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Abstract 

In this paper we consider the online ftp problem. The 
goal is to service a sequence of file transfer requests 
given bandwidth constraints of the underlying commu- 
nication network. The main result of the paper is a 
technique that leads to algorithms that optimize several 
natural metrics, such as mu-stretch, total flow time, 
max flow time, and total completion time. In partic- 
ular, we show how to achieve optimum total flow time 
and optimum max.stretch if we increase the capacity of 
the underlying network by a logarithmic factor. 

We show that the resource augmentation is neces- 
sary by proving polynomial lower bounds on the max- 
stretch and total flow time for the case where online and 
offline algorithms are using same-capacity edges. More- 
over, we also give poly-logarithmic lower bounds on the 
resource augmentation factor necessary in order to keep 
the total Aow time and max.stretch within a constant 
factor of optimum. 

all the requests. Since the bandwidth of the links in 
the network is limited, it makes sense to try to schedule 
the transmissions in a way that utilizes the available 
resources optimally. 

In this paper we consider the online ftp problem, 
which is a formal abstraction of the above file trans- 
fer problem. We assume that each ftp request specifies 
source/destination nodes and the size of the file. The 
goal of the online algorithm is to choose a path that 
will be used for transmitting each file, and to dec:” on 
the transmission rate. The main difference between this 
model and the (well-studied) models for online routing 
and admission control 111, 1, 12,2] is that here we do not 
assume that the sources have prespecified transmission 
rate requirements, i.e. we can deal with non-streaming 
types of information. 

There are two related measures of performance that 
can be used to compare different algorithms for the on- 
line ftp problem. The first measure is the total flow 
time, i.e. the sum over all jobs of the time that elapses 
between the instant the ftp request is submitted and 
the time it is satisfied (including the transmission time). 
The other measure is the rn~~-stretch, which is the max. 
imum over all ratios of the flow time of each request and 
the smallest time needed to satisfy this request. The 
second quantity is determined by the link bandwidth 
and the size of the file. Both mezzures are useful since 
they are directly related to the performance of the net- 
work perceived by the end-user. 

Let n be the number of requests and P the maxi- 
mum ratio between the sizes of the files. Assume that 
the smallest request can be processed in one time unit. 
Let FL,, denote the optimum max-flow i.e. the smal- 
est value for the maximum time a request spends in 
the system. The main results of the paper are algo- 
rithms that achieve the optimum maz-stretch and the 
optimum total j%w time using resource augmentation’. 
For the max.stretch algorithm we need to increase ca- 
pacities by a factor of O(log P), whereas the total flow 
time algorithm needs a factor of O(log FGAx) increased 

189 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


capacity’. The latter algorithm does not only achieve 
the optimum total flow time, but simultaneously opti- 
mizes many other objective functions, like the maxi- 
mum flow time, the total square-of-flow-time, etc. 

To justify the need for giving larger capacities to 
the online algorithm (i.e. resource augmentation), we 
show polynomial lower bounds on both ma-stretch and 
total flow time for the case where both online and offline 
algorithms are using the same capacities. Moreover, we 
show that in order to achieve constant competitive ratio 
against an adaptive adversary we have to give the online 
algorithm n(log P/ log log P) factor more capacity for 
the max-stretch metric, and 0(*/ loglogy) more 
capacity for the total flow metric, where y = min{n, P), 

In the context of machine scheduling, total flow time 
is known to be a hard metric to approximate [17] and it 
is only recently that progress has been made towards ob- 
taining algorithms that give total flow time guarantees. 
In particular, logarithmic-factor resowce augmentation 
was used in [19] to obtain optimum flow time for ma- 
chine scheduling. Max-stretch was recently proposed 
as a good metric to measure user satisfaction [5]. Our 
lower bound on the amount of resource augmentation 
needed for max-stretch holds in the machine schedul- 
ing model as well, and therefore our upper bounds for 
max.stretch are also of interest in the machine schedul- 
ing model. 

