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Abstract. We present fully dynamic algorithms for maintaining the biconnected components
in general and plane graphs.

A fully dynamic algorithm maintains a graph during a sequence of insertions and deletions of
edges or isolated vertices. Let m be the number of edges and n be the number of vertices in a graph.
The time per operation of the best deterministic algorithms is O(

√
n) in general graphs and O(logn)

in plane graphs for fully dynamic connectivity and O(min{m2/3, n}) in general graphs and O(
√
n) in

plane graphs for fully dynamic biconnectivity. We improve the later running times to O(
√

m logn)

in general graphs and O(log2 n) in plane graphs. Our algorithm for general graphs can also find the
biconnected components of all vertices in time O(n).
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1. Introduction. Many computing activities require the recomputation of a
solution after a small modification of the input data. Thus algorithms are needed that
update an old solution in response to a change in the problem instance. Dynamic graph
algorithms are data structures that, given an input graph G, maintain the solution
of a graph problem in G while G is modified by insertions and deletions of edges.1

In this paper we study the problem of maintaining the biconnected components (see
below) of a graph.

We say that a vertex x is an articulation point separating vertex u and vertex v
(or that x separates u and v) if the removal of x disconnects u and v. Two vertices
are biconnected if there is no articulation point separating them. In the same way, an
edge e is a bridge separating vertex u and vertex v if the removal of e disconnects
u and v. Two vertices are 2-edge connected if there is no bridge separating them.
A biconnected component or block (resp., 2-edge connected component) of a graph is
a maximal set of vertices that are biconnected (resp., 2-edge connected). Note that
biconnectivity implies 2-edge connectivity but not vice versa.

Given a graph G = (V,E), a dynamic biconnectivity algorithm is a data structure
that executes an arbitrary sequence of the following operations:

insert(u, v): Insert an edge between node u and node v.
delete(u, v): Delete the edge between node u and node v if it exists.
query(u, v): Returns yes if u and v are biconnected, and no otherwise.
complete-block-query: Return for all nodes all the blocks they belong to.
Operations insert and delete are called updates. To compare the asymptotic per-

formance of dynamic graph algorithms, the time per update, called update time, and
the time per query, called query time, are compared. Let m be the number of edges
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1Insertions or deletions of isolated vertices are usually trivial.
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and n be the number of vertices in the graph. Prior to this work, the best update
time was O(min(m2/3, n)) [11, 2] with a constant query time. This paper presents
an algorithm with O(

√
m log n) update time and constant query time. Subsequently,

the sparsification technique was applied to the algorithm in this paper and its run-
ning time was improved to O(

√
n log n log(m/n)) [13]. Recently, a data structure

that requires only polylogarithmic amortized time per operation was presented [15].
The data structure presented in this paper can answer complete-block-queries in time
O(n). This was not mentioned explicitly but can also be done with the data structure
in [11, 2].

Additionally, we give an algorithm with O(log2 n) update time and O(log n) query
time for planar embedded graphs, under the condition that each insertion maintains
the planarity of the embedding. The best previous algorithm took time O(

√
n) per

update and O(log n) per query.

Related work. Frederickson [5] gave the first dynamic graph algorithm for
maintaining a minimum spanning tree and the connected components. His algorithm
takes time O(

√
m) per update and O(1) per query operation. The first dynamic 2-edge

connectivity algorithm by Galil and Italiano [8] took time O(m2/3) per update and
query operation. It was consequently improved to O(

√
m) per update and O(log n) per

query operation [6]. The sparsification technique of Eppstein et al. [3] and Eppstein,
Galil, and Nissenzweig [2] improves the running time of an update operation toO(

√
n).

Subsequently, a dynamic connectivity algorithm was given with O(n1/3 log n) update
time and O(1) query time [12]. It can also output all nodes connected to a given
node in time linear in their number. Very recently, an algorithm with polylogarithmic
amortized time per operation was presented [15]. Note that there is a lower bound on
the amortized time per operation of Ω(logn/ log log n) for all these problems [7, 16].

The best known dynamic algorithms in plane graphs take time O(log n) per op-
eration for maintaining connected components by Eppstein et al. [1], O(log2 n) for
maintaining 2-edge connected components by Hershberger, Rauch, and Suri [14] and
Eppstein et al. [4], and O(

√
n) for maintaining biconnected components by Eppstein

et al. [4].

Outline of the paper. First (section 2), we study the dynamic biconnectivity
problem for general graphs. Our basic approach is to partition the graph G into
small connected subgraphs called clusters (see [5] for a first use of this technique
in dynamic graph algorithms). Each biconnectivity query between a vertex u and a
vertex v can be decomposed into a query in the cluster of u, a query in the cluster v,
and a query between clusters. To test biconnectivity between clusters we use the 2-
dimensional topology tree data structure [5] in a novel way and extend the ambivalent
data structure [6]. These data structures were used before to test connectivity and
2-edge connectivity.

To test biconnectivity within a cluster we need to know how the vertices outside
the cluster are connected with each other. Thus, we build two graphs, called internal
and shared graphs. Each graph contains all vertices and edges inside the cluster C
and a compressed certificate of G \ C. A compressed certificate is a graph that has
the same connectivity properties as G \ C, but is not necessarily a minor of G \ C.
This approach is similar to the concept of strong certificates in the sparsification
technique: a strong certificate is not necessarily a subgraph of the given graph. The
crux in the analysis of the algorithm is that we can show that only an amortized
constant number of compressed certificates need “major” updates after an update in
G (see Lemma 2.44).
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Second (section 3), we study the dynamic biconnectivity problem for plane graphs.
We use a topology tree approach based on [5].

An earlier version of this paper appeared in [17].

2. General graphs. Let G be an undirected graph with n vertices and m edges.
The size |G| of a graph is the total number of its nodes and edges. We assume in the
paper that G is connected, which impliesm ≥ n−1. If G is not connected, we build the
data structure described below for each connected component and during an update
combine two data structures or split a data structure in time O(

√
m log n).

Let m/ log2 n ≥ k ≥ √
m be a parameter to be determined later. Note that

m/k ≤ k. We build a data structure for G that we rebuild from scratch every m/k
update operations. The operations between two rebuilds form a phase. This allows us
to limit the necessary maintenance of the data structure within a phase, i.e., the data
structure slowly “deteriorates” within a phase.

The data structure consists of the following parts: We map G to a graph G′ of
degree at most 3 and partition G′ into O(m/k) many subgraphs of size O(k), called
clusters. We keep data structures for (1) the graph of clusters, (2) each cluster (called
cluster graph), and (3) for special shared nodes (called shared graphs). We will show
how to rebuild these data structures in time O(m log n) and update them in time
O(

√
m log n) after an edge insertion or deletion in G.

2.1. The graph G′and the relaxed partition of order k. We want to par-
tition G into about equally sized subgraphs (see the relaxed partition below). For this
purpose, we map G to a graph G′ of degree at most 3 as in [5]. At each rebuild, G′

is created by expanding a vertex u of degree d ≥ 4 by d − 2 new degree-3 vertices
u′

1, . . . , u
′
d−2 and connecting u′

i and u′
i+1 by a dashed edge, for 1 ≤ i ≤ d − 3. Every

node u of degree at most 3 is represented by one node u′
1 in G′. Every edge (u, v) is

replaced by a solid edge (u′
i, v

′
j), where i and j are the appropriate indices of the edge

in the adjacency lists for u and v. We say that the edge (u′
i, u

′
i+1) belongs to u and that

every u′
i is a representative of u. The vertex u of G is called the origin of the vertex

u′
i in G′, for 1 ≤ i ≤ d− 2. We denote vertices of G′ by variables with prime, like u′

or u′
i, and their origin by variables without prime, like u. Thus, at the beginning of

a phase the graph G′ contains at most 2m vertices and at most 3m edges. We use
deg(u) to denote the degree of a vertex u in G and num(u) to denote the number of
representatives of u in G′.

The graph G′ is maintained during insertions and deletions of edges as follows:
Consider how the representatives of u are updated when an edge (u, v) is inserted. If
num(u) is 1 and deg(u) was 3 before the insertion, then add a new vertex u′

2, connect
u′

1 and u′
2 by a dashed edge, and make u′

1 and u′
2 each incident to 2 edges incident

to u. If num(u) is greater than 1, then one new vertex u′
num(u)+1 is created and

connected by a dashed edge to u′
num(u). Thus an edge insertion increases the number

of vertices in G′ by up to 2 and the number of edges by up to 3. If an edge is deleted,
the corresponding edge is removed from G′, but no vertices are deleted from G′. Thus,
within a phase there are at most 2m+ 2m/k vertices and 3m+ 3m/k edges in G′.

Data structure: The algorithm keeps the following mapping from G to G′ and
vice versa:

(G1) Each vertex of G stores a list of its representatives, ordered by index, and
pointers to the beginning and the end of this list. Each vertex of G′ keeps a pointer
to its position in this list, to its origin, and a list of incident edges.

(G2) Each dashed edge of G′ stores a pointer to the vertex of G that it belongs
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to; each solid edge of G′ stores a pointer to the edge of G that it represents.

Note that there exists a spanning tree of G′ that contains every dashed edge. The
algorithm maintains such a spanning tree, denoted by T ′. Let T be the corresponding
spanning tree in G. We denote by πT ′(u′, v′) the path from u′ to v′ in T ′. If the
spanning tree is understood, we use π(u′, v′). Let u′

v denote the representative of u
with the shortest tree path to a representative of v. Note that every articulation point
separating u and v must have a representative that lies on πT ′(u′

v, v
′
u).

Data structure:

(G3) Both T and T ′ are stored in a degree-k ET-tree data structure [12] and in a
dynamic tree data structure [18]. The ET-tree has constant depth.

We build a “balanced” decomposition of G′ into subgraphs of size O(k) and
maintain data structures based on this decomposition. At the beginning of each phase,
the decomposition and data structures are rebuilt from scratch in time O(m log n),
adding an amortized cost of O(k log n) to each update. The rebuilds significantly
simplify the “rebalancing” operations needed to maintain the decomposition balanced
during updates.

We next describe the balanced decomposition of G′ into clusters. A cluster is a
set of vertices of G′ that induces a connected subgraph of T ′. If the representatives
of a vertex u of G belong to different clusters, u is called a shared vertex. An edge is
incident to a cluster if exactly one of its endpoints is in the cluster. An edge is internal
if both endpoints are in the cluster. Let (x, y) be a tree edge incident to a cluster C
and let x ∈ C. Then x is called a boundary node of C. The tree degree of a cluster is
the number of tree edges incident to the cluster. Let |C| denote the number of nodes
in a cluster.

A relaxed partition of order k with respect to T ′ is a partition of the vertices into
clusters so that

(C1) each cluster contains at most k + 2m/k vertices of G′;
(C2) each cluster has tree degree at most 3;
(C3) each cluster with tree degree 3 has cardinality 1;
(C4) if a cluster contains a shared vertex, then all boundary nodes are representa-

tives of this shared vertex;
(C5) there are O(m/k) many clusters; and
(C6) at the beginning of the phase if a cluster contains a shared vertex s, then every

non-tree edge incident to the cluster either is adjacent to a representative of
the shared vertex or is incident to another cluster sharing s.

This definition is an extension of [6]. We denote the cluster containing a node u′

of G′ by Cu′ .

If all representatives of a vertex u of G belong to the same cluster C, we denote
C by Cu and say that C contains u and u belongs to C. For a cluster C, let V (C)
denote the set of origins in G of the nodes of G′ that (1) either belong to C or (2) are
connected to a node in C by a solid tree edge.2

Each cluster containing a representative of a shared vertex u is called a cluster
sharing u or u-cluster. Condition (C4) implies that each cluster shares at most one
vertex. Together with condition (C5), it follows that there are O(m/k) shared ver-
tices.

2The origin of a node s′ that is connected by a dashed edge to a node t′ in C belongs to V (C)
since the origin of s′ equals the origin of t′, which belongs to V (C) according to (1). Thus set CT of
[11] equals V (C).
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Data structure:
(G4) Each cluster keeps (a) a doubly linked list of all its vertices, (b) a doubly

linked list of all its incident tree edges, and (c) a pointer to its shared vertex
(if it exists).

(G5) Each nonshared vertex of G′ keeps a pointer to the cluster it belongs to.
Each shared vertex keeps a doubly linked list of all the clusters that share
the vertex.

We repeatedly make use of the following fact.
Fact 2.1. Let G be an n-node graph and let u1, . . . , ua be a set of articulation

points that lie on a (simple) path in G. Then
∑

i deg(ui) ≤ 2n.
To guarantee that conditions (C1)–(C4) are maintained within a phase any cluster

violating the conditions is split into two clusters (see section 2.2). We show below
that all these splits create only O(m/k) new clusters, i.e., condition (C5) is always
fulfilled.

2.2. Maintaining a relaxed partition of order k. To maintain a relaxed
partition during updates, we create a more restricted partition at each rebuild, i.e.,
at the beginning of each phase, and let it gradually “deteriorate” during updates.
Specifically, a cluster might be split but two clusters will never be merged. This
implies that if a vertex becomes shared at some point in a phase it stays shared until
the end of the phase.

A restricted partition of order k with respect to T ′ is a partition of the vertices
into clusters so that
(C1′) each cluster has cardinality at most k;
(C2′) each cluster has tree degree ≤ 3;
(C3′) each cluster with tree degree 3 has cardinality 1;
(C4′) if a cluster contains a shared vertex, then all boundary nodes are representa-

tives of this shared vertex;
(C5′) there are O(m/k) clusters; and
(C6′) if a cluster contains a shared vertex s, then every non-tree edge incident to

the cluster is either adjacent to the representative of the shared vertex or is
incident to another cluster sharing s.

Lemma 2.2. A partition fulfilling (C1′)–(C5′) can be found in linear time.
Proof. The algorithm in [6] shows how to find a partition fulfilling (C1′)–(C3′)

and (C5′) in time O(m+ n).
Enforcing (C4′) for a cluster in time linear in its size: Each cluster that does not

fulfill (C4′) has tree degree 2. Let x′ and y′ be the two boundary nodes in the cluster.
Since x′ and y′ represent different shared vertices, the tree path between x′ and y′

contains at least one solid edge. Splitting the cluster at the solid edge on π(x′, y′)
closest to x′ and at the solid edge on π(x′, y′) closest to y′ creates at most three
clusters that fulfill conditions (C1′)–(C4′). Each split takes time linear in the size of
the cluster. The lemma follows.

Lemma 2.3. By modifying the spanning tree T ′ a partition fulfilling (C1′)–(C5′)
can be modified in time O(m log n) to additionally fulfill (C6′).

Proof. We need to enforce that if a cluster contains a shared vertex s, then every
non-tree edge incident to the cluster is either adjacent to a representative of the shared
vertex or is incident to another cluster sharing s. The main idea of our approach is
to make every edge that violates this condition a tree edge, i.e., to remove a subtree
of T ′ connected to the violating edge from the cluster sharing s.

To be precise, mark all vertices in clusters sharing s and test every edge incident
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to such a vertex whether it is adjacent either to a shared vertex or to a marked
vertex. If x′ is in an s-cluster and the edge (x′, y′) does not fulfill the above condition,
then determine the representative s′ of s that is closest to x′ in T ′ and the tree edge
e incident to s′ on π(s′, x′). Make e a non-tree edge and make (x′, y′) a tree edge.
Remove the subtree T̃ of T ′ \ e containing x′ from the s-cluster and add it to the
cluster of y′ if the resulting cluster Cy′ does not violate (C1′). Otherwise, create a

cluster containing T̃ . This increases the tree degree of Cy′ by 1. Since Cy′ contains y′,
a vertex which had an adjacent non-tree edge, it follows from (C3′) that Cy′ has now
tree degree at most 3. If it has degree 3 and consists of more than one vertex, Cy′ is
split as follows.

Let v′, y′, and z′ be the three (not necessarily distinct) boundary nodes of Cy′ .
There exists a tree degree-3 node w′ that belongs to π(v′, y′), π(v′, z′), and π(y′, z′).
The algorithm splits Cy′ at w′ by creating a tree degree-3 cluster for w′ alone and up
to three additional tree degree-2 clusters, namely, if v′ �= w′, a cluster containing v′,
if y′ �= w′, a cluster containing y′, and if z′ �= w′, a cluster containing z′. The new
clusters fulfill (C1′)–(C3′). It is possible that (a) w′ was not a shared vertex before the
split, but is a shared vertex after the split, and that (b) Cy′ shared a vertex u′ different
from w′ before the split. If (a) and (b) hold, then one of the new tree degree-2 clusters
might violate condition (C4′). Split these clusters in the same way as described in
the proof of Lemma 2.2, namely, at the solid edge on π(w′, u′) closest to w′ and at
the solid edge on π(w′, u′) closest to u′. This creates at most three clusters that fulfill
conditions (C1′)–(C4′).

Note that a constant number of clusters was formed from the vertices in Cy′ and

the vertices in T̃ and that there are more than k vertices in Cy′ and T̃ combined.
Thus the total number of clusters when (C6′) holds for all clusters is still O(m/k),
i.e., (C5′) continues to hold.

To implement the above algorithm in time O(m log n) we use the following data
structure to represent T ′, G′, and the current cluster partitioning.

(1) We store a list of clusters and for each cluster we store its boundary vertices,
its incident tree edges, and its shared vertex if it exists. For each shared vertex s we
keep a list of all s-clusters.

(2) Each vertex of G′ stores a doubly linked list of all incident edges, separated
by tree and non-tree edges. Each edge points to its two positions in these lists.

(3) We also assume data structure (G1) exists already. This data structure will
not be modified by this algorithm.

(4) Each vertex of G stores a bit indicating whether it is shared or not.
(5) We build in linear time a degree-k ET-tree data structure [12]. By removing

the tree edges incident to a cluster, determining the size of the resulting spanning
tree inside the cluster, and adding the tree edges again this data structure allows us
to determine the number of vertices of a cluster in time O(log n).

(6) We build two dynamic tree data structures [18]. We mark in linear time each
edge of T ′ in one of the dynamic tree data structures (G3) by a weight which is 1
for solid edges and 0 for dashed edges. These data structures are updated in time
O(log n) after each edge insertion or deletion in T ′. We use the second dynamic tree
data structure to mark or unmark in time O(log n) all the vertices on an arbitrary
path and to determine in time O(log n) the marked vertex on a (second) path closest
to one of the endpoints of the path.

This data structure can be built in time O(m).

The algorithm checks each cluster on the list of clusters to determine whether it
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has a shared vertex s and, if so, it traverses and marks all vertices in the s-clusters
starting at a boundary vertex. This takes time linear in the number of these vertices.
Afterward it traverses them a second time and tests in constant time each adjacent
non-tree edge whether it is incident to a marked vertex or a representative of a shared
vertex. To test whether a vertex u′ is the representative of a shared vertex u of G
we determine the vertex u of G which u′ represents and test the bit at u. This takes
constant time.

We next show how to deal efficiently with an edge that violates the condition.
Making a tree edge a non-tree edge or vice versa takes time O(log n). Determining
the size of a cluster takes time O(log n) as discussed above. We still need to show
how to determine s′, e, w′ and the solid tree edges closest to w′ and closest to u′ on
π(w′, u′) in time O(log n).

Determining s′ and e: Mark in the second dynamic tree data structure all the
representatives of s using (G1). Root the dynamic tree data structure at a vertex
not in an s-cluster, for example, at y′, and determine the marked vertex on π(x′, y′)
closest to x′. This vertex is s′. Then root the dynamic tree at x′ and determine the
edge from s′ to its parent. This is the edge e. Finally unmark the marked vertices.

Determining w′: Mark in the second dynamic tree data structure all the vertices
on π(v′, z′). Root the (updated) dynamic tree data structure at v′ and determine
the marked vertex on π(y′, v′) closest to y′. This vertex is w′. Unmark the marked
vertices.

Determining the solid tree edges closest to w′ (resp., u′) on π(w′, u′): Root the
first dynamic tree data structure at u′ (resp., w′) and determine the edge with weight
1 closest to w′ (resp., u′). This is the desired edge.

Thus, for each non-tree edge that violates the condition we spend time O(log n)
to make it a tree edge and to restore conditions (C1)–(C4). Note that if a tree edge
becomes a non-tree edge, it stays a non-tree edge since it is adjacent to a shared vertex.
Thus the cost of O(log n) is incurred O(m) times, for a total time of O(m log n).

We discuss next how to maintain a relaxed partition during updates. We show
that an update does not violate condition (C1), (C4), or (C5). Obviously condition
(C6) can never be violated since it only has to hold at the beginning of a phase.
Condition (C2) or (C3) might be violated but can be restored by splitting a constant
number of clusters. Restoring (C3) might lead to a violation of (C4), which can also
be restored with an additional constant number of cluster splits.

We use the following update algorithm for the relaxed partition: If an insert(u, v)
operation replaces u by two nodes, add both to Cu. If only one new representative
unum(u)+1 is created, add it to the cluster of unum(u) and increment num(u) afterward.
A deletion does not remove any vertices.

Lemma 2.4. The update algorithm for the relaxed partition does not violate con-
dition (C1), (C4), or (C5). Conditions (C2) and (C3) might be violated for the clusters
containing the endpoints of the newly inserted edge (in the case of an insertion) or
the endpoints of the new tree edge (in the case of a deletion).

Proof. Condition (C1): An update increases the number of nodes in a cluster
by at most two, implying that at the end of the phase each cluster contains at most
k + 2m/k nodes. It follows that condition (C1) is never violated.

