
Reducing Time Complexity in RFID Systems

Gildas Avoine1, Etienne Dysli1, and Philippe Oechslin1,2

1 EPFL, Lausanne, Switzerland
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Abstract. Radio frequency identification systems based on low-cost
computing devices is the new plaything that every company would like to
adopt. Its goal can be either to improve the productivity or to strengthen
the security. Specific identification protocols based on symmetric challenge-
response have been developed in order to assure the privacy of the de-
vice bearers. Although these protocols fit the devices’ constraints, they
always suffer from a large time complexity. Existing protocols require
O(n) cryptographic operations to identify one device among n.
Molnar and Wagner suggested a method to reduce this complexity to
O(log n). We show that their technique could degrade the privacy if the
attacker has the possibility to tamper with at least one device. Because
low-cost devices are not tamper-resistant, such an attack could be feasi-
ble. We give a detailed analysis of their protocol and evaluate the threat.
Next, we extend an approach based on time-memory trade-offs whose
goal is to improve Ohkubo, Suzuki, and Kinoshita’s protocol. We show
that in practice this approach reaches the same performances as Molnar
and Wagner’s method, without degrading privacy.
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1 Introduction

Sometimes presented by the media as the next technological revolution after
the Internet, Radio Frequency Identification (RFID) aims to identify objects
remotely, with neither physical nor visual contact. They consist of transponders
inserted into objects, readers which communicate with the transponders using a
radio channel and a database which contains information on the objects.

This technology is not fundamentally new and concerns a whole range of
applications. The first RFID application may have been the Royal British Air
Force’s “Identify Friend or Foe” system, which was used during the Second
World War to identify friendly aircrafts. RFID systems have also been used
for a few years in commercial applications, for example in contactless smart
cards used on public transport. However, the boom that RFID technology enjoys
today is chiefly due to the standardization [6, 12] and development of low-cost
devices, so-called tags. This new generation of RFID tags has opened the door
to hitherto unexplored applications. For example in supply chains as suggested
by the EPC Global Inc. [6], to locate people in amusement parks [20], to combat
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the counterfeiting of expensive items [14], to trace livestock [5], to label books
in libraries [16], etc.

However, these tags also bring with them security and privacy issues. Secu-
rity issues rely on classic attacks, e.g., denial of service, impersonation of tags or
channel eavesdropping. These attacks are rendered more practicable because of
the tags’ lack of computational and storage capacity. More details on the tech-
nical aspects of the tags can be found for example in [7, 8, 14]. Current research
deals with these problems but most of them are inherent to the technology itself,
and applications have to make do with them. For these reasons, the RFID tech-
nology is more suited for bringing functionality (e.g., [5, 6, 16, 20]) rather than
security (e.g., [4, 14]).

Nevertheless, whether it has a security or a functionality goal, radio fre-
quency identification raises issues linked to privacy, in particular the problem
of traceability of objects and thus indirectly of people [2]. Other technologies
also permit the tracking of people, e.g., video surveillance, GSM, Bluetooth,
and are extensively used by law enforcement agencies among others. However,
RFID tags would permit everybody to track people using only low-cost equip-
ment. This is strengthened by the fact that tags cannot be switched off, they
can be easily hidden, their lifespan is not limited, and analyzing the collected
data can be efficiently automated. Whether the defenders of RFID minimize the
problem of privacy and its detractors amplify it, the fact that some companies
have had to renounce this technology after being boycotted by associations [21]
which defend individuals’ liberty shows that we need to address this problem.
Several palliative ways have been explored in order to solve this problem. For
example, Juels, Rivest, and Szydlo proposed the “blocker tag” [15] whose goal is
to prevent the readers from identifying the tags. With a very different approach,
Garfinkel stated the “RFID Bill of Rights” which relates the fundamental rights
of the tags’ bearers. Today’s challenge is to find protocols which allow authorized
parties to identify the tags without an adversary being able to track them, thus
getting to the root of the privacy problem.

The reason that we cannot use well-known authentication protocols comes
from the fact that such protocols do not preserve the privacy of the prover. In
other words, the verifier can check whether or not the identity claimed by the
prover is true, but he cannot guess it himself: the prover must send his identity
in clear which in turn allows an adversary to track him.

