
Randomized Fully Dynamic Graph Algorithms with
Polylogarithmic Time per Operation

MONIKA R. HENZINGER

Google, Inc., Mountain View, California

AND

VALERIE KING

University of Victoria, Victoria, BC, Canada

Abstract. This paper solves a longstanding open problem in fully dynamic algorithms: We present the
first fully dynamic algorithms that maintain connectivity, bipartiteness, and approximate minimum
spanning trees in polylogarithmic time per edge insertion or deletion. The algorithms are designed
using a new dynamic technique that combines a novel graph decomposition with randomization. They
are Las-Vegas type randomized algorithms which use simple data structures and have a small
constant factor.

Let n denote the number of nodes in the graph. For a sequence of V(m0) operations, where m0 is
the number of edges in the initial graph, the expected time for p updates is O(p log3 n) (Throughout
the paper the logarithms are base 2.) for connectivity and bipartiteness. The worst-case time for one
query is O(log n/log log n). For the k-edge witness problem (“Does the removal of k given edges
disconnect the graph?”) the expected time for p updates is O(p log3 n) and the expected time for q
queries is O(qk log3 n). Given a graph with k different weights, the minimum spanning tree can be
maintained during a sequence of p updates in expected time O(pk log3 n). This implies an algorithm
to maintain a 1 1 e-approximation of the minimum spanning tree in expected time O((p log3n log
U)/e) for p updates, where the weights of the edges are between 1 and U.

Categories and Subject Descriptors: E.1 [Data]: Data Structures—graphs and networks; G.2.2
[Discrete Mathematics]: Graph Theory—graph algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Connectivity, dynamic graph algorithms

The work of M. R. Henzinger was supported by an NSF CAREER Award and was done while at the
Department of Computer Science, Cornell University, Ithaca, NY.
The research of V. King was supported by an NSERC Grant.
Authors’ present addresses: M. R. Henzinger, Google, Inc., 2400 Bayshore Parkway, Mountain View,
CA 94043, e-mail: monika@google.com; V. King, Department of Computer Science, University of
Victoria, Victoria, BC, Canada, e-mail: val@csr.uvic.ca.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/0700-0502 $05.00

Journal of the ACM, Vol. 46, No. 4, July 1999, pp. 502–516.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

In many areas of computer science, graph algorithms play an important role:
Problems modeled by graphs are solved by computing a property of the graph. If
the underlying problem instance changes slightly, algorithms are needed that
quickly compute the property in the modified graph. Algorithms that make use of
previous solutions and, thus, solve the problem faster than recomputation from
scratch are called fully dynamic graph algorithms. To be precise, a fully dynamic
graph algorithm is a data structure that supports the following three operations:
(1) insert an edge e, (2) delete an edge e, and (3) test if the graph fulfills a
certain property, for example, if two given vertices are connected.

1.1. PREVIOUS WORK. In recent years a lot of work has been done in fully
dynamic algorithms.1 There is also a large body of work for restricted classes of
graphs and for insertions-only algorithms. The best previous time bounds for
fully dynamic algorithms in undirected n-node graphs are: O(=n) per update for
a minimum spanning forest [Eppstein et al. 1997]; O(=n) per update and O(1)
per query for connectivity [Eppstein et al. 1997]; O(=n log n) per update and
O(log2n) per query for cycle-equivalence (“Does the removal of the given 2
edges disconnect the graph?”) [Henzinger 1994]; O(=n) per update and O(1)
per query for bipartiteness (“Is the graph bipartite?”) [Eppstein et al. 1997].

There is a lower bound in the cell probe model of V(log n/log log n) on the
amortized time per operation for all these problems which applies to randomized
algorithms [Henzinger and Fredman 1998; Henzinger 1994; Miltersen et al.
1994]. If deletions are restricted to “undo” previous insertions in the reverse
order in which the insertions occurred, then Westbrook and Tarjan [1989] gave
an algorithm with takes time O(log n/log log n) per update. In Alberts and
Henzinger [1998], it is shown that the average update time of (a variant of) the
above connectivity and bipartiteness algorithms is O(n/=m 1 log n) if the edges
used in updates are chosen uniformly from a given edge set. Thus, for dense
graphs their average performance nearly matches the lower bound.

In plane graphs, fully dynamic algorithms for minimum spanning forest and
connectivity are given in Eppstein et al. [1996] that are close to the lower bound:
they take time O(log2 n) per deletion and O(log n) per insertions and query.
However, the constant factor of these algorithms is quite large [Eppstein et al.
1997]. Thus, the following questions were posed as open questions in Eppstein et
al. [1996; 1997].

(1) Can the above properties be maintained dynamically in polylogarithmic time
in (general) graphs?

(2) Is there a fully dynamic algorithm with small constants such that an efficient
implementation is possible?

1.2. NEW RESULTS. This paper gives a positive answer to both questions. It
presents a new technique for designing fully dynamic algorithms with polyloga-
rithmic time per operation and applies this technique to the fully dynamic

1 See Alberts and Henzinger [1998], Eppstein et al. [1997], Even and Shiloach [1991], Frederickson
[1985; 1997], Galil and Italiano [1992], Henzinger [1994; 1995; 1999], Henzinger and La Poutré
[1995], and Spira and Pan [1975] for connectivity-related work in undirected graphs.

