
Time-Memory Trade-Offs:

False Alarm Detection Using Checkpoints

(Extended Version?)

Gildas Avoine1, Pascal Junod2, and Philippe Oechslin1,3

1 EPFL, Lausanne, Switzerland
2 Nagravision SA (Kudelski Group), Switzerland

3 Objectif Sécurité, Gland, Switzerland

Technical Report LASEC-REPORT-2005-002, September 2005

Swiss Federal Institute of Technology in Lausanne

School of Computer and Cmmunication Sciences

EPFL - I&C - ISC - LASEC

Station 14 - Building INF

CH-1015 Lausanne, Switzerland

Abstract. Since the original publication of Martin Hellman’s cryptanalytic time-memory trade-
off, a few improvements on the method have been suggested. In all these variants, the cryptanalysis
time decreases with the square of the available memory. However, a large amount of work is wasted
during the cryptanalysis process due to so-called “false alarms”. In this paper we present a method
of detection of false alarms which can significantly reduce the cryptanalysis time while using a
minute amount of memory. Our method, based on “checkpoints”, can reduce the time by much
more than the square of the additional memory used, e.g., an increase of 0.89% of memory yields a
10.99% increase in performance. Even if our optimization is bounded, the gain in time per memory
used is radically more important than in any existing variant of the trade-off. Beyond this practical
improvement, checkpoints constitute a novel approach which has not yet been exploited and may
lead to other interesting results. In this paper, we also present theoretical analysis of time-memory
trade-offs, and give a complete characterization of the variant based on rainbow tables. This is
the first time an exact expression is given for a variant of the trade-off and that the time-memory
relationship can actually be plotted.

Key words: time-memory trade-off, cryptanalysis, precomputation

1 Introduction

Many cryptanalytic problems can be solved in theory using an exhaustive search in the key space, but
are still hard to solve in practice because each new instance of the problem requires to restart the process
from scratch. The basic idea of a time-memory trade-off is to carry out an exhaustive search once for all
such that following instances of the problem become easier to solve. Thus, if there are N possible solutions
to a given problem, a time-memory trade-off can solve it with T units of time and M units of memory.
In the methods we are looking at T is proportional to N2/M2 and a typical setting is T = M = N2/3.

The cryptanalytic time-memory trade-off has been introduced in 1980 by Hellman [9] and applied to
DES. Given a plaintext P and a ciphertext C, the problem consists in recovering the key K such that
C = SK(P) where S is an encryption function assumed to follow the behavior of a random function.
Encrypting P under all possible keys and storing each corresponding ciphertext allows for immediate
cryptanalysis but needs N elements of memory. The idea of a trade-off is to use chains of keys. It is
? This technical report is the extended version of a paper [2] that will appear in the proceedings of Indocrypt

2005, LNCS, Springer-Verlag, December 2005.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

achieved thanks to a reduction function R which generates a key from a ciphertext. Using S and R,
chains of alternating ciphertexts and keys can thus be generated. The key point is that only the first
and the last element of each chain are stored. In order to retrieve K, a chain is generated from C. If at
some point it yields a stored end of chain, then the entire chain is regenerated from its starting point.
However, finding a matching end of chain does not necessarily imply that the key will be found in the
regenerated chain. There exist situations where the chain that has been generated from C merges with
a chain that is stored in the memory which does not contains K. This situation is called a false alarm.
Matsumoto, with Kusuda [11] in 1996 and with Kim [10] in 1999, gave a more precise analysis of the
parameters of the trade-off. In 1991, Fiat and Naor [7, 8] showed that there exist cryptographically sound
one-way functions that cannot be inverted with such a trade-off.

Since the original work of Hellman, several improvements have been proposed. In 1982, Rivest [6]
suggested an optimization based on distinguished points (DP) which greatly reduces the amount of look-
up operations which are needed to detect a matching end point in the table. Distinguished points are
keys (or ciphertexts) that satisfy a given criterion, e.g., the last n bits are all zero. In this variant, chains
are not generated with a given length but they stop at the first occurrence of a distinguished point.
This greatly simplifies the cryptanalysis. Indeed, instead of looking up in the table each time a key is
generated on the chain from C, keys are generated until a distinguished point is found and only then
a look-up is carried out in the table. If the average length of the chains is t, this optimization reduces
the amount of look-ups by a factor t. Because merging chains significantly degrades the efficiency of
the trade-off, Borst, Preneel, and Vandewalle [5] suggested in 1998 to clean the tables by discarding
the merging and cycling chains. This new kind of tables, called perfect table, substantially decreases
the required memory. Later, Standaert, Rouvroy, Quisquater, and Legat [15] dealt with a more realistic
analysis of distinguished points and also proposed an FPGA implementation applied to DES with 40-bit
keys. Distinguished points can also be used to detect collisions when a function is iterated, as proposed
by Quisquater and Delescaille [14], and van Oorschot and Wiener [16].