Asymmetric cryptography could easily solve this problem: the prover en-
crypts his identity with the public key of the verifier. Thus, no eavesdropper
is able to identify the prover. Unfortunately, asymmetric cryptography is too
heavy to be implemented within a tag. Certain classes of tags are simply not
able to use cryptography, e.g., Class 0 and Class 1 tags (according to the EPC [6]
classification). Several protocols suited to these tags have been proposed (see for
example [9,11,13,22] or [1] for a more exhaustive list) but even if they can reduce
the capabilities of the attacker – which make them an attractive option – none of
them can assure strong privacy. Therefore, we will not consider these tags below;
instead, in this paper, we will focus on tags which are capable of embedding a



symmetric cryptographic function, either a hash function or a secret-key cipher,
as the suited implementation of AES suggested by Feldhofer, Dominikus, and
Wolkerstorfer [7].

The problem remains that both prover and verifier need to share a common
key if a secret-key cipher is used instead of a public-key one. In RFID systems,
provers (tags) are not tamper-resistant. Therefore an attacker who tampers with
a tag can track its past events if she had access to its previous interactions
with readers, e.g., from readers’ log files. One could point out that the ease
of tampering with a tag is counter-balanced by the difficulty of getting access
to it. That is the case with sub-dermal tags for example, or bracelet tags in
amusements parks which could be re-initialized when the customer gives back
his bracelet [20]. Nevertheless, using a common key for all the tags would be a
pity: an attacker who tampers with one tag, e.g., her own tag, would also be
able to track all the other tags in the system.

Consequently, another approach consists of using a unique key for each tag
such that only the verifier (system) knows all these keys. However, this approach,
which is the one taken by several reference papers [16, 19, 23], suffers from an
expensive time complexity on the system’s side. Indeed, because only symmet-
ric cryptographic functions can be used, the system needs to explore its entire
database in order to retrieve the identity of the tag it queries. If n is the num-
ber of tags managed by the system, O(n) cryptographic operations are required
in order to identify one tag. The advantage of the system over an attacker is
that the system knows in which subset of identifiers it needs to search while the
attacker has to explore the full range of identifiers.

We will address this problem in the rest of the paper. First of all, we will
introduce a real life example in a library. We will use this example to compare
the protocols which will be considered in this work. Section 3 will be devoted to
the basic secret-key challenge-response protocol, denoted CR and the technique
suggested by Molnar and Wagner [16], denoted CR/MW, whose goal is to reduce
the complexity of CR. We will prove that this technique degrades the privacy
when an attacker is able to tamper with at least one tag. In Section 5, we will
deal with the protocol of Ohkubo, Suzuki, and Kinoshita [18], denoted OSK.
Relying on a previous abstract [3], we will show in Section 6 how a time-memory
trade-off can significantly reduce the identification time of OSK. This variant,
called OSK/AO, is as efficient as CR/MW but does not degrade privacy. We will
finally summarize our results in Section 7.

2 A Practical Example in a Library

In order to illustrate our comparison between CR, CR/MW, OSK, and OSK/AO,
we consider a real life scenario in a library, where tags are used to identify books.
Several libraries already use this technology, for example the libraries of Santa
Clara (USA), Heiloo (Netherlands), Richmond Hill (Canada), and K.U. Leuven
(Belgium). In a library scenario, it is realistic to assume that the tags can



contain a secret-key cipher or a hash function because they are not disposable.
Thus, a slightly higher cost is conceivable.

In the next sections, we assume that the system relies on a single computer
which takes θ = 2−23 seconds to carry out a cryptographic operation, either
hashing or encrypting a 128-bit blocks. The library manages 220 tags. As de-
scribed by Avoine and Oechslin in [2] and also by Molnar and Wagner in [16],
we assume that tag singulation and collision avoidance are private and performed
at a lower layer. Identification of several tags is therefore sequential. Current im-
plementations allow a single reader to read several hundreds of tags per second,
meaning that the system should spend at the most a few milliseconds to identify
one tag. In the following sections, tP will denote the average time to identify
one tag using a protocol P. Because certain applications (in libraries, in amuse-
ment parks, etc.) may use numerous readers, the system should not become a
bottleneck in terms of computation. Thus, the system should be capable of iden-
tifying the whole set of tags it manages in a few seconds only (e.g., for real-time
inventories).