When proving upper bounds, we restrict our algo- 
rithms to use a single rate when transmitting a specific 
file, and do not allow preemption. The competitive ra- 
tio is computed against an offline algorithm that does 
not have these restrictions. Our lower bounds for on- 
line flow-time minimization algorithm without resource 
augmentation (i.e. both the online and the offline al- 
gorithms work in the same network) hold even if we 
remove this restriction, i.e. allow the algorithm to use 
time-varying rate when transmitting a file. This con- 
trasts with minimizing flow time for machine schedul- 
ing, where a log P-competitive preemptive algorithm is 
known [18]. Also, the lower bound for total flow time 
is achieved using same-size files. This is in contrast to 
machine scheduling where the unit jobs case is trivial. 

We view the online ftp problem as a special case of 
the set scheduling problem. In this problem we have 
a set of resources and each job requires a specific sub- 
set of these resources (or one of a set of subsets). Set 
scheduling is a natural generalization of the machine 
scheduling problem that was extensively studied under 
several different metrics (See [IS] for a survey of offline 
approximation algorithms, and [18, 19, 5, 14, 15, 8, 201 
for a sampling of recent results in online algorithms.). 
The set scheduling model is similar to the parallel jobs 
model studied by [lo, 221. We show how to apply several 
techniques developed in the context of machine schedul- 

ing to the set scheduling problem (and hence the online 
ftp problem) for simpler metrics such as makespan and 
total completion time. In particular, we use the tech- 
nique that allows us to convert an offline optimization 
algorithm that maximizes the number of scheduled jobs 
into an online algorithm that minimizes total comple- 
tion time j14, 15, 201. We also develop new techniques 
that help us attack more difficult metrics such as total 
flow time and max.&etch. 

The techniques developed in this paper can be better 
understood when compared to the technique of Hall et al. 
151. There the approach is to use offline papproximation 
algorithms for offline packing problems to construct O(p)- 
competitive online algorithms for average completion 
time. Our techniques allow the transformation of of- 
fline packing algorithms that achieve the optimum pack- 
ing using O(p) resource augmentation into online algc- 
rithms that achieve the optimum Row time using O(p 
log FGAx) resource augmentation. If the online algo- 
rithm is not required to work in polynomial time, then 
an optimum offline solution (p = 1) can be used. Un- 
like the work of Hall et al. [14, 151 our techniques apply 
only when jobs are malleable [14, 6, 10, 221 i.e. extra 
capacity/resources can be used to reduce the process- 
ing time of jobs. Two such problems are the paral- 
lel jobs problem 16, 10, 221 and the vector scheduling 
problem [13, 7, 41. Using our techniques we can obtain 
non-polynomial-time online algorithms for minimizing 
the total Row time for these problems; a detailed dis- 
cussion of polynomial time online algorithms that use 
resource augmentation to obtain optimum flow time for 
these two problems is deferred to the full version of this 
paper. 

In Section 2 we explain the models that we use. Sec- 
tion 3 contains the main technical contributions of the 
paper -the lower and upper bounds on the performance 
of online algorithms using the total flow time and ma- 
stretch metrics. In Section 4 we describe online algo- 
rithms for the ftp problem using the makespan and to- 
tal completion time metrics. Not all online algorithms 
in Sections 3 and 4 run in polynomial time; polyno- 
mial time online algorithms and offline approximation 
algorithms are discussed in Section 5. Section 5 also 
sketches an offline, polynomial time algorithm for min- 
imizing the makespan for the set scheduling problem 
(and hence the online ftp problem) if the rate at which 
a request is serviced is allowed to vary arbitrarily. 

2 Models and Definitions 

In the set scheduling problem there are n jobs and m 
resources. Job j has an arrival time (release date) aj, 
a processing time pj, and a resource requirement Sj 
where Sj is a subset of S, the set of resources. We 
define P = maxj pj/ minj pj. The quantity P plays a 
crucial role in the analysis of our algorithms. As in 
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traditional scheduling, both the preemptive and non- 
preemptive variants are of interest. The Set Scheduling 
Problem can be formulated as either an offline or an 
online problem. As in job shop scheduling and multi- 
processor scheduling, the performance of an algorithm 
for this problem can be studied under several differ- 
ent metrics -most notably makespan, total completion 
time, total flow time, and max-stretch. In this paper 
we will concentrate mainly on online algorithms. 