In 2003, Oechslin [13] introduced the trade-off based on rainbow tables and demonstrated the efficiency
of his technique by recovering Windows passwords. A rainbow table uses a different reduction function
for each column of the table. Thus two different chains can merge only if they have the same key at the
same position of the chain. This makes it possible to generate much larger tables. Actually, a rainbow
table acts almost as if each column of the table was a separate single classic4 table. Indeed, collisions
within a classic table (or a column of a rainbow table) lead to merges whereas collisions between different
classic tables (or different columns of a rainbow table) do not lead to a merge. This analogy can be used
to demonstrate that a rainbow table of mt chains of length t has the same success rate as t single classic
tables of m chains of length t. As the trade-off based on distinguished point, rainbow tables reduce the
amount of look-ups by a factor of t, compared to the classic trade-off. Up until now, trade-off techniques
based on rainbow tables are the most efficient ones. Recently, an FPGA implementation of rainbow
tables has been proposed by Mentens, Batina, Preneel, and Verbauwhede [12] in order to retrieve Unix
passwords.

Whether it is the classic Hellman trade-off, the distinguished points or the rainbow tables, they all
suffer from a significant quantity of false alarms. Contrarily to what is claimed in the original Hellman
paper, false alarms may increase the time complexity of the cryptanalysis by more than 50%. We will
explain this point below. In this paper, we propose a technique whose goal is to reduce the time spent to
detect false alarms. It works with the classic trade-off, with distinguished points, and with rainbow tables.
Such an improvement is especially pertinent in practical cryptanalysis, where time-memory trade-offs are
generally used to avoid to repeat an exhaustive search many times. For example, when several passwords
must be cracked [13], each of them should not take more than a few seconds. In [3, 1], the rainbow tables
are used to speed up the search process in a special database. In such a commercial application, time is
money, and therefore any improvement of time-memory trade-off also.

In Section 2, we give a rough idea of our technique based on checkpoints. We provide in Section 3
a detailed and formal analysis of the rainbow tables. These new results allow to better understand
the rainbow tables and to formally compute the probability of success, the computation time, and the
optimal size of the tables. Based on this analysis we can describe and evaluate our checkpoint technique in
detail. We illustrate our method by cracking Windows passwords based on DES, as proposed by Oechslin
at Crypto’03. In Section 4, we show how a trade-off can be characterized in general. This leads to the

4 By classic we mean the tables as described in the original Hellman paper.

2

comparison of the three existing variants of trade-off. Finally, we give in Section 5 several implementation
tips which significantly improve the trade-off in practice.

2 Checkpoint Primer

2.1 False Alarms

When the precalculation phase is achieved, a table containing m starting points S1, . . . , Sm and m end
points E1, . . . , Em is stored in memory. This table can be regenerated by iterating the function f , defined
by f(K) := R(SK(P)), on the starting points. Given a row j, let Xj,i+1 := f(Xj,i) be the i-th iteration
of f on Sj and Ej := Xj,t. We have:

S1 = X1,1
f→ X1,2

f→ X1,3
f→ . . .

f→ X1,t = E1

S2 = X2,1
f→ X2,2

f→ X2,3
f→ . . .

f→ X2,t = E2

...
...

Sm = Xm,1
f→ Xm,2

f→ Xm,3
f→ . . .

f→ Xm,t = Em

In order to increase the probability of success, i.e., the probability that K appears in the stored values,
several tables with different reduction functions are generated.

Given a ciphertext C = SK(P), the on-line phase of the cryptanalysis works as follows: R is applied
on C in order to obtain a key Y1, and then the function f is iterated on Y1 until matching any Ej . Let
s be the length of the generated chain from Y1:

C
R→ Y1

f→ Y2
f→ . . .

f→ Ys

Then the chain ending with Ej is regenerated from Sj until yielding the expected key K. Unfortunately
K is not in the explored chain in most of the cases. Such a case occurs when R collides: the chain
generated from Y1 merged with the chain regenerated from Sj after the column where Y1 is. That is a
false alarm, which requires (t− s) encryptions to be detected.

Hellman [9] points out that the expected computation due to false alarms increases the expected
computation by at most 50 percent. This reasoning relies on the fact that, for any i, f i(Y1) is computed
by iterating f i times. However f i(Y1) should be computed from Yi because f i(Y1) = f(Yi). In this
case, the computation time required to reach a chain’s end is significantly reduced on average while the
computation time required to rule out false alarms stays the same. Therefore, false alarms can increase
by more than 50 percent the expected computation. For example, formulas given in Section 3 allow
to determine the computation wasted during the recovering of Windows passwords [13]: false alarms
increase by 125% the expected computation.

2.2 Ruling Out False Alarms Using Checkpoints

Our idea consists in defining a set of positions αi in the chains to be checkpoints. We calculate the value
of a given function G for each checkpoint of each chain j and store these G(Xj,αi) with the end of each
chain Xj,t. During the on-line phase, when we generate Y1, Y2, . . . , Ys, we also calculate the values for G
at each checkpoint, yielding the values G(Yαi+s−t) . If Ys matches the end of a chain that we have stored,
we compare the values of G for each checkpoint that the chain Y has gone through with the values stored
in the table. If they differ at least for one checkpoint we know for certain that this is a false alarm. If
they are identical, we cannot determine if a false alarm will occur without regenerating the chain.