3 Description of Molnar and Wagner’s Protocol

Several challenge-response protocols suited to RFID have been suggested during
the last years, e.g., [7, 16, 19, 23]. We describe below those suggested by Molnar
and Wagner, based on a pseudo-random function.

3.1 Challenge-Response Building Block

The Molnar and Wagner’s challenge-response building block (CR), depicted on
Figure 1, provides mutual authentication of the reader and the tag in a private
way. It shall prevent an attacker from impersonating, tracing or identifying tags.

System Tag

pick a random a
a−−−−−−−−−−−−−−−→

find (ID, s) in the database
s.t. ID = σ ⊕ fs(0, a, b)

b, σ=ID⊕fs(0,a,b)←−−−−−−−−−−−−−−− pick a random b compute
σ = ID⊕ fs(0, a, b)

compute τ = ID⊕ fs(1, a, b)
τ=ID⊕fs(1,a,b)−−−−−−−−−−−−−−−→ check that

ID = τ ⊕ fs(1, a, b)

Fig. 1. Challenge-response protocol of Molnar and Wagner

Let ID be the tag’s identifier which is stored in both the database of the
system and the tag. They also share a secret key s. To initiate the authentication,
the reader sends a nonce a to the tag. Next, the tag picks a random b and answers
σ := ID⊕fs(0, a, b), where fs is a pseudo-random function. The system retrieves



the identity of the tag by finding the pair (ID, s) in its database such that
ID = σ⊕ fs(0, a, b). This completes the authentication of the tag. Now, in order
to achieve mutual authentication, the system sends back τ := ID ⊕ fs(1, a, b)
to the tag. The tag can thus verify the identity of the reader by checking that
ID = τ ⊕ fs(1, a, b).

3.2 Efficiency

In order to identify a tag, the system must carry out an exhaustive search on the
n secrets stored in its database. Therefore the system’s workload is linear in the
number of tags. More precisely, the average number of cryptographic operations
required to identify one tag is n/2 and therefore we have tCR = nθ

2 . With the
parameters given in Section 2, we have tCR ≈ 62 ms which is too high in practice.
Since CR does not scale well in a system with many tags, we next examine the
three-based technique of Molnar and Wagner [16], whose main strength is the
reduction of the system’s workload from O(n) to O(log n).

3.3 Tree-Based Technique

The technique suggested by Molnar and Wagner [16], namely CR/MW, relies
on a tree structure in order to reduce the identification complexity. Instead
of searching a flat space of secrets, let’s arrange them in a balanced tree with
branching factor δ. The tags are the leaves of this tree and each edge is associated
with a value. Each tag has to store the values along the path from the root of
the tree to itself. This sequence makes up its secret, and each value is called a
block of secret. On the other side, the reader knows all secrets. We describe the
protocol below.

Setup. Let n be the number of tags managed by the system and ` := dlogδ ne
be the depth of the tree with a branching factor δ. Each edge in the tree is
valuated with a randomly chosen secret ri,j where i is the level in the tree and
j is the number of the branch. Figure 2 represents such a tree with parameters
n = 9 and δ = 3. The secret of a given tag is the list of the values ri,j from the
root to the leaf. For example, the secret of T5 on Figure 2 is [r1,1, r2,5].

r2,2

T0 T1 T2 T3 T4 T5 T6 T7 T8

r1,0 r1,2r1,1

r2,0 r2,1 r2,5r2,4r2,3 r2,7 r2,8r2,6

Fig. 2. Tree of tags’ secrets



Interrogation. The tag is queried level by level from the root to the leaves. At
each level i, CR/MW runs CR for each secret of the explored subtree. That is
the reader tries every edge in turn in order to know on which one the tag is. If
CR fails for all current level’s secrets, the tag rejects the reader and the protocol
stops. If the reader has been successfully authenticated at each level the protocol
succeeds. Note that CR inevitably does not need to be performed δ times per
level in practice. One run is enough if the reader checks the tag’s answer with
all current level’s secrets, as described below.

