronization Protocol

2.1 Security Model

In this part, we consider two participants A and B who want to achieve a secure
transaction in a fair way through a malicious network N . In our model we assume
that A and B are able to communicate through two secure channels (one from A
to B, the other from B to A) providing confidentiality, integrity, authentication,
and sequentiality.

– Confidentiality ensures that the message is kept secret from any third
party.

– Integrity ensures that the message cannot be modified by any third party.
– Authentication ensures that no third party can insert a forged message in

the channel.
– Sequentiality ensures that at any time, the sequence of messages which

were received by one party was equal at some time to the sequence of mes-
sages which were sent by the other party in the same ordering. In particular,
no messages can be replayed, erased, or swapped by any third party.

Note that one important security property is missing in the channel: timeliness.
Actually, some sent messages can never reach their final destination. Therefore,
the only way for a malicious man-in-the-middle N to make the protocol fail is to
stop transmitting messages in one direction or another by cutting the channel.
Hence our adversarial model for N is a malicious algorithm which decides to cut
one channel at some time, or the two channels at the same or at different times.
Due to the confidentiality property, the choice on when to cut channels cannot
depend on the content of the messages, but only on the number of exchanged
messages.

Here is an example of a secure communication channel from A to B. Let m
be the message to send and seq a sequence number which is incremented each
time after a message is sent.

3



A: increase seq by 1
encrypt m for B
authenticate (B, seq,ENCB(m))

A→ B: transmission of AUTA(B, seq,ENCB(m))

B: check the identity B
check the authentication from A
check seq = previous seq + 1
set previous seq ← seq
decrypt ENCB(m)

Here ENCB(m) means m encrypted for B and AUTA(m) means m authenticated
by A. This kind of secure channel can be implemented, for instance by using the
SSL/TLS protocol [12].

2.2 Synchronization Problem

We focus here on the synchronization problem1 which is defined as follows.

Definition 1. A synchronization protocol between A and B is a protocol which
eventually ends with A and B on two possible terminal states: either success
or failure. We say that the protocol is

1. complete if A and B always end on the success state when there is no
malicious misbehavior;

2. non-trivial if either A or B cannot end on the success state without re-
ceiving at least one message;

3. fair if A and B always end on the same state even in case of misbehavior;
4. timely if A and B eventually end.

We say that the protocol is perfectly fair when it follows all these properties.
When it is not perfectly fair, we define two measures of unfairness.

– Pa (probability of asynchronous termination) is the maximum of the proba-
bility that the protocol ends on an unfair state over all possible misbehavior
of N .

– Pc (probability that crime pays) is the maximum of the conditional probability
that the protocol ends on an unfair state conditioned on N deviating from
the protocol over all possible misbehavior of N .

We recall that we are interested here in honest participants A and B who commu-
nicate through an untrusted network but can establish a channel which achieves
confidentiality, integrity, authentication, sequentiality, but not timeliness. Per-
fect fair protocols are impossible in this setting. This motivates our measures for
unperfect protocols.

1 This is equivalent to the well known Non-Blocking Atomic Commitment problem in
the fault-tolerance literature [17,18].

4



Note that there is a tricky distinction between Pa and Pc as will be shown
in the sequel. The Pa gives confidence to A and B in the fairness of the protocol
while Pc gives measures the incentive for a misbehavior.

In order to illustrate the synchronization problem, let’s consider the TLS
protocol. In TLS 1.0 [12], the client and the server have to close some connections
during the execution of a session. To achieve this task, “the client and the server
must share knowledge that the connection is ending in order to avoid a truncation
attack” [12]. A quite simple procedure is proposed in [12] which consists in
sending a close notify message from the initiator to the other party. This
prevents from opening new connections in the session until the close notify
is properly acknowledged. If the session goes on with new connections it means
that the closed connections was fair. This scheme is however not standard and
obviously lacks of fair termination, at least for the very last connection. Here
fairness of non-terminal connections is guaranteed by the fact that the client and
the server keep-in-touch. To keep-in-touch is actually the key idea to solve the
synchronization problem.

2.3 Keep-in-Touch Protocol

Our Keep-in-Touch protocol, depicted on Fig. 1, is a quite simple synchronization
protocol: the initiator of the protocol picks a random number C which says
how many messages will be exchanged. In case of time-out while expecting a
message, a participant ends into a failure state. One can notice that, except the
first message, the exchanged messages are really empty ones! The participants
just keep-in-touch by exchanging sequential authenticated empty messages.