In order to be efficient, G should be easily computable and the storage of its output should require
few bits. Below, we consider the function G such that G(X) simply outputs the less significant bit of X.
Thus we have:

Pr{G(Xj,α) 6= G(Yα+s−t) | Xj,α 6= Yα+s−t} =
1
2

(
1− 1

2|K|

)
≈ 1

2
.

The case Xj,α 6= Yα+s−t occurs when the merge appears after the column α (Fig 1). The case Xj,α =
Yα+s−t occurs when either K appears in the regenerated chain or the merge occurs before the column α
(Fig. 2).

In the next section we will analyze the performances of perfect rainbow tables in detail. Then, we will
introduce the checkpoint concept in rainbow tables and analyze both theoretical and practical results.

3

EjSj

Y1

Ys

Yα+s−t

Xj,α

checkpoint

Fig. 1. False alarm detected with probability 1/2

EjSj

Y1

Ys

Xj,α

checkpoint

Yα+s−t

Fig. 2. False alarm not detected

3 Perfect Rainbow Tables and Checkpoints

3.1 Perfect Tables

The key to an efficient trade-off is to ensure that the available memory is used most efficiently. Thus we
want to avoid the use of memory to store chains that contain elements which are already part of other
chains. To do so, we first generate more chains than we actually need. Then we search for merges and
remove chains until there are no merges. The resulting tables are called perfect tables. They have been
introduced by [5] and analyzed by [15]. Creating perfect rainbow and DP tables is easy since merging
chains can be recognized by their identical end points. Since end points need to be sorted to facilitate the
look-ups, identifying the merges comes for free. Classic chains do not have this advantage. Every single
element of every classic chain that is generated has to be looked up in all elements of all chains of the
same table. This requires mt` look-ups in total where ` is the number of stored tables. A more efficient
method of generating perfect classic tables is described in Appendix D.

Perfect classic and DP tables are made of unique elements. In perfect rainbow tables, no element
appears twice in any given column, but it may appear more than once across different columns. This
is consistent with the view that each column of a rainbow table acts like a single classic table. In all
variants of the trade-off, there is a limit to the size of the perfect tables that can be generated. The
brute-force way of finding the maximum number of chains of given length t that will not merge is to
generate a chain from each of the N possible keys and remove the merges.

In the following sections, we will consider perfect tables only.

3.2 Optimal Configuration

From [13], we know that the success rate of a single un-perfect rainbow table is 1−∏t
i=1

(
1− mi

N

)
where

mi is the number of different keys in column i. With perfect rainbow tables, we have mi = m for all i
s.t. 1 ≤ i ≤ t. The success rate of a single perfect rainbow table is therefore

Prainbow = 1−
(
1− m

N

)t

. (1)

The fastest cryptanalysis time is reached by using the largest possible perfect tables. This reduces
the amount of duplicate information stored in the table and reduces the number of tables that have to
be searched. For a given chain length t, the maximum number mmax(t) of rainbow chains that can be
generated without merges is obtained (see [13]) by calculating the number of independent elements at
column t if we start with N elements in the first column. Thus we have

mmax(t) = mt where m1 = N and mn+1 = N
(
1− e−

mn
N

)
where 0 < n < t.

For non small t we can find a closed form for mmax (see Appendix A):

mmax(t) ≈ 2N

t + 2
.

From (1), we deduce the probability of success of a single perfect rainbow table having mmax chains:

Pmax
rainbow = 1−

(
1− mmax

N

)t

≈ 1− e−t mmax
N ≈ 1− e−2 ≈ 86%.

4

Interestingly, for any N and for t not small, this probability tends toward a constant value. Thus the
smallest number of tables needed for a trade-off only depends on the desired success rate P . This makes
the selection of optimal parameters very easy (see Appendix B):

` =
⌈− ln(1− P)

2

⌉
, m =

M

`
, and t =

ln(1− P)
ln(1− M

`N)`
≈ −N

M
ln(1− P).

3.3 Performance of the Trade-Off

Having defined the optimal configuration of the trade-off, we now calculate the exact amount of work
required during the on-line phase. The simplicity of rainbow tables makes it possible to include the work
due to false alarms both for the average and the worst case.

Cryptanalysis with a set of rainbow tables is done by searching for the key in the last column of each
table and then searching sequentially through previous columns of all tables. There are thus a maximum
of `t searches. We calculate the expectation of the cryptanalysis effort by calculating the probability of
success and the amount of work for each search k. When searching a key at position c of a table, the
amount of work to generate a chain that goes to the end of the table is t− c. The additional amount of
work due to a possible false alarm is c since the chain has to be regenerated from the start to c in order
to rule out the false alarm. The probability of success in the search k is given below:

pk =
m

N

(
1− m

N

)k−1

. (2)

We now compute the probability of a false alarm during the search k. When we generate a chain from
a given ciphertext and look-up the end of the chain in the table, we can either not find a matching end,
find the end of the correct chain or find an end that leads to a false alarm. Thus we can write that the
probability of a false alarm is equal to one minus the probability of actually finding the key minus the
probability of finding no end point. The probability of not finding an end point is the probability that
all points that we generate are not part of the chains that lead into the end points. At column i, these
are the mi chains that we used to build the table. The probability of a false alarm at search k (i.e., in
column c = t− bk

` c) is thus the following:

qc = 1− m

N
−

i=t∏

i=c

(
1− mi

N

)
(3)

where c = t − ⌊
k
`

⌋
, mt = m, and mi−1 = −N ln(1 − mi

N). When the tables have exactly the maximum
number of chains mmax we find a short closed form for qc (see Appendix C):

qc = 1− m

N
− c(c + 1)

(t + 1)(t + 2)
. (4)

The average cryptanalysis time is thus:

T =
k=`t∑
k=1

c=t−b k
`
c

pk (W (t− c− 1) + Q(c)) ` + (1− m

N
)`t (W (t) + Q(1)) ` (5)

where

W (x) =
i=x∑

i=1

i and Q(x) =
i=t∑

i=x

qii.