The online ftp problem is defined as follows. We are 
given a network G = (V, E) where all edges have iden- 
tical bandwidths. Assume that the transmission delay 
along any link is zero, and that there are no buffers in 
the network. Once a source starts transmitting data to 
another node, the other node starts receiving it immedi- 
ately. Of course the rate at which the sender transmits 
the data is bounded by the minimum available band- 
width along the route over which the transmission is 
taking place. Let m be the number of links in the net- 
work, and n the number of ftp requests. Request j has 
an arrival time aj, specifies file size pj, and a route Rj 
over which the data needs to be transmitted. We also 
address the case where instead of the route, the request 
specifies only the source and the sink nodes. The for- 
mer model is closer to the IP world, where the routes 
are determined by an external algorithm, while the sec- 
ond model is closer to the ATM world, where one can 
use source routing. 

Let C, be the completion time of job j in a sched- 
ule. The quantity Fj = C, - aj is called the flow time 
of job j. The makespan of a schedule is mawj C,; total 
completion time is Cj Cj; total flow time is Cj Fi and 
maw-stretch is maxi Fj/rj where 73 is the time it would 
take to satisfy job j if it had the whole network to it- 
self. We also permit jobs to have weights wj. In the 
presence of weights the total completion time and total 
flow time metrics are defined as Cj wjC, and & qFj 
respectively. Traditionally, the total flow time and max- 
stretch metrics are considered to be the hardest. These 
are also perhaps the most interesting metrics as they 
most directly measure end user experience. 

The following theorem captures the hardness of the 
set scheduling problem - the reduction is straightfor- 
ward and we omit the details. 

Theorem 1 The Vertex Color problem reduces (via poly- 
nomial time reductions) to Set Scheduling in nn appror- 

imation preserving fashion. 

For the vertex color problem lower bounds are known 
for both the approximation ratio (fl(n’-‘) unless P=NP [9]) 
and competitive ratio (n(n’/s) 131). The above reduc- 
tion also holds for the online ftp problem if the routes as 
well as the transmission rates are given as input. Thus 
to make progress with the set scheduling/online ftp 
problems, we need to relax the model. The first relax- 
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ation we propose is to allow rate control for jobs. Thus 
each job would be assigned a start time sj (sj > aj) 
and a rate rj by the scheduler. The job would execute 
from time sj to sj + pj/rj and would consume an ~j 
fraction of each resource in its resource set S+ during 
this interval. More than one jobs may use a resource at 
the same time. However, the total usage of a resource 
at any time must be at most 1. This relaxation is par- 
ticularly appropriate to the ftp problem: it is possible 
to control the rate of a TCP connection; more than one 
connections can use the same link; further, a connec- 
tion uses up the same bandwidth on each link alOng its 
routes. 

3 Flow time and max-stretch using resource augmenta- 

ti0ll 

3.1 Upper bounds with resource augmentation but no 

preemption 

Assume that all links have the same capacity in the 
original network; rescale capacities so that this capacity 
becomes 1. firther rescale time such that the smallest 
request takes four units of time to finish if it has the 
entire network to itself. Then the time required to ser- 
vice the largest request (if the request has the entire 
network to itself) is 4P. 

Let n be the number of requests, and m the number 
of links. Let K = 3 + log n + log P. We assume that the 
online algorithm can use a capacity of 5K on each link. 

The online algorithm pretends that there are K copies 
of the network, Go GK-~, each with edge capacities 
5. We call this algorithm MRHP (Most Recent High- 
est Priority) since at any given time, connections which 
have been waiting in the system the shortest are the 
most likely to get scheduled. The online algorithm does 
its processing only at integral time instants. Figure 1 
describes the behavior of MRHP at time t such that 
t = 2k.t’, where t’ is odd. 

The same job may get scheduled by multiple copies 
of the network. The flow time of such a job is taken 
to be the smallest flow time from all its copies. All the 
jobs ultimately get scheduled by the online algorithm, 
as the GK-~ alone has sufficient capacity to schedule 
all the jobs. 

Let zuj be the weight of the jth job, and Fj the 
total time this job spends in the system. Let Qt be the 
total weight of the requests which get scheduled in at 
least one of the networks Go.. Gk. Let Q; be the total 
weight of all requests that have a flow time of at most 
z++~ in the optimum solution. Let qk = Qk - Qk--l, 



for i = 0 to min{k,K - 1) 

1. Let S, be the set of requests which arrived in the interval [t - 2’, t) 

2. Find the largest weight subset of S; that can be completed in the netvork Gi 
between times t and t + 2” [Note: This step may not run in polynomial time in genera0 

3. Schedule this subset in G; such that each request has starting time t, 
finishing time t + 2”, and a uniform rate during this interval. 