Identification. At each level i, the system has to search in a set of δ secrets for
the one matching the tag’s secret. Given that [s1, . . . , s`] denotes a secret, the
system has thus to compute δ/2 times fsi

(0, a, b) on average at level i, meaning
that δ

2` operations are required in order to identify one tag. Thus we have

tCR/MW =
δθ

2
logδ n.

The identification of one tag is far below the threshold of a few milliseconds.
Identifying the whole system takes more than 2 minutes when δ = 210 and
decreases to 2 seconds when δ = 2. However, we will see in Section 4 that having
a small branching factor enables to trace the tags.

4 Privacy-Weakening Attacks

4.1 Tampering with only one tag

We examine in this section how the tree technique suggested by Molnar and
Wagner allows tracing a tag when the attacker is able to tamper with some tag.
The attack consists of three phases:

1. The attacker has one tag T0 (e.g., her own) she can tamper with and thus
obtain its complete secret. For the sake of calculation simplicity, we assume
that T0 is put back into circulation. When the number of tags in the system
is large, this does not significantly affect the results.

2. She then chooses a target tag T . She can query it as much as she wants but
she cannot tamper with it.

3. Given two tags T1 and T2 such that T ∈ {T1, T2}, we say that the attacker
succeeds if she definitely knows which of T1 and T2 is T . We define the
probability to trace T as being the probability that the attacker succeeds.
To do that, the attacker can query T1 and T2 as many times as she wants
but, obviously, cannot tamper with them.

We assume that the underlying challenge-response protocol assures privacy when
all the blocks of secrets are chosen according to a uniform distribution. We
consequently assume that the attacker cannot carry out an exhaustive search
over the secret space. Hence, the only way for an attacker to guess a block of



secret of a given tag is to query it with the blocks of secret she obtained by
tampering with some tag. When she tampers with only one tag, she obtains
only one block of secret per level in the tree. Thus, she queries T , and then T1,
and T2 with this block. If either T1 or T2 (but not both) has the same block as
T0, she is able to determine which of them is T . If neither T1 nor T2 has the
same block as T0, she cannot answer. Finally, if both T1 and T2 have the same
block as T0, she cannot answer, but she can move on the next level of the tree
because the authentication of the reader succeeded. We formalize the analysis
below. We denote the secrets of T , T0, T1, and T2 by [s1, · · · , s`], [s0

1, · · · , s0
` ],

[s1
1, · · · , s1

` ], and [s2
1, · · · , s2

` ] respectively. We consider a given level i where s1
i

and s2
i are in the same subtree. Four cases must be considered:

¥ C1
i = ((s0

i = s1
i ) ∧ (s0

i 6= s2
i )) then the attack succeeds,

¥ C2
i = ((s0

i 6= s1
i ) ∧ (s0

i = s2
i )) then the attack succeeds,

¥ C3
i = ((s0

i 6= s1
i ) ∧ (s0

i 6= s2
i )) then the attacks definitively fails,

¥ C4
i = (s0

i = s1
i = s2

i ) then the attacks fails at level i but can move onto level
i + 1.

When the number of tags in the system is large, we can assume that

Pr
(
C1

i

)
= Pr

(
(s0

i = s1
i )

)× Pr
(
(s0

i 6= s2
i )

)
.

The same assumption also applies to C2
i , C3

i , and C4
i . Thus we have

Pr
(
C1

i ∨ C2
i

)
=

2(δ − 1)
δ2

(1 ≤ i ≤ `) and Pr
(
C4

i

)
=

1
δ2

.

The overall probability P that the whole attack succeeds is therefore

P = Pr
(
C1

1 ∨ C2
1

)
+

∑̀

i=2


Pr

(
C1

i ∨ C2
i

)×
i−1∏

j=1

Pr
(
C4

j

)



=
2(δ − 1)

δ2
+

∑̀

i=2

(
2(δ − 1)

δ2

(
1
δ2

)i−1
)

= 2(δ − 1)
1− (

1
δ2

)`

1− 1
δ2

1
δ2

.