The second term of (5) is the work that is being carried out every time no key is found in the table while
the first term corresponds to the work that is being carried out during the search k. W represents the
work needed to generate a chain until matching a end point. Q represents the work to rule out a false

5

alarm. We can rewrite (5) as follows:

T =
k=`t∑
k=1

c=t−b k
`
c

pk

(
i=t−c−1∑

i=1

i +
i=t∑

i=c

qii

)
` + (1− m

N
)`t

(
i=t∑

i=1

i +
i=t∑

i=1

qii

)
`

=
k=`t∑
k=1

c=t−b k
`
c

pk

(
(t− c)(t− c− 1)

2
+

i=t∑

i=c

qii

)
` + (1− m

N
)`t

(
t(t− 1)

2
+

i=t∑

i=1

qii

)
` (6)

We have run a few experiments to illustrate T . The results are given in Table 1.

N = 8.06× 1010, t = 10000, m = 15408697, ` = 4 theory measured over 1000
experiments

encryptions (average) 1.55× 107 1.66× 107

encryptions (worst case) 2.97× 107 2.96× 108

number of false alarms (average) 1140 1233

number of false alarms (worst case) 26048 26026

Table 1. Calculated and measured performance of rainbow tables

3.4 Checkpoints in Rainbow Tables

From results of Section 3.3, we establish below the gain brought by the checkpoints. We firstly consider
only one checkpoint α. Let Y1 . . . Ys be a chain generated from a given ciphertext C. From (3), we know
that the probability that Y1 . . . Ys merges with a stored chain is qt−s. The expected work due to a false
alarm is therefore qt−s(t− s).

We now compute the probability that the checkpoint detects the false alarm. If the merge occurs
before the checkpoint (Fig. 2) then the false alarm cannot be detected. If the chain is long enough, i.e.,
α+s > t, the merge occurs after the checkpoint (Fig. 1) with probability qα. In this case, the false alarm
is detected with probability Pr{G(Xj,α) 6= G(Yα+s−t) | Xj,α 6= Yα+s−t}.

We define gα(s) as follows:

gα(s) =





0 if there is no checkpoint in column α,

0 if (α + s) ≤ t, i.e. the chain generated from Y1 does not reach column α,

Pr{G(Xj,α) 6= G(Yα+s−t) | Xj,α 6= Yα+s−t} otherwise.

We can now rewrite Q(x):

Q(x) =
i=t∑

i=x

i (qi − qα · gα(t− i)) .

We applied our checkpoint technique with N = 8.06× 1010, t = 10000, m = 15408697, ` = 4 and G
as defined in Section 2.2. Both theoretical and experimental results are plotted on Fig. 3.

We can generalize to t checkpoints. We can rewrite Q(x) as follows:

Q(x) =
i=t∑

i=x

i


qi − qi · gi(t− i)−

j=t∑

j=i+1

(
qj · gj(t− j)

k=j−1∏

k=i

(1− gk(t− k))

)
 .

We now define memory cost and time gain. Let M , T , N and M ′, T ′, N ′ be the parameters of two
trade-offs respectively. We define σM and σT as follows:

M ′ = σM ·M and T ′ = σT · T.

6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2000 4000 6000 8000 10000

ga
in

position of the checkpoint

theory

experiment

Fig. 3. Theoretical and experimental gain when one checkpoint is used

The memory cost of the second trade-off over the first one is straightforwardly defined by

(σM − 1) =
M ′

M
− 1

and the time gain is

(1− σT) = 1− T ′

T
.

When a trade-off stores more chains, it implies a memory cost. Given that T ∝ N2/M2 the time gain is:

(1− T ′

T
) = 1− 1

σ2
M

.

Instead of storing additional chains, the memory cost can be used to store checkpoints. Thus, given a
memory cost, we can compare the time gains when the additional memory is used to store chains and
when it is used to store checkpoints. Numerical results are given in Table 2.