Figure 1: Algorithm MRHP at time t = Z”.t’, where t’ is odd. 

and q; = Q; - Q;-1 (for convenience define Q-1 and 
Qcl to be 0.). Each job j which contributes to qk must 
have a flow time Fj < 2kf’ in the MRHP schedule, and 
each job j which contributes to q; must have a flow time 
F; > 2’+’ in the optimum schedule. 

Corollary 3.1 7 5 .i-. 

Proof: Let g be the identity function in the statement 
of Theorem 3 w 

Corollary 3.2 Let Flax denote the maximum flow 
time (mm-flow) in the schedule obtained by MRHP and 
FGA, denote the max.fiov in the optimum schedule. 
Then FMAX 5 F&,x 

Proof: For p > 0, define 3p to be Cjwj(Fj)P. 3; 
is defined analogously. Theorem 3 implies that 3p < 
3; for all p > 0. F,+ax and FLax are the limiting 
values of (3p)‘lJ’ and (3;)‘/” respectively as p + co. 
Therefore F,,,*x 5 F&,,. n 

The average stretch of a job can be mimicked us- 

Let 3’ and 3 denote the total weighted flow times of 
the optimum and online algorithms, respectively. Clearly, 
F 2 Co<t<x P+’ 4;. Further, 3 5 CO<k<K-, 2k+‘qk. 

Lemma 2 Qk 2 Q; 

Proof: Let S; be the set of requests which contribute 
to Q;. By definition, each of these requests has a flow 
time of at most 2”+*. Divide time into intervals of the 
form [i 2k, (i + 1) 2”) for i 2 0. Let .S’;)* denote 
the set of requests from 5’; which arrive during the i- 

th interval, and let Qp’ denote their combined weight. 
All these jobs are scheduled by the optimum algorithm 
to finish before time (i + 1) Zk + 2’+‘. Hence all these 
jobs must arrive and finish in the interval [i 2’, (i + 
1) 2”‘ + 2L+*), which has length 5. 2’. Since Gk has 
5 times the original capacity on each edge, and since it 
has all the jobs in SF)* available for scheduling during 
the interval [(i + 1) 2E, (i + 2) 2”), it will schedule 

jobs with a weight of at least Q; * during this interval. 
Summing up over all i, Qk 2 Q? ; n 

Let g be any function from RR+ to 3?+. Let 3; denote 
the optimum value of Cj wjg(Fj) that can be obtained 
in an unaugmented network, and 3g denote the corre- 
sponding value obtained by MRHP. 

Theorem 3 3g < 3;, for all non-decreasing functions 

kmfi Let W = C.w. We define P(k) = QJW 
and P*(k) = &i/W. ‘P3and P’ are probability mea- 
sures, and Lemma 2 implies that P’ stochastically dom- 
inates P. Theorem 3 now follows from the properties 
of stochastic dominance - we omit the details from this 
version. n 

Theorem 3 is particularly interesting because it shows 
that MRHP simultaneously optimizes a very wide class 
of metrics. In particular, the following results can be 
obtained as corollaries. 

ing a total weighted flow time objective function with 
appropriate weights. MRHP does not really need to 
know K in advance it can maintain an estimate of 
K and increment this estimate by one if and when the 
current value of K does not suffice to schedule all the 
requests. Let F&,, be the optimum maw-flow for the 
given sequence of jobs, given that the shortest job takes 
one unit time to finish if it has the entire network to 
itself. Notice that FGA, 5 nP. The following theo- 
rem gives a sharper bound on the amount of resource 
augmentation needed by MRHP. 

Theorem 4 MRHP needs O(log FGAx) resource aug- 
mentation. Further, F;,, need not be known in ad- 
uance. 

The above theorem represents a significant improve- 
ment, since n can be arbitrarily large even in a well 
behaved system with small maw-flow. Section 5 shows 
how to implement the algorithm in expected polynomial 
time with O(logn + IogP + logm) resource augmenta- 
tion. 