Condition (C4): Every newly added dashed edge has both endpoints in the same
cluster, i.e., it is not incident to a cluster. Thus, condition (C4) is not violated.

Condition (C5): A delete(u,v) operation might disconnect the connected compo-
nent of Cu if Cu = Cv, leading to one additional cluster. Since there are m/k updates
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in a phase, there exist O(m/k) clusters during a phase, i.e., condition (C5) is not
violated by the update algorithm.

Conditions (C2) and (C3): Deletions: Note first that the deletion of a non-tree
edge does not invalidate condition (C2) or (C3) and, thus, does not require any
cluster splits. A deletion of a tree edge might make a (solid) non-tree edge into a tree
edge, and, if this edge is an intercluster edge, add one new incident tree edge to its
endpoint clusters. This might lead to a violation of condition (C2) or (C3) for the
clusters incident to the new tree edge. Insertions: In the case that G is disconnected,
a newly inserted edge might become a tree edge, adding one new (solid) tree edge to
at most two clusters. As before, this might lead to a violation of conditions (C2) and
(C3) for the clusters incident to the new tree edge. Additionally, an insertion might
increase the number of nodes in a tree degree-3 cluster to two, violating condition
(C3).

In conclusion, an update violates conditions (C2) and/or (C3) for at most two
clusters, namely, the clusters containing the endpoints of the newly inserted edge or
of the new tree edge.

The algorithm first restores condition (C2) and then condition (C3). However,
restoring (C3) might lead to the violation of condition (C4). If this happens, condition
(C4) is restored after condition (C3).

Restoring condition (C2): If a cluster violates (C2), it has tree degree 4 and
consists of exactly two tree degree-3 nodes. Splitting it into two clusters creates two
connected 1-node clusters of degree 3, fulfilling conditions (C1)–(C4).

Restoring condition (C3): If a cluster C violates condition (C3), let x′, y′, and
z′ be the three (not necessarily distinct) boundary nodes of C. There exists a tree
degree-3 node w′ that belongs to π(x′, y′), π(x′, z′), and π(y′, z′). The algorithm splits
C at w′ by creating a tree degree-3 cluster for w′ alone and up to three additional
tree degree-2 clusters, namely, if x′ �= w′, a cluster containing x′, if y′ �= w′, a cluster
containing y′, and if z′ �= w′, a cluster containing z′. It is possible that (a) w′ was
not a shared vertex before the split, but is a shared vertex after the split, and that
(b) C was incident to up to two dashed edges before the update, i.e., shared a vertex
different from w′. If (a) and (b) hold, then one of the new tree degree-2 clusters
might violate condition (C4). Splitting these clusters in the same way as in the proof
of Lemma 2.2 creates at most three additional tree degree-2 clusters, each fulfilling
conditions (C1)–(C4).

Thus, restoring conditions (C1)–(C4) requires creating a constant number of ad-
ditional clusters after an update operation. Since there are m/k updates in a phase,
condition (C5) is fulfilled at any point in a phase.

We summarize this discussion in the following lemma.

Lemma 2.5.

(1) An insertion does not split any cluster, but restoring the relaxed partition
after an insertion might require a constant number of cluster splits, namely, of the
clusters that contain the endpoints of the inserted edge.

(2) A deletion of a non-tree edge does not require any cluster splits.
(3) A deletion of a tree edge might split the cluster containing the endpoints of

the deleted edge. Additionally, restoring the relaxed partition after a deletion might
require a constant number of cluster splits, namely, of the clusters that contain the
endpoints of the new tree edge.

Testing whether a cluster violates (C2) or (C3) takes constant time; splitting a
cluster takes time linear in its size. Thus, it takes time O(k) to update the relaxed



IMPROVED FULLY DYNAMIC BICONNECTIVITY 1769

partition of order k after each update.

2.3. Queries. Mapping G to G′ causes correctness problems: If two nodes u and
v are biconnected in G, they are also biconnected in G′, but the reverse statement
does not always hold (see [11] for an example).

The following lemma (an extension of Lemma 2.2 of [11]) relates the biconnectivity
properties of G and of G′. To contract an edge (u, v) identify u and v and remove
(u, v). To contract a vertex of G contract all dashed edges in G′ belonging to the
vertex.

Lemma 2.6. Let u and v be two vertices of G.
(1) Let G1 be the graph that results from G′ by contracting every vertex on

πT (u, v) (excluding u and v). The vertices u and v are biconnected in G iff u′
v and v′u

are biconnected in G1.
(2) Let y be a node on πT (u, v) that does not separate u and v in G. Let G2 be

the graph that results from G′ by contracting every vertex on πT (u, v), excluding y, u,
and v. The vertices u and v are biconnected in G iff u′

v and v′u are biconnected in G2.
Proof. The graphs G1, resp., G2, can be created from G by expanding appropriate

vertices. Thus, if u and v are biconnected in G, then u′
v and v′u are biconnected in

G1, resp., G2.
For the other direction, assume that u and v are separated by an articulation point

x in G. Then x belongs to πT (u, v). It follows that x is represented by one node in G1,
resp., G2. Assume by contradiction that u′

v and v′u are biconnected in G1, resp., G2,
i.e., there exists a path P ′ between them not containing x. The corresponding path P
in G connects u and v and does not contain x, which leads to a contradiction.

Note that the lemma also holds if additional vertices of G1, resp., G2, are con-
tracted.

To test the biconnectivity of u and v in G we decompose the problem into sub-
problems, such that each subproblem is either (a) a biconnectivity query in a graph
of size O(k + m/k) or (b) a connectivity query in a graph of size O(m). Subprob-
lems of type (a) can be solved efficiently since k +m/k is chosen to be “small.” For
subproblems of type (b) we use the existing efficient data structures for maintaining
connectivity dynamically. Since no data structure is known that solves both subprob-
lems efficiently, we maintain two different data structures, called cluster graphs and
shared graphs.

To be precise, for each shared vertex s, a shared graph is maintained. Given a
shared vertex s and two of its tree neighbors x and y, the shared graph of s is used
to test in constant time whether s is an articulation point separating x and y. This is
equivalent to testing if x and y are disconnected in G \ s. Thus, we use the dynamic
connectivity data structure [12] to maintain the shared graphs.

Recall that V (C) for a cluster C denotes the set of origins in G of the nodes of
G′ that either (1) belong to C or (2) are connected to a node in C by a solid tree
edge. We maintain for C a cluster graph which is built to test (in constant time) if
any two nodes of V (C) that are not separated by sC are biconnected in G, where sC
is the shared vertex of C. In particular, the cluster graph can be used to test whether
sC is biconnected with another node in C. To maintain the cluster graphs we use the
data structure of [11]. To test if two nodes x and y are biconnected in G, the data
structure contracts in G′ all vertices on πT (x, y) (and potentially additional vertices).

We describe next how we use these two data structures to answer a biconnectivity
query. We use the following lemma.

Lemma 2.7. Let u and v be nodes of G and let (x(i)′ , y(i)′), for 1 ≤ i ≤ p, denote
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the solid intercluster tree edges on πT ′(u′
v, v

′
u), in the order of their occurrence. Then

u and v are biconnected in G iff
(Q1) u and y(1) are biconnected in G,
(Q2) x(i) and y(i+1) are biconnected in G, for 1 ≤ i < p, and
(Q3) x(p) and v are biconnected in G.

Proof. If u and v are biconnected, then all nodes on π(u, v) are pairwise bicon-
nected, and thus (Q1)–(Q3) hold. If u and v are not biconnected, then u and v are
separated by an articulation point z. Since z belongs to πT (u, v), either (Q1), (Q2),
or (Q3) is violated. This is a contradiction.

For a query(u, v), let C be the cluster of u′
v. If C shares a vertex, call it s. We test

the conditions of the lemma using only a cluster graph if this is possible and using a
cluster graph and a suitable shared graph otherwise.

Testing condition (Q1): Condition (Q1) of Lemma 2.7 can be tested using two
cluster graphs and the shared graph of s: if s does not lie on π(u, y(1)), then s does
not separate u and y(1), and y(1) belongs to V (C). Thus, we use the cluster graph of
C to test whether u and y(1) are biconnected.

If s lies on π(u, y(1)), then let xu and yu be the nodes incident to s on π(u, y(1)).
Let s′ be the node representing s closest to y(1) on π(u, y(1)). Note that s belongs to
V (C) and that y(1) belongs to V (Cs′). Test in the cluster graph of C if u and s are
biconnected, test in the cluster graph of Cs′ if s and y(1) are biconnected, and test in
the shared graph of s if xu and yu are biconnected. If all tests are successful, u and
y(1) are biconnected in G, since the last test guarantees that s does not separate u
and y(1) and the first two tests guarantee that no other node of π(u, y(1)) separates u
and y(1).

Testing condition (Q2): If y(i)′ and x(i+1)′ belong to the same cluster Ci and
Ci does not share a vertex, then both, x(i) and y(i+1), belong to V (Ci) and are not
separated by a shared vertex of Ci. Thus, condition (Q2) can be tested using the
cluster graph of Ci.

We show that otherwise x(i) and y(i+1) are tree neighbors of a shared vertex si
and the shared graph of si can be used to test condition (Q2): either (a) y(i)′ and
x(i+1)′ belong to the same cluster Ci that shares a vertex si, or (b) y(i)′ and x(i+1)′

belong to different clusters. In case (a), Ci is incident to two solid tree edges and
one dashed tree edge, i.e., Ci has tree degree 3. By condition (C3) it follows that
Ci contains only one node, i.e., y(i)′ = x(i+1)′ , and both are representatives of si. It
follows that x(i) and y(i+1) are both tree neighbors of si. In case (b), all intercluster
edges between the cluster of y(i)′ and the cluster of x(i+1)′ are dashed. By condition
(C4) of a relaxed partition, all these dashed edges and also y(i)′ and x(i+1)′ belong to
the same shared vertex si. Thus, also in this case x(i) and y(i+1) are tree neighbors of
si. It follows that the shared graph of si can be used to test whether x(i) and y(i+1)

are biconnected in G.
Testing condition (Q3): Condition (Q3) is tested analogously to condition (Q1).
Since each test takes constant time, this leads to a query algorithm whose running

time is linear in the number of solid intercluster edges on πT ′(u′
v, v

′
u), which is O(m/k).

However, we will give in section 2.11 a data structure that allows all these tests to be
executed in constant time.

Our next goal is to describe cluster graphs and shared graphs in detail. Maintaining
them requires a third data structure, called high-level graphs, which we describe first.

2.4. Overview of high-level graphs. There are two high-level graphs, H1 and
H2. Basically, H1 is a graph where each cluster is contracted to one node, and H2 is
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a copy of H1 with intercluster dashed edges contracted as well.
To be precise, the graph H1 contains a node for each cluster of G′. Two nodes C

and C ′ of H1 are connected by an edge in H1 iff there is an edge between a vertex
of C and a vertex of C ′. If there exists an edge between C and C ′, we call C ′ the
neighbor of C. The edge between C and C ′ in H1 is a dashed edge iff there is a dashed
edge between a vertex of C and a vertex of C ′. Otherwise the edge in H1 is solid.

The graph H2 is the graph H1 with all dashed edges of H1 contracted.
We call vertices of H1 or H2 nodes and refer to vertices of G of G′ as vertices.
Since each node of H1 represents exactly one cluster, we will use the terms node

of H1 and cluster interchangeably. Each node of H2 represents at least one cluster
and it also represents the vertices of G with a representative in these clusters. Note
that each vertex of G is represented by a unique node of H2, while this does not hold
for H1: a shared vertex is represented by more than one node of H1.

The spanning tree T ′ of G′ induces a spanning tree T1 on H1 and T2 on H2. We
say C ′ is a tree neighbor of C if there is a tree edge between C ′ and C in H1. Otherwise
C ′ is a non-tree neighbor.

We need the high-level graphs to define and maintain the cluster graphs and the
shared graphs. Roughly speaking, a cluster graph tests (under certain conditions)
whether two vertices represented by the same node of H1 are biconnected in G, and
a shared graph tests whether two vertices represented by the same node of H2 are
biconnected in G.

When maintaining cluster and shared graphs we make use of the following data
structures. Details of some of these data structures are delayed until section 2.7. Let
i = 1, 2.

(HL1) We store for each node of Hi all the vertices of G
′ belonging to the node,3

and we store at each vertex of G′ the node of Hi to which the vertex belongs.
(HL2) We keep the following adjacency list representation forHi (of size O((m/k)2)

= O(m)): For each node of Hi we keep the list of all incident neighbors and
a list of pointers to all of its positions in the lists of its neighbors. Thus, in
constant time an edge between two nodes can be removed from this repre-
sentation.

(HL3) We maintain a data structure that given two nodes C and C ′ returns the
tree neighbor C ′′ of C such that C ′′ lies on πTi

(C,C ′). For H1 this takes
constant time; for H2 it takes time O(log n).

(HL4) We store a data structure that implements the following query operations
in Hi:
biconnected?(C,C ′,C ′′): Given that nodes C ′ and C ′′ are both tree neighbors

of a node C, test whether C ′ and C ′′ are biconnected in Hi.
blockid?(C,C ′): Given that C and C ′ are tree neighbors in Ti, output the

name of the biconnected component of Hi that contains both C and C ′.
components?(C): Output the tree neighbors of C in Hi grouped into bicon-

nected components.
Operations biconnected? and blockid? take constant time, and components?
takes time linear in the size of the output.

(HL5) We keep a mapping h from H1 to H2 and a mapping h−1 from H2 to H1.
For each node of H2 we keep a list of pointers to all the nodes of H1 whose
contraction formed H1, and for each node of H1 we keep a pointer back to
the corresponding node of H2.

3For H1 this is already part of (G4) and, of course, does not need to be stored twice.
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(HL6) We keep an empty array of size O(m/k) at each node in Hi (needed for
various bucket sorts—see sections 2.5 and 2.6).

Note that using (HL3) and (HL4) one can test in constant time whether two
neighbors of a node C in Hi are biconnected in Hi.

Recall that after an update operation clusters might be split to restore the relaxed
partition.

Lemma 2.8. If a cluster C is split while restoring the relaxed partition, then
the clusters containing the vertices of C when the relaxed partition is restored form a
connected subgraph of H1.

Proof. Splitting simply regroups the partitioning of vertices into clusters but does
not change the connectivity properties in G. Since the vertices in C form a connected
subgraph of G before the split, they also do so after the split. Hence, the clusters
containing these vertices form a connected subgraph of H1.

Next we need to assign “ancestors” to nodes and edges in H1 and H2. This is
necessary for our lazy update scheme: if a node is split into two nodes, then the
resulting nodes have the same ancestor. However, we cannot afford to update all
cluster and shared graphs accordingly. Therefore, we will treat nodes with the same
ancestor that fulfills certain additional conditions as one node in some of the cluster
and shared graphs.

First we define a unique ancestor for each node in H2. Let C be a node in the
current graph H2. Since clusters are only split, never joined, all nodes represented by
C were represented by the same cluster A at the beginning of a phase. This node A
is called the ancestor of C.

To define ancestors for nodes in H1, we denote by Bs the cluster that contains
snum(s) at the beginning of a phase for each shared vertex s. Note that if a cluster
contains only representatives that were created after the last rebuild, then these rep-
resentatives represent a shared vertex. Consider a cluster C of H1. If C only contains
representatives that were created after the last rebuild, then the ancestor of C is Bs.
Otherwise, C has at least one representative that existed at the last rebuild. In this
case, the representatives that existed at the last rebuild belonged to the same cluster
A at the last rebuild. This node A is called the ancestor of C.

Lemma 2.9. Let i = 1 or 2. Assume a node C of Hi is split into clusters C1 and
C2. Then C1 and C2 have the same ancestor as C.

Proof. For i = 2 this follows immediately from the definition. For i = 1, we
only give the argument for C1; the same argument applies to C2. If C1 contains
representatives that existed at the last rebuild, then these representatives all belonged
to the same cluster at the last rebuild. This cluster is also the ancestor of C. Otherwise,
C1 contains only representatives that were created after the last rebuild. In this case
the ancestor of C1 is Bs. We show below inductively that representatives that are
created after the last rebuild are added into clusters whose ancestor is Bs. Thus, the
ancestor of C is Bs as well.

When a new representative is added for s, it is added to the cluster containing
snum(s). We show inductively that the cluster containing snum(s) for the current value
of num(s) has Bs as ancestor. The induction goes over the number of representatives
of s added to G′ after the last rebuild. By the definition of ancestor for clusters with
representatives that existed at the last rebuild the claim holds before a new repre-
sentative was added for s. Consider next the addition of the ith new representative
snum(s)+1 of s. If the cluster containing snum(s) is not split, then the claim holds induc-
tively. Otherwise two situations can arise: either the cluster C containing snum(s)+1
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after the split contains only representatives that were created after the last rebuild,
or not. In the former case, Bs is the ancestor of C by definition. In the latter case, C
contains representatives that belonged to Bs at the last rebuild. Thus, in either case,
Bs is the ancestor of C.

In particular, C1 and C2 have the same ancestor and each node has a unique
ancestor.

Data structure:
(HL7) We store at each node of Hi its ancestor.
(HL8) We number the edges of Hi in the order in which they were added to Hi

with the edges added during a rebuild in arbitrary order.
Recall that at the beginning of each phase a cluster contains at most k vertices

of G′. This enables us to prove the following lemma.
Lemma 2.10. The total number of vertices of G′ in all clusters with the same

ancestor is k + 2m/k. The total number of edges incident to these vertices is O(k).
Proof. Let A be a cluster at the beginning of a phase. All nodes of a cluster

with ancestor A (in G′) that existed at the time of the last rebuild belonged to A at
the beginning of the phase. Thus, there are at most k of them. Every other node was
created by one of the m/k update operations. Since each update creates at most two
new vertices, the bound follows.

2.5. Cluster graphs. Let C be a cluster. The cluster graph I(C) of C is used
to test if two vertices u and v of V (C) that are not separated by sC are biconnected
in G. This leads to a first requirement for I(C):

(IC1) If sC does not separate u and v, then u and v are biconnected in I(C) iff
they are biconnected in G.

As we see below, an amortized constant number of cluster graphs is rebuilt during
each update operation. This leads to a second requirement for I(C):

(IC2) The graph I(C) has size O(|C|) = O(k).
Recall that V (C) denotes the set of origins in G of the nodes of G′ that (1) either

belong to C or (2) are connected to a node in C by a solid tree edge.
We next motivate our definition of I(C) and explain why it can be used only if sC

does not separate the two nodes. Obviously, I(C) has to contain all nodes of V (C) and
all edges between the nodes of V (C). Since two nodes of V (C) can be connected by a
path in V (C) and additionally by a path that contains nodes of a non-tree neighbor
of C, we represent each non-tree neighbor of C by a node in I(C) (called either b-node
or c-node) and we add to I(C) all edges incident to C.

However, three questions remain: (1) If C shares a vertex sC , let C ′ be one of
the neighbors of C connected to C by a dashed tree edge (belonging to sC). Should
I(C) also contain a node representing C ′, i.e., should sC and C ′ be represented by
the same or different nodes in I(C)? (2) How is the set of b- and c-nodes connected
by edges? (3) How can the graph be maintained efficiently when a neighbor of C is
split?

Next we describe our solution to these questions. (1) If sC and C ′ are represented
by the same node, then two nodes u and v of V (C) that are biconnected in G might
not be biconnected in I(C). See Figure 2.1 for an example. On the other side, if I(C)
contains a node for sC and a separate node for C ′, then two vertices u and v of
V (C) that are not biconnected in G can be biconnected in I(C). See Figure 2.2 for
an example.

However, by Lemma 2.6 and the fact that in the latter approach all nodes on
πT (u, v) except for sC are contracted, it follows that the latter situation can happen
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Fig. 2.1. The graph G′ and a potential graph I(C). The graph G′ consists of cluster C and C′
(represented by circles), both sharing vertex s (represented by two nodes and the dashed line between
them). Tree edges are bold or dashed. In I(C), C′ and s are collapsed to one node. Nodes u and v
are biconnected in G but not in I(C).

Fig. 2.2. The graph G′ and a potential graph I(C). The graph G′ consists of cluster C and C′
(represented by circles), both sharing vertex s (represented by two nodes and the dashed line between
them). Tree edges are bold or dashed. In I(C), C′ and s are represented by two different nodes.
Nodes u and v are not biconnected in G′ but are biconnected in I(C).

only if sC separates u and v in G. Since this case is excluded by (IC1), we represent
sC and C ′ by separate nodes in I(C).

(2) Let j be the number of neighbors of C. There are at most j b- or c-nodes in
I(C). Since G′ is a graph of degree at most 3, j = O(|C|). To guarantee that I(C)
has size O(|C|), I(C) will contain at most j − 1 many edges between b- or c-nodes.
These edges will be colored and will fulfill the condition that two b- or c-nodes are
connected by a path of colored edges iff they are connected in H1 \ C.

(3) We will split a node representing a neighbor C ′ of C only if the two clusters
resulting from the split of C ′ are disconnected in H1 \ C. Otherwise, both resulting
clusters will be represented by the same c-node in I(C), i.e., a c-node in the cluster
graph might represent not just one cluster, but a set of clusters. This leads to the
following invariant: Two neighbors of C are represented by the same node in I(C) or
are connected by a colored path iff they are connected in H1 \ C.