503Graph Algorithms with Polylogarithmic Time

connectivity, bipartiteness, 1 1 e-approximate minimum spanning trees, and
cycle-equivalence problem. The resulting algorithms are Las-Vegas type random-
ized algorithms which use simple data structures and have a small constant
factor. They use O(m 1 n log n) space.

For a sequence of V(m0) update operations, where m0 is the number of edges
in the initial graph the following amortized expected update times and worst-case
query times are achieved:

(1) connectivity in update time O(log3 n) and query time O(log n/log log n);
(2) bipartiteness in update time O(log3 n) and query time O(1);
(3) minimum spanning tree of a graph with k different weights in update time

O(k log3 n);

Apart from answering queries of the form “Are nodes u and v connected?” the
connectivity algorithm can easily be adapted to output all l nodes in the
connected component of a given node u in time O(log n/log log n 1 l).

As an immediate consequence of these results, we achieve faster fully dynamic
algorithms for the following problems:

(1) An algorithm to maintain a 1 1 e-approximation of the minimum spanning
tree in expected time O((p log3 n log U)/e) for p updates, where the
weights of the edges are between 1 and U.

(2) An algorithm for the k-edge witness problem (“does the removal of the given
k edges disconnect the graph?”) in update time O(log3 n) and amortized
expected query time O(k log3 n). Note that cycle-equivalence is equivalent
to the 2-edge witness problem.

(3) A fully dynamic algorithm for maintaining a maximal spanning forest
decomposition of order k of a graph in time O(k log3 n) per update by
keeping k fully dynamic connectivity data structures.

A maximal spanning forest decomposition of order k is a decomposition of a
graph into k edge-disjoint spanning forests F1, . . . , Fk such that Fi is a
maximal spanning forest of Gi 5 G\ø j,iFj. The maximal spanning forest
decomposition is interesting since ø iFi is a graph with O(kn) edges that has
the same k-edge connected components as G [Nagamochi and Ibaraki 1992].
Subsequently the running time of our algorithms has been improved by a
factor of O(log n) by using a different sampling routine [Henzinger and
Thorup 1997]. Very recently, deterministic fully-dynamic graph algorithms
were given with amortized time per operation of O(log2 n) for connectivity
and O(log4 n) for minimum spanning forest, 2-edge connectivity, and
biconnectivity [Holm et al. 1998].

1.3. MAIN IDEA. The new technique is a combination of a novel decomposi-
tion of the graph and randomization. The edges of the graph are partitioned into
O(log n) levels such that edges in highly-connected parts of the graph (where
cuts are dense) are on lower levels than those in loosely-connected parts (where
cuts are sparse). For each level i, a spanning forest is maintained for the graph
whose edges are in levels i and below. If a tree edge is deleted at level i, we
sample edges on level i such that with high probability either (1) we find an edge
reconnecting the two subtrees or (2) the cut defined by the deleted edge is too

504 M. R. HENZINGER AND V. KING

sparse for level i. In Case (1), we found a replacement edge fast; in Case (2), we
copy all edges on the cut to level i 1 1 and recurse on level i 1 1.

We use an Eulerian tour representation of the spanning trees to linearly order
the nontree edges of the graph. The Eulerian tour representation of trees was
introduced in Tarjan and Vishkin [1985] and also used in Miltersen et al. [1994].

This paper is structured as follows: Section 2 gives the fully dynamic connec-
tivity algorithm, Section 3 presents the results for k-weight minimum spanning
trees, 1 1 e-approximate minimum spanning trees, and bipartiteness.

2. A Randomized Connectivity Algorithm

2.1. A DELETIONS-ONLY CONNECTIVITY ALGORITHM

2.1.1. Definitions and Notation. Let G 5 (V, E) with uV u 5 n and uE u 5 m.
We use the convention that elements in V are referred to as vertices. Let l 5 log
m 2 log log n 1 1. The edges of G are partitioned into l levels E1, . . . , El

such that ø iEi 5 E, and for all i Þ j, Ei ù Ej 5 À. For each i, we keep a forest
Fi of tree edges such that Fi is a spanning forest of (V, ø j#iEj). So, for i . 1,
Fi21 # Fi and Fi\Fi21 , Ei. Then, Fl is a spanning tree of G and edges in E\F
are referred to as nontree edges. A spanning tree T on level i is a tree of Fi.

All nontree edges incident to vertices in T are stored in a data structure that is
described in more detail below. The weight of T, denoted w(T), is two times the
number of nontree edges with both endpoints in T plus the number of nontree
edges with exactly one endpoint in T. The size of T, denoted s(T), is the number
of vertices in T. A tree is smaller than another tree if its size is no greater than
the others. We say level i is below level i 1 1.

2.1.2. The Algorithm. Initially, all edges are in E1, and we compute F1, which
is a spanning tree of G.

When an edge e is deleted, remove e from the graph containing it. If e is a tree
edge, let i be the level such that e [Ei. Call Replace(e, i).

Replace(e , i).
Let T be the level i tree containing edge e and let T1 and T2 be the two

subtrees of T that resulted from the deletion of e , such that s(T1) # s(T2).

— If w(T1) # log2n goto Case 2.
— Sample. We sample clog2m nontree edges of Ei incident to vertices of T1 for some

appropriate constant c . An edge with both endpoints in T1 is picked with probability
2/w(T1) and an edge with one endpoint in T1 is picked with probability 1/w(T1).

— Case 1: Replacement edge found. If one of the sampled edges connects T1 to T2 then
add it to all Fj, j $ i .