Number of checkpoints 1 2 3 4 5 6

Cost (memory) 0.89% 1.78% 2.67% 3.57% 4.46% 5.35%

Gain (time) storing chains 1.76% 3.47% 5.14% 6.77% 8.36% 9.91%

Gain (time) storing checkpoints 10.99% 18.03% 23.01% 26.76% 29.70% 32.04%

Optimal checkpoints 8935

± 5

8565
9220

± 5

8265
8915
9370

± 5

8015
8655
9115
9470

± 5

7800
8450
8900
9250
9550

± 50

7600
8200
8700
9000
9300
9600

± 100

Table 2. Cost and gain of using checkpoint in password cracking, with N = 8.06×1010, t = 10000, m = 15408697,
and ` = 4

The numerical results are amazing. An additional 0.89% of memory saves about 10.99% of crypt-
analysis time. This is six times more than the 1.76% of gain that would be obtained by using the same
amount of memory to store additional chains. Our checkpoints thus perform much better than the basic
trade-off. As we add more and more checkpoints, the gain per checkpoint decreases. In our example it

7

is well worth to use 6 bits of checkpoint values (5.35% of additional memory) per chain to obtain a gain
of 32.04%. The 0.89% of memory per checkpoint are calculated by assuming that the start and the end
of the chains are stored in 56 bits each, as our example uses DES keys. As we explain in Section 5 the
amount of bits used to store chain can be optimized and reduced to 49 bits in our example. In this case
a bit of checkpoint data adds 2% of memory and it is still well worth using three checkpoints of one bit
each to save 23% of work.

4 Characterization and Comparison of Trade-Offs

In this section we give a generic way of characterizing the different variants of the trade-off. We calculate
the characteristic of rainbow tables exactly and compare it to measured characteristics of other variants.

4.1 Time-Memory Graphs

Knowing how to calculate the success rate and the number of operations needed to invert a function,
we can now set out to plot the time-memory graphs. In order to do so, we fix a given success rate and
for each memory size we find the table configuration that yields the fastest trade-off and plot the time
that it takes. The graphs show that cryptanalysis time decreases with the square of the memory size,

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

T
/N

M/N

10%
20%
50%
86%
90%
99%

99.9%

Fig. 4. Time-Memory graphs for rainbow tables, with various success rates. For Prainbow = 86% the graph follows
exactly T = N2/M2

independently of the success rate. We can thus write the time-memory relation as

T =
N2

M2
γ(P) (7)

where γ(P) is a factor that depends only on the success probability. It is interesting to note that for
P = 86% which is the the maximum success probability of a single rainbow table, the factor is equal
to 1. In that case we find the typical trade-off which was already described by Hellman, namely that
M = T = N

2
3 .

Note that this simple expression of the trade-off performance was not possible for the previous vari-
ants. In those cases, calculations were always based on non-perfect tables, on the worst case (the key is
not found in any table) and ignoring the amount of work due to false alarms. Optimizations have been
proposed with these limitations, but to our knowledge the actual average amount of work, including
false alarms has never been used to find optimal parameter. Our simple formula allows for a very simple
calculation of the optimal parameters when any two of the success rate, the inversion time or the memory
are given.

8

4.2 The Time-Memory Characteristic

The previous section confirms that rainbow tables follow the same T ∝ N2/M2 relation as other variants
of the trade-off. Still, they seem to perform better. We thus need a criterion to compare the trade-offs.
We propose to use γ(P) as the trade-off characteristic. The evolution of γ over a range of P shows how
a variant is better than another. Figure 5 shows a plot of γ(P) for rainbow tables:

0

2

4

6

8

10

12

0.00010.0010.010.11

f(
p)

1-P

rainbow

Fig. 5. The Time-Memory characteristic of rainbow tables. Steps happen every time an additional table has to
be used to achieve the given success probability

In the following sections, we compare the performance of rainbow tables with the performance of
classic tables and DP tables. DP tables are much harder to analyze because of the variable length of the
chains. We will thus concentrate on classic tables first.

4.3 Classic and DP Tables

The trade-off using classic or DP tables can also be characterized using the γ factor. Indeed both trade-
offs follow the T ∝ N2/M2 relation in a large part of the parameter space up to a factor which depends
of the success rate and the type of trade-off. We have first devised a strategy to generate the largest
possible perfect tables for each variant of the trade-off and have then used as many tables as necessary
to reach a given success rate. The details of this work and the resulting time-memory graphs are given
in the appendix. In Figure 6 we show the evolution of the trade-off characteristic of classic tables and of
DP tables.

0

2

4

6

8

10

12

14

0.00010.0010.010.11

f(
p)

1-P

rainbow
classic

dp

Fig. 6. The Time-Memory characteristics of rainbow, classic and DP tables compared.

9

The experiments and analysis show that rainbow tables outperform classic tables and DP tables for
success rates above 80%. Below this limit, perfect classic tables are slightly better than perfect rainbow
tables in terms of hash operations needed for cryptanalysis. However, the price of using classic tables
is that they need t times more table look-ups. Since these do not come for free in most architectures
(content addressable memory could be an exception), rainbow tables seem to be the best option in any
case.

5 Implementation Tips

For the sake of completeness we want to add some short remarks on the optimized implementation of
the trade-offs. Indeed, an optimized implementation can yield performance gains almost as important as
the algorithmic optimizations. We limit our tips to the implementation of rainbow tables.

5.1 Storing the Chain End Points

The number of operations of the trade-off decreases with the square of the available memory. Since
available memory is measured in bytes and not in number of chains, it is important to choose an efficient
format for storing the chains. A first issue is whether to use inputs or outputs of the function to be
inverted (keys or ciphertexts) as beginning and end of chains. In practice the keys are usually smaller
than the ciphertexts. It is thus more efficient to store keys (the key at the end of the chain has no real
function but the extra reduction needed to generate it from the last ciphertext is well worth the saved
memory). A second and more important issue is that we can take advantage of the way the tables are
organized. Indeed a table consists of pairs of beginnings and ends of chains. To facilitate look-ups the
chains are sorted by increasing values of the chain ends. Since the ends are sorted, successive ends often
have an identical prefix. As suggested in [4] we can thus remove a certain length of prefix and replace it
by an index table that indicates where every prefix starts in the table.