Remembering that δ` = n yields P =
2

δ + 1

(
1− 1

n2

)
. The curve of P when

n = 220 is the curve plotted on Figure 3 with k0 = 1.

4.2 Tampering with several tags

We now consider the case where the attacker can tamper with more tags, e.g.,
she borrows several books in the library in order to tamper with their tags.
We examine the influence of the number of opened tags on the probability of
tracing the target tag. As before each opened tag is put back into circulation
to simplify calculations. When n is large, this does not affect the results. As
in the previous section, we denote the secrets of T , T1, and T2 by [s1, · · · , s`],



[s1
1, · · · , s1

` ], and [s2
1, · · · , s2

` ] respectively. We consider a given level i where s1
i

and s2
i are in the same (one-level) subtree. Let Ki denote the set of blocks of

this (one-level) subtree which are known by the attacker and let Ui denote the
set of those which are unknown by the attacker. ki denotes the number of blocks
in Ki. Five cases must be considered:

¥ C1
i = ((s1

i ∈ Ki) ∧ (s2
i ∈ Ui)) then the attack succeeds,

¥ C2
i = ((s1

i ∈ Ui) ∧ (s2
i ∈ Ki)) then the attack succeeds,

¥ C3
i = ((s1

i ∈ Ki) ∧ (s2
i ∈ Ki) ∧ (s1

i 6= s2
i )) then the attack succeeds,

¥ C4
i = ((s1

i ∈ Ui) ∧ (s2
i ∈ Ui)) then the attacks definitively fails,

¥ C5
i = ((s1

i ∈ Ki) ∧ (s2
i ∈ Ki) ∧ (s1

i = s2
i )) then the attacks at level i fails but

can move onto level i + 1.

Thus, we have for all i such that 1 ≤ i ≤ `:

Pr(C1
i ∨ C2

i ∨ C3
i ) =

2ki

δ

(
1− ki

δ

)
+

(
ki

δ

)2 (
1− 1

ki

)

=
ki

δ2
(2δ − ki − 1),

and Pr(C5
i ) =

ki

δ2
.

The overall probability P that the attack succeeds is therefore

P = Pr(C1
1 ∨ C2

1 ∨ C3
1 ) +

∑̀

i=2


Pr

(
C1

i ∨ C2
i ∨ C3

i

)×
i−1∏

j=1

Pr
(
C5

j

)



=
k1

δ2
(2δ − k1 − 1) +

∑̀

i=2


 ki

δ2
(2δ − ki − 1)

i−1∏

j=1

kj

δ2


 .

We now compute k1, i.e., the number of different blocks known by the attacker
at level 1, given that k0 is the number of tags tampered with by the attacker.
We have

k1 = δ

(
1− (1− 1

δ
)k0

)

and then ki = δ

(
1− (1− 1

δ
)g(ki)

)
(2 ≤ i ≤ `),

where g(ki) = k0

i−1∏

j=1

1
kj

.

Results are plotted on Figure 3. We would like to highlight the surprising behav-
ior of P when the branching factor is small. This is due to the fact that neither
Pr(C1

i ∨ C2
i ∨ C3

i ) nor Pr(C5
i ) are monotonous and they reach their optimum

at different values of δ. Table 1 supplies a few values in order to illustrate our
attack.
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Table 1. Probability that the attack succeeds according to the branching factor δ,
given that k0 tags have been opened and the system contains 220 tags

k0

δ
2 20 100 500 1000

1 66.6% 9.5% 1.9% 0.3% 0.1%
20 95.5% 83.9% 32.9% 7.6% 3.9%
50 98.2% 94.9% 63.0% 18.1% 9.5%
100 99.1% 95.4% 85.0% 32.9% 18.1%
200 99.5% 96.2% 97.3% 55.0% 32.9%

4.3 Notes on the Original Tree-Based Technique

In the original tree-based scheme proposed by Molnar and Wagner in [16], the
blocks of secret of the tags were not chosen according to a uniform distribution.
Instead, subtrees of a given level have the same set of blocks of secrets. This
seems to be due to a typo in the setup algorithm of [16]. The attack is obviously
more efficient on this original scheme because, the kis are larger (for a same
value of k0).