A N B
m1=[C]−−−−−−−−−−−−−−−→
m2=[∅]←−−−−−−−−−−−−−−−
m3=[∅]−−−−−−−−−−−−−−−→

...

Succeed
mC−1=[∅]

←−−−−−−−−−−−−−−−
mC=[∅]−−−−−−−−−−−−−−−→ Succeed

Fig. 1. Keep-in-Touch (KiT) Protocol

Termination side channel protection. In the case that N has access to a side
channel saying whether A or B ended in some terminal state, we propose that
after the required number of exchanges, the two participants wait for a timeout
τ then decide that they succeeded. This extra time prevents a malicious N from

5



trying to get a side channel from the behavior of the two participants within the
time-out interval.

Bit-messages variant. Instead of picking C once and sending it at the beginning
of the protocol, we can just ask each participant to toss a biased coin before
sending the ith message and sending the output bit in the message. A 0 bit
means “let’s keep-in-touch” and a 1 bit means “so long”. Obviously, if the bit is
1 with probability Pr[C = i/C ≥ i], this variant is fully equivalent to the above
protocol.

Since the channel provides confidentiality, the hackers have no clue what C is.
The integrity, authentication and sequentiality of messages is also protected, so
participants are ensured that (empty) messages were exchanged. The sequence
number also prevents from replay attacks. Therefore, the only misbehaving strat-
egy to end up the protocol in an unfair state is to end transmitting messages at
some point. If the first dropped message is not the last one, the two participants
will end up on a failure state. If it is the last one, the protocol becomes unfair.
In other cases, the protocol succeeds before the hackers decide to drop messages.
In the analysis of the protocol we will only discuss index number of the first
message that hacker drops and the chosen distribution for C.

2.4 Analysis of the KiT Protocol

Here we analyze the Keep-in-Touch Protocol depending on the distribution
choice for C.

Complexity. When A, B, and N are honest, the complexity in terms of exchanged
messages is exactly equal to C. When someone misbehaves by cutting channels,
the complexity is smaller, so we can just focus on C. We let pi be the probability
Pr[C = i]. By definition, the average complexity is

E(C) =
+∞∑
i=1

ipi.

Note that the communication and time complexities are linear in terms of C due
to the simplicity of the message contents and the computations to perform.

Completeness. Obviously, the protocol eventually succeeds with a complexity of
C when everyone is honest. Hence the protocol is complete.

Non-triviality. Obviously, the protocol fails if B does not receive C.

Fairness (Pa computation). We assume that N is willing to misbehave the ith
message, i.e. to cut the channel which is assumed to transmit this message. If
C < i then the misbehavior of N has no influence and the protocol succeeds.
If C > i, the participant who is expecting the ith message cannot send the
next one, so both participants are blocked and the protocol fails in a fair state.

6



Clearly, the protocol is unfair if C = i, thus with probability pi. Therefore we
have

Pa = max
i

pi.

Fairness (Pc computation). With the same discussion we can show that the
above misbehavior has a conditional probability of success of Pr[C = i/C ≥ i].
Hence we have

Pc = max
i

pi∑
j≥i pj

.

Timeliness. Obviously, the protocol eventually ends due to the timeout man-
agement.

Theorem 2. The KiT Protocol is a complete, non-trivial and timely synchro-
nization protocol. Let p1, p2, . . . denote the probability distribution of C in the pro-
tocol. The expected complexity is E(C) =

∑+∞
i=1 ipi and the probability of unfair-

ness is Pa = maxi pi. The probability that the crime pays is Pc = maxi
pi∑

j≥i pj
.

Example 3. For any n, when p1 = . . . = pn = 1
n and pi = 0 for i > n we have an

expected complexity of E(C) = n+1
2 and a probability of unfairness of Pa = 1

n .
However we have Pc = 1 for i = n: if the strategy of N is not to forward the nth
message, then his risk is void since this is the last message for sure. Hence the
protocol is unfair with probability 1

n but with no risk at all for Pirates.

Example 4. For any p, when pi = (1 − p)i−1p for i > 0 we have an expected
complexity of E(C) = 1

p and a probability of unfairness of Pa = p. In this
case we also have Pc = p. The equivalent bit-messages variant is where each
participant flips a coin of distribution (1− p, p) in every step.