In our Windows password example, there are about 237 keys of 56 bits. Instead of storing the 56
bits, we store a 37 bit index. From this index we take 21 bits as prefix and store only the last 16 bits in
memory. We also store a table with 221 entries that point to the corresponding suffixes for each possible
prefix.

5.2 Storing the Chain Starting Points

The set of keys used for generating all the chains is usually smaller that the total set of keys. Since
rainbow tables allow us to choose the starting points at will, we can use keys with increasing value of
their index. In our example we used about 300 million starting points. This value can be expressed in 29
bits, so we only need to store the 29 lower bits of the index. The total amount of memory needed to store
a chain is thus 29 + 16 bits for the start and the end. The table that relates the prefixes to the suffixes
incurs about 3.5 bits per chain. Altogether we thus need 49 bits per chain. A simple implementation that
stores the full 56 bits of the start and end chain would need 2.25 times more memory and be 5 times
slower.

5.3 Storing the Checkpoints

For reasons of efficiency of memory access it may in some implementations be more efficient to store the
start and the end of a chain (that is, its suffix) in multiples of 8 bits. If the size of some parameters
does not exactly match the size of the memory units, the spare bits can be used to store checkpoints for
free. In our case, the 29 bits of the chain start are stored in a 32 bit word, leaving 3 bits available for
checkpoints.

6 Conclusion

We have introduced a new optimization for cryptanalytic time-memory trade-offs which performs much
better than the usual T ∝ N2/M2. Our method works by reducing the work due to false alarms. Since

10

this work is only a part of the total work our method can not reduce the work indefinitely. Besides
having better performance, checkpoints can be generated almost for free while generating the trade-off
tables. There is thus no indication for not using checkpoints and we conjecture that they will be used
in many future implementations of the trade-off. Also, checkpoints are a new concept in time-memory
trade-offs and they may lead to further optimizations and applications. In order to analyze the gain due
to checkpoints we have presented a complete analysis of the rainbow tables. Using this analysis we are
able to predict the gain that can be achieved with checkpoints. Finally we have also presented a simple
way of comparing the existing variants of the trade-off with a so-called trade-off characteristic. We have
calculated this characteristic for rainbow tables and measured it for the other variants. The results show
that rainbow tables outperform the other variants in all cases except when table look-ups are free and
the success probability is below 80%. The fact that the cryptanalysis time decreases with the square
of the number of elements stored in memory indicates that it is very important to reduce the memory
usage. This is why we have shared our tips on how this can be achieved in practice.

11

References

1. Gildas Avoine, Etienne Dysli, and Philippe Oechslin. Reducing time complexity in RFID systems. In Bart
Preneel and Stafford Tavares, editors, Selected Areas in Cryptography – SAC 2005, Lecture Notes in Computer
Science, Kingston, Canada, August 2005. Springer-Verlag.

2. Gildas Avoine, Pascal Junod, and Philippe Oechslin. Time-memory trade-offs: False alarms detection using
checkpoints. In Progress in Cryptology – Indocrypt 2005, Lecture Notes in Computer Science, Bangalore,
India, December 2005. Cryptology Research Society of India, Springer-Verlag.

3. Gildas Avoine and Philippe Oechslin. A scalable and provably secure hash based RFID protocol. In In-
ternational Workshop on Pervasive Computing and Communication Security – PerSec 2005, pages 110–114,
Kauai Island, Hawaii, USA, March 2005. IEEE, IEEE Computer Society Press.

4. Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a PC. In Bruce Schneier,
editor, Fast Software Encryption – FSE’00, volume 1978 of Lecture Notes in Computer Science, pages 1–18,
New York, USA, April 2000. Springer-Verlag.

5. Johan Borst, Bart Preneel, and Joos Vandewalle. On the time-memory tradeoff between exhaustive key
search and table precomputation. In Peter de With and Mihaela van der Schaar-Mitrea, editors, Symposium
on Information Theory in the Benelux, pages 111–118, Veldhoven, The Netherlands, May 1998.

6. Dorothy Denning. Cryptography and Data Security, page 100. Addison-Wesley, Boston, Massachusetts, USA,
June 1982.

7. Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. In ACM Symposium on
Theory of Computing – STOC’91, pages 534–541, New Orleans, Louisiana, USA, May 1991. ACM, ACM
Press.

8. Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. SIAM Journal on Com-
puting, 29(3):790–803, December 1999.

9. Martin Hellman. A cryptanalytic time-memory trade off. IEEE Transactions on Information Theory, IT-
26(4):401–406, July 1980.

10. Iljun Kim and Tsutomu Matsumoto. Achieving higher success probability in time-memory trade-off crypt-
analysis without increasing memory size. IEICE Transactions on Communications/Electronics/Information
and Systems, E82-A(1):123–, January 1999.