— Case 2: Sampling unsuccessful. If none of the sampled edges connects T1 and T2,
search all edges incident to T1 and determine S 5 {nontree edges connecting T1 and
T2}.

— If uS u . w(T1)/(15c9 log n) choose one element of S and add it to Fj, j $ i .
— If 0 , uS u # w(T1)/(15c9 log n), remove the elements of S from Ei, and insert

them into Ei11. Then add one of the newly inserted edges to Fj, j . i .
— If S 5 À then if i , l then do
— Replace(e , i 1 1). Else stop.

505Graph Algorithms with Polylogarithmic Time

We show below that choosing l 5 O(log n) suffices since only a constant fraction
of the edges in Ei will move to Ei11. Furthermore, we show that in Case 2 the
case that uS u . w(T1)/(15c9 log n) only occurs with probability O(1/n2). If this
case does not arise, then the cost of Replace(e, i) can be paid for by charging
O(log3n) to the update operation and/or O(log2n) to the edges that are moved
to Ei11. This is possible since we give a data structure that takes time O(log n)
to sample, test, insert, or delete an edge. Since each edge is moved at most l
times, we show that this leads to an expected total time of O(m log3 n) for a
sequence of m deletions.

2.1.3. Proof of Correctness. We first show that all edges are contained in
ø i#lEi, that is, when Replace(e, l) is called, and Case 2 occurs, no edges will be
inserted into El11. We use this fact to argue that if a replacement edge exists, it
will be found.

Let mi be the number of edges ever in Ei.

LEMMA 2.1. For all smaller trees T1 on level i, (w(T1) # 15mi log n.

PROOF. We use the “bankers view” of amortization: Every edge of Ei receives
a coin whenever it is incident to the smaller tree T1. We show that the maximum
number of coins accumulated by the edges of Ei is 15mi log n.

Each edge of Ei has two accounts, a start-up account and a regular account.
Whenever an edge e of Ei is moved to level i . 1, the regular account balance of
the two edges on level i with maximum regular account balance is set to 0 and all
their coins are paid into e’s start-up account. Whenever an edge of Ei is incident
to the smaller tree T1 in a split of T, one coin is added to its regular account.

We show by induction on the steps of the algorithm that a start-up account
contains at most 10 log n coins and a regular account contains at most 5 log n
coins. The claim obviously holds at the beginning of the algorithm. Consider step
k 1 1. If it moves an edge to level i, then by induction the maximum regular
account balance is at most 5log n and, thus, the start-up account balance of the
new edge is at most 10 log n.

Consider next the case that step k 1 1 splits tree T1 off T and charges one
coin to each edge e of Ei incident to T. Let w0 be the weight of T when T was
created. We show that if there exists an edge e such that e’s regular account
balance is larger than 0, then w(T1) # 3w0/4. This implies that at most 2 log4/3 n ,
5 log n splits can have charged to e after e’s last reset. The lemma follows.

Edges incident to T at its creation are reset before edges added to level i later
on. All edges added to level i later on and incident to T have a 0 regular account
balance. Since e has a non-zero regular account balance, at most w0/ 2 many
inserts into level i can have occurred since the creation of T. Thus, immediately
before the split, w(T) # 3w0/ 2. Since w(T1) # w(T)/ 2, the claim follows. e

LEMMA 2.2. For any i, mi # m/c9i21.

PROOF. We show the lemma by induction. It clearly holds for i 5 1. Assume
it holds for Ei21. When summed over all smaller trees T1, (w(T1)/(15c9 log n)
edges are added to Ei. By Lemma 2.1, (w(T1) # 15m9 log n where m9 is the
total number of edges ever in level i 2 1. Hence, mi # (2mi21 log n)/(2c9 log
n) 5 m/(c9 i21). e

506 M. R. HENZINGER AND V. KING

Choosing c9 5 2 and observing that edges are never moved to a higher level
from a level with less than 2 log n edges gives the following corollary.

COROLLARY 2.3. For l 5 log m 2 log log n 1 1, all edges of E are contained
in some Ei, i # l.

The following relationship, which will be useful in the running time analysis, is
also evident.

COROLLARY 2.4. (i mi 5 O(m).

THEOREM 2.5. Fi is a spanning forest of (V, øj#iEj).

PROOF. Initially, this is true, since we compute F1 to be the spanning tree of
E 5 E1.

Consider the first time it fails, when a tree edge e is deleted, and a
replacement edge exists but is not found. By Corollary 2.3, the replacement edge
lies in some Ei, i # l.

Let i be the minimum level at which a replacement edge r, s exists. Let e [
Ek. We claim i $ k. Since r and s are connected in ø j#iEj and we have not
failed yet, there is a path P in Fi from r to s. Since r, s is a replacement edge for
e, e [P. Thus, e [Fi, and hence i $ k. It follows that Delete(e, i) will be
called.

Either a replacement edge will be found by sampling or every edge incident to
T1 will be examined. We claim that every replacement edge {r, s} is incident to
T1. Suppose it is not. By assumption, there is a path from r to s in ø j#iEj. If this
path includes e, then either r or s is in T1. If it doesn’t include e, then {r, s}
forms a cycle with F 2 e contradicting the assumption that {r, s} is a
replacement edge. e

2.1.4. The Euler Tour Data Structure. In this subsection, we present the data
structure that we use to implement the algorithm of the previous section
efficiently. We encode an arbitrary tree T with n vertices using a sequence of
2n 2 1 symbols, which is generated as follows: Root the tree at an arbitrary
vertex. Then call ET(root), where ET is defined as follows:

ET(x)
visit x;
for each child c of x do

ET(c);
visit x .

