
FOX : a New Family of Block Ciphers?

Pascal Junod and Serge Vaudenay
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Abstract. In this paper, we describe the design of a new family of block
ciphers based on a Lai-Massey scheme, named FOX. The main features of
this design, besides a very high security level, are a large implementation
flexibility on various platforms as well as high performances. In addition,
we propose a new design of strong and efficient key-schedule algorithms.
We provide evidence that FOX is immune to linear and differential crypt-
analysis, and we discuss its security towards integral cryptanalysis, alge-
braic attacks, and other attacks.
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1 Introduction

Why do we need another block cipher? First of all, industry is still requesting;
second, recent advances in the cryptanalysis field motivate new designs. The
AES [1] and NESSIE [27] efforts, among others, have resulted in a number of
new proposals of block ciphers. It is noteworthy that there exists a clear trend in
direction of lightweight and fast key-schedule algorithms, as well as substitution
boxes based on purely algebraic constructions. In a parallel way, we observe that,
on the one hand, several of the last published attacks against block ciphers take
often advantage of exploiting “simple” key-schedule algorithms (a nice illustra-
tion is certainly Muller’s attack [24] against Khazad), and, on the other hand,
algebraic S-boxes are helpful to Courtois-Pieprzyk algebraic attacks [8], and lead
to puzzling properties as shown by [2, 10, 25].

In this paper, we describe the design of a new family of block cipher, named
FOX and designed upon the request of MediaCrypt AG [23]. The main features of
this design, besides a very high security level, are a large flexibility in terms of use
and of implementation on various platforms, as well as high performances. The
family consists in two block ciphers, one having a 64-bit block size and the other
one a 128-bit block size. Each block cipher allows a variable number of rounds
and a variable key size up to 256 bits. The high-level structure is based on a Lai-
Massey scheme, while the round functions consist of Substitution-Permutation
Networks with no algebraic S-boxes. In addition, we propose a new design of
strong and efficient key-schedule algorithms.

? Reprint from: P. Junod and S. Vaudenay. FOX: a new family of block ciphers. To
appear in Selected Areas in Cryptography 2004: Waterloo, Canada, August 9-10,
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Our main motivations are the following: our first goal is to offer a serious
alternative to block ciphers following present trends; we have explicitely chosen
to avoid a lightweight key-schedule and a pure algebraic construction as S-boxes.
Our second goal is to reach the highest possible flexibility, being in terms of round
number, key size, block size and in terms of implementation issues. For instance,
we feel that it is still useful to propose a 64-bit block size flavour for backward-
compatibility reasons. Finally, our last motivation was to design a family of
block ciphers which compares favourably with the performances of the fastest
block ciphers on hardware, 8-bit, 32-bit, and 64-bit architectures. This paper is
organized as follows: in §2, we give a formal description of the block ciphers, then
we successively discuss the rationales in §3 the security foundations in §4 and
several implementations aspects in §5. Test vectors are available in Appendix A.
The full version of this paper is [14].

Notations : A variable x indexed by i with a length of ` bits is denoted xi(`). A
C-like notation is used for indexing i.e. indices begin with 0.

Representation of GF
(

28
)

: Some of the internal operations used in FOX are
the addition and the multiplication in the GF(28) finite field. Elements of the
field are polynomials with coefficients in GF(2) in α, a root of the irreducible
polynomial P (α) = α8 + α7 + α6 + α5 + α4 + α3 + 1: the 8-bit binary string
s = s0(1)||s1(1)||s2(1)||s3(1)||s4(1)||s5(1)||s6(1)||s7(1) represents s0(1)α

7 + s1(1)α
6 +

s2(1)α
5 + s3(1)α

4 + s4(1)α
3 + s5(1)α

2 + s6(1)α + s7(1).

2 Description

The different members of this block cipher family are denoted as follows:

Name Block size Key size Rounds number

FOX64 64 128 16
FOX128 128 256 16

FOX64/k/r 64 k r
FOX128/k/r 128 k r

In FOX64/k/r and FOX128/k/r, the number r of rounds must satisfy 12 ≤ r ≤
255, while the key length k must satisfy 0 ≤ k ≤ 256, with k multiple of 8. Note
that a generic instance of FOX has 16 rounds.