5 Ohkubo, Suzuki, and Kinoshita’s Protocol

5.1 Description

The protocol proposed by Ohkubo, Suzuki, and Kinoshita [18] relies on hash
chains. When a tag is requested by a reader, it sends a hash of its current
identifier and then renews it using a second hash function. Obviously, only the
system is able to link all the values sent by the tag while an attacker cannot.
More precisely, the scheme works as follows.

Setup. The personalization of a tag Ti consists of storing in its memory a
random identifier s1

i , which is also recorded in the system’s database. Thus, the



database initially contains the set of random values {s1
i | 1 ≤ i ≤ n}. Two

hash functions G and H are chosen. One hash function is enough if a one-bit
parameter is added to the function.

Interrogation. When the system queries Ti, it sends an identification request
to the tag and receives back rk

i := G(sk
i ) where sk

i is the current identifier of Ti.
While Ti is powered, it replaces sk

i by sk+1
i := H(sk

i ). The exchanges between
the system and the tag are depicted on Figure 4.

System Tag

request−−−−−−−−−−−−−−−→
G(sk

i )←−−−−−−−−−−−−−−− sk+1
i = H(sk

i )

Fig. 4. Protocol of Ohkubo, Suzuki, and Kinoshita

Identification. From rk
i , the system has to identify the corresponding tag. In

order to do this, it constructs the hash chains from each n initial value s1
i until it

finds the expected rk
i or until it reaches a given maximum limit m on the chain

length. The lifetime of the tag is a priori limited to m identifications. However,
when a tag is scanned by a reader (in the library), its field in the database can
be refreshed. The threshold m is therefore the number of read operations on a
single tag between two updates of the database. A suited size for m could be
128, meaning that a tag can be queried 128 times before updating its entry in
the database.

5.2 Replay Attack Avoidance and Reader Authentication

Like CR, OSK assures privacy because the information sent by the tag is indistin-
guishable from a random value, in the random oracle model. The main advantage
of OSK compared with CR is that it also assures forward privacy, meaning that
if an attacker can tamper with a tag, she is not able to track its past events.
However, OSK does not prevent replay attacks. Common techniques to avoid
replay attacks are usually incremental sequence number, clock synchronization,
or a fresh challenge sent by the verifier. This latter option is the most suited to
RFID tags. We propose therefore to modify OSK as depicted on Figure 5. Note
that OSK does not provide authentication of the reader. However, this feature
can be obtained if the system sends a third message containing G(sk+1

i ⊕ w)
where w is a fixed and public non-zero binary string.



System Tag

r−−−−−−−−−−−−−−−→
G(sk

i⊕r)←−−−−−−−−−−−−−−− sk+1
i = H(sk

i )

Fig. 5. Modified protocol of Ohkubo, Suzuki, and Kinoshita

5.3 Efficiency of OSK

Outside the library, tags can be queried by foreign readers. This avoids maintain-
ing synchronization between the tag and the system. Therefore the complexity
in terms of hash operations in order to identify one tag is tOSK = mnθ on average
(2 hash operations are carried out mn/2 times). With the parameters given in
Section 2 and chains of length 128, we have tOSK ≈ 16 seconds. Note that if we
had considered that readers of the library may read foreign tags (hold by people
in the library), then the complexity would tend towards to 2mn because the
system would have to explore the whole database to determine whether or not a
tag is owned by the system. Note that even if tags and readers were able to stay
synchronized, the complexity of OSK cannot be better than CR if no additional
memory is used.

6 Using a Time-Memory Trade-Off to Improve OSK

We recall and detail in this section our previous work [3] on OSK. Thus we will
be able to compare CR/MW and OSK/AO.

6.1 Time-Memory Trade-Off

To reduce the complexity of OSK, we propose to improve how the data is man-
aged by the system, without modifying the exchanges between tags and readers;
so, the privacy of OSK remains. For that, we suggest to use a specific time-
memory trade-off based on Hellman’s original work [10] and Oechslin’s opti-
mizations [17]. This type of trade-off reduces the amount of work T needed to
invert any given value in a set of N outputs of a one-way function F with help
of M units of memory. The efficiency follows the rule T = N2γ/M2 where γ is a
small factor depending on the probability of success and the particular type of
trade-off being used. Compared to a brute-force attack, the trade-off can typi-
cally reduce the amount of work from N to N2/3 using N2/3 units of memory.