Each edge of T is visited twice and every degree-d vertex d times, except for
the root, which is visited d 1 1 times. Each time any vertex u is encountered, we
call this an occurrence of the vertex and denote it by ou.

New encodings for trees resulting from splits and joins of previously encoded
trees can easily be generated. Let ET(T) be the sequence representing an
arbitrary tree T.

Procedures for modifying encodings

(1) To delete edge {a, b} from T: Let T1 and T2 be the two trees that result, where a [
T1 and b [T2. Let oa1

, ob1
, ob2

represent the occurrences encountered in the two

507Graph Algorithms with Polylogarithmic Time

traversals of {a , b}. If oa1
, ob1

and ob1
, ob2

, then oa1
, ob1

, ob2
, oa2

. Thus,
ET(T2) is given by the interval of ET(T) ob1

, . . . , ob2
and ET(T1) is given by

splicing out of ET(T) the sequence ob1
, . . . , oa2

.
(2) To change the root of T from r to s: Let os denote any occurrence of s . Splice out the

first part of the sequence ending with the occurrence before os, remove its first
occurrence (or), and tack the first part on to the end of the sequence, which now
begins with os. Add a new occurrence os to the end .

(3) To join two rooted trees T and T* by edge e: Let e 5 {a , b} with a [T and b [T9 .
Given any occurrences oa and ob, reroot T9 at b , create a new occurrence oan

and
splice the sequence ET(T9)oan

into ET(T) immediately after oa.

If the sequence ET(T) is stored in a balanced search tree of degree b, and
height O(log n/log b) then one may insert an interval or splice out an interval in
time O(b log n/log b), while maintaining the balance of the tree, and determine
if two elements are in the same tree, or if one element precedes the other in the
ordering in time O(log n/b).

Aside from lists and arrays, the only data structures used in the connectivity
algorithm are trees represented as sequences which are stored in balanced b-ary
search trees. We next describe these data structures.

2.1.4.1. DATA STRUCTURES. For each spanning tree T on each level i , l,
each occurrence of ET(T) is stored in a node of a balanced binary search tree we
call the ET(T)-tree. For each tree T on the last level l, ET(T) is stored in a
balanced (log n)-ary search tree. Note that there are no nontree edges on this
level. For each vertex u [T, we arbitrarily choose one occurrence to be the
active occurrence of u.

With the active occurrence of each vertex v, we keep an (unordered) list of
nontree edges in level i which are incident to v, stored as an array. Each node in
the ET-tree contains the number of nontree edges and the number of active
occurrences stored in its subtree. Thus, the root of ET(T) contains the weight
and size of T.

In addition to storing G and F using adjacency lists, we keep some arrays and
lists:

—For each vertex and each level, a pointer to the vertex’s active occurrence on
that level.

—For each tree edge, for each level k such that e [Fk, pointers to each of the
four (or three, if an endpoint is a leaf) occurrences associated with its traversal
in Fk;

—For each nontree edge, pointers to the locations in the two lists of nontree
edge containing the edge and the reverse pointers.

—For each level i, a list containing a pointer to each root of a ET(T)-tree, for all
spanning trees T at level i, and for each root a pointer back to the list;

—For each level i, a list of tree edges in Ei and for each edge a pointer back to
its position in the list.

2.1.5. Implementation. Using the data structures described above, the follow-
ing operations can be executed on each spanning tree on each level. Let T be a
spanning tree on level i.

508 M. R. HENZINGER AND V. KING

—tree(x, i): Return a pointer to ET(T) where T is the spanning tree of level i
that contains vertex x.

—nontree_edges(T): Return a list of nontree edges stored in ET(T); each edge is
returned once or twice.

—sample&test(T): Randomly select a nontree edge of Ei that has at least one
endpoint in T, where an edge with both endpoints in T is picked with
probability 2/w(T) and an edge with exactly one endpoint in T is picked with
probability 1/w(T). Test if exactly one endpoint is in T, and if so, return the
edge.

—insert_tree(e, i): Join by e the two trees on level i, each of which contains an
endpoint of e.

—delete_tree(e, i): Remove e from the tree on level i which contains it.

—insert_nontree(e, i): Insert the nontree edge e into Ei.

—delete_nontree(e): Delete the nontree edge e.

The following running times are achieved using a binary search tree: tree,
sample&test, insert_non_tree, delete_non_tree, delete_tree, and insert_tree in O(log
n) and nontree_edges(T) in O(m9 log n), where m9 is the number of returned
edges. On the last level l, when a (log n)-ary tree is used, the running time of
delete_tree and insert_tree is increased to O(log2 n/log log n) and the running
time of tree is reduced to O(log n/log log n). We describe the implementation
details of these operations.

tree(x, i): Follow the pointer to the active occurrence of x at level i. Traverse
the path in the ET(T)-tree from the active occurrence to the root and return a
pointer to this root.

nontree_edges(T): Traverse all nodes of ET(T) with incident non-tree edges
and output every nonempty list of nontree edges encountered at a node.

sample&test(T): Let T be a level i tree. Pick a random number j between 1 and
w(T) and find the jth nontree edge {u, v} stored in the ET(T). If tree(u, l) Þ
tree(v, l), then return the edge.

insert_tree(e, i): Determine the active occurrences of the endpoints of e on
level i and follow Procedure 3 for joining two rooted trees, above. Update
pointers to the root of the new tree and the list of tree edges on level i.

delete_tree(e, i): Let e 5 {u, v}. Determine the four occurrences associated
with the traversal of e in the tree on level i which contains e and delete e from it,
following Procedure 1, above. Update pointers to the roots of the new trees, the
list of tree edges, and (if necessary) the active occurrences of u and v.

insert_nontree(e, i): Determine the active occurrences of the endpoints of e on
level i and add e to the list of edges stored at them.

delete_nontree(e): Follow the pointers to the two locations of e in lists of
non-tree edges and remove e.