2.5 Optimal Distributions for the KiT Protocol

The distribution choice plays on the complexity and fairness parameters. Obvi-
ously there is a trade-off. The optimal case is studied in the following theorem.

Theorem 5. Let p1, p2, . . . denote the probability distribution of C in the KiT
Synchronization Protocol. We have E(C) ≥ 1

2

(
1

Pa
+ 1

)
and E(C) ≥ 1

Pc
where

Pa and Pc are the highest probability of unfairness and that the crime pays
respectively.

This shows that Example 3 is the optimal case for Pa and that Example 4 is the
optimal case for Pc.

Proof. We want to minimize E(C) with Pa ≤ ε. It is equivalent to finding
p1, p2, . . . such that 0 ≤ pi ≤ Pa for all i,

∑
pi = 1, and

∑
ipi minimal.

Let ε be a probability smaller than Pa. Let n = b 1εc and α = 1
ε −n. We have

α ∈ [0, 1[.

7



Obviously
∑

ipi is minimal when the first pis are maximal, i.e. when p1 =
p2 = . . . = pn = ε. The sum of all remaining pi is equal to 1− nε. Thus we have

E(C) ≥ ε + 2ε + . . . + nε + (n + 1)(1− nε).

Hence E(C) ≥ n(n+1)
2 ε + (n + 1)(1− nε). If we substitute 1

ε − α to n we obtain

E(C) ≥ 1
2

(
1
ε

+ 1
)

+ α +
αε

2
(1− α).

Since 0 ≤ α < 1 we have E(C) ≥ 1
2

(
1
ε + 1

)
. Since this holds for any ε ≤ Pa, it

holds for ε = Pa. This proves the first bound.
For the second bound we notice that

E(C) =
+∞∑
i=1

∑
j≥i

pj .

Since we have
∑

j≥i pj ≥ pi

Pc
by definition of Pc, we obtain that E(C) ≥ 1

Pc
. ut

3 Fair Exchange with Observers

3.1 Fair Exchange Problem

Several (different) definitions for the fair exchange are available in the literature.
Most of them are context-dependent. For completeness we provide an informal
one for our purpose.
Definition 6. An exchange protocol between A and B is a protocol in which A
and B own some items kA and kB respectively and aim at exchanging them. We
say that the protocol is
1. complete if A gets kB and B gets kA at the end of the protocol when there

is no malicious misbehavior;
2. fair if its terminates so that either A gets kB and B gets kA (success ter-

mination), or A gets no information about kB and B gets no information
about kA (failure termination) even in case of misbehavior;

3. timely if A and B eventually end.

We say that the protocol is perfectly fair when it follows all these properties.
When the protocol is not perfectly fair, we define two measures of unfairness.
– Pa (probability of unfair termination) is the maximum of the probability that

the protocol ends on an unfair state over all possible misbehaviors.
– Pc (probability that crime pays) is the maximum of the conditional probability

that the protocol ends on an unfair state conditioned on someone deviating
from the protocol over all possible misbehaviors.

The fair exchange problem looks trivial when A and B are honest: they can
just exchange their items one after the other and commit to discard them if the
protocol fails. However, if timeliness is not guaranteed for the communication
channel, N can just discard the last message and the protocol becomes insecure
despite A and B being honest. We solve this here by using the synchronization
protocol.

8



3.2 Security Model: Pirates and Guardian Angels

Our model, based on the notion of “observer” introduced by Chaum and Ped-
ersen [9], considers that both participants own a security module. Contrarily to
[9] we assume that the security modules are honest. For this reason, participants
and security modules are respectively named “Pirates” and “Guardian Angels”.
We describe now the properties of these entities.

We assume that the Pirates are powerful in the sense that they are able to
communicate with all other devices and their own Guardian Angel. We require no
assumption on the computational capabilities of the Pirates, in particular Pirates
can have very different capabilities. We have no assumption at all for the inter-
Pirates communication channels. In particular they can be totally insecure. On
the other hand, the Pirate-Guardian Angel communication channel is assumed to
be fully secure: it provides confidentiality, integrity, authentication, sequentiality,
and timeliness.