2.1 High-Level Structure

The 64-bit version of FOX is the (r − 1)-times iteration of a round function
lmor64, followed by the application of a slightly modified round function called
lmid64. For decryption, we replace lmor64 by lmio64. The encryption C(64) by
FOX64/k/r of a 64-bit plaintext P(64) is defined as

C(64) = lmid64(lmor64(. . . (lmor64(P(64), RK0(64)), . . . , RKr−2(64)), RKr−1(64))
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where RK(64r) = RK0(64)||RK1(64)|| . . . ||RKr−1(64) is the subkey stream pro-
duced by the key schedule algorithm from the key K(k) (see §2.3). The decryption
P(64) by FOX64/k/r of a 64-bit ciphertext C(64) is defined as

P(64) = lmid64(lmio64(. . . (lmio64(C(64), RKr−1(64)), . . . , RK1(64)), RK0(64))

In the 128-bit version of FOX, we simply replace lmor64, lmid64, and lmio64

by elmor128, elmid128, and elmio128, respectively. lmor64, illustrated in Fig.
1(a), is built as a Lai-Massey scheme [18, 19] combined with an orthomor-
phism1 or, as described in [30]. This function transforms a 64-bit input X(64)

split in two parts X(64) = X0(32)||X1(32) and a 64-bit round key RK(64) in a 64-

bit output Y(64) = Y0(32)||Y1(32) as Y(64) = or
(

X0(32) ⊕ φ
) ∣

∣

∣

∣

(

X1(32) ⊕ φ
)

with

φ = f32
(

X0(32) ⊕ X1(32), RK(64)

)

. lmid64 and lmio64 are defined like for lmor64

but for or, which is replaced by the identity function and io (the inverse of or), re-
spectively. elmor128, illustrated in Fig. 1(b), is built as an Extended Lai-Massey
scheme combined with two orthomorphisms or. This function transforms a 128-
bit input X(128) split in four parts X(128) = X0(32)||X1(32)||X2(32)||X3(32) and
a 128-bit round key RK(128) in a 128-bit output Y(128). Let F(64) = (X0(32) ⊕
X1(32))||(X2(32) ⊕ X3(32)). Then,

Y(128) = or
(

X0(32) ⊕ φL

)

∣

∣

∣

∣

∣

∣

(

X1(32) ⊕ φL

)

∣

∣

∣

∣

∣

∣or
(

X2(32) ⊕ φR

)

∣

∣

∣

∣

∣

∣

(

X3(32) ⊕ φR

)

where φL||φR = f64
(

F(64), RK(128)

)

. In elmid128, resp. elmio128, the two or-
thomorphisms or are replaced by two identity, resp. io functions. The ortho-
morphism or is a function taking a 32-bit input X(32) = X0(16)||X1(16) and
returning a 32-bit output Y(32) = Y0(16)||Y1(16) which is in fact a one-round
Feistel scheme with the identity function as round function; it is defined as
Y0(16)||Y1(16) = X1(16)||

(

X0(16) ⊕ X1(16)

)

.

2.2 Definition of f32 and f64

The round function f32 builds the core of FOX64/k/r. It is built of three main
parts: a substitution part, denoted sigma4, a diffusion part, denoted mu4, and a
round key addition part (see Fig. 2(a)). Formally, the f32 function takes a 32-bit
input X(32), a 64-bit round key RK(64) = RK0(32)||RK1(32) and returns a 32-bit
output Y(32) = sigma4(mu4(sigma4(X(32) ⊕ RK0(32))) ⊕ RK1(32)) ⊕ RK0(32).

The function f64, building the core of FOX128/k/r, is very similar to f32

(see Fig. 2(b)): it takes a 64-bit input X(64), a 128-bit round key RK(128) =
RK0(64)||RK1(64) and returns Y(64) = sigma8(mu8(sigma8(X(64) ⊕ RK0(64))) ⊕
RK1(64)) ⊕ RK0(64).

The mapping sigma4 (resp. sigma8) consists of 4 (resp. 8) parallel compu-
tations of a non-linear bijective mapping (see §3.1 for a description and the
table in §B). The diffusive parts of f32 and f64, mu4 and mu8, consider an input

1 An orthomorphism o on a group (G, +) is a permutation x 7→ o(x) on G such that
x 7→ o(x) − x is also a permutation.
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X0(8)|| . . . ||Xn(8) as a vector (X0(8), . . . , Xn(8))
T over GF

(

28
)

and multiply it
with a matrix to obtain an output vector of the same size. The two matrices are
the following:

mu4 :









1 1 1 α
1 z α 1
z α 1 1
α 1 z 1









mu8 :

























1 1 1 1 1 1 1 a
1 a b c d e f 1
a b c d e f 1 1
b c d e f 1 a 1
c d e f 1 a b 1
d e f 1 a b c 1
e f 1 a b c d 1
f 1 a b c d e 1

























where z = α−1+1 = α7+α6+α5+α4+α3+α2+1, and where a = α+1, b = α7+α,
c = α, d = α2, e = α7+α6+α5+α4+α3+α2 and f = α6+α5+α4+α3+α2+α.