Using these functions, the deletions-only algorithm can be implemented as
follows:

509Graph Algorithms with Polylogarithmic Time

To initialize the data structures: Given a graph G compute a spanning forest
of G. Compute the ET(T) for each T in the forest, select active occurrences, and
set up pointers as described above. Initially, the set of trees is the same for all
levels. Then insert the nontree edges with the appropriate active occurrences into
level 1 and compute the number of nontree edges in the subtree of each node.

To answer the query: “Are x and y connected?”: Test if tree(x, l) 5 tree(y, l).
To update the data structure after a deletion of edge e 5 {u, v}: If e is in Ei,

then do delete_tree(e, j) for j $ i, and call Replace(u, v, i).
If e is not a tree edge, execute delete_nontree(e). (See Figure 1.)
In the deletions-only case, we choose c 5 8 and c9 5 2, in the fully dynamic

case we choose c 5 16 and c9 5 4.

2.1.6. Analysis of Running Time. We show that the amortized cost per
deletion is O(log3 n) if there are m deletions.

In all cases where a replacement edge is found, O(log n) insert_tree operations
are executed, costing O(log2 n). In addition:

Case 1: Sampling is successful. The cost of sample&test is O(log n) and this is
repeated O(log2 n) times, for a total of O(log3 n).

Case 2: Sampling is not successful or w(T1) , log2 n. We refer to the executing
nontree_edges(T1) and the testing of each edge as the cost of gathering and testing
the nontree edges. The first operation costs O(log n) per nontree edge and the
second is O(log n/log log n) per nontree edge, for a total cost of O(w(T1)
log n). Now there are three possible cases.

Case 2.1: uSu $ w(T1)/(15c9 log n). If w(T1) , log2 n, we charge the cost of
gathering and testing to the delete operation. Otherwise, the probability of this
subcase occurring is (1 2 1/(15c9 log n))c log2n 5 O(1/n2) for c 5 30c9, and

FIG. 1.

510 M. R. HENZINGER AND V. KING

the total cost of this case is O(w(T1) log n). Thus this contributes an expected
cost of O(log n) per operation.

Cases 2.2 and 2.3: uSu , w(T1)/(15c9 log n). Each delete_nontree, insert_nontree,
and insert_tree costs O(log n), for a total cost of O(w(T1) log n). In this case,
tree(u, i) and tree(v, i) are not reconnected. Note that only edges incident to the
smaller tree T1 are gathered and tested. Thus, over the course of the algorithm,
the cost incurred in these cases on any level i is O((w(T1) log n), where the
sum is taken over all smaller trees T1 on level i. From Lemma 2.1, we have the
(w(T1) # 15mi log n. From Corollary 2.4, (i mi 5 O(m), giving a total cost
of O(m log2n).

2.2. A FULLY DYNAMIC CONNECTIVITY ALGORITHM

2.2.1. The Algorithm. Next, we also consider insertions. When an edge {u, v}
is inserted into G, add {u, v} to El. If u and v were not previously connected in
G, that is, tree(u, l) Þ tree(v, l), add {u, v} to Fl.

We let the number of levels be l 5 2 log n. A rebuild of the data structure
is executed periodically. A rebuild of level i , for i $ 1, is done by a move_edges(i)
operation, which moves all tree and nontree edges in Ej for j . i into Ei. Also,
for each j . i, all tree edges in Ej are inserted into all Fk, j , k # i. Note that
after a rebuild at level i, Ej, for j . i, contains no edges, and Fj 5 Fi for all j $
i, that is, the spanning trees on level j $ i span the connected components of G.

After each insertion, we increment I, the number of insertions modular
22 log n since the start of the algorithm. Let j be the greatest integer k such that
2kuI. After an edge is inserted, a rebuild of level l 2 j 2 1 is executed. If we
represent I as a binary counter whose bits are b0, . . . , bl21, where b0 is the most
significant bit, then a rebuild of level i occurs each time the ith bit flips to 1.

2.2.2. Proof of Correctness. The proof of correctness is the same as the one
for the deletions-only case, except that we must set the value of l to 2 log n and
alter the argument which shows that all edges are contained in ø i#lEi.

We define an i-period to be any period beginning right after a rebuild of level
j # i, or the start of the algorithm and ending right after the next rebuild of level
j9 # i. That is, an i-period starts right after the flip to 1 of some bit j # i, or the
start of the algorithm and ends with next such flip. Note that there are two types
of i-periods: (A) begins immediately after a rebuild of level j , i, that is, all
edges from Ei are moved to some Ej with j , i (bj, j . i, flips to 1); (B) begins
immediately after a rebuild of level i, that is, all edges from ø j.iEj are moved
into Ei (bi flips to 1).

It is easy to see that an i-1-period consists of two parts, one type A i-period,
followed by one type B i-period, since any flip to 1 by some bit bj, j , i must be
followed by a flip of bi to 1 before a second bit bj9, j9 , i flips to 1.