Guardian Angels fulfill the following requirements: they are tamper-proof,
that is any potential attacker could not have access to the stored data or change
the Guardian Angel’s behavior. Full access stays possible, but limited to some
authorized parties, e.g. for set up. Since the cost for making a tamper-proof
device increases steadily with its capabilities, we assume that Guardian Angels
are simple and limited devices: their computational and storage ability are low.
Moreover they have a single i/o port which is connected to their own Pirate only:
they have no other information source about the outside world. In particular we
will assume that they have no notion of time but a clock signal which is provided
by the pirate. From a practical point of view, Guardian Angels should be some
smart cards.

Obviously, Guardian Angels can play the role of a distributed trusted third
party. They can establish secure channels between them, providing confidential-
ity, integrity, authentication, and sequentiality. The originality of our model is
that those channels require the cooperation of Pirates, so we cannot assume time-
liness. Hence the inter-Guardian angels communication channels can be assumed
to correspond to the model of Section 2.

3.3 Fair Exchange with Two Guardian Angels

Let us denote P the Pirates and G the Guardian Angels. In this section we focus
on the fair exchange problem between PA and PB using GA and GB . Note that
this can be adapted in a straightforward way for the exchange problem between
PA and GB or between GA and GB .

If PA and PB wish to exchange kA and kB , they ask their Guardian Angels
for assistance. Then, GA simply sends kA to GB through their secure channel,
and GB transmits kB to GA. After the exchange itself, they perform a synchro-
nization by using the KiT Protocol. Then, if the protocol succeeded GA and GB

disclose the received items to the Pirates. This protocol is illustrated on Fig. 2.
To keep our protocol easily readable, some important issues are not depicted

on Fig. 2. Firstly, we assume that the Guardian Angels have means to check

9



GA PA N PB GB
kA←−−−−−−− kB−−−−−−−→
[kA]−−−−−−−→ [kA]−−−−−−−→ [kA]−−−−−−−→
[kB ]←−−−−−−− [kB ]←−−−−−−− [kB ]←−−−−−−−

Synchronization Protocol

kB−−−−−−−→ kA←−−−−−−−

Fig. 2. Fair Exchange Protocol

that the received item is the expected one: Pirates can sent the descriptions
of the items to their Guardian Angel. Secondly, since items have an arbitrary
size and that Guardian Angels are assumed to have a limited storage facility,
we assume that the Guardian Angels forward the received item by encrypting
it on-the-fly with a freshly picked key. The key then takes place of the item in
the above protocol. Thirdly, the lack of timeliness in the synchronization should
be managed by timeouts. But since Guardian Angels are not assumed to have
internal clocks, timeouts should be yield by Pirates. Similarly, the end of the
synchronization protocol (at least for the Guardian Angel who sends the very
last message) should occur only after the Pirate yields a timeout by using the
termination side channel protection of the KiT Protocol since the Pirate can
detect his state from the behavior.

We give here the initiator’s Fair Exchange and Synchronization programs.
We assume that PA is the initiator of the exchange.

GA’s Synchronization Program

– send a random value C to GB

– while C > 0 do
• standby {wait for a message or a timeout}
• if a timeout from PA is received then the synchronization failed
• {a message from GB is received} decrement C
• if C = 0 then the synchronization succeeded
• send an message to GB and decrement C

– end while
– standby {wait for a timeout}
– the synchronization succeeded

GA’s Fair Exchange Program

– receive kA from PA

– establish a secure channel with GB through PA

– send kA to GB through the channel

10



– receive kB from GB through the channel
– check kB , if incorrect, abort
– encrypt kB with a random secret key K
– send kB encrypted with K to PA

– execute the Synchronization Protocol
– if the synchronization failed then abort
– send K to PA

PA’s Fair Exchange Program

– send kA to GA

– forward messages between GA and PB for the channels between GA and GB

– if timeout then
• send timeout signal to GA

• if receive K then decrypt kB else the protocol failed

3.4 Analysis of our Protocol

Obviously, our fair exchange protocol inherits Theorems 2 and 5 from the KiT
Protocol.

Let us assume that we have a fair exchange protocol. We describe the follow-
ing synchronization protocol between A and B: they decide to exchange some
value. If the exchange succeeds, they enter into a success state. Otherwise, they
enter into a failure state. This is obviously a synchronization protocol which
inherits his parameters from the fair exchange protocol.

4 Applying to the Mobile Ad Hoc Networks

4.1 Applications

Current Mobile Networks rely on a heavy fixed infrastructure which connects
the users through relays. Installing such an infrastructure is often either too
expensive or technically impossible and hence some areas are not reachable. Ad
Hoc Wireless Networks mitigate this problem by allowing users to route data
through intermediate nodes: the network is furthermore self-organized and rely
on any established infrastructure anymore.