2.3 Key-Schedule Algorithms

A FOX key K(k) must have a bit-length k such that 0 ≤ k ≤ 256, and k must
be a multiple of 8. Depending on the key length and the block size, a member
of the FOX block cipher family may use one among three different key-schedule
algorithm versions, denoted KS64, KS64h and KS128. The following table defines
which variant is used, as well as a constant ek.

Cipher Block size Key size Key-Schedule Version ek

FOX64 64 0 ≤ k ≤ 128 KS64 128
FOX64 64 136 ≤ k ≤ 256 KS64h 256
FOX128 128 0 ≤ k ≤ 256 KS128 256

The three different versions of the key-schedule algorithm are constituted of four
main parts: a padding part, denoted P, expanding K(k) into ek bits, a mixing
part, denoted M, a diversification part, denoted D, whose core consists mainly
in a linear feedback shift register denoted LFSR, and finally, a non-linear part,
denoted NLx, which is actually the only part which differs between the different
versions: we denote the three variants NL64, NL64h and NL128. When ek = k,
the P and M parts are omitted.

Definition of P. The P-part, taking ek and k as input, is a function expanding
a bit string by ek−k

8 bytes; it concatenates the key K(k) with the first ek − k
bits of a constant, pad, giving PKEY as output. The constant pad is defined as
being the first 256 bits of the hexadecimal development of e− 2 =

∑+∞
n=0

1
n! − 2:

pad = 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF

Definition of M. The M-part mixes the padded key PKEY with the help of a
Fibonacci-like recursion. It takes as input a key PKEY with length ek (expressed
in bits) seen as an array of ek

8 bytes PKEYi(8), 0 ≤ i ≤ ek
8 − 1, and is processed

according to MKEYi(8) = PKEYi(8) ⊕
(

MKEYi−1(8) + MKEYi−2(8) mod 28
)

,

for 0 ≤ i ≤ ek
8 −1, assuming that MKEY−2(8) = 0x6A and MKEY−1(8) = 0x76.
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Definition of D and LFSR. The D-part takes a key MKEY having a length in
bits equal to ek, the total round number r, and the current round number i, with
1 ≤ i ≤ r; it modifies MKEY with the help of the output of a 24-bit Linear Shift
Feedback Register (LFSR) denoted LFSR. More precisely, MKEY is seen as an
array of

⌊

ek
24

⌋

24-bit values MKEYj(24), with 0 ≤ j ≤
⌊

ek
24

⌋

−1 concatenated with
one residue byte MKEY RB(8) (if ek = 128) or two residue bytes MKEY RB(16)

(if ek = 256), and is modified according to, for 0 ≤ j ≤
⌊

ek
24

⌋

− 1,

DKEYj(24) = MKEYj(24) ⊕ LFSR

(

(i − 1) ·

⌈

ek

24

⌉

+ j, r

)

and the DKEY RB(8) value (DKEY RB(16)) is obtained by XORing the most

8 (16) significant bits of LFSR((i − 1) ·
⌈

ek
24

⌉

+
⌊

ek
24

⌋

, r) with MKEY RB(8)

(MKEY RB(16)), respectively. The remaining 16 (8) bits of the LFSR routine
output are discarded. The stream of pseudo-random values is generated by a
24-bit linear feedback shift register, denoted LFSR. It takes two inputs: the total
number of rounds r and the number of preliminary clockings. It is based on the
following primitive polynomial of degree 24 over GF(2): ξ24 +ξ4 +ξ3 +ξ+1. The
register is initially seeded with the value 0x6A||r(8)||r(8), where r(8) is expressed
as an 8-bit value.