THEOREM 2.6. Let ai be the number of edges in Ei during an i-period. Then ai ,
n2/2i21.

PROOF. By a proof analogous to that of Lemma 2.1, we have:

LEMMA 2.7. For all smaller trees T1 on level i that were searched between two
consecutive rebuilds of levels j, j9 # i, (w(T1) # 15ai log n.

511Graph Algorithms with Polylogarithmic Time

We now bound ai. Note that we may restrict our attention to the edges that
are moved into Ei during any one i-1-period since Ei is empty at the start of each
i-1-period.

Thus, an edge is in Ei either because it was passed up from Ei21 during one
i-1-period or moved there in a single rebuild of level i.

Since Ek for k $ i was empty at the start of the i-1-period, any edge moved to
Ei during the rebuild of level i was passed up from Ei21 to Ei and then to Ei21
during the type A i-period (i.e., the first part of the i-1-period) or was inserted
into G during the type A i-period. We have

ai # hi21 1 bi ,

where hi21 is the maximum number of edges passed up from Ei21 to Ei during a
single i-1-period (i.e., an A i-period followed by a B i-period) and bi is the
number of edges inserted into G during a single i-period.

The number of edges inserted into G during an i-period is 2 l2i21.
To bound hi21 we use Lemma 2.7 to bound (w(T1), summed over all smaller

trees T1 which are searched on level i 2 1 during an i-1-period. As in the proof
of Lemma 2.2, we can now bound hi21. Choosing c9 5 4 gives hi21 # ai21/4.

Substituting for hi21 and bi yields

ai # 2 l2i21 1
ai21

4
.

Choosing l 5 2 log n and noting that a1 , n2, an induction proof shows
that ai , n2/ 2 i21. e

This implies al , 2 and edges are never passed up to al11. We have:

COROLLARY 2.8. For l 5 2 log n, all edges of E are contained in some Ei,
i # l.

2.2.3. Analysis of the Running Time. To analyze the running time, note that
the analysis of Case 1 and Case 2.1, above, are not affected by the rebuilds.
However, (1) we have to bound the cost incurred during an insertion, that is, the
cost of the operation move_edges and (2) in Case 2.2 and 2.3, the argument that
O(mi log n) edges are gathered and tested (using nontree_edges and tree) on level
i during the course of the algorithm must be modified.

The cost of (1), that is, the cost of executing move_edges(i) is the cost of
moving each tree edge and each nontree edge in Ej, j . i into Ei and the cost of
updating all the Fk, j , k # i.

To analyze the first part, we note that each move of an edge into Ei costs
O(log n) per edge. The number of edges moved is no greater than (j.iaj ,
n2/ 2 i. Thus, the cost incurred is O(n2 log n/ 2 i).

The cost of inserting one tree edge into any given level is O(log n) per edge. A
tree edge is added only once into a level, since a tree edge is never passed up.
Thus, this cost may be charged to the edge for a total cost of O(log2 n) per edge.

We analyze the cost of (2).
For i , l, if fewer than 2 l2i21 edges have been inserted since the start of the

algorithm then no rebuilds have occurred at level i or lower, and the analysis for
level i of the deletions-only argument holds. That is, the costs incurred on level i

512 M. R. HENZINGER AND V. KING

is bounded above by O(m log2 n/c9 i), where m is the number of edges in the
initial graph.

Applying Lemma 2.7, we conclude that the cost for the gathering and testing of
edges from all smaller trees T1 on level i during an i-period is O(15ai log n p log
n) 5 O(n2 log2 n/ 2 i).

For i 5 l, we note that since there are O(1) edges in El at any given time, and
since the cost is O(log n) per edge for gathering and testing, the total cost for
each instance of gathering and testing on this level is O(log n).

We use a potential function argument to charge the cost of (1) and (2) to the
insertions. Each new insertion contributes c0 log2n tokens toward the bank
account of each level, for a total of Q(log3n) tokens. Since an i-period occurs
every n2/ 2 i insertions, the tokens contributed by these insertions can pay for the
O(n2 log2 n/ 2 i) cost of the gathering and testing on level i during the i-period
and the O(n2 log n/ 2 i) cost of move_edges(i) incurred at most once during the
i-period.

2.3. IMPROVEMENTS. In this section, we present a simple “trick” which re-
duces the cost of testing all nontree edges incident to a smaller tree T1 to O(1)
per edge so that the total cost of gathering and testing edges incident to T1 is
O(1) per edge.

2.3.1. Constant Time for Gathering and Testing. As noted above, since the
nontree edges incident to an ET-tree are available as a list, the time needed to
retrieve these edges is O(1) per edge. One can also test each nontree edge in
O(1) time, that is, determine the set S of all nontree edges that contain only one
endpoint, by running through the list three times. For each edge in the list,
initialize the i, j entry of an n 3 n array. Then use these entries to count the
number of times each edge appears in the list. Traverse the list again and add to
S any edge whose count is one.

2.3.2. Constant Query and Test Time for Deletions-Only Algorithms. We note
that determining whether two vertices i and j are in the same component, that is,
is tree(i) 5 tree(j), can be speeded up to O(1) for the deletions-only algorithm.
A component is split when Replace(e, l) is called and no replacement edge is
found. In that case, label the nodes of the smaller component T1 with a new
label. The cost of doing so is proportional to the size of T1. Over the course of
the algorithm, the cost is O(n log n) since each node appears in a smaller
component no more than log n times. Then, tree(i) 5 tree(j) iff i and j have the
same label.