In such a network, cryptographic protocols cannot use on-line Trusted Third
Party for some obvious reasons. One can think that optimistic protocol may run
properly. Besides that using off-line Trusted Third Party does not come up to
the Mobile Ad Hoc Networks requirements, we cannot assume that most of the
nodes will be honest. Indeed, the nodes have to forward the packets of the other
ones to keep alive the community, but they will try to cheat as soon as possible in
order to save their battery life since forwarding packets have a substantial cost:
nodes will become selfish. Participants will have then to require the Trusted
Third Party in each transaction. On the other hand we cannot reasonably use
Gradual Fair Exchange Protocols since no assumption have been done on the

11



computational power of the nodes: the latter could be mobile phones, but also
PDAs, laptops, etc.

Additionally, extreme case of fully self-organized networks aim at getting
rid of any central service. Our model is then fully relevant to this environment
since it achieves probabilistic fairness without Trusted Third Party, assuming
only that a secure channel between the Guardian Angels is available. Even if
economic and practical aspects are not fully designed yet, it makes sense to
imagine the following scenario. Some company builds and sells guardian angels
who becomes the virtually distributed TTP. This company (who was the net-
work provider in earlier wireless networks) simply makes community rules and
install an accounting service. Guardian Angels are responsible for community
rules enforcement and keep local accounting in their lifetime. When they ex-
pire, their successor keep track of accountings. Users can thus just buy and plug
Guardian Angels into their device in order to control fairness, security, account-
ing, services,... We can later imagine several Guardian Angels manufacturer with
specific trade exchange protocols.

As an application we can exchange an inexpensive service against a micropay-
ment with the protocol of Example 4 with p = 1

2 . The risk for both participants
is to loose small valuables, but with a probability bounded by 1

2 instead of a
probability which may be equal to 1.

4.2 Improvements

We would like to notice that, besides the exchanged messages during the syn-
chronization step are empty, the complexity of our protocol can be improved by
performing several parallelized Fair Exchanges and by factorizing the synchro-
nization steps: if A and B need to perform a new synchronization despite the
previous one is not finished, they can just merge the two KiT protocols into a
single one. If they need C1 remaining messages for the previous protocol to end
up and C2 messages for the new one to end up, they perform a protocol with
max(C1, C2) messages. The ith protocol will end up when Ci = min(C1, C2) mes-
sages will be exchanged. We have already implemented our protocol in a PDAs
network and so we have shown that our protocol is practicable [7]. This way the
synchronization protocol induces a constant overhead to serial Fair Exchange
Protocol.

Note that we can easily design a protocol which involves one Guardian Angel
instead of two. This will be detailed in the full paper version.

5 Conclusion

In this paper, we first recalled the definitions and properties related to Fair Ex-
change Problem and described the main existent ways to achieve fairness. We
introduced then the Synchronization Problem devising such a Gradual Synchro-
nization Protocol and shown that the Fair Exchange Problem can be reduced to
the Synchronization Problem in our model based on Chaum et Al.’s observer.

12



We designed in this model a Fair Exchange Protocol which provides arbitrarily
low unfairness. Our protocol does not require Trusted Third Party and does not
come up to computational power assumptions. Even if there exists a great body
of literature on Fair Exchange, our protocol is the first non-optimistic one taking
advantage of the presence of security modules. Finally, we analyzed the protocol
complexity, the probability of unfairness, but also the probability that an attack
could achieve.

We also introduced a communication network model with Pirates and Guardian
Angels. This model is well suited to Ad Hoc networks and may deserve future
research.

Acknowledgment

We are thankful to the students Jérôme Berclaz and Steve Vaquin for their
implementation of the protocol.

The work presented in this paper was supported (in part) by the National
Competence Center in Research on Mobile Information and Communication Sys-
tems (NCCR-MICS), a center supported by the Swiss National Science Founda-
tion under grant number 5005-67322.

References

1. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. Research Report RZ 2858, IBM Research Division, Zurich, Switzerland,
September 1996.

2. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for
multi-party fair exchange. Research Report RZ 2892, IBM Research Division,
Zurich, Switzerland, December 1996.

3. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. In Proceedings of 4th ACM Conference on Computer and Communica-
tions Security, pages 7–17, Zurich, Switzerland, April 1997. ACM Press.