Definition of NL64, NL128, and NL64h. We describe here the NL64 and NL128

processes, respectively. Basically, the DKEY value passes through a substitution
layer, made of four parallel sigma4 (sigma8) functions, a diffusion layer, made
of four parallel mu4 (mu8) functions and a mixing layer called mix64 (mix128),
respectively. Then, the constant pad[0...127] (pad[0...255]) is XORed and the result
is flipped if and only if k = ek. The result passes through a second substitution
layer, it is hashed down to 64 (128) bits using two exclusive-or operations and
the resulting value is encrypted first with a lmor64 (elmor128) round function,
where the subkey is the left half of the DKEY value and second by a lmid64

(elmid128) function, where the subkey is the right half of DKEY . The result-
ing value is defined to be the 64-bit (128-bit) round key, respectively. Detailed
descriptions may be found in Fig. 3(a) and Fig. 3(b), respectively. In the case
of NL64h, the process is very similar than for NL128; the difference is that the
sigma8 (mu8) functions are replaced by two concatenated sigma4 (mu4) func-
tions, respectively, that mix128 is replaced by mix64h, and that one uses three
lmor64 round functions, where the respective subkeys are the three left quarters
of the DKEY value and a lmid64 function, where the subkey is the rightmost
quarter of DKEY . The resulting value is defined to be the 64-bit round key.
Fig. 3(c) illustrates the NL64h process whose construction is similar to those of
NL64 and of NL128.

Definition of mix64, mix64h and mix128. Given an input vector of four 32-bit
values, denoted X = X0(32)||X1(32)||X2(32)||X3(32), the mix64 function consists
in processing it by the following relations, resulting in an output vector denoted
Y = Y0(32)||Y1(32)||Y2(32)||Y3(32). More formally, mix64 is defined as Yi(32) =
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⊕

j 6=i Xj(32) for 0 ≤ i, j ≤ 3. The mix64h and mix128 functions use identical
relations operating on 64-bit values.

3 Rationales

3.1 sbox Transformation and Linear Multipermutations

As outlined in the introduction, our primary goal was to avoid a purely algebraic
construction for the S-box; a secondary goal was the possibility to implement
it in a very efficient way on hardware using ASIC or FPGA technologies. The
sbox function is a bijective non-linear mapping on 8-bit values. It consists of
a Lai-Massey scheme with 3 rounds taking three different substitution boxes
as round function; these “small” S-boxes are denoted S1, S2 and S3, and their
content is given in §B. The orthomorphism2 or4 used in the Lai-Massey scheme
is a single round of a 4-bit Feistel scheme with the identity function as round
function. We describe now the generation process of the sbox transformation.
First a set of three different candidates for small substitution boxes, each having
a LPmax and a DPmax (with the common notations3 [22]) smaller than 2−2 were
pseudo-randomly chosen. Then, the candidate sbox mapping was evaluated and
tested regarding its LPmax and DPmax values until a good candidate was found.
The chosen sbox satisfy DPsbox

max = LPsbox
max = 2−4 and its algebraic degree is equal

to 6.
Both mu4 and mu8 are linear multipermutations. This kind of construction

was early recognized as being optimal for which regards its diffusion proper-
ties [28,29]. A linear application defined by a matrix A is a multipermutation if
and only if det(A) 6= 0 and if the determinant of each submatrix of A is different
of zero as well. It is well-known that linear multipermutations are equivalent to
MDS linear codes (i.e. Maximum Distance Separable codes). Not all construc-
tions are very efficient to implement, especially on low-end smartcard, which
have usually very few available memory and computational power (see [15]).
In order to be efficiently implementable, the elements of the matrix, which are
elements of GF(28), should be efficient to multiply to4.

3.2 Key-Schedule Algorithms

The FOX key-schedule algorithms were designed with several rationales in mind:
first, the function, which depends on the block size, taking a key K and the
round number r in output and returning r subkeys should be a cryptographic

2 The orthormorphism of the third round is omitted.
3 Where DPsbox(a, b) = Pr[sbox(X ⊕ a) = sbox(X) ⊕ b] and where LPsbox(a, b) =

(2 · Pr[a · X = b · sbox(X)] − 1)2 with · being the inner dot-product on GF (2)n,
DPsbox

max = maxa6=0,b DPsbox(a, b), and LPsbox
max = maxa,b6=0 LPsbox(a, b)

4 The only really efficient operations are the addition, the multiplication by α and the
division by α. Note that α7 + α = α−1 + α−2, α7 + α6 + α5 + α4 + α3 + α2 = α−1,
and that α6 + α5 + α4 + α3 + α2 + α = α−2.
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pseudo-random, collision resistant and one-way function. Second, the sequence
of subkeys should be generated in any direction without any complexity penalty.
Third, all the bytes of MKEY should be randomized even when the key size is
strictly smaller than ek. Finally, the key-schedule algorithm should resist related-
cipher attacks as described by Wu in [33].