11. Koji Kusuda and Tsutomu Matsumoto. Optimization of time-memory trade-off cryptanalysis and its ap-
plication to DES, FEAL-32, and Skipjack. IEICE Transactions on Fundamentals, E79-A(1):35–48, January
1996.

12. Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. Cracking Unix passwords using FPGA
platforms. SHARCS - Special Purpose Hardware for Attacking Cryptographic Systems, February 2005.

13. Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Dan Boneh, editor, Advances
in Cryptology – CRYPTO’03, volume 2729 of Lecture Notes in Computer Science, pages 617–630, Santa
Barbara, California, USA, August 2003. IACR, Springer-Verlag.

14. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search? Application to DES (ex-
tended summary). In Jean-Jacques Quisquater and Vandewalle Joos, editors, Advances in Cryptology –
EUROCRYPT’89, volume 434 of Lecture Notes in Computer Science, pages 429–434, Houthalen, Belgium,
April 1989. IACR, Springer-Verlag.

15. François-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, and Jean-Didier Legat. A time-memory
tradeoff using distinguished points: New analysis & FPGA results. In Burton Kaliski, Çetin Kaya Koç, and
Christof Paar, editors, Workshop on Cryptographic Hardware and Embedded Systems – CHES 2002, volume
2523 of Lecture Notes in Computer Science, pages 593–609, Redwood Shores, California, USA, August 2002.
Springer-Verlag.

16. Michael Wiener and Paul van Oorschot. Parallel collision search with cryptanalytic applications. Journal of
Cryptology, 12(1):1–28, March 1999.

Appendix A

A closed form of the maximum number of perfect chains of length t in a rainbow table (Equation 3.2)
can found by approximating the recurrence relation

mn+1 = N
(
1− e−

mn
N

)
.

Using the Taylor approximation of the exponential we get

mn+1 ≈ N

(
mn

N
− m2

n

2N2

)
= mn − m2

n

2N

12

which is accurate for small m or non small n. We can transform this expression into a differential equation

dmn

dn
= − m2

n

2N2
.

The solution to this equation is

mn =
2N

n2 + c
.

We get the maximum number of chains of length t by starting with m0 equal to N and looking for mt.
When m0 is N we get c = 2 thus we find that

mmax(t) =
2N

t + 2
. (8)

If we would rather generate less then mmax chains in order to considerably reduce the effort of creating
the table, we can choose m0 smaller than N . In that case we have

m(t,m0) =
m0

1 + t
2N

.

Appendix B

We want to find ` such that the probability of success of the trade-off is at least P :

P ≥ 1− (1− Pmax
rainbow)` (9)

where ` is the number of tables and Prainbow is the probability to find an expected key in a given table.
From (9), we have

(1− P) ≤ (1− Pmax
rainbow)` ≈ (e−t mmax

N)`.

Thus
−N

tmmax
ln(1− P) ≤ `. (10)

From (8) and (10), we obtain

` =
⌈− ln(1− P)

2

⌉
.

Appendix C

The probability qc of false alarms in rainbow tables when searching from column c can be rewritten in
a compact closed form if the table has the maximum number of chains. From Equation 3 we have that

qc = 1− m

N
−

i=t∏

i=c

(
1− mi

N

)
.

When the table uses the maximum number of chains, the term mi can be replaced by mmax(i) from (8).
We get

i=t∏

i=c

(
1− mmax(i)

N

)
=

i=t∏

i=c

(
1− 2N

i + 2
1
N

)
=

i=t∏

i=c

(
i

i + 2

)
=

c(c + 1)
(t + 1)(t + 2)

which yields

qc = 1− m

N
− c(c + 1)

(t + 1)(t + 2)
.

13

Appendix D

In this section we evaluate the characteristics of the trade-off for classic and DP tables in their optimal
configuration, that is when using perfect tables of the largest possible size.

The use of perfect classic tables has never been studied in the literature, since the idea of using perfect
tables appeared after the idea of using distinguished points. Classic tables that are not perfect have been
studied extensively in [10] and [11]. Perfect classic tables are more complex to generate than perfect DP
or perfect rainbow tables, since merges can not simply be detected by identical endpoints as with DP or
rainbow tables.

We only compare the number of encryption operations that have to be carried out for cryptanalysis
and ignore the fact that classic tables need t times more table look-ups as the other variants. To find the
performance of perfect classic tables we first need to find the maximum size of such tables. Unfortunately
the calculation of the maximum number of non-merging chains of length t that can be generated is non-
trivial. We have taken the following strategy to generate a maximum of non-merging chains. Starting
from a initial point we generate a sequence of concatenated chains until a merge occurs with a chain
which has already been generated. We then simply choose a random starting point and generate a new
sequence of chains. The goal of this strategy is to avoid gaps between chains that are not a multiple of a
chain length. We have experimented our strategy in a space of 10 million keys with various chain lengths.
Experimental results shown in Table 3 indicate that the number of chains is roughly proportional to the
invert of t2. Since all keys in a such a table are distinct, the success rate of a perfect classic table is

t m

10 229713

20 67719

30 32243

40 18766

50 12256

100 3190

200 816

400 195

Table 3. The maximum number of chains decreases roughly with the square of the chain length (here N = 107)

simply

Pclassic =
mt

N
.