We now return to the max-flow metric introduced 
in Corollary 3.2. The max.flow metric (F,wax) is in- 
teresting primarily because it relates to the max-stretch 
metric. We give a simple online algorithm MMF (Min- 
imum Max-Flow) that uses only a constant factor re- 
source augmentation. More specifically, MMF uses at 
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most five times the capacity of the original network. 
MMF assumes that the optimum max-flow is at least T 
and at most 2T (Initially, T is assumed to be the time 
required to complete the very first job in the original 
network.). At times t which are multiples of T/Z, MMF 
looks at all requests which arrived during the last T/2 
time units. It then assigns to each of these jobs a rate 
which is just sufficient for this job to finish in the next 
T/2 time units. If the load on my edge exceeds five 
times the capacity of that edge in the original network, 
MMF doubles T, aborts the current phase, and waits 
till the current time becomes a multiple of the new value 
of T/2. The following theorem subsumes Corollary 3.2. 

Theorem 5 The maximum flow time of a job in the 
schedule produced by MMF is no larger than the opti- 
nun mm-flow. MMF runs in time polynomial in n, m, 
and log P. 

We are now ready to present MMS (Minimum Max- 
stretch) which uses O(log P) resource augmentation and 
guarantees a max.stretch that is no worse than the op- 
timum ma-stretch. We first observe that MMF can be 
modified to guarantee a max-flow that is at most half 
the optimum value if the amount of capacity on each 
edge is ten times that in the original network. Let p1 
be the amount of data transfer required by the first job. 
MMS bunches incoming requests into (at most log P) 
classes, with class i containing all requests which have 
a data requirement in the range [PI -Z”,pl Z”+‘) (i may 
be negative as well). There can be at most 2 + log P 
classes. For requests within class i MMS invokes a sepa- 
rate copy of modified MMF. Thus the resource augmen- 
tation needed by MMS is O(log P). Note that MMS 
does not need to know P in advance. The fact that the 
max-flow obtained within each class is at most half the 
optimum max-flow for that class is sufficient to guaran- 
tee that the m&x-stretch obtained by MMS is no more 
than the optimum max.stretch. The following theorem 
summarizes the claims made in the above discussion. 

Theorem 6 MMS uses O(logP) resoume augmenta- 
tion and obtains a max-stretch that is no more than the 
optimum max-stretch. Further, MMS does not need to 
know P. MMS runs in time polynomial in n, m, and 
log P. 

Note that neither MRHP, nor MMF, nor MMS need 
to get the transmission routes Rj as input. 

Theorem 7 MRHP, MMF, and MMS can obtain op- 
timum values for their respective metrics even if the 
TO&s Rj are not given (IS input. 

If routes are not provided as input, MRHP, MMF, and 
MMS as described above would not run in polynomial 
time. See theorem 15 for the amount of resource aug- 
mentation needed by polynomial time algorithms. 

3.2 Lower bounds with preemption but without resource 
augmentation 

We show that without extra capacity, the competitive 
ratio of any randomized online algorithm which tries to 
minimize the total flow time (max-stretch, resp.) for 
the data transfer problem against an oblivious adver- 
sary can not be bounded by any function of the net- 
work size. The lower bound for the competitive ratio in 
terms of the number of jobs, n, is a(,/%) for both met- 
rics. The quantity P is 1 for the flow-time lower bound, 
and \/;; for the max-stretch lower bound. The lower 
bounds hold even if the online algorithm is allowed to 
do preemption and use fractional capacities on links but 
the adversary is not. 

Total flow time: Consider the length-3 path A - 
B - C - D. Assume that all 3 links have the same 
bandwidth, u. Each connection will request the same 
amount of data, T. We rescale time so that u = T i.e. 
each request can be serviced in exactly one time unit. 

The adversary first tosses an unbiased coin. If the 
outcome is “Heads” it chooses the link A-B as a special 
link, else it chooses C - D. During the first time step, 
the adversary generates k requests from A to C and k 
from B to D. The adversary does not do anything for 
the next k - 1 time units. Then for the next kz time 
units the adversary generates one request per time unit 
over the special link. 

Lemma 8 The expected flow time of any online algo- 
rithm on this sequence must be n(k3), even if preemp- 
tion is allowed and the online algorithm is allowed to we 
fractional capacities. Further, the optimum flow time 
for this sequence is O(k’) even without using fractional 
capacities and preemption. 