We are convinced that “strong” key-schedule algorithms have significant ad-
vantages in terms of security, even if the price to pay is a smaller key agility; in
the case of FOX, we believe that the time needed to compute the subkeys (about
equal to the time needed to encrypt 6 blocks5 of data) remains acceptable. The
second central property of FOX key-schedule algorithms is ensured by the LFSR

construction. The third property is ensured by our “Fibonacci-like” construction
(which is a bijective mapping). Furthermore, MKEY is expanded by XORing
constants depending on r and ek with no overlap on these constants sequences
(this was checked experimentally). Finally, the fourth property is ensured by the
dependency of the subkey sequence to the actual round number of the algorithm
instance for which the sequence will be used.

4 Security Foundations

4.1 Luby-Rackoff-like Security

Although less popular than the Feistel scheme or SPN structures, the Lai-Massey
scheme offers similar (super-) pseudorandomness and decorrelation inheritance
properties, as was demonstrated by Vaudenay [30]. Note that we will indifferently
use the term “Lai-Massey scheme” to denote both versions, as we can see the
Extended Lai-Massey scheme as a Lai-Massey scheme6. From this point, we
will make use of the following notation: given an orthomorphism o on a group
(G, +) and given r functions f1, f2, . . . , fr on G, we note a r-rounds Lai-Massey
scheme using the r functions and the orthomorphism by Λo(f1, . . . , fr). Then
the following results are two Luby-Rackoff-like [21] results on the Lai-Massey
scheme. We refer to [30, 31] for proofs thereof.

Theorem 1 1. Let f∗1 , f∗2 and f∗3 be three independent random functions uni-
formly distributed on a group (G, +). Let o be an orthomorphism on G. For
any distinguisher7 limited to d chosen plaintexts, where g = |G| denotes the
cardinality of the group, between Λo(f∗1 , f∗2 , f∗3 ) and a uniformly distributed
random permutation c∗, we have Adv(Λo(f∗1 , f∗2 , f∗3 ), c∗) ≤ d(d−1)(g−1+g−2).

5 In the case of FOX64 with keys strictly larger than 128 bit, it takes the time to
encrypt 12 blocks of data.

6 We can prove this by swapping the two inner inputs and noting that the function
(x, y) 7→ or32(x)||or32(y) builds an orthomorphism

7 A distinguisher A is a probabilistic Turing machine with unlimited computational
power. It has access to an oracle O and can send it a limited number of queries.
At the end, the distinguisher must output “0” or “1”. The advantage for distin-
guishing a random function f from a random function g is defined by Adv(f, g) =
˛

˛Pr
ˆ

AO=f = 1
˜

− Pr
ˆ

AO=g = 1
˜˛

˛.
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2. If f1, . . . , fr are r ≥ 3 independent random functions on a group (G, +) of
order g such that Adv(fi, f

∗
i ) ≤ ε

2 for any adaptive distinguisher between fi
and f∗i limited to d queries for 1 ≤ i ≤ r and if o is an orthomorphism on

G, we have Adv(Λo(f1, . . . , fr), c
∗) ≤ 1

2 (3ε + d(d − 1)(2g−1 + g−2))b
r

3c.

Basically, the first result proves that the Lai-Massey scheme provides pseudo-
randomness on three rounds unless the fi’s are weak , like for the Feistel scheme
[9]. Super-pseudorandomness corresponds to cases where a distinguisher can
query chosen ciphertexts as well; in this scenario, the previous result holds when
we consider Λo(f∗1 , . . . , f∗4 ) with a fourth round. The second result proves that
the decorrelation bias of the round functions of a Lai-Massey scheme is inher-
ited by the whole structure: provided the fi’s are strong, so is the Lai-Massey
scheme8; in other words, a potential cryptanalysis will not be able to exploit the
Lai-Massey’s scheme only, but it will have to take advantage of weaknesses of
the round functions’ internal structure.

4.2 Linear and Differential Cryptanalysis

It is possible to prove some important results about the security of both f32 and
f64 functions towards linear and differential cryptanalysis, too. As these functions
may be viewed as classical Substitution-Permutation Network constructions, we
will refer to some well-known results on their resistance towards linear and differ-
ential cryptanalysis proved in [12] by Hong et al. As the mu4 (mu8) mapping is
a (4, 4)-multipermutation ((8, 8)-multipermutation), one is ensured that at least
nd = 5 (nd = 9) S-boxes before and after mu4 will be active, respectively. Then,
by Theorem 1 of [12], we have DPf32

max ≤ (DPsbox
max)

4 and DPf64
max ≤ (DPsbox

max)
8.