The basic idea of time-memory trade-off techniques consists in chaining (al-
most) all the possible outputs of F using a reduction function R which generates
an arbitrary input of F from one of its outputs. By alternating F and R on a
chosen initial value, a chain of inputs and outputs of F can be built. If enough
chains of a given length are generated, most outputs of F will appear at least



once in any chain. The trade-off comes from the fact that only the first and the
last element of each chain is stored. Thus, a substantial memory space is saved,
but computations will be required on-the-fly to invert a given element. Given one
output r of F that should be inverted, a chain starting at r is generated. If r was
part of any stored chain, a last element of a chain in the table will eventually be
reached. Looking up the corresponding start of the chain, we can regenerate the
complete chain and find the input of F that yields the given output r. To assure
a high success rate, several tables have to be generated with different reduction
functions. The exact way of doing this is what differentiates existing trade-off
schemes.

In what follows, we will use the perfect rainbow tables [17] which have been
shown to have better performances than other types of tables. The characteristic
of the rainbow tables is that each column of a table has a different reduction
function. So, when two chains collide, they do not merge (except if they collide at
the same position in the chain). When the residual merged chains are removed
during the precomputation step, the tables are said to be perfect. With such
tables and a probability of success of 99.9%, we have γ = 8.

6.2 Adapting the Trade-Off to our Case

The time-memory trade-off technique described above cannot be directly applied
to our case. Indeed, the input of F must cover all the identifiers but no more.
Otherwise, the system would have no advantage over the attacker. Consequently,
it is important to choose F such that its input space is as small as possible. We
define the function F as follows:

F : (i, k) 7→ rk
i = G(Hk−1(s1

i ))

where 1 ≤ i ≤ n and 1 ≤ k ≤ m. Thus, given the number of the tag and the
number of the identification, F outputs the value which will be sent by the tag.
We also need to define an arbitrary reduction function R such that

R : rk
i 7→ (i′, k′)

where 1 ≤ i′ ≤ n, 1 ≤ k′ ≤ m. For example, we take

R(r) = (1 + (r mod n), 1 + (
⌊ r

n

⌋
mod m)).

There are still two important points that distinguish classical time-memory
trade-offs from ours.

Firstly, the brute force method of OSK needs n|s| units of memory to store
the n values s1

i while usual brute-force methods do not require any memory.
Thus, it makes sense to measure the amount of memory needed by the trade-
off in multiples of n|s|. We call c the ratio between the memory used by the
trade-off and the memory used by the brute-force. The memory used to store
the tables is a multiple of the size of a chain while it is a multiple of s in the



case of the brute-force. A stored chain is represented by its start and end points
which can be either the output of F or its input. In our case the input is smaller,
we therefore choose to store two pairs of (i, k), thus requiring 2(|n|+ |m|) bits of
memory. The conversion factor from units of brute-force to units of trade-off is
µ = |s|/(2|n|+2|m|). In the scenarios we are interested in, µ is typically between
2 and 4.

Secondly, when used in the trade-off, F is more complex than when used
in the brute-force. Indeed, in the brute-force, the hash chains are calculated
sequentially, thus needing just one H and one G calculation at each step. In the
trade-off, i and k are arbitrary results from R and have no incremental relation
with previous calculations. Thus, on average, each step computes (m− 1)/2 + 1
times the function F and G once. We can now rewrite the trade-off relation:

T =
N2

M2
γ =

n2m2

(c− 1)2µ2n2
(
m− 1

2
+ 1)γ ≈ m3γ

2(c− 1)2µ2
.