Let us now give the exact definition of a cluster graph I(C) for a cluster C. Let
A be the ancestor of C. The cluster graph contains as nodes

(1) a node, called a-node, for each vertex with a representative in C,
(2) one node, called b-node, for each neighbor C ′ of C with ancestor A,
(3) one node, called c-node, for each maximal set X of clusters such that (a)

every cluster C ′ ∈ X is a neighbor of C, (b) all clusters in the set are connected in
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H1 \ C, (c) all clusters in X have the same ancestor which is different from A, (d)
at the creation of C, the set X contains only one cluster, and (e) at each previous
point in time since the creation of C all clusters that contain the vertices in ∪C′∈XC ′

existing at this time are represented by the same c-node in I(C).

Note that for each neighbor C ′ of C there exists a unique node in I(C) representing
C ′ (and potentially other clusters). Note further that each node of G is represented
by at most one node in I(C), except for sC , which can be represented by an a-node
and up to two b- or c-nodes, namely, the tree neighbors of C that share sC .

The graph I(C) contains the following edges:

(1) All edges between two vertices of G represented by an a-node belong to I(C).
(2) For each edge (u, v) where u is represented by an a-node and v is not, and

(u′, v′) is the corresponding edge in G′, there is an edge (u, d) in I(C), where d is the
b- or c-node representing Cv′ .

(3) For each tree neighbor C1 connected to C by a dashed edge there is an edge
from the b- or c-node of C1 to the a-node of sC .

(4) For each pair C1 and C2 of tree neighbors of C there is a red edge (d1, d2)
if C1 and C2 are biconnected in H1, where dj is the b- or c-node representing Cj ,
j = 1, 2.

(5) For each non-tree neighbor C1 of C with representative d1,
4 I(C) contains a

blue edge (d1, d2), where d2 represents the tree neighbor of C that lies on πT1
(C,C1),

if C is an articulation point in H1 (separating its at most two tree neighbors), and a
blue edge (d1, d3), where d3 represents an arbitrary tree neighbor of C, otherwise.5

Note that I(C) can contain parallel edges. They can be discarded without affecting
the correctness.

We show next that the cluster graphs fulfill (IC1) and (IC2).

Lemma 2.11. Two neighbors of C are biconnected in H1 iff either they are
represented by the same node in I(C) or their representatives in I(C) are connected
by a colored path.

Proof. We show first that if there is a colored edge between two nodes d1 and d2 in
I(C), then the clusters that they represent are biconnected in H1. For red edges this
follows immediately from the definition. For a blue edge consider first the case that
C is not an articulation point in H1. In this case all neighbors of C are biconnected
in H1. Since each blue edge connects two neighbors of C, the claim holds. Consider
next the case that C separates its tree neighbors C1 and C2 in H1. Note that there
are two vertex-disjoint paths in H1 between C and each of its non-tree neighbors C1:
one path consists of the non-tree edge (C,C1), and the other path is πT1(C,C1). Thus
C1 and C’s tree neighbor on πT1(C,C1) are biconnected as well, i.e., the claim holds
for each blue edge.

This implies that if the representative of two neighbors of C are connected by a
colored path in I(C), then the neighbors of C are biconnected in H1. If two neighbors
are represented by the same node in I(C), then they are biconnected in H1 by the
definition of a c-node.

Next we show that if two neighbors of C are biconnected in H1 and represented
by two different nodes in I(C), then these representatives in I(C) are connected by a
colored path. Each non-tree neighbor C1 is biconnected with the tree neighbor of C

4If C has a non-tree neighbor, then C has tree degree at most 2.
5Note that C1 and C are biconnected in H1. Thus this is equivalent to requiring that for each

non-tree neighbor C1 of C there exists a blue edge (d1, d2), where d2 represents a tree neighbor of
C that is biconnected to C1 in H1 and d1 represents C1.
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on πT1
(C,C1) and is connected to this tree neighbor by a colored path (of length at

most two). Thus it suffices to show the claim for two tree neighbors of C. But for two
tree neighbors the claim holds by definition.

Lemma 2.12. Let C be a cluster and let u and v be two nodes of V (C). If sC
does not separate u and v in G, then u and v are biconnected in I(C) iff they are
biconnected in G.

Proof. Assume first that u and v are biconnected in I(C) but are separated by a
node x in G. Note that x must belong to V (C). Furthermore, x must be represented
by at least two nodes in I(C). However, each node of G is represented by at most one
node in I(C), except for sC . Thus, x = sC , which leads to a contradiction.

Assume next that u and v are biconnected in G, but are separated by a node y
in I(C). Since u and v are connected by a tree path whose (internal) nodes all belong
to C, no b-node or c-node can separate u and v in I(C). Thus, y must be an a-node.

Consider the path P between u and v in G that does not contain y. Let P̃ be
the path created from P by (1) extending P to a path in G′, (2) contracting all
intracluster edges of P except for the nondashed intracluster edges of C, and (3) by
labeling the resulting nodes of P̃ with their clusters of G′.

Every edge of P̃ either is connecting two clusters or is incident to a vertex with
a representative in C. We show that P̃ induces a path without y in I(C) connecting
u and v. We split P̃ into subpaths. Each subpath either

(1) connects two neighbors of C and does not contain other neighbors of C or
vertices with representatives in C, or

(2) is one edge connecting two vertices with representatives in C, or
(3) is a solid edge connecting a vertex with a representative in C with a neighbor

of C, or
(4) is a dashed edge connecting a vertex with a representative in C with a neigh-

bor of C.
By Lemma 2.11 the endpoints of the type-(1) subpaths are connected by a colored

path in I(C). By definition type-(2), (3), or (4) subpaths are contained in I(C). Thus
P̃ induces a path without y from u to v in I(C). Thus we have a contradiction.

Lemma 2.13. For each cluster C,

|I(C)| = O(|C|).

Proof. Obviously, there are O(|C|) a-nodes and O(|C|) edges incident to them in
I(C). Each b-node or c-node in I(C) can be charged to one of the edges that connects
the b-node or c-node to a node in C. Thus, there are O(|C|) b- or c-nodes. Since the
number of colored edges is linear in the number of b- and c-nodes, it follows that
|I(C)| = O(|C|).

We will need the following fact when bounding the time of updates.
Lemma 2.14. Let C1, . . . , Cl be a set of clusters with the same ancestor. Then

l∑

i=1

|I(Ci)| = O(k).

Proof. By Lemma 2.13,

l∑

i=1

|I(Ci)| =
l∑

i=1

O(|Ci|).
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Let A be the ancestor of the clusters C1, . . . , Cl. Recall that either (1) each Ci contains
the representative of a vertex and that representative or the (unexpanded) origin of
the representative also belonged to A, or (2) C contains only representatives of the
shared vertex s of A, all these representatives were created after the last rebuild, and
A = Cs.

The number of clusters fulfilling (1) is bounded by the number of nodes of G′ in
A. The total number of clusters fulfilling (2) is bounded by the number of updates
since the last rebuild, which is m/k.

Thus,

l∑

i=1

O(|Ci|) ≤ O(|{v, v is a node of G′ in A}|+m/k) = O(k).

In [11]6 a cluster data structure for I(C) is given so that
(1) building the data structure takes time O(|C|), provided that the b-nodes, the

c-nodes, and the red and blue edges are given;
(2) changing one or all of the colored edges takes time linear in their total number,

provided the new colored edges are given;7

(3) testing whether two vertices of V (C) that are not separated by sC are bicon-
nected in I(C) takes constant time.

We keep as data structure
(CG1) for each cluster C a cluster data structure for I(C);
(CG2) for each cluster C the adjacency lists of the graph I(C) with the two occur-

rences of edges pointing at each other;
(CG3) for each cluster C, a list of pointers to the b- or c-nodes representing C in

I(C)′ for each neighbor C ′; for each b-node in I(C ′), a pointer back to C,
and for each c-node in I(C ′), a set of pointers to the clusters represented by
the c-node.

Note that given the b-nodes and c-nodes of I(C), the red and blue edges of I(C)
can be determined in time linear in their number using the data structure (HL3) and
(HL4) for H1. This leads to the following lemma.

Lemma 2.15. Let C be a cluster. There exists a cluster data structure for I(C)
such that

(1) building the data structure takes time O(|C|), provided that the b-nodes and
the c-nodes are given;

(2) changing one or all of the colored edges takes time linear in their total number,
given the b-nodes and c-nodes;

(3) testing whether two vertices of V (C) that are not separated by sC are bicon-
nected in I(C) takes constant time.

Note: We will use the same data structure and the same update algorithm in
section 2.6 for one class of shared graphs. There the same problem has to be solved in

6Lemma 4.6 of [11] states the result; section 4.1.2 of [11] describes the data structure. In the
notation of [11], G3(C) is identical to I(C) except that a non-tree neighbor C1 of C always has a
blue edge (C1, C2) to the tree neighbor C2 of C that lies on πT1 (C,C1), even if C is not an articulation
point. Furthermore, G2(C) = G3(C) \ {red edges}, CT = V (C), and the artificial edges of [11] are
identical to the colored edges of I(C).

7In [11] changing a red edge actually takes no time during an update: the existence of a red edge
is not recorded during an update but is checked during queries (by asking a biconnectivity query
in H1). This is possible, since only one red edge exists in a cluster graph. Since we will use the
same data structure also for one class of shared graphs, we treat red edges as blue edges in the data
structure of [11].
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H2 instead of H1. Since nodes in H2 are not guaranteed to have bounded tree degree,
we will not make use of this property of H1 in our update algorithm.

2.5.1. Updates. We show in this section that it takes amortized time O(k) to
update the data structures for all cluster graphs after an edge insertion or deletion in
G. The major difficulty is to maintain the b-nodes and c-nodes of each cluster graph.
Once it has been determined how they change, it will be quite straightforward to
update data structures (CG1)–(CG3). Let C be a cluster. A c-node of I(C) has to
be partitioned either (i) because C is split or (ii) because conditions (a) or (b) of a
c-node are no longer fulfilled for the c-node. We call the latter kind of update a split
by condition violation (CV-split) of a c-node. We say a CV-split occurs at a node C
of H1 if one of the c-nodes of C is CV-split.

Section 2.8 presents a data structure that given an update operation decides which
if any c-nodes have to be CV-split and for each CV-split c-node it returns the set of
clusters forming each new c-node. In section 2.9 we show that during m/k update
operations CV-splits occur at O(m/k) different nodes of H1. When a CV-split occurs
at a node C of H1 in a cluster graph, all data structures for the cluster graph of C
are rebuilt from scratch in time O(k). Thus the CV-splits add an amortized cost of
O(k) to the time per update. We describe below the remaining work that is necessary
after an update to maintain the cluster graphs.

Insertion. Let u′ and v′ be the (potentially newly added) representatives that
are incident to the newly inserted edge (u, v). The insertion affects the cluster graphs
as follows:

(1) The clusters Cu′ and Cv′ might become neighbors because of the edge insertion
and they also might be split while rebalancing the relaxed partition. In either case
some b-nodes and/or c-nodes in I(Cu′) and I(Cv′) change. If this happens the data
structures for I(Cu′) and I(Cv′) are rebuilt from scratch.

(2) For a cluster C ′ incident to a split cluster the b-node representing the split
cluster might have to be partitioned into a constant number of b-nodes. If this happens
the data structures for I(C ′) are rebuilt from scratch.

(3) Nodes on πT1
(Cu′ , Cv′) that separated Cu′ and Cv′ in H1 before the insertion

no longer separate Cu′ and Cv′ . For each such node, a suitable red edge is added to
the cluster graph, without rebuilding the cluster graph from scratch.

We next discuss each case in detail. (1) If Cu′ and Cv′ become neighbors because
of the edge insertion, then a new b- or c-node representing Cv′ , resp., Cu′ , has to
be added to I(Cu′), resp., I(Cv′). Consider the split of a cluster C into a constant
number of clusters Cj . Then each c-node in I(Cj) represents only one cluster by part
(d) of the definition of a c-node. Thus, for each neighbor of Cj simply test whether it
has the same ancestor as Cj . If yes, it is represented by a b-node in I(Cj), otherwise
it is represented by a c-node.

(2) We describe next how the changes in the b-nodes of I(C ′) are determined
when cluster C is split into a constant number of nodes Cj . Bucketsort the edges
incident to C in lexicographic order of its two endpoints in the updated graph H1

(using (HL6)). Each neighbor of C with the same ancestor as C that is incident
to edges from l > 1 different buckets (i.e., new clusters) of its array receives l new
b-nodes representing these new clusters, discards the b-node of C, and keeps all the
other old b-nodes.

(3) The articulation points on πT1(Cu′ , Cv′) are found by testing in constant time
each of the clusters on πT1(Cu′ , Cv′) using data structure (HL4) for H1 (before the
update). Then a red edge between its tree neighbors on πT1

(Cu′ , Cv′) is added to each
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articulation point.

We next show that this takes total time O(k). In (1) it takes constant time to
test whether a b-node or a c-node has to be added for the neighbor of a cluster. Each
test takes constant time using (HL7). By Lemma 2.10 there are O(k) many such tests.
Building the data structure (CG1) for a constant number of clusters takes time O(k)
by Lemma 2.15; building (CG2) and (CG3) takes O(k) as well.

In (2) there are O(k) edges to bucketsort. If each bucket with a count larger than
1 is put in a separate list, then all new b-nodes can be determined in time O(k), and
(CG3) can be updated accordingly. By Lemma 2.10 the total size of all the cluster
graphs rebuilt in (2) is O(k). Thus building (CG1) and (CG2) for all of them takes
total time O(k) by Lemma 2.15.

Each test in (3) takes constant time, and adding the red edge for a former articu-
lation point C ′ in H1 takes time linear in the degree of C ′. By Fact 2.1 the H1-degree
of all articulation points on πT1(Cu′ , Cv′) sums to O(m/k).

Deletion of a non-tree edge. The deletion of a non-tree edge does not change
the spanning tree and does not split a cluster (Lemma 2.5). Thus, the deletion of a
non-tree edge affects the cluster graph as follows:

(1) The clusters Cu′ and Cv′ might no longer be neighbors in H1. In this case the
corresponding b-node or c-node has to be removed from I(Cv′), resp., I(Cu′). If this
happens the data structures for I(Cu′) and I(Cv′) are rebuilt from scratch.

(2) A red edge has to be removed and the blue edges have to be updated in the
cluster graph of each new articulation point on πT1(Cu′ , Cv′) in the updated graph
H1.

We next discuss each case in detail: in case (1) we simply need to test whether
the edge (Cu′ , Cv′) was removed from H1. If so, and if Cu′ and Cv′ have the same
ancestor, then the corresponding b-nodes are removed from I(Cv′) and I(Cu′). Other-
wise, we need to test whether the c-node representing Cu′ in I(Cv′) represents further
clusters. If not, then the c-node is removed. We proceed in the same way for the
c-node representing Cv′ in I(Cu′).

In case (2) we determine each new articulation point C on πT1(Cu′ , Cv′) by testing
in constant time each of the clusters on πT1(Cu′ , Cv′) using data structure (HL4) for
H1 (after the update). Then we remove all old red and blue edges from I(C). Using
(HL3) we determine for each neighbor C ′ of C the tree neighbor C ′′ of C such that C ′′

lies on πT1(C,C ′), and connect C ′ by a blue edge with C ′′. Finally we determine the
biconnected components of the tree neighbors of C using a components?(C) operation
in (HL4) and add the suitable red edges.

We next show that this takes total time O(k). In case (1) testing and rebuilding
the data structures takes time O(k) by the same argument as for insertions. In case
(2) finding all articulation points takes time O(m/k). Determining the new red and
blue edges takes time linear in the degree of each articulation point. By Fact 2.1 the
total cost for all articulation points is O(m/k).

Deletion of a tree edge. Let u′ and v′ be the representatives that are incident
to the deleted edge (u, v) and let x′ and y′ be the representatives that are incident
to the new tree edge (x, y), if it exists. By Lemma 2.5, Cu′ , Cv′ , Cx′ , and Cy′ are the
only clusters that might be split.

The cluster graphs are affected as follows: (1) The clusters Cu′ and Cv′ might no
longer be neighbors in H1. In this case the corresponding b-node or c-node has to be
removed from I(Cv′), resp., I(Cu′). If this happens the data structures for I(Cu′) and
I(Cv′) are rebuilt from scratch.
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(2) The clusters Cu′ , Cv′ , Cx′ , and Cy′ might be split. The data structures (CG1)–
(CG3) are rebuilt from scratch for each cluster created by the splits.

(3) For a cluster C ′ incident to a split cluster the b-node representing the split
cluster might have to be partitioned into a constant number of b-nodes. If this happens
the data structures for I(C ′) are rebuilt from scratch.

(4) A red edge has to be removed and the blue edges have to be updated in the
cluster graph of each new articulation point on πT1

(Cx′ , Cy′) in the updated graph
H1.

We implement (1), (2), (3), and (4) as in the cases of edge insertions or deletions
of non-tree edges. Thus, the same arguments as above show that all this can be
implemented in time O(k).

We summarize the section with the following theorem.
Theorem 2.16. The given data structure
(1) tests in constant time whether two vertices u and v of V (C) for a cluster C

that are not separated by sC are biconnected in G,
(2) can be updated in amortized time O(k) after each update in G, and
(3) can be built in time O(m).

2.6. Shared graphs. We maintain a shared graph G(s) for every shared vertex
s. Given a shared vertex s and two of its tree neighbors x and y, the shared graph of
s is used to test in constant time whether s is an articulation point separating x and
y in G.

Let Cs be the node of H2 representing s, i.e., it represents the nodes in all s-
clusters. Let V(Cs) = {v; v ∈ G, and v is represented by Cs}. Shared graphs are
used to test whether a pair of two special vertices of G that either are represented by
the same node of H2 or are incident to the same node of H2 (to be precise, two tree
neighbors of s) are biconnected in G. Note that cluster graphs solve this problem in
H1: a cluster graph tests whether two vertices of G that are represented by or are
incident to the same node of H1 are biconnected in G, under the additional condition
that no dashed edge is incident to this node of H1. (For nodes of H1 that are incident
to a dashed edge only a restricted version of the problem is solved.) Since there are
no dashed edges in H2, we simply can define shared graphs analogously to cluster
graphs and use the data structure for cluster graphs also for shared graphs. However,
it is possible that |Cs| = Θ(m) and, thus, rebuilding the data structure from scratch
can take time Θ(m).

This leads to the following definition. Let us call a shared vertex s new if s became
shared by a cluster split after the last rebuild, and let it be called old otherwise (i.e.,
if it became a shared vertex during the last rebuild). Note that if s is new, then
|V(Cs)| = O(k) by Lemma 2.10, and, thus, a solution analogous to cluster graphs is
efficient.

For old shared vertices we use a new technique, which exploits the fact that the
tree neighbors x and y of s are biconnected iff x and y are connected in G \ s. Thus,
we maintain a “compressed” version of G \ s in which we ask connectivity queries.
The shared graph will be stored in a dynamic connectivity data structure. Note that
there are O(m/k) = O(k) many shared vertices, which implies we have to maintain
O(k) many shared graphs.

2.6.1. Shared graphs for new shared vertices. Let s be a new shared vertex
represented by node Cs in H2, and let As be the ancestor of Cs. The shared graph
G(s) contains as nodes

(1) a node, called a-node, for each vertex in V(Cs),
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(2) one node, called b-node, for each neighbor of Cs with ancestor As,
(3) one node, called c-node, for each maximal set X of nodes of H2 such that

(a) every cluster C ′ ∈ X is a neighbor of Cs, (b) all nodes in X are connected in
H2 \Cs, (c) all nodes in X have the same ancestor which is different from As, (d) at
the creation of Cs, the set X contains only one node, and (e) at each previous point
in time since the creation of Cs all nodes of H2 that contain the vertices in ∪C′∈XC ′

existing at this time are represented by the same c-node in G(s).

Note that for each neighbor C ′ of Cs there exists a unique node in G(s) repre-
senting C ′ and potentially other clusters.

The graph G(s) contains the following edges:

(1) All edges between two vertices of V(Cs) belong to G(s).
(2) For each edge (u, v), where u belongs to V(Cs), v does not belong to V(Cs),

and (u′, v′) is the corresponding edge in G, there is an edge (u, d), where d is the b-
or c-node representing Cv′ in G(s).

(3) All b- or c-nodes representing tree neighbors of C that are biconnected in H2

are connected by a tree of red edges.
(4) For each non-tree neighbor C1 of C, G(s) contains a blue edge (d1, d2), where

d2 represents a tree neighbor of C that is biconnected to C1 in H2, and d1 represents
C1.

Note that for each non-tree neighbor C1 of C there always exists a tree neighbor of
C that is biconnected to C1 in H2—the tree neighbor of C that lies on πT2(C,C1)
always is biconnected to C1.

Since all clusters sharing s have the same ancestor, Lemma 2.10 shows that
|G(s)| = O(k).

A tree neighbor of s either belongs to V(Cs) and is represented by an a-node, or
does not belong of V(Cs) and is represented by a b- or c-node. We need to show the
following lemma.

Lemma 2.17. Let x and y be two tree neighbors of a new shared vertex s. Then
(the representative of) x and y are biconnected in G(s) iff x and y are biconnected in
G.

Proof. Note that G(s) can be created by contracting edges in G. Thus, biconnec-
tivity in G(s) implies biconnectivity in G.