Similar results can be obtained with respect to linear cryptanalysis. By taking
into account the fact that in a Lai-Massey scheme, any differential or linear char-
acteristic on two rounds must involve at least one round function, we obtain the
following result; its complete proof can be found in [14].

Theorem 2 The differential (resp. linear) probability of any single-path char-
acteristic in FOX64/k/r is upper bounded by (DPsbox

max)
2r (resp. (LPsbox

max)
2r). Sim-

ilarly, the bounds are (DPsbox
max)

4r (resp. (LPsbox
max)

4r) for FOX128/k/r.

Since DPsbox
max = LPsbox

max = 2−4, we conclude that it is impossible to find any useful
differential or linear characteristic after 8 rounds for both FOX64 and FOX128.
Hence, a minimal number of 12 rounds provides a minimal safety margin.

4.3 Integral Attacks

Integral attacks [17] apply to ciphers operating on well-aligned data, like SPN
structures. As the round functions of FOX are SPNs, one can wonder whether it

8 One should not misinterpret these results in terms of the overall block cipher security:
FOX’s round functions are far to be indistinguishable from random functions, as it
is the case of DES round functions, for instance: the fact that DES is vulnerable to
linear and differential cryptanalysis does not contradict Luby-Rackoff results.
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is possible to find an integral distinguisher on the whole structure. We consider
now the case of FOX64: let us denote the input bytes by Xi(8) with 0 ≤ i ≤ 7.
Let X3(8) = a, X7(8) = a ⊕ c, and Xi(8) = c for i = 0, 1, 2, 4, 5, 6, where c is a

constant. We consider plaintext structures x(j) for 1 ≤ j ≤ 256 where a takes
all 256 possibles byte values. Let us denote the output of the third round lmid64

by Yi(8) with 0 ≤ i ≤ 7. Then,
⊕256

j=1 Y
(j)
i(8) =

⊕256
j=1 Y

(j)
i+4(8) for 0 ≤ i ≤ 3. Note

that we have still two such equalities if we replace the last round by a lmor64

round. This integral distinguisher9 can be used to break (four, five) six rounds
of FOX64 (by guessing the one, two, or three last round keys and testing the
integral criterion for each subkey candidate on a few structures of plaintexts)
with a complexity of about (264, 2128) 2192 operations. A similar property may
be used to break up to 4 rounds of FOX128 (by guessing the last round key)
with a complexity of about 2128 operations.

4.4 Other Attacks

Statistical Attacks. Due to the very high diffusion properties of FOX’s round
functions, the high algebraic degree of the sbox mapping, and the high number
of rounds, we are strongly convinced that FOX will resist to known variants of
linear and differential cryptanalysis (like differential-linear cryptanalysis [4, 20],
boomerang [32] and rectangle attacks [5]), as well as generalizations thereof, like
Knudsen’s truncated and higher-order differentials [16], impossible differentials
[3], and Harpes’ partitioning cryptanalysis [11], for instance.

Slide and Related-Key Attacks. Slide attacks [6,7] exploit periodic key-schedule
algorithms, which is not a property of FOX’s key-schedule algorithms. Further-
more, due to very good diffusion and the high non-linearity of the key-schedule,
related-key attacks are very unlikely to be effective against FOX.

Interpolation and Algebraic Attacks. Interpolation attacks [13] take advantage of
S-boxes exhibiting a simple algebraic structure. Since FOX’s non-linear mapping
sbox does not possess any simple relation over GF(2) or GF(28), such attacks are
certainly not effective. One of our main concerns was to avoid a pure algebraic
construction for the sbox mapping, as it is the case for a large number of modern
designs of block ciphers. Although such S-boxes have many interesting non-linear
properties, they probably form the best conditions to express a block cipher as
a system of sparse, over-defined low-degree multivariate polynomial equations
over GF(2) or GF(28); this fact may lead to effective attacks, as argued by
Courtois and Pieprzyk in [8]. Not choosing an algebraic construction for sbox

does not necessarily ensure security towards algebraic attacks. Note that we base
our non-linear mapping on “small” permutations, mapping 4 bits to 4 bits, and
that, according to [8], any such mapping can always be written as an overdefined
system of at least 21 quadratic equations. Indeed, we checked that S1, S2, and