To find a key in a set of tables we have to search for it in each table in sequence. An interesting fact
about perfect classic tables is that it always takes t operations to search a key when we find it, when
we do not find it and even when we have a false alarm. When we find the key, we execute i operations
until we find the matching end of chain, and then execute t− i operations from the start of the chain to
recover the key. When we do not find the key, we just carry out t operations and never find a matching
key. A false alarm triggers the same sequence of operations than when find the key, the difference is just
that the key does not match. Note, however, that when a false alarm occurs, we need not search further
in the table. If a key is in the table we can only find the correct end of chain since there can be no other
chain that merges into the correct chain. Thus if a false alarm occurs, we know that the key is not in the
table. The work we just spent verifying the false alarm is regained by not having to search further in this
table. As a result, the number of operations for searching a key in a set of ` tables of m chains of length
t is t times the average number of tables we have to search. Since each table has the same probability of
containing the key and there is a finite number of tables, we have a truncated geometric distribution:

14

T = t

k=∑̀

k=1

k
mt

N

(
1− mt

N

)k−1

(11)

Note that if the number of tables is such that the success rate is close to one, we can approximate
the distribution with an untruncated one and find T = N

m . Using (11) and taking m from Table 3 we can
again plot the trade-off graph and compare the trade-off criterion with the one of rainbow tables:

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

T
/N

M/N

20%
50%
70%
90%
99%

99.9%

0

2

4

6

8

10

12

14

16

0.00010.0010.010.11

f(
p)

1-P

rainbow
classic

Fig. 7. Trade-off graphs and the trade-off characteristic for classic tables. For large memory and low success rate,
the trade-off can be achieved using a single perfect table. In that case we have T ≈ N/M rather than T ≈ N2/M2.
The trade-off cannot be achieved for small sizes of memory, because it would require long chains and chains tend
to loop after a certain length

Each of the above graphs demonstrates an interesting feature. The time-memory graph on the left
shows that classic tables have the same T ≈ N2/M2 relation as rainbow tables if the success rate is not
too small and the memory not too large. For large memories and small gains in time the trade-off can
be implemented with one single perfect table. In that case the trade-off relation becomes T ≈ N/M .
We also notice on this graph that there are no solutions for small M . This is due to the fact that small
memory implies long chains and perfect chains tend to loop when they get long. Actually, a well known
result from hash table generation is that we can generate an average of

√
π
2 #H hashes until we get a

first collision. Here #H denotes the cardinality of the output space of the hash function. This means that
we can not have a configuration where t is larger than this value. The characteristic graph on the right
shows that classic tables lead to a trade-off that is slightly faster than rainbow tables, at least when the
success rate is below 80%

Distinguished Point (DP) Tables

We have assessed the performance of DP tables by measuring a sequence of experiments. In a problem
of size 107 we have chosen various average chain lengths t and generated chains starting at each of the
107 keys. For all chains that merged, we have only kept the longest one (as suggested in [5] and [15]) to
create perfect tables. Interestingly it is trivial to calculate the maximum number of chains but not their
average length. The number of chains of such a table is equal to 1−e−1 times the number of distinguished
points. Indeed if we consider that each chain maps a distinguished point into another distinguished point
we know that the size of the image of a set mapped onto itself is 1− e−1 times the size of the set:

mdp =
N

t
(1− e−1).

The non trivial part is to find out the average chain length of the perfect chains. Because they have more
opportunities to do so, longer chains will more often merge with other chains thus clumping into large
trees of long chains. When removing the merges, longer chains are thus removed more often than short

15

1e-06

1e-05

0.0001

0.001

0.01

0.001 0.01 0.1 1

T
/N

M/N

20%
50%
86%
90%
99%

99.9%

0

2

4

6

8

10

12

14

0.00010.0010.010.11

f(
p)

1-P

rainbow
classic

dp

Fig. 8. Trade-off graphs and the trade-off characteristic measured for DP tables.

ones, resulting in a reduced average length of the perfect chains (tp). Table 4 illustrates the situation for
various initial chain lengths.

N mdp (theory) t mdp (measured) tp

107 632120 10 630018 4.92

107 252848 25 252559 7.32

107 126424 50 126740 7.31

107 63212 100 63168 7.31

Table 4. The reduction of the average chain length tp in a perfect table is due to the fact the longer chains are
more often removed than shorter ones.

Once we have measured the average chain length and the number of non merging chains, we can
calculate the probability of success of a single table:

Pdp =
mdptp

N
=

tp
t

(1− e−1)

As with perfect classic tables, there can be at most one false alarm when we search a key in a table.
When we find a key, we have to generate a complete chain, first towards the end of the chain, and then
from the start of the chain up to the key. Unfortunately the chains are of different lengths and we do not
have their distribution. We know that we more often find a longer chain and that the average number of
operations is more than the average length of chain.

We have used the measurements to verify that DP tables also follow a T ≈ N2/M2 relation and have
plotted the corresponding characteristic graph. It is shown below:

From the time-memory graph we see can that DP tables also follow a T ∝ N2/M2 relation. The
graph of the trade-off characteristic shows that perfect DP tables perform much worse than the other
two variants.

16