Vertices x and y are connected by a tree path (u, s), (s, v). Thus s is the only
node that could be an articulation point separating x and y. Contracting edges not
incident to s cannot make s into an articulation point separating x and y. Hence,
biconnectivity in G implies biconnectivity in G(s).

We use the same data structure as for cluster graphs to store shared graphs for
new shared vertices. Given the b- and c-nodes the red edges can be found in time linear
in their number using the data structure (HL4) for H2. We determine the blue edges
of G(s) by connecting each non-tree neighbor C1 of a node C to the tree neighbor of
C on πT2

(C,C1). Using the data structure (HL3) for H2 this takes time linear in the
number of blue edges times O(log n). Using the data structure of [11] results in the
following lemma.

Lemma 2.18. Let s be a shared vertex represented by the node C of H2. Then
there exists a data structure for the shared graph of s such that

(1) building the data structure takes time O(|Cs|+(m/k) log n), provided that the
b-nodes and the c-nodes are given;

(2) changing one or all of the colored edges in the data structure takes time linear
in their total number times O(log n), given the b-nodes and c-nodes;
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(3) testing whether two vertices of V(Cs) are biconnected in G(s) takes constant
time.

These data structures are updated with the algorithm of section 2.5.1 with H1

replaced by H2. Since the test in (HL3) takes time O(log n), the amortized time per
operation is O(k + (m/k) log n).

2.6.2. Shared graphs for old shared vertices. Let s be an old shared vertex
and let Cs be the node of H2 representing s. We cannot use the data structure of
the previous section for the shared graph of s since rebuilding the data structure
from scratch would take time Ω(|Cs|), which might be Θ(m). Still we use an approach
similar to the one in the previous section but avoid rebuilds from scratch for the whole
data structure.

We will exploit the following fact: Condition (C6) of a relaxed partition guarantees
that at any time in a phase O(m/k) vertices that do not belong to Cs are incident to
a vertex of Cs. Only the O(m/k) shared vertices and the O(m/k) endpoints of edges
inserted in the phase can be neighbors of a vertex in Cs and not belong to Cs.

The graphs G(s). Let s be an old shared vertex,

(1) let Cs be the node representing s in H2,
(2) let As be the ancestor of Cs in H2, and
(3) let Vs = {v, v ∈ G and v is represented by a node of H2 with ancestor As}.
Note that at the beginning of a phase Vs consists exactly of all the vertices in Cs.

Later in the phase, the vertices of G in Cs are all contained in Vs, but Vs can contain
additional vertices.

The graph G(s) contains as vertices

(1) a node, called a-node, for each vertex in Vs, except for s, and
(2) a node, called d-node, for each vertex of G that does not belong to Vs but is

a neighbor of a vertex in Vs.

The graph G(s) contains as edges every edge between two a-nodes or between an
a-node and a d-node.

Lemma 2.19. Let s be an old shared vertex. The number of d-nodes in G(s) is
O(m/k).

Proof. By condition (C6) of a relaxed partition the number of d-nodes at the
beginning of a phase connected to a vertex of Vs by non-tree edges is O(m/k). Addi-
tionally there are O(m/k) tree edges. During the phase only the endpoints of edges
inserted during the phase can become neighbors of vertices in Vs. Thus, the lemma
follows.

Data structure:

(S1) We store G(s) in a fully dynamic connectivity data structure. This data
structure allows us to execute the following operations:

(1) insert(u,v)/delete(u,v): Insert or delete the edge (u, v) in timeO(
√
m′),

where m′ is the number of edges in G(s).
(2) insert(u): Insert the degree-0 vertex u in time O(

√
m′), where m′ is

the number of edges in G(s).
(3) connected?(u,v): Test whether u and v are connected in constant

time.
(4) component?(u): Return the connected component of u in constant

time.

(S2a) We keep for each connected component of G(s) a list of all the d-nodes that
belong to it.
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(S2b) We keep for each connected component of G(s) a list of all neighbors of Cs

with ancestor As whose vertices belong to the connected component. We also
store for each node of H2 its position in the at most one such list to which it
belongs.

Lemma 2.20. The data structures for G(s) for all old shared vertices s can be
built in time linear in its size at the beginning of a phase and can be updated in time
O(

√
m) after an edge insertion or deletion in G.
Proof. At the beginning of a phase the vertices of G(s) are simply the vertices

in Cs and their neighbors and are given by (HL1) and (G1). The edges are given by
(G1). Building (S1) and (S2a) takes linear time; (S2b) is an empty list.

Each edge insertion or deletion in G affects the data structure for G(s) of at
most one old shared vertex s since the sets Vs are vertex-disjoint for different old
shared vertices s. Since the graph G(s) consists of at most m edges, its fully dynamic
connectivity data structure can be updated in time O(

√
m).

In case of the deletion of the edge (u′, v′) we test after the removal of the edge
from G(s) whether u′ and v′ are still connected. If not, we test each d-node in the old
connected component of u′ and v′ whether it is either connected to u′ or to v′. In this
way we construct the list of d-nodes for the two new connected components of G(s).
By Lemma 2.19 this requires O(m/k) tests. In the same way we split the (S2b) list
of the old connected component to create the (S2b) lists of the two new connected
components and update the corresponding positions at the nodes of H2.

In case of an edge insertion we insert a new d-node if one of the endpoints of the
new edge does not belong to G(s). Then we test whether the endpoints of the edge
belonged to the same connected component before the insertion. If they did not, we
combine their lists of d-nodes and their lists of neighbors of Cs. Note that these lists
were disjoint before the combination since otherwise the two connected components
would have shared a vertex.

Additionally we determine for each cluster split by an update operation whether
its node in H2 is split as well and whether a position in an (S2b) list is stored at the
node. If so, we update the entry in the (S2b) list accordingly and store the appro-
priate positions at the new nodes. Since only a constant number of nodes is split by
Lemma 2.5, this takes constant time.

Thus, the total time of an update is O(
√
m).

Note that each tree neighbor x of s either belongs to Cs or is represented by a
node of H2 that is a neighbor of Cs. In the latter case we call the neighbor of Cs

representing x the x-neighbor of Cs. In the former case we determine a node that is
a neighbor of Cs and connected to x in G(s) as follows: Using (S1) and (S2b) we can
determine in constant time a neighbor of Cs with ancestor As that is in the connected
component of x. If no such node exists, then using (S1) and (S2a) we can determine
in constant time a d-node, and using (HL1) a node of H2, that is connected to x in
G(s) if such a d-node exists. Note that in the latter case the d-node is connected to
a node in Cs, i.e., the node of H2 containing the d-node is a neighbor of Cs, since no
node with ancestor As belongs to the connected component of x. In either case the
determined neighbor of Cs is called an x-neighbor of Cs.

The graphs G̃(s). The intuition for the graph G̃(s) is as follows: Initially, and
whenever G̃(s) is rebuilt, each neighbor of Cs is represented by a vertex in G̃(s). If
this neighbor is split into two nodes C1 and C2 of H2, then the corresponding vertex
of G̃(s) is updated (and the whole graph G̃(s) is rebuilt) only if C1 and C2 are not
connected in H2 \Cs after the update. If C1 and C2 are connected in H2 \Cs after the
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update, then the vertex of G̃(s) is not modified, but represents now both nodes of H2.
This would guarantee that after an edge update we only have to update the graph
G̃(s) of an old shared vertex s if an edge of G(s) was modified (i.e., Vs contains an
endpoint of the updated edge) or the connected components of H2 \ Cs are modified
by the update. However, to bound the number of these graphs using the amortization
lemma of section 2.9 we need to treat nodes with ancestor As in a special way.

We formalize this as follows: The graph G̃(s) contains as vertices

(1) one node, called e-node, for each maximal set X of nodes of H2 \ Cs such
that (a) every node in X is a neighbor of Cs, (b) all nodes in X are connected in
H2 \ Cs, (c) all nodes in X have the same ancestor which is different from As, (d)
at the creation of Cs, the set X contains only one element, and (e) the vertices in
∪C′∈XC ′ used to belong to the same node Cold of H2 and since the split of Cold,
the graph G(s) was not modified and the connected components of H2 \ Cs did not
change;

(2) one node, called b-node, for each neighbor of Cs with ancestor As.

Each vertex in G̃(s) represents the nodes in the set X and thus also the vertices
of G contained in these nodes.

The graph G̃(s) contains the following edges.

(1) All vertices of G̃(s) that contain vertices that are connected in G(s) are
connected by a tree of yellow edges in G̃(s).

(2) All vertices of G̃(s) whose nodes are connected in H2 \ Cs are connected by
a tree of green edges in G̃(s).

Let x be a vertex of Vs and a tree neighbor of s. Note that by definition all nodes
of G̃(s) representing an x-neighbor are connected in G̃(s) by yellow edges, i.e., belong
to the same connected component of G̃(s).

Data structure:

(S3) We store G̃(s) in an adjacency list representation and label each node with
its connected component.

(S4) We store for each node C of H2 an array with one entry per old shared
vertex. The array stores for each old shared vertex s the vertex in G̃(s) that
represents C in G̃(s) if such a vertex exists and null otherwise.

The next lemma shows how to use G(s) and G̃(s) to test whether two neighbors
of s are biconnected in G.

Lemma 2.21. Two tree neighbors x and y of s are biconnected in G iff

(1) either x and y are connected in G(s), or
(2) the connected component of the vertices of G̃(s) representing x-neighbors is

identical to the connected component of the vertices of G̃(s) representing y-neighbors.

Proof. Each edge in G(s) or G̃(s) corresponds to a path in G that does not contain
s, and each vertex u ∈ Vs \ {s} is either contained in the u-neighbor or connected to
every u-neighbor by a path in G(s) that does not contain s. Additionally connectivity
of x and y in G \ {s} implies biconnectivity in G. Thus, if x and y are connected in
G(s) or if a vertex of G̃(s) representing an x-neighbor of Cs is connected with a vertex
of G̃(s) representing a y-neighbor of Cs in G̃(s), then x and y are biconnected in G.

To show the other direction consider a path P in G that connects x and y and
does not contain s. If all vertices of P belong to Vs \ {s}, then x and y are connected
in G(s).

Otherwise, recall that all vertices of G(s) representing an x-neighbor (resp., y-
neighbor) form a connected component of G̃(s). It follows that it suffices to show that
one of the vertices of G̃(s) representing an x-neighbor is connected in G̃(s) to one
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of the vertices of G̃(s) representing a y-neighbor. In this case P contains a d-node
dx that is connected to x by a path in G(s). If the path from x to dx contains only
vertices of Cs (excluding dx), then let bx be the vertex of G̃(s) representing dx and
let ux be dx. If the path from x to dx contains vertices not in Cs, let bx be the vertex
of G̃(s) representing the first such node ux on the path. In either case bx represents
an x-neighbor. Define uy and by in the same way.

Consider the subpath P ′ of P between the ux and uy. Partition P ′ into subpaths
such that each subpath is a maximal sequence of edges such that either (a) each edge
is incident to a vertex of Cs or (b) no edge is incident to a vertex of Cs. Note that
the endpoints of each subpath belong to nodes in H2 that are neighbors of Cs.

Since P does not contain s, each subpath fulfilling (a) corresponds to a path
in G(s). Thus the vertices of G̃(s) representing the endpoints of the subpath are
connected by a path of yellow edges in G̃(s). Each subpath fulfilling (b) connects the
nodes of H2 containing the endpoints of the subpath by a path in H2 \ Cs. Thus the
vertices of G̃(s) representing these nodes of H2 are connected by a path of green edges
in G̃(s). It follows that bx is connected to by in G̃(s).

The first condition is tested in constant time using (S1). To test the second condi-
tion we determine the x-neighbor and y-neighbor using (S1), (S2a), (S2b), and (HL1).
We determine the vertices of G̃(s) representing the x-neighbor and the y-neighbor us-
ing (S4) and then test their connected components in G̃(s) using (S3). All this takes
constant time.

Let deg2(Cs) be the degree of Cs in H2.

Lemma 2.22. If only the green edges of H2 \ Cs change, then G̃(s) and the data
structures (S3) and (S4) can be updated in time O(deg2(Cs) log n).

Proof. Discard all old green edges. To compute the new green edges, map each
neighbor of Cs to a tree neighbor of Cs in H2 using (HL3) and determine the bicon-
nected component of this tree neighbor using blockid?-queries in (HL4) for H2. Then
bucketsort the neighbors according to these biconnected components using (HL6). For
each neighbor in a biconnected component determine its vertex in G̃(s) using (S4)
and connect it by a green edge to the vertex in G̃(s) of the previous neighbor in the
same biconnected component. Then compute a spanning forest of the green edges by
performing a depth-first search on the graph of green edges, and discard all green
edges not in the spanning tree. Finally recompute the connected components of G̃(s).
This takes time O(log n) per neighbor and constant time per green edge. Since the
number of green edges is linear in the number of neighbors, the lemma follows.

Lemma 2.23. Let s be an old shared vertex. At the beginning of a phase or when-
ever G(s) has changed, the graph G̃(s) can be constructed in time O((m/k) log n).

Proof. Note first that the size of G̃(s) is linear in its number of vertices of G̃(s),
which is bounded by deg2(Cs).

The vertices of G̃(s) are the neighbors of Cs and are given by (HL2). To determine
the yellow edges, process the d-nodes belonging to the same connected component of
G(s) as follows. Map each d-node in (S2a) for this connected component to its node
in H2 using (HL1). Append to this list the neighbors of Cs stored in (S2b) for this
connected component. Now process each node C in this list as follows: Determine
the vertex of G̃(s) representing C and connect it by a yellow edge to the vertex of
G̃(s) representing the previous node on the list. This takes time linear in the length
of the list. Then compute a spanning tree of yellow edges by performing a depth-first
search on the graph of yellow edges. Discard the yellow edges that do not belong to
the spanning tree. This takes time linear in the number of yellow edges, which is linear
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in the length of the list. The length of the list is linear in the number of d-nodes in
G(s) in the connected component and the length of the (S2b) list for the connected
component. By Lemma 2.19 there are O(m/k) many d-nodes in G(s), i.e., in the (S2a)
lists for all connected components. Also there are O(m/k) many neighbors, i.e., in
the (S2b) lists for all connected components. Thus, the total time for determining all
yellow edges in G̃(s) is O(m/k).

The green edges are computed in time O((m/k) log n) as in Lemma 2.22.

Lemma 2.24. Constructing the graphs G̃(s) for all old shared vertices at the
beginning of a phase takes time O(m log n). Building the data structures (S3) and
(S4) for all s at the beginning of a phase takes time O(m).

Proof. By Lemma 2.23, constructing one graph G̃(s) takes time O((m/k) log n),
for a total of O((m/k)2 log n) = O(m log n).

When G̃(s) is given, then building (S3) for s takes time linear in the size of G̃(s).
To build (S4) we allocate and initialize with null all the necessary arrays. This takes
time O((m/k)2) = O(m). Then we process each graph G̃(s) and set the entry for s in
the array of node C of H2 to the vertex of G̃(s) representing C if it exists.

Lemma 2.25. The graphs G̃(s) and the data structures (S3) and (S4) for all
old shared vertices s can be updated in amortized time O((m/k) log n) after an edge
insertion or deletion in G.

Proof. We will show that after the insertion or deletion of the edge (u, v) in G the
only old shared vertices s for which G̃(s) has to be updated are the ones (1) where
Vs contains u or v, (2) where a node of H2 that is split by the update has ancestor
As, or (3) where Cs is an articulation point on πT2(Cu, Cv) before or after the current
update. For type-(3) old shared vertices either (i) a vertex of G̃(s) has to be split and
the green and yellow edges have to be recomputed or (ii) only the green edges have
to be updated. If a yellow edge has to be changed without splitting a vertex, then Vs

must contain u or v, i.e., it is a type-(1) old shared vertex.

To guarantee that all graphs that have to be changed are indeed updated we use
the following update algorithm:

(1) Rebuild from scratch the graphs G̃(s) for all old shared vertices s where Vs

contains either u or v (type (1) above), where Cs has the same ancestor as a split
node in H2 (type (2) above), or where a vertex of G̃(s) is split (type (3(i)) above).

(2) Update the green edges in the graph G̃(s) for the remaining old shared ver-
tices where Cs is an articulation point on πT2(Cu, Cv) before or after the update (case
(3(ii)) above).

To find all type-(2) old shared vertices, we determine for each split node of H2 its
ancestor A using (HL7) and test for each old shared vertex s whether the ancestor of
Cs equals A. The old shared vertices for which this test returns true are the type-(2)
old shared vertices.

We discuss next how to determine all type-(3(i)) and type-(3(ii)) old shared ver-
tices. There are two kinds of vertices in G̃(s), e-nodes and b-nodes. If a b-nodes has
to be split, then s is also a type-(2) old shared vertex and will be updated correctly.
Thus, it suffices to determine all type-(3(i)) old shared vertices s where an e-nodes
has to be split. In section 2.8 we give a data structure that determines all e-nodes
that have to be split in time O((m/k) log n). Furthermore, we show in section 2.9
that only an amortized constant number of e-nodes has to be split. We determine
all articulation points on πT2(Cu, Cv) using (HL4). This gives all type-(3) old shared
vertices. We remove the ones that are of type (2). In the remaining set the ones that
contain an e-node that has to be split are the type-(3(i)) but not type-(2) old shared
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vertices; the rest are the type-(3(ii)) old shared vertices.

Whenever G̃(s) is rebuilt, we also rebuild (S3) from scratch. The data structure
(S4) is updated as follows:

(1) For each new node that is created by a split of an old node during the phase,
the array of the old node is copied to create the array for the new node.

(2) For each old shared vertex s where G̃(s) is rebuilt, the entry of s in the array
of every neighbor of Cs is replaced by the vertex representing the neighbor in G̃(s).

Lemma 2.23 shows that for type-(1), type-(2), and type-(3(i)) old shared ver-
tices the graph G̃(s) can be constructed in time O((m/k) log n). Lemma 2.22 shows
that for type-(3(ii)) old shared vertices the green edges can be updated in time
O(deg2(Cs) log n). Determining all old shared vertices s such that a vertex of G̃(s)
has to be split or that As = A takes time O(m/k) per split cluster. By Lemma 2.5
there are a constant number of split clusters per update, i.e., the total time spent
to determine type-(2) and type-(3(i)) old shared vertices is O(m/k). Determining all
articulation points and all type-(3(ii)) old shared vertices takes time O(m/k). Build-
ing (S3) takes time O(deg2(Cs)). The first type of update of (S4) creates a new array
and takes time O(m/k); the second type takes time O(deg2(Cs)). Thus, updating the
graphs G̃(s) and the data structure (S3) for type-(1), (2), and (3(i)) old shared ver-
tices takes time (O(m/k) log n) each; updating the graphs G̃(s) and the data structure
(S3) for type-(3(ii)) old shared vertices takes time O(deg2(Cs) log n) each.

We show next that there are only an amortized constant number of type-(1), (2),
and (3(i)) old shared vertices whose graphs G̃(s) have to be updated, for a total time
of O((m/k) log n) to update them. There are at most two type-(1) old shared vertices.
There is at most one type-(2) old shared vertex per split node C of H2, since the fact
that C has ancestor As implies that the vertices of C belong to Vs and the sets Vs

are disjoint for different old shared nodes. By Lemma 2.43 and Lemma 2.44 there are
an amortized constant number of type-(3(i)) old shared vertices, where an e-node has
to be split.

By Fact 2.1 the degree of all articulation points on a path in H2 sums to O(m/k).
Thus, deg2(Cs) for all type-(3(ii)) old shared vertices sums to O(m/k). Hence, up-
dating all graphs G̃(s) and building (S3) for the type-(3(ii)) old shared vertices takes
time O((m/k) log n). Finally, a new array in (S4) is created for a constant number of
new nodes of H2. Summing all the cost gives a total time of O((m/k) log n) to update
all graphs G̃(s) and their data structures (S3) and (S4).

We still need to show the above claim about which graphs G̃(s) have to be changed
and how. A graph G̃(s) has to be updated if (A) a vertex, (B) a yellow edge, or (C)
a green edge has to be changed.

(A) If a b-node of G̃(s) has to be changed, then a node in H2 with ancestor As was
split (case (2) above). If an e-node of G̃(s) has to be changed, then either condition
(a), (b), or (c) of an e-node does not hold anymore. If (a) does not hold anymore,
then the current update deleted an edge of G(s), i.e., Vs contains an endpoint of the
updated edge (case (1) above). If (b) does not hold anymore, then Cs is an articulation
point separating the endpoints of the updated edge before or after the current update
(case (3) above). If (c) does not hold, then again either the current update modified an
edge of G(s) (case (1) above), or Cs is an articulation point separating the endpoints
of the updated edge before or after the current update (case (3) above).

(B) If a yellow edge but no vertex of G̃(s) has to be changed, then an update
occurred in the graph G(s). It follows that Vs contains at least one of the endpoints
of the updated edge (case (1) above).
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(C) If a green edge has to be changed, then Cs is an articulation point separating
the endpoints of the updated edge before or after the current update (case (3) above).

This completes the proof of the lemma.
We summarize the section with the following theorem.
Theorem 2.26. The given data structure
(1) tests in constant time whether two tree neighbors x and y of a shared vertex

s are biconnected in G,
(2) can be updated in amortized time O((m/k) log n+

√
m) after each update in

G, and
(3) can be built in time O(m log n).