We now show how this issue can be mitigated. So far, among the c shares of
memory, (c− 1) shares are used to store the chains, and 1 share is used to store
the n values s1

i . If we not only store the first element of the chains, but also
the element at the middle of the chain, we sacrifice even more memory but we
reduce the average complexity of F . We will have only (c − 2) shares of the
memory available for the tables, but F will have a complexity of m−1

4 + 1 (we
need to generate only a quarter of a chain on average). We have therefore a
trade-off between the memory sacrificed to store the intermediary points and
the complexity of F . In general, if we store x values per chain, sacrificing x
shares of memory, the complexity of the trade-off becomes:

T =
n2m2

(c− x)2µ2n2
(
m

2x
+ 1)γ ≈ m3γ

2x(c− x)2µ2
.

The optimal complexity is achieved when x = c
3 . So we have

T ≈ 33

23

m3γ

c3µ2
.

Since a pair of (i, k) is 27 bits large (20 bits for i and 7 bits for k) we need
at most 54 bits to store one chain. We can thus store more than two chains in
the same amount of memory it takes to store one s (µ ≥ 2). Assuming that all
calculations are carried out on a single back-end equipped with c(n|s|)

8 = 224c
bytes of memory and that we choose a success rate of 99.9% (γ = 8) the time to
read a tag with our method is

tOSK/AO ≈
69θ

c3
seconds.

For example, with 1 GB of RAM (i.e., c=64), we have tOSK/AO ≈ 0.004 millisec-
onds. Precomputation takes nm2θ/2 seconds, that is to say about 17 minutes.
The technique used for that can be found in [3].



Note that the time-memory trade-off cannot be applied directly to the mod-
ified OSK suggested in Section 5.2. This is due to the randomization of the tag’s
answer. In order to apply our time-memory technique on the modified version
of OSK, the tag must answer with both G(sk

i ) and G(sk
i ⊕ r). The former value

enables the reader to identify the tag and the latter one allows detecting replay
attacks.

7 Final Comparison and Conclusion

First of all, we consider the storage aspect. On the tag side, the storage of the
identifiers becomes a real problem with CR/MW when δ is small. Having a large
δ is therefore preferable. Storage is the main drawback of OSK/AO because pre-
computation and storage of tables is required. In the example given in Section 6,
1 GB of RAM is used. Today, such a memory is available on Joe Blow’s computer.

Next, we address the complexity question. Both CR/MW and OSK/AO are
parameterizable. CR/MW depends on δ which can be chosen between 2 and n.
Obviously, the case δ = n leads to CR. Having δ >

√
n is possible but in this

case the tree is no longer complete. Actually, a typical value could be δ =
√

n.
On the other hand, OSK/AO depends on the available memory. Table 2 gives a
numerical comparison of CR, CR/MW, OSK, and OSK/AO.

Table 2. Time to identify one tag

Scheme Time
(parameter) (millisecond)

CR 62.500
CR/MW (δ = 210) 0.122
CR/MW (δ = 2) 0.002

OSK 16’000.000
OSK/AO (342 MB) 0.122
OSK/AO (1.25 GB) 0.002

We now consider the privacy issue. While CR is secure, CR/MW degrades
the privacy because, when an attacker is able to tamper with at least one tag
(e.g., her own tag), she is also able to trace other tags in a probabilistic way. We
have shown that the probability to trace tags decreases when the computation
complexity grows. Thus, CR/MW can be seen as a trade-off between privacy
and complexity. We proved that the probability to trace tags is far from being
negligible. For example, when the branching factor is δ = 210, the probability to
trace a tag is about 0.1% when only one tag has been opened, but it is about
32.9% when 200 tags have been tampered with (see Table 1). OSK/AO inherits
from the security proofs of OSK, in particular the fact that OSK is forward
private, because it modifies neither the information exchanged, nor the content
of the tag. It only improves the way the system manages and stores the data.



Thus, we can say that the main advantage of CR/MW rests on the fact that
it does not require precomputation. Moreover the number of tag readings with
OSK/AO is limited by the chain length while it is not with CR/MW (however
over-passing this threshold does not threaten the privacy). Hence, when CR/MW
is used, we recommend using a large branching factor in order to limit the privacy
threat.

Finally, one may think that trade-off techniques could be used to improve
CR/MW. Unfortunately, this seems difficult and cannot be done using the same
approach because the answers of the tags in CR/MW are randomized. This im-
plies carrying out a time-memory trade-off on a larger space.
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