9 Note that one could extend it to four rounds using large precomputed tables, and
thus reduce the overall complexity by a factor of 264.
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S3 cannot be described by a system with more than 21 quadratic equations over
GF (2); furthermore, we are not aware of any quadratic relation over GF

(

28
)

for sbox. Following the very same methodology than [8], it appears that XSL
attacks would break members of the FOX family within a complexity10 of 2171

to 2192, depending on the block size and the round numbers. However, one should
interpret these figures with an extreme care: on the one hand, the real complexity
of XSL attacks is by no means clear at the time of writing and is the subject of
much controversy [26]; on the other hand, we feel that the advantages of a small
hardware footprint overcome such a (possible) security decrease.

5 Implementation Issues

Hardware. The size of the small S-boxes allows to implement FOX very efficiently
on hardware using ASIC or FPGA technologies (which can usually implement
any 4-bit to 4-bit mapping very efficiently). Projects are currently in process.
We expect that FOX results in very high performances on hardware.

8-bit Platforms. Obviously, the most intensive computations are related to the
evaluation of the sbox mapping and of mu4 and mu8. Different strategies may be
applied: when extremely few memory is available, one computes on-the-fly the
sbox mapping, as it is described in §3.1, and all the operations in GF

(

28
)

. The
sole needed constants are the small substitution boxes S1, S2 and S3 (see §B)
and the constants needed by the key-schedule algorithm. A significant speed gain
can be obtained if one precomputes the sbox mapping, the finite field operations
being all computed dynamically. A third possibility is to precompute two more
mappings: multiplication in GF

(

28
)

by α and by α−1. Finally, in the case of
FOX128, a further speed gain may be obtained by tabulating two more mappings:
multiplication by α2 and by α−2.

32/64-bit Platforms. The f32 and f64 functions can be implemented very ef-
ficiently using a classical combinations of table-lookups and XORs. For a fully
precomputed implementation, one needs 8’192 bytes of memory space for FOX64,
as well as 32’768 bytes for FOX128. Depending on the target processor, the near-
est cache (i.e. the fastest memory) size may be smaller than 32 kB. In this case,
one can spare half of the space (at the cost of a few masking operations) by
noting that the S-boxes are “embedded” in the tables combining the S-box and
the diffusion layer; this allows to reduce the fast memory needs to 4’096 and
16’384 bytes, respectively.

Performance Results The following table summarizes the results obtained so far
by our optimized implementations of the FOX family (in clock cycles to encrypt
one block, with precomputed subkeys):

10 Under the unchecked hypothesis that XSL can use Gaussian elimination within a
complexity equal to n2.376.
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Cipher Architecture Implementation r = 12 r = 16

FOX64/k/r Intel Pentium 3 C (gcc) 316 406
FOX64/k/r Intel Pentium 3 ASM 220 295
FOX64/k/r Intel Pentium 4 C (gcc) 388 564
FOX64/k/r AMD Athlon-XP C (gcc) 306 390
FOX64/k/r Alpha 21264 C (Compaq cc) 360 480
FOX128/k/r Intel Pentium 3 C (gcc) 636 840
FOX128/k/r AMD Athlon-XP C (gcc) 544 748
FOX128/k/r Alpha 21264 C (Compaq cc) 440 588

We note that FOX64 is extremely fast on 32-bit architectures, while FOX128 is
competitive on 64-bit architectures. Namely, according to the Nessie project [27],
FOX64/12 is the fourth fastest 64-bit block cipher on Pentium 3 behind Nimbus,
CAST-128 and RC5. It is 19% faster than Misty1 (NESSIE’s choice), 39% faster
than IDEA, 57% faster than DES and about three times faster than TDES. The
generic version of FOX64 (with 16 rounds) is still 8% faster than IDEA. On Alpha
21264, a 64-bit architecture, FOX128/12 is the third fastest block cipher behind
Nush and AES, according to [27], while FOX128 (16 rounds) with 256-bit keys is
still 30% faster than Camellia, which is one of NESSIE’s choices.

Finally, we have an implementation of FOX64/12 (resp. FOX64/16) on 8051,
a typical low-cost 8-bit architecture, needing 16 bytes of RAM, 896 bytes of
ROM (precomputed data and precomputed subkeys) and 575 bytes of code size
encrypting one block in 2958 (resp. 3950) clock cycles.