This improvement does not affect the asymptotic running time of the random-
ized connectivity algorithm, as that is dominated by the cost of the random
sampling.

3. Randomized Algorithms for Other Dynamic Graph Problems

In this section, we show that some dynamic graph problems have polylogarithmic
expected update time, by reducing these problems to connectivity and we give an
alternative algorithm for maintaining the minimum spanning tree.

513Graph Algorithms with Polylogarithmic Time

3.1. A K-WEIGHT MINIMUM SPANNING TREE ALGORITHM. The k-weight mini-
mum spanning tree problem is to maintain a minimum spanning forest in a
dynamic graph with no more than k different edgeweights at any given time.

Let G 5 (V, E) be the initial graph. Compute the minimum spanning forest
F of G. We define a sequence of subgraphs G1, G2, . . . , Gk on nodeset V
and with edgesets E1, E2, . . . , Ek as follows: Let Ei 5 {edges with weight of
rank i} ø F. If initially, there are l , k distinct edgeweights, then for i . l,
Ei 5 F. These Ei are called “extras”. The spanning forests of each Gi are
maintained as in the connectivity algorithm. These forests and F are also stored
in dynamic trees [Sleator and Tarjan 1983]. The subgraphs are ordered by the
weight of its edgeset and stored in a balanced binary tree.

To insert edge {u, v} into G: Determine if u and v are connected in F. If so,
find the maximum cost edge e on the path from u to v in F (using the dynamic
trees). If the weight of e is greater than the weight of {u, v}, replace e in F by
{u, v}. If u and v were not previously connected, add {u, v} to F. Otherwise,
just add {u, v} to Ej where j is the rank of the weight of {u, v}. If {u, v} is the
only edge of its weight in G, then create a new subgraph by adding {u, v} to an
extra and inserting it into the ordering of the other Gi. Update the Ei to reflect
the changes to F.

To delete edge {u, v} from G: Delete {u, v} from all graphs containing it. To
update F: If {u, v} had been in F, then a tree T in F is divided into two
components. Find the minimum i such that u and v are connected in Gi using
binary search on the list of subgraphs. Now, search the path from u to v in the
spanning forest of Gi to find an edge crossing the cut in T. Use binary search:
Let x be a midpoint of the path. Recurse on the portion of the path between
u and x if u and x are not connected in F; else recurse on the path between x
and v.

Correctness: When an edge {u, v} is inserted and its cost is not less than the
cost of the maximum cost edge on the tree path between u and v, then the
minimum spanning forest F is unchanged. If the cost of {u, v} is less than the
cost of the maximum cost edge e9 on the tree path between u and v, then
replacing e9 by {u, v} decreases the cost of the minimum spanning tree by the
maximum possible amount and gives, thus, the minimum spanning tree of G ø
{u, v}.

Analysis of Running Time: The algorithm (1) determines how F has to be
changed, and (2) updates the data structures.

(1) After an insertion the maximum cost edge on the tree path between u and v
can be determined in time O(log n) using the dynamic tree data structure of
F. After a deletion, it takes time O(log2 n/log log n) to find the minimum i
such that u and v are connected in Gi, since a connectivity query on a level
takes time O(log n/log log n). The midpoint of the tree path between u and
v in Gi can be determined in time O(log n) using the dynamic tree data
structure of the spanning tree of Gi. The algorithm recurses at most log n
times to determine the replacement edge for {u, v}, for a total of O(log2n).

(2) The insertion or deletion of {u, v} into Ei, where i is the rank of the weight
of {u, v}, takes amortized expected time O(log3n). If F changes, one

514 M. R. HENZINGER AND V. KING

additional insertion and deletion is executed in every Ej. For each update
there are a constant number of operations in the dynamic tree of F and of
the spanning tree of every Ej, each costing O(log n). Thus, the amortized
expected update time is O(k log3 n).

3.2. A 1 1 e-APPROXIMATE MINIMUM SPANNING TREE ALGORITHM. Given a
graph with weights between 1 and U, a 1 1 e-approximation of the minimum
spanning tree is a spanning tree whose weight is within a factor of 1 1 e of the
weight of the optimal. The problem of maintaining a 1 1 e approximation is
easily seen to be reducible to the k-weight MST problem, where a weight has
rank i if it falls in the interval [(1 1 e) i, (1 1 e) i11) for i 5 0, 1, . . . , log
U/log (1 1 e). This yields an algorithm with amortized cost O((log3 n log U)/e).

3.3. A BIPARTITENESS ALGORITHM. The bipartite graph problem is to answer
the query “Is G bipartite?” in O(1) time, where G is a dynamic graph.

We reduce this problem to the 2-weight minimum spanning tree problem. We
use the fact that a graph G is bipartite iff given any spanning forest F of G, each
nontree edge forms an even cycle with F. Call these edges “even edges” and the
remaining edges “odd”. We also use the fact that if an edge e in F is replaced
with an even edge then the set of even edges is preserved. Let C be the cut in F
induced by removing e. If e is replaced with an odd edge then for each nontree
edge e9 which crosses C the parity of e9 changes. We replace an edge by an odd
replacement edge only if there does not exists an even replacement edge. Thus,
the parity of an even edge never changed. F is stored as a dynamic tree.