Since the number of jobs is n = 2k+kZ, the competitive 
ratio of any online algorithm must be 0(&z) which does 
not depend on the network size. 

Max-stretch: Consider again the same length-3 path 
A - B -C - D, with each link capacity being u. Again, 
the adversary first tosses an unbiased coin. If the out- 
come is “Heads” it chooses the link A - B as a special 
link, else it chooses C - D. During the first time step, 
the adversary generates 1 request from A to C and 1 
from B to D, each of size ku; for the next k - 1 time 
units the adversary does nothing. Over the next kz time 
units the adversary generates one request of size u every 
time unit over the special link. 

Lemma 9 The expected mu-stretch of any online al- 
gorithm on this sequence must be R(k), even if preemp- 
tion is allowed and the online algorithm is allowed to use 
fractional capacities. Further, the optimum max-stretch 
for this sequence is 2 even without using fractional CO- 
pacities and preemption. 



The ratio P = pma./pmin for this sequence is k. Since 
the number of jobs is n = 2 + k’, the competitive ratio 
of any online algorithm must be n(min{P, fi}) which 
does not depend on the network size. A lower bound of 
O(P”3) for the competitive ratio of an online algorithm 
for the minimum max-stretch problem in the context of 
machine scheduling was presented in 151. 

3.3 Lower bounds on the amount of resource augmenta- 

tion 

In this section we give lower bounds on the amount of 
resource augmentation needed for any randomized on- 
line algorithm to achieve a constant competitive ratio. 
These lower bounds require an adaptive adversary, and 
assume that the online algorithm is not allowed to pre- 
empt requests or change the rate at which a request is 
being serviced. Notice that our upper bounds all work 
against adaptive adversaries, and do not preempt re- 
quests. 

Theorem 10 Against an adaptive adversary, any ran- 
domized online algorithm that achieves constant com- 
petitiveness for ma-stretch must use R(min(n, log Pj log log fi$j the competitive ratio is a constant, both n/371 and 

resovrce augmentation. P l(3u)lC16u) must be a constant. The first condition 
I. 

Proof: The adversary uses a one link network with ca- 
translates to u = 0(n) and the second translates to 

pacity 1. Let u be the resource augmentation that the 
u = Cl(log I’/ log log P). Therefore 

online algorithm uses and let k be a parameter chosen u = n(min(n, log P/ log log P)). 
suitably below. The sequence of requests created by 
the adversary consists of subsequences Ao, Al, , At, n 
for some f 2 0. The beginning of a new subsequence Ai 
is called a restart. Initially i = 0. Each subsequence Ai 
consists of requests of size Li, one every L; time units 

Theorem 11 Let y = min{n,P}. Against an adap- 

where Li = (16uk)3U-“. Define a i-phase to be a time 
tive adversary, any randomized online algorithm that 

interval between the ith and the i+lst restart during 
achieves constant competitiveness for Total Flow Time 

which no new jobs of Ai arrive and no old jobs of Ai 
must use cqt/i@y/ log log y) resource augmentation. 

are completed by the online algorithm. Since the algo- 
rithm is not allowed to vary the rates, the adversary can 

The proof of Theorem 11 uses an argument similar to 

determine at the beginning of an i-phase how long the 
the proof of the previous theorem, and is omitted from 
this version. 

i-phase would last if no new job arrived. The adversary 
also knows the bandwidth utilization of the online alg- 
rithm during the i-phase. If the adversary encounters 
an i-phase that would last at least Li/(Su) time units 
and were jobs of Ai use more than l/3 units of band- 
width, the adversary increments i and it restarts. If the 
adversary does not encounter such an i-phase, it stops 
when A; consists of k jobs. 

Note that whenever the adversary restarts, the band- 
width available to the online algorithm for jobs created 
after the restart is reduced by at least l/3. Thus the 

4 Online Algorithms for Makespan and Total Completion 

Time 

Standard techniques can be used to obtain constant 
competitive online algorithms for makespan and aver- 
age completion time for the online ftp problem without 
the use of resource augmentation. 