6 Conclusion

Obviously, proposing a new block cipher family leads to new open problems. We
strongly encourage the development of attacks against full or reduced versions
of any member of the FOX family.

Another very interesting open problem is the definition of new linear multi-
permutations which can be implemented efficiently on low-cost 8-bit smartcards.
Some proposals have been done in connection with the design of block ciphers
based on SPNs, where the inverse multipermutation also has to be implemented;
using them in a self-inverting structure, e.g. a Feistel or a Lai-Massey scheme,
allows to relax this condition. Hence, the linear mapping can be optimized
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A Test Vectors

An implementation of FOX can be validated using the following test vectors. The
ciphertexts corresponding to the plaintext 0x0123456789ABCDEF, respectively
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0x0123456789ABCDEFFEDCBA9876543210 are given for two different key lengths,
for FOX64 and FOX128, respectively.

-----------------------------------------------------------------------------------------

FOX64/16/128 K : 00112233 44556677 8899AABB CCDDEEFF

FOX64/16/128 C : B85D6B76 6DCE952E

-----------------------------------------------------------------------------------------

FOX64/16/256 K : 00112233 44556677 8899AABB CCDDEEFF FFEEDDCC BBAA9988 77665544 33221100

FOX64/16/256 C : BB654D30 11DB367E

-----------------------------------------------------------------------------------------

FOX128/16/128 K : 00112233 44556677 8899AABB CCDDEEFF

FOX128/16/128 C : 849E0F06 82F50CD5 88AE0730 06A10BEE

-----------------------------------------------------------------------------------------

FOX128/16/256 K : 00112233 44556677 8899AABB CCDDEEFF FFEEDDCC BBAA9988 77665544 33221100

FOX128/16/256 C : 45CCB103 0F67B768 247F5302 66BC4996

-----------------------------------------------------------------------------------------

B sbox Definition

The three small S-boxes S1, S2, and S3, as well as the full S-box, are defined in
the following tables:

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

S1(x) 0x2 0x5 0x1 0x9 0xE 0xA 0xC 0x8 0x6 0x4 0x7 0xF 0xD 0xB 0x0 0x3

S2(x) 0xB 0x4 0x1 0xF 0x0 0x3 0xE 0xD 0xA 0x8 0x7 0x5 0xC 0x2 0x9 0x6

S3(x) 0xD 0xA 0xB 0x1 0x4 0x3 0x8 0x9 0x5 0x7 0x2 0xC 0xF 0x0 0x6 0xE

One should read the next table in that way: to compute sbox(0x4C), one
selects first the row named 4. (i.e. the fifth row), and then one selects the column
named .C (i.e. the thirteenth column) and we get finally sbox(0x4C) = 0x15.

sbox .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. 5D DE 00 B7 D3 CA 3C 0D C3 F8 CB 8D 76 89 AA 12

1. 88 22 4F DB 6D 47 E4 4C 78 9A 49 93 C4 C0 86 13

2. A9 20 53 1C 4E CF 35 39 B4 A1 54 64 03 C7 85 5C

3. 5B CD D8 72 96 42 B8 E1 A2 60 EF BD 02 AF 8C 73

4. 7C 7F 5E F9 65 E6 EB AD 5A A5 79 8E 15 30 EC A4

5. C2 3E E0 74 51 FB 2D 6E 94 4D 55 34 AE 52 7E 9D

6. 4A F7 80 F0 D0 90 A7 E8 9F 50 D5 D1 98 CC A0 17

7. F4 B6 C1 28 5F 26 01 AB 25 38 82 7D 48 FC 1B CE

8. 3F 6B E2 67 66 43 59 19 84 3D F5 2F C9 BC D9 95

9. 29 41 DA 1A B0 E9 69 D2 7B D7 11 9B 33 8A 23 09

A. D4 71 44 68 6F F2 0E DF 87 DC 83 18 6A EE 99 81

B. 62 36 2E 7A FE 45 9C 75 91 0C 0F E7 F6 14 63 1D

C. 0B 8B B3 F3 B2 3B 08 4B 10 A6 32 B9 A8 92 F1 56

D. DD 21 BF 04 BE D6 FD 77 EA 3A C8 8F 57 1E FA 2B

E. 58 C5 27 AC E3 ED 97 BB 46 05 40 31 E5 37 2C 9E

F. 0A B1 B5 06 6C 1F A3 2A 70 FF BA 07 24 16 C6 61
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