4. N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous protocols for op-
timistic fair exchange. In Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 86–99, Oakland, California, USA, May 1998. IEEE
Computer Society Press.

5. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures. In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98,
volume 1403 of Lecture Notes in Computer Science, pages 591–606, Helsinki, Fin-
land, May 1998. Springer-Verlag.

6. Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L. Rivest. A fair proto-
col for signing contracts. IEEE Transactions on Information Theory, 36(1):40–46,
January 1990.

7. Jérôme Berclaz and Steve Vaquin. Fair exchange between iPAQs. Semester
project, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland,
http://lasecwww.epfl.ch, February 2002.

8. Ernest F. Brickell, David Chaum, Ivan B. Damg̊ard, and Jeroen van de Graaf.
Gradual and verifiable release of a secret. In Carl Pomerance, editor, Advances
in Cryptology – CRYPTO’87, volume 293 of Lecture Notes in Computer Science,

13



pages 156–166, Santa Barbara, California, USA, August 1988. IACR, Springer-
Verlag.

9. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740
of Lecture Notes in Computer Science, pages 89–105, Santa Barbara, California,
USA, August 1992. IACR, Springer-Verlag.

10. Richard Cleve. Controlled gradual disclosure schemes for random bits and their
applications. In Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89,
volume 435 of Lecture Notes in Computer Science, pages 573–588, Santa Barbara,
California, USA, August 1990. IACR, Springer-Verlag.

11. Ivan B. Damg̊ard. Practical and probably secure release of a secret and exchange of
signatures. In Tor Helleseth, editor, Advances in Cryptology – EUROCRYPT’93,
volume 765 of Lecture Notes in Computer Science, pages 200–217, Lofthus, Norway,
May 1993. IACR, Springer-Verlag.

12. Tim Dierks and Christopher Allen. The TLS protocol – version 1.0, January 1999.
13. Shimon Even and Yacov Yacobi. Relations amoung public key signature systems.

Technical Report 175, Computer Science Department, Technicon, Israel, 1980.
14. Matt Franklin and Michael K. Reiter. Fair exchange with a semi-trusted third

party. In Proceedings of the 4th ACM Conference on Computer and Communica-
tions Security, pages 1–5, Zurich, Switzerland, April 1997. ACM Press.

15. Matt Franklin and Gene Tsudik. Secure group barter: Multi-party fair exchange
with semi-trusted neutral parties. In Rafael Hirschfeld, editor, Financial Cryptog-
raphy – FC’98, volume 1465 of Lecture Notes in Computer Science, pages 90–102,
Anguilla, British West Indies, February 1998. IFCA, Springer-Verlag.

16. Felix C. Gärtner, Henning Pagnia, and Holger Vogt. Approaching a formal def-
inition of fairness in electronic commerce. In Proceedings of the International
Workshop on Electronic Commerce – WELCOM’99, pages 354–359, Lausanne,
Switzerland, October 1999. IEEE Computer Society Press.

17. Rachid Guerraoui. Revisiting the relationship between non-blocking atomic com-
mitment and consensus. In Jean-Michel Hélary and Michel Raynal, editors, Pro-
ceedings of the 9th International Workshop on Distributed Algorithms – WDAG’95,
volume 972 of Lecture Notes in Computer Science, pages 87–100, Le Mont Saint
Michel, France, September 1995. Springer-Verlag.

18. Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed sys-
tems with failure detectors. Distributed Computing, 15(1):17–25, February 2002.

19. Jean-Pierre Hubaux, Jean-Yves Le Boudec, Silvia Giordano, and Maher Hamdi.
The terminode project: Toward mobile ad-hoc wans. In Proceedings of the Sixth
IEEE International Workshop on Mobile, Multimedia Communications – Mo-
MuC’99, San-Diego, California, USA, 1999.

20. Jean-Pierre Hubaux, Thomas Gross, Jean-Yves Le Boudec, and Martin Vetterli.
Towards self-organizing mobile ad-hoc networks: the terminodes project. IEEE
Comm Mag, 39(1):118–124, January 2001.

21. Markus Jakobsson. Ripping coins for a fair exchange. In Louis C. Guillou and Jean-
Jacques Quisquater, editors, Advances in Cryptology – EUROCRYPT’95, volume
921 of Lecture Notes in Computer Science, pages 220–230, Saint Malo, France, May
1995. IACR, Springer-Verlag.