2.7. The high-level graphs. In this section we give the details of the high-level
graph data structures and explain how they are updated. For (HL1), (HL2), (HL5),
(HL6), and (HL7) the details are given in section 2.4 and it is obvious how to update
them in time O(k) per update in G, provided the change in the cluster partition is
known. The description in section 2.2 gives an O(k)-time algorithm to update the
cluster partition. Thus, we concentrate in this section on the details of (HL3) and
(HL4).

2.7.1. The data structure (HL3). Consider the graph Hi. Given the two
nodes C and C ′ of Hi we use (HL3) to find the tree neighbor of C on πTi

(C,C ′). For
H2 (HL3) consists of a dynamic tree data structure of T2. To find the tree neighbor,
root T2 at C ′ and return the parent of C. Update (HL3) by executing link and cut
operations whenever T2 changes. It takes time O(log n) to test or update (HL3).

For H1, (HL3) consists of a degree-k ET-tree data structure of T1. To find the
tree neighbor proceed as follows. For the node C ′, and the tree neighbors of C, label
one of the leaves representing the node with the name of the node. Then traverse
the ET-tree from all labeled leaves in lockstep, labeling each internal node with the
concatenation of the label of its left child and the label of its right child. At the root
the label incident to C ′’s label is the desired tree neighbor. To update the ET-tree,
whenever T1 changes, split and join the ET-tree accordingly. Since the ET-tree has
O(1) depth and C has O(1) tree neighbors, a test takes O(1) time. Each update takes
time O(k).

2.7.2. The data structure (HL4). Recall that (HL4) implements the following
query operations in Hi:

(1) biconnected?(C,C ′,C ′′): Given that nodes C ′ and C ′′ are both tree neighbors
of a node C test whether C ′ and C ′′ are biconnected in Hi.

(2) blockid?(C,C ′): Given that C and C ′ are tree neighbors in Ti, output the
name of the biconnected component of Hi that contains both C and C ′.

(3) components?(C): Output the tree neighbors of C in Hi grouped into bicon-
nected components.
As we show below, biconnected? and blockid? take constant time, and components?
takes time linear in the size of the output.

We say a node C of Hi is avoidable on the tree path P iff C and two of its tree
neighbors, called D and D′, belong to P and there is an edge in Hi \ C between
the subtree of Ti \ C containing D and the subtree containing D′. Note that if C is
avoidable, then C does not separate D and D′. However, if C does not separate D
and D′ it does not follow that C is avoidable.

To implement (HL4) we build a compressed graph Hi(C) of Hi \C for each node
C in H2. Let C be a node in Hi. The graph Hi(C) contains a node for each tree
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neighbor of C in Hi. There is an edge between two tree neighbors D and D′ of C iff
C is avoidable on πTi(D,D′).

We keep the following data structures. The second is needed to efficiently main-
tain the Hi(C).
(HL4-1) For i = 1, 2, and for each node C we store Hi(C) in a dynamic connectivity

data structure.
(HL4-2) A 2-dimensional topology tree [5] of T and one ambivalent data struc-

ture [6] are maintained. They implement the following operations in time
O((m/k) log n):

(1) insert&return avoidable(u,v): Return all nodes on π(Cu, Cv) that become
avoidable on π(Cu, Cv) by the insertion of edge (u, v), where Cu and Cv are the
endpoints in Hi of the newly inserted edge.

(2) delete&return unavoidable(u,v): Return all nodes on π(Cu, Cv) that become
unavoidable on π(Cu, Cv) by the deletion of edge (u, v), where Cu and Cv are the
endpoints in Hi of the newly deleted edge.

We show how to implement the operations of (HL4) using (HL4-1).
(1) biconnected?(C,C ′,C ′′): Return connected?(C ′, C ′′) in Hi(C).
(2) blockid?(C,C ′): Return component?(C ′) in Hi(C).
(3) components?: Return all connected components of Hi(C), and for each con-

nected component output all its nodes.
The correctness of this implementation is shown by the following lemma.
Lemma 2.27. Two tree neighbors D and D′ of C in Hi are biconnected in Hi iff

they are connected in Hi(C).
Proof. IfD andD′ are connected inHi(C), then every edge on the path connecting

D and D′ corresponds to a path in Hi \C. Thus they are biconnected in Hi. If D and
D′ are biconnected in Hi, they are connected by a path in Hi \C. Every edge on this
path either lies in a subtree of Ti \C or connects two subtrees. The edges connecting
two subtrees give a path in Hi(C) connecting D and D′.

Updates in Hi(C). Consider an insertion of edge (u, v) in G and let Cu and
Cv be the nodes in Hi incident to the edge. The graph Hi(C) has to be modified only
for the nodes that become avoidable on π(Cu, Cv). These nodes can be found with
one insert&return avoidable operation in (HL4-2). Let C be such a node. Note that
exactly one edge is added to Hi(C), namely, the edge between the tree neighbors of
C on π(Cu, Cv).

An edge deletion in G is handled analogously.
To analyze the running time recall that the operation in (HL4-2) takes time

O((m/k) log n). The update in a graphHi(C) takes timeO((degT (C))1/3 log degT (C)),
where degT (C) is the degree of C in Ti. Since

∑
C degT (C) = O(k), the cost for up-

dating all Hi(C) is O(k). This shows the following theorem.
Theorem 2.28. There exists a data structure that implements the operations

biconnected?, blockid?, and components? in time linear in their output. The data
structure can be updated in time O(k+(m/k) log n) after each update operation in G.

2.7.3. The data structure (HL4-2). We present now a data structure that im-
plements insert&return avoidable and delete&return unavoidable in timeO((m/k) log n).

We will actually show a slightly more general result: we give a data structure
that can be updated in time O(m/k) after each update in G and that can return all
avoidable nodes on a tree path P in Hi in time O((m/k) log n). Obviously this data
structure can be used to execute the above operations in time O((m/k) log n).

In this section we assume that T1 is rooted at a node R.
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The data structure consists of two parts: (1) a 2-dimensional topology tree and (2)
an extended ambivalent data structure. Both are slight variations of data structures
defined in [5, 6].

Let e = (D,C) be an edge of T1. We denote by ST (D,C) the subtree of T1 \ e
that contains D. Obviously a node C of H1 is avoidable on a tree path P iff there
exists an edge between ST (D,C) and ST (D′, C), where D and D′ are the neighbors
of C on P . We call a node on P that is not an endpoint of P an internal node of P .

The 2-dimensional topology tree and the extended ambivalent data structure are
based on H1, not H2. Thus, to test avoidability in H2 we need to reduce it to testing
avoidability in H1. For each path P in T2, let PT1 denote the corresponding path in T1

starting, resp., ending, at an arbitrary node of H1 that maps to the start node, resp.,
end node, of P . Recall that each node C of H2 is created by a set of H1-nodes that
are connected by a path of dashed edges. For an internal node C on P, let C(PT1)
and C(PT1)

′ denote the extreme-most nodes of that dashed path on PT1 . We use the
following lemma.

Lemma 2.29. Let C be a node of H2 on a tree path P in T2. Let D, resp., D′,
be the neighbor of C(PT1

), resp., C(PT1
)′, on PT1 that does not map to C. Then C is

avoidable on P iff there is an edge between ST (D,C(PT1)) and ST (D′, C(PT1
)′).

Proof. Note that the edges incident to the subtree containing h(D), resp.,
h(D′), in H2 \ C are identical to the edges incident to ST (D,C(PT1)), resp., ST (D

′,
C(PT1)

′).
As we show below, the 2-dimensional topology tree can test in time O(m/k)

whether there is an edge between ST (D,C(PT1
)) and ST (D′, C(PT1)

′). We extend
the ambivalent data structure of [6] such that it can test in time O(m/k)

(1) for all but O(log n) nodes C of H2 on a path P of T2 whether there is an
edge between ST (D,C(PT1)) and ST (D′, C(PT1)

′); and
(2) for all but O(log n) nodes C of H1 on a path P of T1 whether there is an

edge between ST (D,C) and ST (D′, C).

Thus, to test the avoidability on a path P we use the ambivalent data structure
to get the avoidability information for all but O(log n) nodes of P and we use the
2-dimensional topology tree for the remaining nodes.

Note that the term tree edge refers to an edge in T, T ′, or Ti, never to an edge in
a topology tree.

The 2-dimensional topology tree. Given a restricted partition of order k we
call each cluster of the partition a level-0 cluster or basic cluster. A level-i cluster is

(1) the union of two level-(i− 1) clusters that are connected by a tree edge such
that one of them has tree degree 1 or both have tree degree 2, or

(2) one level-(i− 1) cluster if the previous rule does not apply.

A topology tree TT is a tree such that each node C at level i corresponds to a
level-i cluster. If C is the union of two clusters C1 and C2 at level i− 1, then C1 and
C2 are the children of C and the tree edge (C1, C2) is stored at C. If C consists of
one level-(i − 1) clusters C at level i, then C1 is the only child of C in the topology
tree. A rooted topology tree TT is a topology tree with the additional condition that
R is only unioned when no other unions are possible.8

A 2-dimensional topology tree 2TT for TT is a tree that contains a node C ×D
at level i for every pair (C,D) of level-i clusters in TT . A level-(i− 1) node C1 ×D1

8We will exploit the rootedness in the next section.
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is a child of a level-i node C ×D iff C1 is a child of C and D1 is a child of D. We call
each node in a topology tree or a 2-dimensional topology tree a topology node.

We keep TT and 2TT . We store at every node C ×D of 2TT with C �= D a bit
that is set to 1 iff there is a non-tree edge between cluster C and cluster D.

Next we show how to use 2TT to test whether an edge exists between ST (D,C)
and ST (D′, C ′). Let (D,C) be a tree edge in T1. The topology nodes representing
ST (D,C) are the nodes of TT (1) that are children of ancestors of C but are not
ancestors of C, and (2) whose leaf descendants in TT belong to ST (D,C). Since TT
has depth O(log n) [5], ST (D,C) is represented by O(log n) topology nodes.

Lemma 2.30. For D �= D′ let (D,C) and (D′, C ′) be edges of T1 such that D
and D′ do not belong to πT1(C,C ′). Let X1, . . . , Xp be the topology nodes representing
ST (D,C) and let Y1, . . . , Yq be the topology nodes representing ST (D′, C ′) such that
Xi and Yi are level-i topology nodes.

There is a non-tree edge between ST (D′, C ′) and ST (D,C) iff a bit is set to 1 at
a node X × Y of 2TT such that either

(1) X = Xi for some 1 ≤ i ≤ p and Y is a level-i descendant of a node Yj for
some 1 ≤ j ≤ q, or

(2) Y = Yj for some 1 ≤ j ≤ q and X is a level-j descendant of a node Xi for
some 1 ≤ i ≤ p.

Proof. Note that ST (D,C) and ST (D′, C ′) are disjoint. It follows that the
subtrees of TT rooted at X1, X2, . . . , Xp are disjoint from the subtrees rooted at
Y1, Y2, . . . , Yq.

Let (A,B) be the non-tree edge between ST (D,C) and ST (D′, C ′) with A ∈
ST (D,C) and B ∈ ST (D′, C ′). Let Xi (Yj) be the lowest ancestor of A (B) in TT
that is a topology node representing ST (D,C) (ST (D′, C ′)). If i ≤ j, there exists a
level-i cluster Y which is a descendant of Yj such that there is an edge between Xi

and Y. It follows that the bit stored at Xi × Y is set to 1. If j > i, a symmetric
argument applies.

If a bit is set to 1 at a node X × Y of 2TT such that either (1) X = Xi for
1 ≤ i ≤ p and Y is a level-i descendant of a node Yj for 1 ≤ j ≤ q or (2) Y = Yj for
1 ≤ j ≤ q and X is a level-j descendant of a node Xi for 1 ≤ i ≤ p, then there is an
edge between X and Y and, thus, between ST (D,C) and ST (D′, C ′).

Let Xi and Yj be defined as in the lemma. Let Yi = {Y |Y is a level-i descendant
of a topology node Yj for some i ≤ j ≤ q} and let Xj be defined symmetrically. Note
that the subtree in 2TT induced by the set of nodes {Xi × Y, for all 1 ≤ i ≤ p, and
all Y ∈ Yi} is isomorphic to a subtree of TT. The same holds with the roles of X and
Y reversed. Thus, Lemma 2.29 shows how to check the avoidability of C on a path
P by checking the bits of O(m/k) nodes in 2TT. Finding the topology nodes Xi and
Yi for all i takes time O(log n). As was shown in [5], 2TT can be maintained in time
O(k +m/k) after each update operation in G.

Lemma 2.31. A 2-dimensional topology tree can test in time O(m/k) whether a
node C is avoidable on a path P in a high-level graph Hi. It can be updated in time
O(k).

The extended ambivalent data structure. To determine the avoidability of
all but O(log n) nodes on a path P in Hi, for i = 1, 2, we simply extend TT and 2TT
with additional labels to construct the extended ambivalent data structure. We will use
two types of avoidability information, one for H1 and one for H2. Our approach is to
partition Ti into complete paths and to keep avoidability information for each complete
path. Then we show that each path P consists of subpaths of O(log n) complete paths.
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Thus, P ’s avoidability can be determined from the avoidability information of these
complete paths. To be precise let P = πTi(A,B) in Hi. Let P1 = P if i = 1, and let
P1 = PT1 if i = 2. We partition P1 at the least common ancestor LCA of its endpoints
A1 and B1 into the paths PA = πT1(A1, LCA) and PB = πT1(B1, LCA). Note that
both paths are increasing, i.e., they consist of a directed path toward the root R of T1.
We show below how to test the avoidability of all but O(log n) nodes of an increasing
path by breaking it into O(log n) complete paths.

Recall that T1 is stored in a rooted topology tree TT . Note that T1 induces a
rooted spanning tree TTj of the nodes at each level j of TT whose root is R. Note
further that when given TT, R, and also the least common ancestor between any two
basic clusters can be determined in time O(log n).

We now give the necessary definitions. For a basic cluster X1 let the graph G(X1)
be (1) the graph induced by the vertices of X1, if the tree degree of X1 is 1 or 3,
and (2) the graph induced by the vertices of X1 with all vertices between the two
boundary nodes contracted to one vertex, otherwise.

To construct complete paths we first need to introduce partial paths. We define
the partial path of a basic cluster X1 to be the (unique) endpoint x(X1) in G(X1) of
the tree edge incident to X1. In the following we often identify X1 and x(X1). Note
that if X1 shares a vertex s, then the partial path of X1 consists of s. The partial
path9 of a level-i cluster X1 with i > 0 consists of

(1) Case A: the partial path of X2, if X1 consists of one level-(i− 1) cluster X2,
(2) Case B: the concatenation of the partial path of X2 and of X3, if X1 is the

union of X2 and X3, and neither X2 nor X3 has tree degree 3.
(3) Case C: the vertex x(X3) and the two tree edges incident to it that are not

incident to X2 if X1 is the union of X2 and X3, and X2 has tree degree 1 and X3 has
tree degree 3. In this case the complete path of X1 consists of the partial path of X2

concatenated with the vertex x(X3). In all previous cases, the complete path of X1 is
not defined. Note that X3 is the parent of X2 in TTj .

(4) Case D: an empty path if X1 is the union of X2 and X3, and X2 has tree
degree 1 and X3 has tree degree 1. In this case the complete path of X1 consists of
the partial path of X2 and the partial path of X3.

For every complete path not stored at the root of TT note that one endpoint has
tree degree 1, and one has tree degree 3 (namely, the vertex of X3). The endpoints of
the complete path stored at the root of TT either both have tree degree 1 or one has
tree degree 1 and one has tree degree 3. We call the endpoint with tree degree 1 the
tail and the endpoint with tree degree 3 the head of the complete path. A tree-degree
3 node belongs to two complete paths; in one it is an internal node and in one it is a
head. All other nodes belong to exactly one complete path.

If x(X1), . . . , x(Xp) is the sequence of nodes on a partial or complete path P c,
then either X1, . . . , Xp is an increasing path in T1 or X1, . . . , Xj and Xp, Xp−1, . . . , Xj

are increasing paths, for some 1 < j < p.
Next we show that PA and also PB consist of O(log n) increasing subpaths of

complete paths. We will store avoidability information for the complete paths and
use it to test the avoidability of PA and PB except for the nodes that are heads in
the complete paths. Let P c

1 , P
c
2 , . . . , P

c
l be the complete paths whose intersection with

PA is nonempty such that the head of P c
j belongs to P c

j+1. Let Xj be the topology
node in TT at which P c

j is stored. Note that all topology nodes whose partial path
contains a vertex of P c

j are true descendants of Xj in TT . Note further that the head

9A path is formed by a list of vertices.
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of P c
j−1 belongs to P c

j . Thus, Xj−1 is a true descendant of Xj . Since TT has depth
O(log n) it follows that PA is contained in the union of O(log n) complete paths, i.e.,
l = O(log n). The same holds for PB .

We use the algorithm described in the previous section to test the avoidability of
LCA on PA and PB and for the heads of the complete paths. For all remaining nodes
on PA and PB we use the extended ambivalent data structure. It consists of further
labels for the 2-dimensional topology tree 2TT and search trees for the partial and
complete paths. The labels and search trees will be oblivious of the rooting of T1,
which is important for the efficiency of rebuilds.

Every node A×B with A �= B is labeled with two additional labels maxcov and
shared that are explained later. Each node A×A of 2TT is labeled with a pointer to
the partial path and complete path (if it exists) of A. The partial and complete paths
are stored in shared search trees as follows:

(1) The partial path of a level-0 cluster X is represented by one node x(X).
(2) In Case A, the search tree of the partial path of X1 is identical to the search

tree of the partial path of X2.
(3) In Case B, the partial path of X1 consists of a (root) node pointing to the

roots of the search trees of the partial paths of X2 and X3.
(4) In Case C, the partial path of X1 consists of one node. The complete path

of X1 consists of a (root) node pointing to the roots of the search trees of the partial
paths of X2 and X3.

(5) In Case D, the partial path of X1 is empty. The complete path of X1 consists
of a (root) node pointing to the roots of the search trees of the partial paths of X2

and X3.

Since the topology tree has depth O(log n), every search tree has depth O(log n). A
vertex v in the balanced search tree of a partial or complete path is labeled with two
bits somecovi(v) for i = 1, 2.

Let C be an internal node on the increasing path Q in Hi whose avoidability we
have to test. Let D and D′ be the neighbors of C on Q such that D is the child and
D′ is the parent of C in Ti. Lemma 2.37 below shows that

(1) for i = 1, if a complete path P c exists to which x(D′), x(C), and x(D) belong,
then somecov1(v) is set to 1 for an ancestor v of x(C) in P c iff C is avoidable on Q,
and

(2) for i = 2, let C1, . . . , Cl form an increasing subpath of QT1
with C1 = C(QT1)

and Cl = C(QT1)
′. If a complete path exists to which x(D′), x(D), and x(Cq) for all

1 ≤ q ≤ l belong, then for all Cq in P c, somecov2(vq) is set to 1 for an ancestor vq of
x(Cq) in P c iff C is avoidable on Q.

If no such complete path exists, then some Cq is the head of a complete path and
hence C is tested for avoidability using the 2-dimensional topology tree.

Note that P c is the lowest ancestor of the least common ancestor of C for H1

(resp., C1 for H2) and D in TT that has a complete path. It can be found in time
O(log n).

Thus, if l nodes of an increasing path of H1 lie on a complete path, we can
test their avoidability except for the head of the complete path in time O(l + log n).
Since the nodes of PA and PB are contained in O(log n) complete paths, we can test
the avoidability of all nodes on PA or PB excluding LCA and the heads in time
O(m/k + log2 n) = O(m/k) for k ≤ m/ log2 n.

Lemma 2.32. Given a path P in Hi the extended ambivalent data structure can
test the avoidability of all but O(log n) nodes on P in time O(m/k).
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Let us now define somecov, maxcov, and shared and prove Lemma 2.37. For a
cluster A the projection of a non-tree edge (u, v) with u ∈ A and v �∈ A onto the
partial or complete path P c of A is the node x on P c such that the tree path from u
to x in G(A) does not contain any other node on P c.

Recall that every node A × B with A �= B is labeled with a constant number of
labels: (1) For each tree edge E incident to A, there exists a label maxcov(A,B, e)
which is the node with maximum distance from e on the partial path of A that is
avoidable because of a non-tree edge between A and B, assuming that the tree edge
e incident to A lies on the tree path between A and B. (2) For each shared vertex s
of A, there exists a label shared(A,B, s) which is a bit that is set to 1 iff A shares s
and there is an edge between A and B whose projections onto the partial path of A
and of B are not nodes belonging to s.

Note that for each subpath of a complete path P c there exist O(log n) nodes in
the search tree of P c whose leaf descendants form exactly a subpath of P c. We say
we set the somecovi bits of a subpath when we set the somecovi bits of these O(log
n) nodes, excluding the nodes representing the endpoints.

The somecovi bits in the partial and complete paths are defined bottom-up. No
basic cluster has a complete path and the partial path of every basic cluster consists
of one node whose somecov bit is set to 0. The partial and complete path of a level-
(j + 1) cluster X1 is computed with the help of the maxcov and shared labels at
the nodes of 2TT as follows. If X1 has two children let e = (x, y) be the tree edge
connecting them.