Makespan: Define X as the maximum over all edges, 
e, of the amount of data that needs to be transferred 

adversary restarts at most 321 times, i.e. f 5 321. It can over e. We rescale time so that one unit of data can be 
be shown inductively that the optimum algorithm can transferred over a link in one unit of time. Let ~MAX 
schedule all jobs in Ur,iAl (ie all jobs of size less than 
L;) in time at most Li. Hence delaying the last job of 

be the time at which the last request arrives. Let L 

each size by its size gives an algorithm with max.stretch 
be the quantity rnax(a.+,~~, X). L is a lower bound on 
the makespan of any schedule. The online algorithm 

at most 2. maintains a guess x for the value of L. We assume that 

We show next that the max-stretch of the online 
algorithm is at least k. Let LJ = (16uk)3u-f be the 
size of the shortest jobs generated by the adversary. 
When the adversary creates jobs of size Lf no f-phase 
exists of length at least Lf/(Su) where jobs of At use 
more than l/3 units of bandwidth. Since k jobs of size 
Lf are created, there are at most 2k f-phases. The 
total amount of data of jobs in A, transferred during 
f-phases where the jobs in A, use more than l/3 units 
of bandwidth is at most 2k. Lf/(Su) u = L,k/4. We 
consider next f-phases where the jobs in Af use at most 
l/3 units of bandwidth. During the first 2kLf time 
units of these f-phases at most 2kLt/3 data of jobs in 
A, is transferred. Therefore the total amount of data of 
jobs in A, transferred by the online algorithm during 
the first 2kLf time units since the last restart is at 
most llkLf/12. Hence, there are some jobs of A! left 
unfinished at time 2kLf and therefore, there must be 
some job with a stretch of k. 

It follows that the competitive ratio is at least k/2. 
Note that the ratio P of the maximum job size to mini- 
mum job size is (16uk)f and that the number n of jobs is 
at most fk. Since f 5 3u, R 5 3ku and I’ < (16uk)3”. 
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the first request arrives at time 0. The initial value of i 
is set to pl, the amount of data transfer needed by the 
first request. Each time a request arrives, the algorithm 
recomputes L. If L > j;, i is reset to max(L,2X). The 
online algorithm schedules the newly arrived request to 
execute from time X to 2x, with a rate of l/X. It is 
easy to see that the above algorithm does not violate 
capacity constraints. Let Li represent the final value of 
X; by construction U is at most 2L. The makespan is 
at most 2U + U + U/2 + < 4U. We can now claim 
the following result. 

Theorem 12 The above algorithm is S-competitive. 

The above algorithm runs in polynomial time and 
hence, is also an offline approximation algorithm. How- 
ever, an offline algorithm “knows” the exact value of L 
and hence can provide an approximation guarantee of 
2. If routes are not given as part of the input, a slight 
variant of the above online algorithm can still obtain 
an S-approximation, but it would not run in polyno- 
mial time. 

Total Completion Time: The general scaling tech- 
nique outlined by Hall et al. [15, 141 directly results in a 
4-competitive online algorithm for the total completion 
time metric, regardless of whether routes are given as 
part of the input. Their technique requires an offline al- 
gorithm that can pack an optimum number of requests 
into a given interval. This problem is NP hard, and 
therefore, our online algorithm does not run in polyno- 
mial time. An O(logm)-competitive polynomial time 
algorithm is outlined in Section 5. 

5 Polynomial Time Approximation and Online Algorithms 

In this section we give offline algorithms for total com- 
pletion time, makespan, total flow time, average stretch, 
maximum flow time, and maximum stretch that run in 
polynomial time. The algorithms for total completion 
time and makespan approximate the optimum perfor- 
mance without resource augmentation. The algorithms 
for the remaining metrics achieve optimum performance 
using either a constant-factor or a polylogarithmic-factor 
resource augmentation. We conclude the section by giv- 
ing polynomial-time algorithms with optimum makespan 
under two different relaxations of our model: (1) We 
relax the condition that the rate of a job has to be con- 
stant: we give a polynomial-time algorithm that varies 
the rates and achieves optimum makespan. (2) We as- 
sume that the start time sj is part of the input and show 
that then the problem can be solved in polynomial time. 

Theorem 13 There exists an algorithm that achieves 
on O(logm)-approximation of the total completion time 
for the online Jtp problem in time polynomial in n and 
m, regardless of whether routes we given as part of the 
input. 