22. Steve Kremer, Olivier Markowitch, and Jianying Zhou. An intensive survey of non-
repudiation protocols. Technical Report ULB–474, Université Libre de Bruxelles,
Bruxelles, Belgium, 2001.

23. Olivier Markowitch. Les protocoles de non-répudiation. PhD thesis, University of
Bruxelles, Bruxelles, Belgium, January 2001.

14



24. Olivier Markowitch and Shahrokh Saeednia. Optimistic fair exchange with trans-
parent signature recovery. In Financial Cryptography – FC’01, Lecture Notes in
Computer Science, Cayman Islands, February 2001. IFCA, Springer-Verlag.

25. Tatsuaki Okamoto and Kazuo Ohta. How to simultaneously exchange secrets by
general assumptions. In Proceedings of the 2nd ACM Conference on Computer and
Communications Security, pages 184–192, Fairfax, Virginia, USA, November 1994.
ACM Press.

26. Henning Pagnia, Holger Vogt, and Felix C. Gärtner. Fair exchange. The computer
Journal, 46(1):55–75, January 2003.

27. Michael O. Rabin. Transaction protection by beacons. Journal of Computer and
System Science, 27(2):256–267, October 1883.

28. Indrakshi Ray and Indrajit Ray. An optimistic fair exchange e-commerce protocol
with automated dispute resolution. In Kurt Bauknecht, Sanjay Kumar Madria, and
Günther Pernul, editors, Electronic Commerce and Web Technologies – EC-Web
2000, volume 1875 of Lecture Notes in Computer Science, pages 84–93, London,
United Kingdom, September 2000. DEXA Association, Springer-Verlag.

29. Matthias Schunter. Optimistic Fair Exchange. PhD thesis, University of Saarlan-
des, Saarbruken, Germany, October 2000.

30. Paul Syverson. Weakly secret bit commitment: Applications to lotteries and fair
exchange. In Proceedings of the 11th Computer Security Foundations Workshop
– PCSFW, pages 2–13, Rockport, Massachusetts, USA, June 1998. IEEE, IEEE
Computer Society Press.

31. Tom Tedrick. How to exchange half a bit. In David Chaum, editor, Advances in
Cryptology – CRYPTO’83, pages 147–151. Plenum Press, August 1983.

32. Tom Tedrick. Fair exchange of secrets. In George Robert Blakley and David
Chaum, editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lecture
Notes in Computer Science, pages 434–438, Santa Barbara, California, USA, Au-
gust 1985. IACR, Springer-Verlag.

33. Holger Vogt. Asynchronous optimistic fair exchange based on revocable items.
In Rebecca N. Wright, editor, Financial Cryptography – FC’03, volume 2742 of
Lecture Notes in Computer Science, Le Gosier, Guadeloupe, French West Indies,
January 2003. IFCA, Springer-Verlag.

34. Holger Vogt, Felix C. Gärtner, and Henning Pagnia. Supporting fair exchange in
mobile environments. Journal on Mobile Networks and Applications, 8(2):127–136,
April 2003.

35. Holger Vogt, Henning Pagnia, and Felix C. Gärtner. Using smart cards for fair
exchange. In L. Fiege, G. Mühl, and U. Wilhelm, editors, Proceedings of 2nd In-
ternational Workshop on Electronic Commerce – WELCOM 2001, volume 2232 of
Lecture Notes in Computer Science, pages 101–113, Heidelberg, Germany, Novem-
ber 2001. Springer-Verlag.

36. Jianying Zhou, Robert Deng, and Feng Bao. Evolution of fair non repudiation
with TTP. In Josef Pieprzyk, Reihaneh Safavi-Naini, and Jennifer Seberry, edi-
tors, Proceedings of Fourth Australasian Conference on Information Security and
Privacy – ACISP 1999, volume 1587 of Lecture Notes in Computer Science, pages
258–269, Wollongong, Australia, April 1999. Springer-Verlag.

37. Jianying Zhou, Robert Deng, and Feng Bao. Some remarks on a fair exchange
protocol. In Hideki Imai and Yuliang Zheng, editors, Proceedings of Third In-
ternational Workshop on Practice and Theory in Public Key Cryptography – PKC
2000, volume 1751 of Lecture Notes in Computer Science, pages 46–57, Melbourne,
Australia, January 2000. Springer-Verlag.

15