(1) In Case A, the partial path of X1 is identical to the partial path of this child.
(2) In Case B, the partial path ofX1 is built by adding a node pointing to the bal-

anced search trees of X2 and X3. The somecovi bits of this node are unset. We set the
somecov1 bit to 1 for the path p between maxcov(X2, X3, e) and maxcov(X3, X2, e).
We remove from p all but one representative of the shared vertices of the endpoints of
p. This results in a subpath p′. If e is solid or if e is dashed, belonging to the shared
vertex s, and shared(X2, X3, s) is 1, then we also set the somecov2 bits of p′. If e is
dashed and shared(X2, X3, s) is 0, then we split p′ at the representatives of s and
remove all but one representative of s from each of the resulting subpaths. We set the
somecov2 bits for these subpaths.

(3) In Case C, the partial path of X1 consists of a tree of one node whose
somecovi bits are set to 0. The complete path of X1 consists of the partial path
of X2 unioned with the partial path of X3 which consists only of the node x(X3). We
describe next which somecovi bits of this complete path are set. We set the somecov1

bits of the subpath p between x(X3) and maxcov(X2, Y, e) for any level-j cluster Y
in TTj \X2. We remove from p all but one representative of the shared vertices of the
endpoints of p. We set the somecov2 bits of this subpath.

(4) In Case D, the partial path of X1 is empty. The complete path of X1 consists
of the partial path of X2 unioned with the partial path of X3. We set the somecov1

bits of the subpath p between maxcov(X2, X3, e) and maxcov(X3, X2, e). We remove
from p all but one representative of the shared vertices of the endpoints of p. This
results in a subpath p′. If e is solid or if e is dashed, belonging to the shared vertex
s, and shared(X2, X3, s) is 1, then we also set the somecov2 bits of p′. If e is dashed
and shared(X2, X3, s) is 0, then we split p′ at the representatives of s and remove all
but one representative of s from each of the resulting subpaths. We set the somecov2

bits for these subpaths.

Given the maxcov and shared labels, the above description also is an algorithm
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to build the partial paths of X1 from the partial paths of the children of X1 in time
O(log n) and the complete path of a level-j cluster in time linear in the number of
level-j nodes in TT.

Next we show how to use the somecovi bits to test the avoidability of a node e.
We start with the somecov1 bits.

Lemma 2.33. Let P c be a complete path and let D,D′, and C be basic clusters
such that x(C), x(D), and x(D′) belong to P c. Then somecov1(v) is set for an ancestor
v of x(C) in P c iff there exists a non-tree edge between ST (C,D) and ST (C,D′).

Proof. Consider the lowest level node X1 such that the partial or complete path
P x of X1 contains x(c), x(D), and x(D′). Let j+1 be the lowest level of X1 at which
a somecov1 bit is set for an ancestor v of x(C). Then X1 has two children X2 and X3

in TT, connected by an edge e in TTj . Without loss of generality (w.l.o.g.) x(C) is
a node of the partial path of X2. Then somecov1(v) is set in the path of X1 because
x(C) is an internal node of the subpath of P x between maxcov(X2, X3, e) and the
first node of X3 on P x. By the definition of maxcov there exists an edge between
ST (C,D) and ST (C,D′).

Assume next that an edge exists between ST (C,D) and ST (C,D′). Let X1 be
the least common ancestor of D and D′ in TT and let X2 and X3 be its two chil-
dren. W.l.o.g. the partial path of X2 contains x(C) and x(D). Since there exists
a non-tree edge between X2 and X3 whose projection is x(D), x(C) lies between
maxcov(X2, X3, e) and the first node of X3 on the partial or complete path P x of X1.
Thus the somecov1 bit is set for an ancestor of x(C) in the partial or complete path
of X1 and, hence, also in P c.

Next we discuss under which conditions somecov2(v) is set for an ancestor v of
x(C).

Lemma 2.34. Let C be a basic cluster and let P c be a complete path containing
C. If C is not connected in T1 to its neighbors in P c by a dashed edge of P c, then
somecov2(v) is set for an ancestor v of x(C) in P c iff somecov1(v) is set.

Proof. The lemma follows immediately from the definition of somecov2.

Lemma 2.35. Let P c be a complete path and let C1, . . . , Cl be basic clusters such
that x(C1), . . . , x(Cl) forms a maximal subpath of P c sharing the same vertex s. Let j
be the lowest level such that the somecov2 bits are set for an ancestor for every node
x(C1), . . . , x(Cl). Then all nodes x(C1), . . . , x(Cl) belong to the partial or complete
path of the same cluster at level j.

Proof. Let P c be stored at a level j∗ node. The claim obviously holds for level j∗.
Assume it does not hold for a level j < j∗. Then there exists at least one node x(Cq)
that is an endpoint of its partial path on level j and in this partial path there exists
an ancestor of x(Cq) whose somecov2 bit is set. Note that x(Cq) was the endpoint of
this partial path for every level ≤ j. Note further that the somecov2 bit is never set
to 1 for an ancestor of an endpoint of a partial path. Thus at level j, the somecov2

bit is not set for any ancestor of x(Cq). This is a contradiction.

Lemma 2.36. Let P c be a complete path and let D,D′, and C1, C2, . . . , Cl be
basic clusters such that x(D), x(C1), x(C2), . . . , x(Cl), x(D

′) is a subpath of P c and
x(C1), x(C2), . . . , x(Cl) forms a maximal subpath of P c sharing the same vertex. Then,
for all 1 ≤ q ≤ l, somecov2(v) is set for an ancestor v of x(Cq) in P c iff there exists
a non-tree edge between ST (C1, D) and ST (Cl, D

′).
Proof. Let s be the vertex shared by the cluster Cq to which the dashed edges

incident to Cq belong. Consider the lowest level j + 1 at which, for all 1 ≤ q ≤ l,
somecov2(vq) is set for an ancestor vq of x(Cq). By Lemma 2.35, all x(Cq) belong to
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the partial or complete path P x of the same level-(j+1) cluster X1. Then X1 has two
children X2 and X3 connected by an edge e in TTj . Note that one of the somecov2(vq)
bits was set while constructing P x.

If neither X2 nor X3 has tree degree 3, a somecov2(x(Cq)) bit was set when
constructing the path for X1 because either (1) x(D), x(D′), and all nodes x(Cq) are
nodes on the path between maxcov(X2, X3, e) and maxcov(X3, X2, e), and e does
not belong to s, or (2) there exists an edge between X2 and X3 whose projections do
not belong to s. In either case there exists a non-tree edge between ST (D,C1) and
ST (Cl, D

′).
If X2 has tree degree 1 and X3 has tree degree 3, a somecov2(x(Cq)) bit is set

while constructing the path for X1 only if all nodes x(Cq) are internal nodes on the
path between maxcov(X2, Y, e) and x(X3) for a level-j cluster Y in TTj\X2. It follows
that there is a non-tree edge between ST (C1, D) and ST (Cl, D

′).
Assume next that an edge exists between ST (C1, D) and ST (Cl, D

′). Let X1 be
the least common ancestor of D and D′ and let X2 and X3 be its two children. If
neither X2 nor X3 has tree degree 3, we consider two cases. If the tree edge e between
X2 and X3 does not belong to s, the somecov2 bits of the subpath x(C1), . . . , x(Cl)
including endpoints are set because the tree edge lies between maxcov(X2, X3, e) and
maxcov(X3, X2, e). If e belongs to s, the somecov2 bits of the subpath are set because
shared(X2, X3, s) is 1.

If X2 has tree degree 1 and X3 has tree degree 3, then x(X3) = x(D′) or x(X3) =
x(D), i.e., e is solid. The subpath x(C1), . . . , x(Cl) is internal to the path between
maxcov(X2, Y, e) and x(X3) for some level-j cluster Y in TTj\X2. Thus, the somecov2

bits of the subpath x(C1), . . . , x(Cl) including endpoints are set.

Lemma 2.37. Let C be an internal node on the increasing path Q in Ti and let
D and D′ be the neighbors of C on Q such that D is the child and D′ is the parent of
C.

(1) For i = 1, if a complete path P c exists to which x(D′), x(C), and x(D) belong,
then somecov1(v) is set to 1 for an ancestor v of x(C) in P c iff C is avoidable on Q.

(2) For i = 2, let C1, . . . , Cl form an increasing subpath of QT1 with C1 = C(QT1)
and Cl = C(QT1

)′. If a complete path exists that contains x(D′), x(D), and x(Cq)
for all 1 ≤ q ≤ l, then for all Cq in P c somecov2(vq) is set to 1 for an ancestor vq of
x(Cq) iff C is avoidable on Q.

Proof. Let P c be C’s complete path. We discuss first the case i = 1. Lemma 2.33
shows that somecov1 is set for an ancestor of x(C) iff there is a non-tree edge between
ST (C,D) and ST (C,D′). By the definition of avoidability, the latter holds iff C is
avoidable on Q.

Next we discuss the case i = 2. Lemma 2.34 shows the claim if l = 1. If l > 1,
then C represents at least two clusters in H1. Lemma 2.36 shows that for all Cq in
P c somecov2(vq) is set to 1 for an ancestor vq of x(Cq) iff there exists a non-tree edge
between ST (C1, D) and ST (Cl, D

′). The latter holds iff C is avoidable on Q.

Lemma 2.38. The extended ambivalent data structure can determine the avoid-
ability of all but O(log n) nodes on a path P in H in time O(m/k).

Updates. Next we show how to maintain the maxcov and shared values and
the partial and complete paths in time O(k) after each update operation in G. First,
we discuss the maxcov and shared values. By definition an update (u, v) operation
affects only the maxcov(X,Y, e) and shared(X,Y, s) values iff either X or Y contains
either u, v, x, or y, where (x, y) is the new tree edge. Consider the subtree of 2TT
induced by marking all nodes A× B such that A and B contain either u, v, x, or y.
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Since this subtree forms a structure which is isomorphic to two copies of TT, the total
number of affected maxcov and shared values is O(m/k). As was shown in [6] for
the maxcov values and as we show below for the shared values each such value at an
internal node of 2TT can be computed in constant time from the values of its children
and in time O(k) for a basic cluster. Thus, updating all maxcov and all shared values
takes time O(k).

Lemma 2.39 shows that the only clusters whose partial or complete paths are af-
fected by updates are the ones that are ancestors in TT of the basic cluster containing
u, v, x, or y. Thus, the partial and complete paths of at most two clusters at each
level have to be updated. We discuss below how to restore the partial and complete
paths of the clusters that do not contain u, v, x, or y, but are children of clusters
containing u, v, x, or y. The partial path of a cluster C can be computed in time
O(log n) from the partial paths of the children of C and the shared and maxcover
values. The complete path of a cluster C at level j can be computed in time linear in
the number of level j nodes in TT from the partial path of the child of C with tree
degree 1 and from the shared and maxcover values. Since TT has depth O(log n)
and size O(m/k), all affected partial and complete paths can be updated in time
O(m/k + log2 n) = O(m/k) for k ≤ m/log2 n.

Whenever we build the partial or complete path we keep a back log that stores
for each node X1 of 2TT all the operations that were executed to build the partial
or complete path of X1 from the partial or complete path of its children. Whenever
we execute an update operation, we walk top-down in TT and restore the path of
the suitable clusters and their children. The partial and complete path of the root
of TT are given. Assume inductively the partial and complete path of a node X at
level j are restored. Undo the operations in the back log of X to restore the partial
and complete paths of the children of X. Then recurse on the suitable child(ren) of
X. The same argument as above shows that this takes time O(m/k). Note also that
modifications in the back log of one child does not affect the back log of its sibling.

Lemma 2.39. An insert(u, v) and a delete(u, v) operation only modifies the bal-
anced tree of partial or complete paths of clusters containing u, v, x, or y, where (x, y)
is a new tree edge.

Proof. A somecov bit is set at a node in the balanced tree representing the
partial path of a cluster C only if there exists an edge internal to C that covers the
corresponding nodes. For a cluster not containing u, v, x, or y neither the partial
path nor the non-tree edges internal to the cluster have changed. Thus, the balanced
search tree of its partial path does not have to be updated.

Next we discuss complete paths. If a cluster C which has a complete path does
not contain u, v, x, or y, then the partial path of its child C ′ with tree degree 1
and the non-tree edges incident to C ′ are not affected by the above argument. The
modifications to this partial path that create the data structure for the complete path
of C depend only on the projection of edges incident to C ′ onto the partial path
of C ′. Since the partial path of C ′ and the non-tree edges incident to C ′ did not
change, the balanced search tree of the complete path of C is not affected by the
operation.

We are left with showing how to compute shared(A1, B1, s) from the shared
values of the children of A1 and B1 and information stored at their children in constant
time. Recall that for each pair of clusters at the same level shared(A1, B1, s) is 1 iff
A1 shares s and there is an edge between A1 and B1 whose projection onto the partial
path of A1 and onto the partial path of B1 is not s. If A1 does not share a vertex s,
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then shared(A1, B1, s) is not defined. Since each basic cluster and each cluster with
tree degree 1 or 3 shares at most one vertex and each nonbasic cluster with tree degree
2 shares at most two vertices, at most four shared(A1, B1, .) values are defined for
every pair of clusters A1 and B1. We distinguish cases depending on the number of
children of A1 and of B1 under the assumption that A1 shares the vertex s.

Case 1: A1 and B1 are basic clusters.
Then shared(A1, B1, s) = 0, since every edge incident to A1 is projected onto s

when it is projected onto the partial path of A1.
Case 2: A1 and B1 are clusters at level j > 0.
Case 2.1: A1 has one child A2 and B1 has one child B2.
Then shared(A1, B1, s) = shared(A2, B2, s).
Case 2.2: A1 has one child A2 and B1 has two children B2 and B3.
If neither B2 nor B3 has tree degree 3, then shared(A1, B1, s) = shared(A2, B2, s)

or shared(A2, B3, s).
If the tree degree of B3 is 3 and the tree degree of B2 is 1, then shared(A1, B1, s) =

shared(A2, B2, s) if B3 does not share s and 0 if B3 shares s.
Case 2.3: A1 has two children A2 and A3, A3 shares s, and B1 has one child B2.
W.l.o.g. A3 is incident to the tree edge incident to A1. Thus, A3 has tree degree

at least 2. If the tree degree of A3 is 3, then shared(A1, B1, s) = 0, since every edge
incident to A1 is projected onto s when it is projected onto the partial path of A1.

If the tree degree of A3 is 2, then we distinguish between the cases that A2 shares
s and that A2 does not share s. If A2 shares s, then

shared(A1, B1, s) = shared(A2, B2, s),

since the projection of every edge incident to A3 onto the partial path of A1 is s.
If A2 does not share s, then we distinguish between the cases that B2 shares s

and that B2 does not share s. If B2 shares s, then

shared(A1, B1, s) = shared(A3, B2, s)or shared(B2, A2, s).

(Note that shared(A2, B2, s) is not defined in this case, but shared(B2, A2, s) is de-
fined.)

If B2 does not share s, then

shared(A1, B1, s) = shared(A3, B2, s)or edge(A2, B2),

where edge(A2, B2) = 1 iff there exists an edge betweenA2 andB2 iffmaxcov(A2, B2, e)
(for any tree edge e incident to A2) is defined.

Case 2.4: A1 has two children A2 and A3 and B1 has two children B2 and B3.
W.l.o.g. A3 is incident to the tree edge incident to A1. Thus, A3 has tree degree at

least 2. If the tree degree of A3 is 3, then shared(A1, B1, s) = 0, since the projection
of every non-tree edge incident to A1 onto the partial path of A1 is s.

If the tree degree of A3 is 2, then we distinguish between the cases that A2 shares
s and that A2 does not share s. If A2 shares s, then

shared(A1, B1, s) = shared(A2, B2, s)or shared(A2, B3, s),

since the projection of every non-tree edge incident to A3 onto the partial path of A1

is s.



IMPROVED FULLY DYNAMIC BICONNECTIVITY 1799

If A2 does not share s, then we distinguish between the case that (1) B2 shares s
and B3 does not share s, that (2) B3 shares s and B2 does not share s, that (3) both
share s, and that (4) both do not share s.

In case (1) (B2 shares s and B3 does not share s)

shared(A1, B1, s) = shared(A3, B2, s)or shared(A3, B3, s)or

shared(B2, A2, s)or edge(A2, B3).

(Note that shared(A2, B2, s) is not defined in this case, but shared(B2, A2, s) is de-
fined.) The case (2) is symmetric to case (1).

In case (3) (B2 and B3 share s)

shared(A1, B1, s) = shared(A3, B2, s)or shared(A3, B3, s)or

shared(B2, A2, s)or shared(B3, A2, s).

In case (4) (B2 and B3 do not share s)

rclshared(A1, B1, s)

= shared(A3, B2, s)or shared(A3, B3, s)or edge(A2, B2)or edge(A2, B3).

This shows that the shared(A1, B1, .) bit can be computed in constant time from
the shared and maxcov values of the children of A1 and B1 and it finishes the proof
of the following lemma.

Lemma 2.40. The extended ambivalent data structure can be updated in time
O(k).

2.8. The c-structure. In this section we address the following problem. Given
the c-nodes of a cluster graph (see section 2.5) or the c-nodes of a shared graph G(s)
for a new shared vertex s (see section 2.6.1), determine which c-nodes are CV-split
by an update operation. For this problem we give in this subsection a data structure,
called c-structure and show in the next subsection that in a phase O(m/k) splits of c-
node occur because of violation of condition (a) or (b) (called CV-splits). Additionally
we show that the e-nodes of a shared graph G̃(s) for an old shared vertex s (see
section 2.6.2) fulfill the conditions of a c-node and therefore the same data structure
and proof apply.

First we recall the definitions of c-node and e-node; next we show that an e-node
also fulfills the conditions of a c-node, and then we define the c-structure exactly .

Let H = H1 for c-nodes in cluster graphs and H = H2 for c-nodes in shared
graphs. Given a node C in H with ancestor A a c-node represents a maximal set X
of nodes of H such that

(a) every node C ′ ∈ X is a neighbor of C,
(b) all nodes in X are connected in H \ C,
(c) all nodes in X have the same ancestor which is different from A,
(d) at the creation of C, the set X contains only one node, and
(e) at each previous point in time since the creation of C all nodes of H that

contain the vertices in ∪C′∈XC ′ existing at this time are represented by the
same c-node.

We show next that every e-node in the graph G̃(s) of an old shared vertex s fulfills
the conditions of a c-node with H = H2. Thus the amortization lemma of the next
section also applies to e-nodes.
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Lemma 2.41. Every e-node in the graph G̃(s) of an old shared vertex s fulfills
the conditions of a c-node with H = H2.

Proof. By definition every e-node fulfills conditions (a)–(d) of a c-node. We only
have to show that it also fulfills condition (e).

Let X be an e-node. By definition the vertices in ∪C′∈XC ′ used to belong to the
same node Cold of H2 and since the split of Cold, the graph G(s) was not modified and
the connected components of H2 \ Cs did not change. Thus, before the last change
in G(s) or H2 \ Cs the nodes in X belonged to the same node of H2 and thus were
represented by the same e-node.

Assume by contradiction that the nodes in X were represented by different e-
nodes at some point since the last change in G(s) or H2 \ Cs. While the nodes were
represented by different e-nodes they either must violate condition (a) or (b) of an
e-node, since conditions (c), (d), and (e) continue to hold. However, now they fulfill
conditions (a) and (b), i.e., either G(s) or H2 \ Cs must have changed, which is a
contradiction.

Thus, e-nodes are just a special case of c-nodes and we will just use the term
c-node in the following to denote c-nodes as well as e-nodes.

A c-node of C is CV-split iff conditions (a) or (b) of a c-node are no longer fulfilled.
Given the high-level graph H and its data structures the c-structure maintains

the c-nodes of each node in H under the following operations:
(1) c-split (C,C1, C2, u, v), where C is a node of H split by the delete(u, v) or

insert(u, v) operation, C1 and C2 are the two nodes of H created by the split. Split
the node C into C1 and C2.

(2) c-add (C1, C2), where C1 and C2 are nodes of H. Add one edge between C1

and C2.
(3) c-remove (C1, C2), where C1 and C2 are nodes of H. Remove the edge

between C1 and C2 and return a (possibly empty) list of CV-split c-nodes and for
each newly created c-node return its element list.

We use the following data structure for the c-structure, which uses O((m/k)2)
space.

(T1) For each node of H we keep a list of its c-nodes. For each c-node we keep
a list of its elements. For each node in H we keep a list of all the c-nodes it
belongs to. The position of the node in the list of the c-node and the position
of the c-node in the list of the node point to each other.

We keep two c-structures, namely, one with H = H1 to determine the CV-splits
in c-nodes of the cluster graphs, and one with H = H2 to determine the CV-splits in
c-nodes of the shared graph for new shared vertices.

2.8.1. Implementing the c-structure. We implement the operations as fol-
lows.

c-split (C,C1, C2, u, v): This requires (i) updating the c-nodes of C and (ii) up-
dating the c-nodes containing C. (i) Discard all c-nodes of C. Each neighbor of C1

(resp., C2) forms a 1-element c-node for C1 (resp., C2). (ii) Use (T1) to determine all
c-nodes X to which C belongs. Replace C by either C1 or C2 or both in X, depending
on which of the new nodes are incident to D. Note that all nodes in X still fulfill (a),
(c), (d), and (e) of a c-node. By Lemma 2.8 all nodes continue to fulfill (b) as well.

c-add (C1, C2): If C1 and C2 have the same ancestor, do nothing. Otherwise,
search the c-nodes to which C1 belongs to determine whether C2 is one of them. If
not, add to the c-nodes of C2 a 1-element c-node consisting of C1. Repeat with the
roles of C1 and C2 exchanged.
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c-remove (C1, C2): If C1 and C2 have the same ancestor, do nothing. Otherwise,
determine the c-node of C2 to which C1 belongs and remove C1 from it. If this c-node
becomes empty, discard it. If the c-node is modified, output it and its new element
list. Repeat with the roles of C1 and C2 exchanged. Finally determine all articulation
points D on π(C1, C2) in the (updated) graph H using (HL4). Test as follows for each
c-node X of D whether (b) is violated, and if so, how to partition X. Using (HL3)
determine for each node C ′ in X the tree neighbor of D on π(C ′, D) and bucketsort
the node according to the blockid of “its” tree neighbor using (HL4) and (HL6). This
results in either one or two nonempty buckets. In the former case (b) is not violated.
In the latter case, split the list of X according to the two buckets and report the
CV-split of X and return the two resulting lists.