Proof: Consider the problem of maximizing the num- 
ber of ftp requests (out of a given set of requests, all of 
which have the same arrival time) that can be scheduled 
over a given period of time. An O(log m) approximation 
to this problem can be obtained using multicommod- 
ity flow followed by randomized rounding [21]; plugging 
this into the general technique of Hall et al. 115, 141 re- 
suits in an 0 log m)-competitive polynomial time online 
algorithm for the total completion time of ftp requests. 

w 

A polynomial time 2-approximation for the makespan 
of the ftp problem when routes are given as part of the 
input follows from the discussion in Section 4; a sim- 
ple randomized rounding trick results in an O(logm)- 
approximation if routes are not provided as input. 

Theorem 14 There exists an algorithm that achieves 
a Z-approximation for makespan in time polynomial in 
n and m if routes are given as part of the input, and 
O(log m) otherurise.. 

We now describe how to implement algorithm MRHP 
in polynomial time. The only step of MRHP which 
might take super-polynomial time is step 2, finding the 
largest weight subset Ai of S, that can be completed be- 
tween times t and t + 2”. To implement it in expected 
polynomial time we need to add logm + 2eK to the 
capacity of each edge, where K = logn + IogP + 3. 

We use first a linear programming relaxation of the 
problem, then round it probabilistically and finally show 
that with high probability no edge capacity constraint is 
violated. The linear program uses for each job j a vari- 
able zj and maximizes CJEa wjzj under the constraint 
that for each edge e, Cj USes e zjpj/2’ < 1 and that for 
each j, zj 2 0. Let z; denote the value of zj in the 
solution. We probabilistically round each job j for each 
network i such P(j E Ai) = 2;. Let X, be the random 
variable denoting the load of edge e in G. The expected 
value fi of X, is CO<i<K C. UIeS e x;pj/2’ < K. Using 
Chernoff bounds with 6 = (logm + 2&)/p - 1 shows 
that 

p&G > km + 24 
t?J 

5 ( (1 + @,+a )” 

<( e logm+2eK) 
log mi2eK 

< l/(m(nP)*‘) 

Thus, the probability that one of the edge capacities 
overflows is at most 1/(nP)2’ in which case we simply 
redo the rounding step. 

Note that both MMF and MMS already run in time 
polynomial in n, m, and 1ogP if routes are given as 
part of the input. The same ideas that we outlined 
above for total flow time also result in polynomial time 
algorithms for the max-flow and max.stretch problems 
when routes are not given as input. 
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Theorem 15 There exist (online of ofline) algorithms 
that mn in time polynomial in n, m, and log P and 

. achieve optimum total pow-time or auemge stretch 
with on expected O(logn + 1ogP + logm)-factor 
resource augmentation regardless of whether routes 
are given as part of the input; 

l achieve optimum maximumJ?ow time with a constant- 
factor resource augmentation if the routes are given 
as part of the input, and expected O(logn + logm) 
resource augmentation otherwise; 

l achieve optimum maximum stretch with an O(logP)- 
factor ~esowce augmentation if the routes are given 
as part of the input, and expected O(logn+logm+ 
IogP) resource augmentation otherwise. 

We finally relax some of our conditions. Consider 
first the case that the rate of jobs can vary. Assume 
that the optimum makespan is M. We present a linear 
program that given M checks whether there exists a fea- 
sible solution. By performing a binary search over M, 
with 0 < M 5 nP and assuming that time is resealed 
so that the shortest job takes one time unit, we get 
a polynomial time algorithm that finds the optimum 
makespan. 

We assume wlog that the first job arrives at time 0. 
Break the time from 0 to M into intervals whenever a 
new job arrives and number the time intervals from 1 
to n. Let l; be the length of interval i and let ~MAX be 
the arrival time of the last job. Note that the length of 
the last interval is M - Alex. There is a variable zj,i 
for each interval i and each job j. The linear program 
checks whether there is a non-negative assignment for 
the variables zj,i such that 

1. For each job j, Cixi,& 2 pj, 

2. For each edge e and interval i, Cj USeE e zi,j 5 1, 
and 

3. For each job j and interval i such that j arrived 
after i, zj,i = 0. 

The linear program can be slightly modified to give 
a polynomial-time algorithm in the case that the start 
time Sj is given for each job j. 
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