Our algorithm is: generate a spanning forest F of the initial graph G. All tree
and even nontree edges have weight 0. Odd edges have weight 1. If no edges
have weight 1, then the graph is bipartite.

When an edge is inserted, determine if it is odd or even by using the dynamic
tree data structure of F, and give it weight 1 or 0 accordingly.

When an edge is deleted, if it is a tree edge, and if it is replaced with an odd
edge (because there are no weight 0 replacements), remove the odd edge and
find its next replacement, remove that, etc. until there are no more replacements.
Then relabel the replacement edges as even and add them back to G.

Correctness: When an edge is inserted, the algorithm determines if it is even
or odd. If an edge is deleted, we replace it by an even edge if possible. This does
not affect the parity of the remaining edges. If no even replacement edge exists,
but an odd replacement edge, the parity of every edge on the cut changes.
However, since no even edge exists on the cut, it suffices to make all odd edges
into even edges.

Analysis of Running Time: An even edge never becomes odd. Thus, the weight
of an edge changes at most once, which shows that an insertion of an edge causes
the edge to be added to the data structure at most once with weight 1 and at
most once with weight 0. The deletion of an edge leads to the removal of the
edge from the data structure. Thus, the amortized expected update time is
O(log3n).

ACKNOWLEDGMENTS We are thankful for David Alberts for comments on the
presentation.

515Graph Algorithms with Polylogarithmic Time

REFERENCES

ALBERTS, D., AND HENZINGER, M. R. 1998. Average case analysis of dynamic graph algorithms.
Algorithmica 20, 1, 32– 60.

EPPSTEIN, D., GALIL, Z., ITALIANO, G. F., AND NISSENZWEIG, A. 1997. Sparsification–A technique
for speeding up dynamic graph algorithms. J. ACM 44, 5 (Sept.), 669 – 696.

EPPSTEIN, D., GALIL, Z., ITALIANO, G. F., AND SPENCER, T. 1996. Separator based sparsification
for dynamic planar graph algorithms. J. Comput. Syst. Sci. 52, 1, 3–27.

EPPSTEIN, D., ITALIANO, G. F., TAMASSIA, R., TARJAN, R. E., WESTBROOK, J., AND YUNG, M. 1992.
Maintenance of a minimum spanning forest in a dynamic planar graph. In J. Algorithms 13, 33–54.

EVEN, S., AND SHILOACH, Y. 1981. An on-line edge-deletion problem. J. ACM 28, 1 (Jan.), 1– 4.
FREDERICKSON, G. N. 1985. Data structures for on-line updating of minimum spanning trees.

SIAM J. Comput. 14, 781–798.
FREDERICKSON, G. N. 1997. Ambivalent Data Structures for Dynamic 2-Edge-connectivity and k

Smallest Spanning Trees. SIAM J. Comput. 26, 2, 484 –538.
GALIL, Z., AND ITALIANO, G. F. 1992. Fully dynamic algorithms for 2-edge connectivity. SIAM

J. Comput. 21, 1047–1069.
HENZINGER, M. R. 1995. Fully dynamic biconnectivity in graphs. Algorithmica 13, 503–538.
HENZINGER, M. R. 1999. Improved data structures for fully dynamic biconnectivity in graphs. SIAM

J. Comput., to appear.
HENZINGER, M. R. 1994. Fully dynamic cycle-equivalence in graphs. In Proceedings of the 35th

Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos,
Calif., pp. 744 –755.

HENZINGER, M. R., AND FREDMAN, M. L. 1998. Lower bounds for fully dynamic connectivity
problems in graphs. Algorithmica 22, 351–362.

HENZINGER, M. R., AND LA POUTRÉ, H. 1995. Sparse certificates for dynamic biconnectivity in
graphs. In Proceedings of the 3rd European Symposium on Algorithms. Springer-Verlag, Berlin,
Germany, pp. 171–184.

HENZINGER, M. R., AND THORUP, M. 1997. Improved sampling with applications to dynamic graph
algorithms. Rand. Struct. Algor. 11, 4, 369 –379.

HOLM, J., DE LICHTENBERG, K., AND THORUP, M. 1998. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. In
Proceedings of the 30th Symposium on Theory of Computing (Dallas, Tex., May 23–26). ACM, New
York, pp. 79 – 89.

MILTERSEN, P. B., SUBRAMANIAN, S., VITTER, J. S., AND TAMASSIA, R. 1994. Complexity models for
incremental computation. Theoret. Comput. Science 130, 203–236.

NAGAMOCHI, H., AND IBARAKI, T. 1992. Linear time algorithms for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica 7, 583–596.

SLEATOR, D. D., AND TARJAN, R. E. 1983. A data structure for dynamic trees. J. Comput. Syst. Sci.
24, 362–381.

SPIRA, P. M., AND PAN, A. 1975. On finding and updating spanning trees and shortest paths. SIAM
J. Comput. 4, 375–380.

TARJAN, R. E., AND VISHKIN, U. 1985. An efficient parallel biconnectivity algorithm. SIAM
J. Comput. 14, 862– 874.

WESTBROOK, J., AND TARJAN, R. E. 1989. Amortized analysis of algorithms for set union with
backtracking. SIAM J. Comput. 18, 1–11.

RECEIVED NOVEMBER 1996; REVISED NOVEMBER 1998; ACCEPTED FEBRUARY 1999

Journal of the ACM, Vol. 46, No. 4, July 1999.

516 M. R. HENZINGER AND V. KING