To analyze the running time note that the intersection of two different c-nodes of
C is empty. The time spent by a c-split or c-add operation is linear in the number of
c-nodes of a node in H, which is O(m/k). In c-remove we spend the time O(m/k) to
determine all articulation points and then the following time per articulation point
D: O(log n) per non-tree neighbor of D to bucketsort it and constant time to remove
it from the bucket again. Since the nodes D are articulation points on a path in H,
this sums up to O((m/k) log n) by Lemma 2.1. Additionally the c-remove operation
spends time O(m/k) to update the c-nodes of C1 and the c-nodes of C2. Thus, the
total time spent is O((m/k) log n).

2.8.2. Updating the c-structure. At the beginning of a phase each c-node
consists of one node: every neighbor of a node in H forms its own c-node.

Whenever an edge is inserted in G and H changes, then first the data structures
of H are updated and then a c-add and potentially afterward a constant number of
c-split’s are executed in the c-structure. Whenever an edge is deleted from G and
H changes, then first the data structures of H are updated and then potentially a
constant number of c-split’s and afterward a c-remove are executed in the c-structure.
If an internal tree edge of a cluster C is deleted, then this implies that first the cluster
is split at this tree edge and afterward the tree edge is deleted. Each operation can be
implemented in time O((m/k) log n). Since there are only a constant number of them
per update in G, this gives a total time of O((m/k) log n) to update the c-structure.

Theorem 2.42. The c-structure
(1) can be updated in time O((m/k) log n) after each update in G, and returns

all the c-nodes CV-split by the update and the resulting c-nodes, and
(2) can be built in time O(m).

2.9. The amortization lemma. We show next that during a sequence of l
updates in a phase O(l) CV-splits of c-nodes occur. A similar, but less general lemma
was shown in [11].

Lemma 2.43. During l updates in G in a phase at most 2l CV-splits of a c-node
occur because of violation of condition (a).

Proof. Condition (a) is violated if a node C ′ belongs to a c-node of node C, but C ′

is no longer incident to C. This is only possible if C as well as C ′ contains an endpoint
of the update edge. Since all c-nodes of C are disjoint, condition (a) is violated for at
most one c-node of C. Similarly, condition (a) is violated for at most one c-node of
C ′ and for no c-nodes at other nodes.

Lemma 2.44. During l updates in G in a phase O(l + m/k) CV-splits occur
because of the violation of condition (b) for l ≥ m/k.

Proof. We construct a bipartite graph K consisting initially of O(m/k) blue
nodes, O(m/k) red nodes, and O(m/k) edges between red and blue nodes. A red node
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is incident to at least one blue node. We show that during a sequence of l updates
in G the number of blue nodes in K increases by O(l) (Proposition 2.45), each CV-
split of a c-node increases the number of connected components of K by at least
one (Proposition 2.46), and no other operation decreases the number of components
(Proposition 2.51). Thus, there are at most O(l + m/k) splits of c-nodes during l
updates in G.

The proof will exploit the following fact: Whenever a c-node at C containing D1

and D2 is CV-split, then there is no c-node at another node C ′ that contains both
D1 and D2. (Otherwise the path “through” C ′ would connect D1 and D2 in H \ C.)
Thus, the split discards the last common c-node of D1 and D2. We will show that an
even stronger property holds: Assume the relation r(D1, D2) holds iff D1 and D2 have
a common c-node. Let r∗ be the transitive closure of r. Then whenever the c-node
containing D1 and D2 is split, then r∗(D1, D2) does not hold after the split. The
graph K is constructed so that this fact implies that the connected components of K
increase.

Recall that an edge of H consists of a set of edges of G′. An edge of H is called
new if all edges of G′ in its set are new, i.e., have been inserted after the last rebuild.
All other edges of H are old. We “treat” new edges in a special way to guarantee that
edge insertions do not decrease the number of connected components of K. Note that
there are at most l new edges in H at each point in time.

We next define K.

(1) For each node C in H and each c-node X at C, K contains a red node (C,X).
(2) For each node D in H, K contains a blue node D.
(3) For each node D in a c-node X at C such that (D,C) is new there exists a

blue node (D,X). These nodes are called special.
(4) Let D be in the c-node X at C. If both a red node (C,X) and a blue node

(D,X) exist, there exists an edge between (C,X) and (D,X). If (D,X) does not
exist, there is an edge between (C,X) and D.

By abuse of notation we will equate a blue node in K with the node of H represented
by the blue node. Note that every edge in K corresponds to an edge of H. Thus, if
two blue nodes are connected in K, their nodes are connected in H.

There are four events that modify K: (A) a c-split operation, (B) a c-add opera-
tion, (C) a c-remove operation, and (D) the change of an edge from old to new.

Next we describe each event in detail:

(A) A c-split (C, C1, C2,u,v) operation. (1) Every red node (C,X) is removed.
For each D ∈ X incident to C1 we create a red node (C1, {D}), and if the
blue node (D,X) exists, it is replaced by a blue node (D, {D}). The new red
node is connected to (D, {D}) if it exists and to D otherwise. We proceed in
the same way with C2. (2) The blue node C and all blue nodes (C,X) are
split into two nodes and connected to the appropriate neighbors of the split
nodes.

(B) A c-add (C1, C2) operation. It might add a new red node at (C1, {C2}), a new
blue node (C2, {C2}), and connect them by an edge. It might do the same
with the roles of C1 and C2 reversed.

(C) A c-remove (C1, C2) operation. Let X be the c-node at C1 containing C2.
Remove the edge between the red node (C1, X) and the corresponding blue
node representing C2. If the blue node (C2, X) exists, remove it. If X = {C2},
also remove (C1, X). Proceed in the same way with the roles of C1 and C2

reversed. Finally for each split c-node X ′ of an articulation point D on
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π(C1, C2) in H replace the red node (D,X ′) by two red nodes, one for each
new c-node and connect their blue neighbors suitably.

(D) An old edge (D,C) of H becomes new. If D belongs to the c-node X at C,
then add a new blue node (D,X) with edge to (C,X) and remove the edge
from D to (C,X). Then proceed in the same way with the roles of D and C
reversed.

We prove next the three missing propositions.

Proposition 2.45. During l update operations the number of blue nodes in-
creases by O(l).

Proof. A sequence of l update operations in G leads to at most 7l c-split op-
erations, l c-add operations, and l c-remove operations. At each point there are at
most 2l special blue nodes. Next we bound the number of nonspecial blue nodes. A
c-add operation, a c-remove operation, and the change of an edge from old to new
do not increase the number nonspecial blue nodes. A c-split increases the number
of nonspecial blue nodes by at most 1. Thus, the number of nonspecial blue nodes
increases by O(l).

Next we show that the CV-split of a c-node increases the number of connected
components by at least 1.

Proposition 2.46. A CV-split of a c-node increases the number of connected
components by at least 1.

Proof. Consider the split of the c-node X at node C ′. A c-node is CV-split
only during a c-remove operation. So consider the removal of edge (C1, C2). Let
{X1, X2, . . . , Xp} be all the c-nodes that are CV-split at C ′. Let D1 and D2 be the
tree neighbors of C ′ on π(C1, C2) and let Y1 and Y2 be the blue nodes representing
D1 and D2 and incident to the red node (C ′, Xi) for some 1 ≤ i ≤ p in K. To update
K, each red node (C ′, Xj) is replaced by two new red nodes, one representing each
new c-node. Each (blue) neighbor of (C ′, Xj) is connected to exactly one of the new
c-nodes depending on which new c-node it belongs to. Obviously, D1 and D2 are con-
nected to different new red nodes. As we show in Proposition 2.50 after the c-remove
operation there exists no path in K anymore between D1 and D2, i.e., the number of
connected components in K has increased by at least 1.

We are left with proving Proposition 2.50 and showing that the number of con-
nected components of K does never decrease. We first need some intermediate results.

Proposition 2.47. Every blue node (D,X) has degree 1 in K.

Proof. Let X be a c-node of node C of H. By definition of K, a blue node (D,X)
can only be adjacent to node (C,X).

Proposition 2.48. Let C be a node in H. Each blue node representing a node
D in H is incident to at most one red node (C,X), and X is the c-node to which D
belongs at C.

Proof. The proof follows from the construction of K since each node D belongs
to at most one c-node at C.

Proposition 2.49. If two blue nodes are connected in K, then they represent
nodes with the same ancestor.

Proof. If there is a path in K between the two blue nodes Y and Y ′, then let
B1, . . . , Bj be the blue nodes on this path with Y = B1 and Y ′ = Bj . Since Bi and
Bi+1 are adjacent to the same red node, they belong to the same c-node at that node
and thus have the same ancestor. By the transitivity of the ancestor relation the claim
follows.

Proposition 2.50. Consider the operation c-remove(C1, C2). Let {X1, X2, . . . ,
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Xp} be all the c-nodes that are CV-split at a node C ′ of H. Let D1 and D2 be the
tree neighbors of C ′ on π(C1, C2). Let Y1 and Y2 be the blue nodes representing D1

and D2 that are incident to a red node (C ′, Xi) for some 1 ≤ i ≤ p. Then after the
c-remove operation no path exists connecting Y1 and Y2.

Proof. Consider first the case that either (D1, C
′) or (D2, C

′) is new. By Propo-
sition 2.47 every path between Y1 and Y2 contains (C ′, Xi) and hence is disconnected
after the remove operation.

Assume next that both edges are old, i.e., Y1 = D1 and Y2 = D2, and assume
that a path P exists between them after the c-remove operation. Since the c-node of
D1 and D2 was CV-split, after the deletion of (C1, C2) every path in H connecting D1

with D2 in H contains C ′. We will show that the existence of P implies the existence
of a path in H \ C ′ connecting D1 and D2, which gives the contradiction.

For this we show (1) that no blue node representing C ′ belongs to P, and (2) that
the blue nodes incident to a red node (C ′, X ′) on P are connected in H \C ′ after the
update.

(1) Since D1 and D2 belonged to a c-node at C ′, their ancestor differs from the
ancestor of C ′. By Proposition 2.49 the nodes of H represented by the blue nodes of
P all have the same ancestor. Thus, no blue node representing C ′ belongs to P .

(2) Let Fk and F ′
k be the two nodes incident on P to the kth red node (C ′, X ′)

for some c-node X ′. Then Fk and F ′
k both belong to the same c-node X ′. It follows

that Fk and F ′
k are connected in H \ C ′ after the deletion of edge (C1, C2).

From (1) it follows that P forms a path without a blue node representing C ′: (2)
shows that every red node on P representing C ′ can be avoided by a path in H \C ′.
Let l be the number of red nodes representing C ′ on P . Note that the subpaths of P
between F ′

k and Fk+1, the subpath from D1 to F1, and the subpath from F ′
l to D2

contain no edge incident to C ′ and thus correspond to paths in H \C ′. It follows that
P induces a path in H \C ′ between D1 and D2 after the deletion of (D1, D2), which
is a contradiction.

Proposition 2.51. The number of connected components of K never decreases.
Proof. As shown in Proposition 2.46 a c-remove operation does not decrease the

number of connected components.
A c-split operation consists of two parts. In part 1 the red node (C,X) is replaced

by many red nodes, each being connected at most to all the nodes that (C,X) was
connected to. This does not decrease the number of connected components. In part
2 the blue node C and all blue nodes (C,X) are each split into two new nodes such
that each new node is connected to at most all the nodes that the original blue node
was connected to. So again, the number of connected components is not decreased.

A c-add (C1, C2) operation might add a new blue node (C2, X), a new red node
(C1, X), an edge between them, and the same with the roles of C1 and C2 reversed.
Since they do not connect to the rest of K, an add operation does not decrease the
number of connected components in K either.

Note that an old edge (D,C) of H can become new, but not vice versa. If this
happens an edge is removed fromK, a new blue node (D,X) is added and is connected
to (C,X), where X is the c-node of C to which D belongs. The same happens with
the roles of D and C reversed. Thus the number of connected components does not
decrease.

This completes the proof of the lemma.

2.10. Complete block queries. A complete block query determines all the
blocks to which a vertex belongs by computing for each tree edge the block to which
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it belongs. A vertex belongs to exactly the blocks to which the tree edges adjacent
to the vertex belong. We can find the blocks in I(C) for every tree edge internal or
incident to the cluster C in time O(k) whenever we recompute I(C). To compute all
the blocks in G, we have to determine which blocks of different cluster graphs form
the same block of G, i.e., have to be combined.

Perform a depth-first traversal of the spanning tree T2 of H2. For each tree edge
e = (u, v) with u ∈ C1 and v ∈ C2 such that u is a parent of v in the (rooted)
depth-first search (dfs) tree, test for each tree edge (x,w) with x ∈ C2 and w ∈ C3

whether u and w are biconnected: if C2 is also a node of H1, then test whether the
shared vertex of C2 separates u and w and if not use the internal data structure of
C2 to test the biconnectivity of u and w in G. If C2 is no node of H1, then v = x is a
shared vertex. In this case test the biconnectivity of u and w using the shared graph
of v. If we recursively know all tree edges of T2 in the dfs subtree of edge (x,w) that
belong to the same block as (x,w), then we can construct for (u, v) the set of all tree
edges of T2 in the dfs subtree of (u, v) that belong to the same block as (u, v). The
dfs takes time O(m/k).

When the dfs is completed we combine the blocks of all the tree edges in the same
set and mark all the edges in T ′ accordingly. Thus the total cost is proportional to
the number of tree edges in T ′, which is n− 1.

Theorem 2.52. A complete block query in a graph of n vertices can be answered
in time O(n).

2.11. Biconnectivity queries. Given a query(u, v) operation, let x(i) and y(i)

be defined as in Lemma 2.7. The lemma shows that u and v are biconnected in G iff
(Q1) u and y(1) are biconnected in G,
(Q2) x(i) and y(i+1) are biconnected in G, for all 1 ≤ i < p, and
(Q3) x(p) and v are biconnected in G.
Condition (Q2) holds iff ei = (x(i), y(i)) and ei+1 = (x(i+1), y(i+1)) belong to the

same block of G for all 1 ≤ i < p. This is equivalent to the requirement that e1

belongs to the same block as ep. Thus, it suffices to determine and test e1 and ep and
to test (Q1) and (Q3).

By definition all edges ei are solid intercluster tree edges, i.e., tree edges on the
T2-path between the node Cu in H2 and the node Cv in H2. Therefore, we keep the
following data structure.

(HL9) We store a least common ancestor data structure [10] for T2 rooted at a
leaf R, such that least common ancestor queries between any two nodes of
H2 can be answered in constant time. If C is the least common ancestor
of C and D, then the data structure also returns in constant time the tree
edge, incident to C on π(C,D). We also keep at each node of H2 the tree
edge to its parent.

(HL10) We store at each solid intercluster tree edge its block in G.
Both data structures are recomputed from scratch after each update in G. The

computation of (HL10) proceeds in the same way as a complete block query: we
perform a dfs on T2 that determines the sets of solid intercluster tree edges that
belong to the same block. This takes time O(m/k). The time to build both data
structures is thus O(m/k).

Determining e1, ep, y(1), and x(p): We first use (HL9) to determine the least
common ancestor of Cu and Cv in H2. If Cu is the least common ancestor, the data
structure returns the tree edge incident to Cu on π(Cu, Cv). This is edge e1; the edge
from Cv to its parent is the edge ep. If the least common ancestor of Cu and Cv is a
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third node, then e1 is the edge from Cv to its parent and ep is the edge from Cu to
its parent. This also provides y(1) and x(p).

Testing conditions (Q1) and (Q3): We test conditions (Q1) and (Q3) in constant
time as described in section 2.3.

Testing condition (Q2): To test condition (Q2) we simply test with (HL10)
whether e1 and ep belong to the same block.

Theorem 2.53. The given data structure can answer a biconnectivity query in
constant time. The total update cost is

(1) time O(k) for restoring the relaxed partition,
(2) amortized time O(k) to update all cluster graphs,
(3) amortized time O((m/k) log n+

√
m) to update all shared graphs,

(4) time O(k + (m/k) log n) to update all data structures for high-level graphs
(HL1)–(HL10), and

(5) time O((m/k) log n) to update all c-structures.
Thus, choosing k =

√
m log n gives the following update time.

Theorem 2.54. The given data structure can be updated in amortized time
O(

√
m log n) after an edge insertion or deletion.

3. Plane graphs. In this section we present an algorithm for fully dynamic
biconnectivity in plane graphs with O(log n) query time and O(log2 n) update time,
where insertions are required to maintain the planarity of the embedding. We modify
the extended topology tree data structure of [14] and prove that this data structure
dynamically maintains biconnectivity information.

3.1. Definitions. As in general graphs (see section 2) we transform a given
graph G into a degree-3 graph G′ by replacing every vertex x of degree d > 3 with a
chain of d− 1 dashed edges (x1, x2), . . . , (xd−1, xd). We say each xi is a representative
of x and x is the original node of every xi. Then we find an embedding of G′ and a
spanning tree T ′ ofG′. A topology tree ofG′ based on T ′ is a hierarchical representation
of G′ introduced by Frederickson [5]. On each level of the hierarchy it partitions the
vertices of G′ into connected subsets called clusters. An edge is incident to a cluster
if exactly one endpoint of the edge is contained in the cluster. The external degree of
a cluster is the number of tree edges that are incident to the cluster. Each vertex of
G′ is a level-0 cluster. Two clusters at level i > 0 are formed by either

(1) the union of two clusters of level i − 1 that are joined by an edge in the
spanning tree and either both are of external degree 2 or one of them has external
degree 1, or

(2) one cluster of level i− 1, if the previous rule does not apply.
Each cluster at level i is a node of height i in the topology tree. If a cluster C at

level i is formed by two clusters A and B of level i− 1, then A and B are the children
of C in the topology tree. If C is formed by one cluster A of level i− 1, then A is the
only child of C in the topology tree. The topology tree has depth D = O(log n) [5].
In the following, node denotes a vertex of the topology tree.

In [14] the topology tree data structure is extended to maintain non-tree edges
of G′ and additional connectivity information at each node, called recipe. We use the
same technique to maintain dynamic 2-vertex connectivity.

Every insert(u,v), delete(u,v), or query(u,v) operation requires that the topology
tree is expanded at an (arbitrary) representative of u and of v: we mark all clusters
containing the two representatives in the topology tree. Note that all these clusters lie
on a constant number of paths to the root. Then we build the graph which consists
of the two representatives and a compressed representation of all the clusters that are
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unmarked children of a marked node in the topology tree. This creates a compressed
version of G, called G(u, v), of size O(log n). This graph is used to answer queries. In
the case of update operations, the edge is added to or deleted from G(u, v). Afterward
the topology tree is merged together again, i.e., a topology tree representation is
created for the (possibly modified) graph G(u, v).

To add non-tree edges to the topology tree data structure we define a bundle
between two clusters C and C ′ as follows: If neither C is an ancestor of C ′ nor vice
versa, let e(C,C ′) be the set of all edges between C and C ′. Otherwise, assume w.l.o.g.
that C ′ is the ancestor of C. We define e(C,C ′) to be the set of all edges incident to
C whose least common ancestor in the topology tree is C ′. Since we are considering
an embedded graph, the edges incident to a cluster C are embedded at C in a fixed
circular order. A bundle between a cluster C and C ′ is a subset of e(C,C ′) that forms
a maximal continuous subsequence in the circular order at C and C ′. Note that this
definition is independent of the level of the clusters and planarity guarantees that
there are at most three bundles between two clusters [14]. The first and last edge of
a bundle in this order are called the extreme edges of the bundle. In the topology
tree a bundle between C and C ′ is represented by two bundles, one from C to the
least common ancestor of C and C ′ (called the LCA-bundle of C) and one from C ′ to
the least common ancestor. Whenever the topology tree is expanded and the graph
G(u, v) is created, we convert these two bundles back into one.

An edge (u, v) with u, v ∈ C is called an internal edge of the cluster C. Assume
all dashed internal edges of C are contracted. The projection of an edge (x, y) onto
a tree path P is the path π(x, y) ∩ P . Note that, by definition, the vertices of each
cluster are connected by a subtree of T ′. In the following we define the projection edge
of an edge, the projection path p(C), and the coverage graph of C which consists of
small and big supernodes of C. All these definitions are independent of the level of
the cluster.

(1) If C has external degree 1, the projection path p(C) of C consists of the
endpoint z of the (unique) tree edge incident to C. This endpoint is a small supernode.
The coverage graph of C consists of this supernode and of all LCA-bundles of C. For
each edge e incident to C where y is the endpoint in C, the projection edge of e is e
if y = z and otherwise the tree edge incident to z that lies on π(y, z).

(2) If C has external degree 3, it consists of only one vertex z. Both the projection
path p(C) and the coverage graph consist of only this one vertex which is a small
supernode.

(3) If the external degree of a cluster C is 2, there is a unique simple tree path
between the tree edges that are incident to C. This path is the projection path p(C) of
C. The projection p(x) of a vertex x in C is the vertex closest to x on the projection
path. The projection edge of a vertex x is the edge on π(x, p(x)) incident to p(x). If
x = p(x), the projection edge of x is undefined. The projection edge of an edge (x, y)
with one endpoint x in C is the projection edge of x, if it is defined and it is (x, y)
otherwise. The projection edges of an edge (x, y) with x, y ∈ C are the projection
edge of x if it is defined and (x, y) otherwise and also the projection edge of y if it is
defined and (x, y) otherwise.

If (x, y) is an internal edge of C, then the subpath π(x, y) ∩ p(C) is the projection
of (x, y) on p(C), p(x) and p(y) are the extreme vertices of the projection, and all
vertices on the subpath except for p(x) and p(y) are the internal vertices of the
projection.
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Let (w, z) and (x, y) be the extreme edges of an LCA-bundle between a cluster C
and a cluster C ′ with w, x ∈ C and z, y ∈ C ′. The path π(w, x) ∩ p(C) is called the
projection of the edge bundle on p(C), p(w) and p(x) are called the extreme vertices
of the projection, and all vertices on the subpath except p(w) and p(x) are internal
vertices of the projection. The projection edges of a bundle are the projection edges
of the extreme edges of the bundle.

The coverage graph of C is built by compressing p(C) as follows:

(1) Let u1, u2, . . . , up be a maximal subpath of p(C) such that
(a) π(u1, up) intersects the projection of an LCA-bundle on p(C),
(b) u1 is the extreme vertex of the projection of an LCA-bundle or an in-

ternal edge,
(c) up is the extreme vertex of the projection of an LCA-bundle or an in-

ternal edge, and
(d) every vertex ui for 1 < i < p is an internal vertex of the projection of a

bundle or an internal edge, or there exist two projections with projection
node ui and the same projection edge at ui such that ui and uj with
j < i are the extreme vertices of one projection and ui and uk with k > i
are the extreme vertices of the other projection.

If p > 2, we contract the path u2, . . . , up−1 to one vertex u, called big supernode,
and we say u2, . . . , up−1 are replaced by the big supernode. The vertices u1 and up

are called small supernodes and the edges (u1, u) and (u, up) are called superedges.
All edges incident to u2, . . . , up−1 are now incident to u. This splits a bundle that is
incident to u1 and/or up and also ui with 1 < i < p into up to three subbundles, one
incident to u and the other(s) incident to u1 and/or up. If the edge (u1, u2) (resp.,
(up−1, up)) is dashed, then the edge (u1, u) (resp., (u, up)) is dashed.

If p ≤ 2 then no nodes are compressed.

(2) After replacing all subpaths that fulfill condition 1, let v1, v2, . . . , vq be a sub-
path of p(C) such that v1 and vq are two small supernodes and no vertex vi with 1 <
i < q is a supernode. We contract the path v2, . . . , vq−1 to one superedge (v1, vq) and
we say v2, . . . , vq−1 are replaced by the superedge. If all edges (v1, v2), . . . , (vq−1, vq)
are dashed, then the superedge is dashed; otherwise it is solid.

The coverage graph of C consists of this compressed representation of p(C) and all
LCA-bundles grouped into sets according to their projection edges.

Note that our definition of a supernode replaces a supernode of [14] by two small
and one big supernode and each bundle is split into at most three subbundles, one
incident to each small supernode and one incident to the big supernode.

When expanding the topology tree, we build the coverage graph for each node that
was marked and each child of a marked node. For each subbundle that is incident to a
supernode in a coverage graph we maintain its projection edges implicitly as described
below.

The coverage graph of a cluster C is maintained as a doubly linked path of
supernodes. Each supernode stores up to two doubly linked lists of projection edges
incident to it (called projection list), one list for each side of the tree path p(C).
Each projection edge e stores a doubly linked list of the subbundles such that e is
the projection edge of the subbundle. If C has external degree 1, there is only one
supernode and only one list of projection edges. If C has external degree 3, it consists
of only one supernode without any projection edges or subbundles. The projection
edges and the subbundles are listed in the counterclockwise order of their embedding.
Only the first and last subbundles in a list have direct access to the projection edge and
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only the first and last projection edges in a list have direct access to the supernode to
which they are incident. The data structure lets us coalesce two adjacent supernodes
or two projection lists into one in constant time; we can also split a supernode or a
projection edge list into two in constant time if we are given pointers that tell where
to split the lists. Note that each subbundle can be contained in at most two lists and
if it is contained in two lists, it is the first element of the one and the last element of
the other list.

3.2. Recipes. Each node in the topology tree is enhanced by a recipe that de-
scribes how the coverage graph of the children of the node can be created from the
coverage graph of the node. The only difference in the algorithm of [14] and this
biconnectivity algorithm is in the contents of the recipes. We describe our recipes in
the following. A recipe contains four kinds of instructions:

(1) Split a subbundle. Replace a subbundle of m edges that have the same target
by up to four adjacent subbundles that have that target and whose (specified) sizes
sum to m.

(2) Split a projection edge. Split the subbundle list at specified locations, and
replace the old subbundle list at the supernode by the new subbundle lists.

(3) Split a supernode. Split the two projection lists on either side of the supernode
into two pieces at specified locations. Replace the old supernode by two new ones
linked by a superedge, and give the appropriate piece of each projection list to each
of the new supernodes.

(4) Create a new subbundle. Create a subbundle with a specified target and
number of edges, and insert it at a specified place in a subbundle list of at most two
projection edges.

Using these instructions the coverage graphs of the children of a cluster C can
be transformed into a coverage graph of C. The sequence of instructions together
with the appropriate parameters (e.g., which subbundle list has to be split at which
location) is called a recipe and is stored at the node in the topology tree that represents
C. These parameters are either a record of a subbundle (consisting of the number of
edges in the subbundle and its target), a record of a projection edge (consisting of
the edge), or a pointer, called location descriptor. A location descriptor consists of
a pointer to a subbundle and an offset into the subbundle (in terms of number of
edges) or a pointer into a projection list. It takes constant time to follow a location
descriptor.

Whenever we expand the topology tree, we use the recipes to create the coverage
graphs along the expanded path. Whenever we merge the topology tree, we first
determine how to combine the coverage graphs of two clusters to create the coverage
graph of their parent, and then we remember how to undo this operation in a recipe.
We now describe the instructions in the recipe of C, depending on the number of
children of C and their external degrees. In the following subbundle stands for LCA-
subbundle.

Case 1: C has only one child. In this case the coverage graph of C is identical to
the coverage graph of its child. The recipe is therefore empty.

Case 2: C has two children with external degrees 3 and 1. Let Y be the child
with external degree 3 and let Z be the child with external degree 1. The coverage
graph of Y and of Z consists of one supernode. We build the coverage graph of C as
follows:

If the tree edge between Y and Z is dashed, we simply contract it by making the
projection list of Z the projection list of one side of the path of C. The projection list
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of the other side is empty. The projection edges of the bundles do not change and,
thus, the subbundle lists do not change.

If the edge (Y,Z) is not dashed, then the supernode of C has only one projection
edge, namely, the tree edge between Y and Z. Thus, the supernode of C has one
projection list (the projection list of the other side is empty) containing one projection
edge. The subbundle list of this projection edge consists of the concatenation of all
subbundle lists of Z. In the recipe we use location descriptors to point to the locations
of the concatenation. The number of location descriptors is proportional to the number
of removed projection edges.

Case 3: C has two children, both with external degree 1. In this case C is the root
of the topology tree. Its coverage graph is empty. The coverage graphs of the children
contain one supernode and at most one subbundle apiece, corresponding to the set
of non-tree edges linking the children. Since each subbundle is contained in at most
two projection lists, there are at most four projection lists. The recipe stores these
projection lists (i.e., whether a bundle is contained in one or two lists) and subbundles
(i.e., the number of non-tree edges linking the children).

Case 4: C has two children with external degrees 2 and 1. Let Y be the child
of degree 2 and Z be the child of degree 1. We collapse all supernodes of Y to one
supernode s to build the coverage graph of C from the coverage graph of Y as follows:

On each side of the tree edge between Y and Z there may be a subbundle that
connects Y and Z. We remove these subbundles and make all remaining subbundles
incident to s.

If the edge (Y,Z) is dashed, then the projection edge of the subbundles incident
to Y does not change. Thus, we concatenate the two projection lists of Y and the
projection list of Z (in the order of the embedding). This creates a single supernode
with a single projection list.

If the edge (Y,Z) is solid, then this edge becomes the projection edge for all
subbundles incident to Y . Thus, we concatenate all bundle lists of all projection edges
of Y to create the bundle list for (Y,Z). Then we concatenate the two projection lists
of Y and the projection list of Z (in the order of the embedding). This creates a single
supernode with a single projection list.

In both cases, if two newly adjacent subbundles have the same target, we merge
them into one subbundle and update the subbundle and projection lists appropriately.

In the recipe we need a location descriptor to point to each subbundle where
we concatenated projection lists or subbundle lists or merged subbundles. We also
have to store any subbundles that connect Y and Z and all projection edges that we
removed. The number of location descriptors we store is proportional to the number
of supernodes of Y plus the number of removed projection edges.

Case 5: C has two children, both with external degree 2. Let Y and Z be the
children of C. To join the coverage graphs of Y and Z we consider two cases: if the
tree edge between Y and Z is dashed, we join the two coverage graphs by identifying
the appropriate small supernodes (that are terminating the coverage graphs) and
concatenating their projection lists. If the tree edge between Y and Z is not dashed,
we connect the two coverage graphs by an edge.

In both cases we then remove all subbundles between Y and Z. If one of the
supernodes that was incident to a removed subbundle is no longer incident to a bundle,
we replace it by a superedge. Afterward we coalesce all the supernodes between the
(Y,Z)-subbundle endpoints into three supernodes as follows: If the path P between
their endpoints contains only one supernode other than the endpoints, nothing has to
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be done. Otherwise, we replace these (at least two) supernodes by one supernode by
concatenating their projection lists. We also merge newly adjacent subbundles into a
single subbundle if they have the same target.

The recipe contains a location descriptor pointing to each subbundle where we
coalesced supernodes and concatenated projection lists (and possibly merged adjacent
subbundles). We also store the subbundles that were merged together or deleted. If
there is a subbundle that loops around the tree, we need two more location descriptors
to mark its endpoints. The number of location descriptors is proportional to the
number of coalesced supernodes in Y and Z.

New subbundles may be created during recipe evaluation. For each new subbun-
dle, the recipe stores a bundle record, preloaded with the count of bundle edges, and
a location descriptor pointing to the place in the old subbundle list where the new
subbundle is to be inserted. The target field of the subbundle is easy to set: the least
common ancestor of the bundled edges is exactly the node at which the recipe is being
evaluated. In a way similar to [14] we can show the following lemma.

Lemma 3.1. If the topology tree is expanded at a constant number of vertices
and recipes are evaluated at the expanded clusters, the total number of edge bundles,
supernodes, and superedges created is O(log n). The expansion takes O(log n) time.

Proof. Since the topology tree has depth O(log n), there are O(log n) marked
nodes and O(log n) children of marked nodes. Thus, the cluster graph consists of
the coverage graph of O(log n) clusters. Planarity guarantees that these clusters are
connected by O(log n) bundles; each bundle is split into up to three subbundles. Thus,
there are O(log n) subbundles. Since each supernode in a cluster with more than one
supernode is incident to a subbundle, there are O(log n) supernodes. Because the
supernodes and superedges form a tree, the number of superedges is also O(log n).
Each subbundle has two projection edges. Thus, the total number of projection edges
is O(log n).

Evaluating a recipe takes time proportional to the number of supernodes or pro-
jection edges created by the recipe plus constant “overhead” time. Thus, the total
expansion time is O(log n).

3.2.1. Queries. To answer a query (u, v), we mark all the clusters containing u
and v in the topology tree. Then we create the graph G(u, v) in the following steps:

(1) We build the cluster graph by expanding the topology tree at a representative
of u and of v.

(2) Let e1, e2, . . . , ep with p > 1 be all the subbundles whose extreme edges
have the same projection edge (x, y) in a cluster C with x ∈ p(C). We add a small
supernode y and connect all these extreme edges to y.

(3) We contract all dashed edges. When contracting a dashed edge between two
supernodes, the resulting supernode is a small supernode.

Since the cluster graph consists of O(log n) supernodes, subbundles, and su-
peredges and can be computed in time O(log n), the graph G(u, v) resulting from
these 3 steps contains O(log n) supernodes, subbundles, and superedges and can be
computed in time O(log n).

The following lemmas show that two vertices u and v are not biconnected in G iff
there is an articulation point in G(u, v) separating u and v that is not a big supernode.
Since the cluster graph has size O(log n) this can be tested in time O(log n).

Lemma 3.2. Let u and v be two vertices of G2 and of G1 and let G2 be a graph
created from G1 by

(1) contracting connected subgraphs into one vertex,
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(2) replacing the only two edges (a, b) and (b, c) incident to a vertex b by the edge
(a, c),

(3) replacing parallel edges, and
(4) removing self-loops.

Let x be a vertex of G1 that is not contained in the contracted subgraphs and not
a removed degree-2 vertex. Then x is an articulation point in G1 separating u and v
iff x is an articulation point separating u and v in G2.

Proof. Consider first the case that x separates u and v in G1. To achieve that u
and v are not separated by x in G2 a cycle has to be created that contains u, x, and
v. Contracting pieces of G1 that do not contain x or removing degree-2 vertices (other
that x) cannot create new cycles. Thus, x is also an articulation point separating u
and v in G2.

If x separates u and v in G2, then expanding vertices (other than x) of G2 to
connected subgraphs, replacing one edge by two edges and a degree-2 vertex, or adding
parallel edges to edges not on π(u, v) and self-loops does not create a cycle that
contains x, u, and v. Thus, x separates u and v also in G1.

Lemma 3.3. Let u and v be two vertices of G. The graph G(u, v) is created from
G by

(1) contracting connected subgraphs into one vertex,
(2) replacing the only two edges (a, b) and (b, c) incident to a degree-2 vertex b

by the edge (a, c),
(3) collapsing parallel edges, and
(4) removing self-loops.

No small supernode on π(u, v) (except for u and v itself) in G(u, v) is contained in a
contracted subgraph of any of these operations.

Proof. The graph G(u, v) can be created from G by the three operations given in
the lemma using the following steps. Note that G(u, v) does not contain dashed edges
and every small supernode of G(u, v) represents a unique vertex x of G.

(1) Mark as red all the nodes that are small supernodes of G(u, v).
(2) Collapse all nodes on the tree path between two red nodes to one blue node.
(3) Contract every blue node and all the subtrees whose roots are uncolored and

connected to the blue node by a tree edge to a green node.

Now we are left with red, green, and uncolored nodes and every green node is
connected by tree edges to two red nodes.

(4) Replace all parallel edges by one edge and remove all self-loops.
(5) Replace every degree-2 green node by a superedge. (All remaining green nodes

correspond to big supernodes.)
(6) If a red node x lies on πG(u, v) and does not lie on π(u, v), shrink all sub-

trees whose roots are uncolored and connected by a tree edge to x to a yellow node.
Otherwise contract all subtrees whose roots are uncolored and connected to x by a
tree edge to the node x.

(7) Replace all parallel edges by one edge and remove all self-loops.

The resulting graph is G(u, v). Note that u and v are small supernodes in G(u, v)
and then marked red. Hence, if a small supernode x lies on π(u, v), it is not replaced by
step 6. No small supernodes are contained in a connected subgraph that is contracted
in steps (1)–(5). The lemma follows.

Lemma 3.4. No vertex on a subpath that is replaced by a big supernode in G(u, v)
is an articulation point separating u and v in G.
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Proof. Let C be the cluster of G(u, v) containing a vertex x that is replaced by a
big supernode. Since x is replaced by a big supernode, it follows that x is an internal
vertex of the projection path P creating this supernode. Let z1 and z2 be the extreme
vertices of P . Then z1 and z2 are connected by a path in G that does not use x. It
follows that x does not separate u and v in G.

Lemma 3.5. If a vertex x of G is replaced by a superedge (y, z) and if x separates
u and v in G, then y and z also separate u and v in G.

Proof. Let C be the cluster of G(u, v) that contains x, and let v1, v2, . . . , vq be
the subpath P that is replaced by (y, z) with y = v1 and z = vq and x = vi for some
1 < i < q. W.l.o.g. let the tree path from v2 to u contain v1. From the definition of
a superedge it follows that no vertex vi with 1 < i < q is a supernode. Thus, the
projection of none of the subbundles incident of C (i.e., edges with one endpoint in
C) contains a vertex vi. Since x is an articulation point separating u and v, no edge
with both endpoints outside C exists whose projection on π(u, v) contains a node vi
for 1 ≤ i ≤ q. Since v1 is a small supernode, it is the extreme vertex of a projection
of an edge or subbundle whose projection onto π(u, v) lies inside π(v1, u). Thus, no
edge or subbundle exists whose projection onto π(u, v) contains a vertex on π(v1, u)
other than v1 and v2. Additionally, if such a projection contains v1 it does not have
the same projection edge as any edge whose projection contains v2. Thus, every path
from u to v2 contains y and, hence, every path from u to v contains y. The symmetric
argument shows that z separates u and v in G.

Lemma 3.6. Two vertices u and v are not biconnected in G iff there is an
articulation point separating u and v that is not a big supernode in the cluster graph
G(u, v).

Proof. Lemma 3.3 shows that the cluster graph G(u, v) is created from G by con-
tracting subgraphs, removing degree-2 nodes, collapsing parallel edges, and removing
self-loops. Thus, Lemma 3.2 does apply with G1 = G and G2 = G(u, v).

Let x be an articulation point separating u and v in G. Then x lies on π(u, v).
From Lemma 3.4 it follows that x is cannot be represented by a big supernode in
G(u, v). If x is represented by a small supernode, then according to Lemma 3.3, x was
not affected by the contraction of G to G(u, v). Thus, Lemma 3.2 shows that x is an
articulation point separating u and v in G(u, v). If x is represented by a superedge
(y, z), then according to Lemma 3.5 y is an articulation point separating u and v in
G as well. Since y is a small supernode, the same argument as above shows that y
separates u and v in G(u, v).

If a small supernode x is an articulation point separating u and v in G(u, v), then
by Lemma 3.3 x was not part of a contracted subgraph. It follows from Lemma 3.2
that x is an articulation point separating u and v in G.

Theorem 3.7. The given data structure can answer biconnectivity queries in
time O(log n).

Proof. Lemma 3.6 shows that to test the biconnectivity of u and v in G it suffices
to test whether u and v are separated by a small supernode in G(u, v). Since G(u, v)
has size O(log n), this can be done in time O(log n).

3.3. Updates. An insert(u,v) or query(u,v) operation consists of three steps.
First, the topology tree is expanded at a representative of u and of v to create the
cluster graph as discussed in section 3.2. Second, we add or remove the edge (u, v)
from the cluster graph. Third, we merge the topology tree back together.

By adding or deleting a constant number of vertices and edges we guarantee that
the graph stays a degree-3 graph. Note that if a tree edge is deleted, we run along
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the faces adjacent to (u, v) to find a subbundle that connects the two disconnected
spanning trees. We can determine one of the edges of the subbundle by repeatedly
expanding the clusters containing the endpoints. This edge becomes the new tree
edge.

The details of merging the topology tree back together are given in [14]. There
are three basic steps. First, the new topology tree for the updated cluster graph is
computed. Second, the new subbundles and their LCA-targets are computed. Third,
the recipes in all clusters that are affected by the modification of subbundles are
recomputed. Steps one and two are identical to [14] and take time O(log n).

In step three of [14] the recipe of clusters is recomputed that contain the endpoint
of an extreme edge of a modified subbundle. The following lemma shows that with
the recipes described in section 3.2 it suffices to update these clusters also for 2-vertex
connectivity. Thus, the same algorithm as in [14] can be used to update the data
structure after each update operation.

Lemma 3.8. If a subbundle is split into a constant number of subbundles or if a
constant number of subbundles is merged, the only recipes that have to be updated are
the recipes of clusters containing the endpoints of the extreme edges of the modified
subbundles.

Proof. A recipe at a cluster C contains location pointers into subbundles, sub-
bundle lists, and projection lists. Additionally, it contains subbundle records and
projection edges.

All subbundles in the subbundle lists of C are incident to C. All projection edges
for whom we keep a projection list at C are projection edges of subbundles whose
extreme edges have at least one endpoint in C. These lists have to be updated only if
one of these subbundles is modified.

For each subbundle whose record is stored in the recipe or that is pointed to by
a location descriptor at least one of the endpoints is contained in C. The record has
to be updated only if the subbundle is modified.

Each projection edge that is stored in the recipe is the projection edge of a
subbundle whose extreme edges have at least one endpoint in C. The projection edge
information changes only if this subbundle is modified.

This results in the following theorem.

Theorem 3.9. The given data structure can answer biconnectivity queries in time
O(log n) and can be updated in time O(log2 n) after an edge insertion or deletion under
the requirement that the edge insertions maintain the planarity of the embedding.
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