
Algorithmica (1998) 22: 351–362 Algorithmica
© 1998 Springer-Verlag New York Inc.

Lower Bounds for Fully Dynamic
Connectivity Problems in Graphs1

M. R. Henzinger2 and M. L. Fredman3

Abstract. We prove lower bounds on the complexity of maintaining fully dynamick-edge ork-vertex
connectivity in plane graphs and in(k − 1)-vertex connected graphs. We show an amortized lower bound of
Ä(logn/k(log logn+ logb)) per edge insertion, deletion, or query operation in the cell probe model, whereb
is the word size of the machine andn is the number of vertices inG. We also show an amortized lower bound
of Ä(logn/(log logn+ logb)) per operation for fully dynamic planarity testing in embedded graphs. These
are the first lower bounds for fully dynamic connectivity problems.

Key Words. Dynamic planarity testing, Dynamic connectivity testing, Lower bounds, Cell probe model.

1. Introduction. This paper shows lower bounds for fully dynamic data structures by
giving reductions to the parity prefix sum problem [7]. We call a graphG planeif G is
planar and we are given a fixedembeddingof G. An embeddingof a graphG is uniquely
determined by fixing at each vertex the order of its incident edges. Two nodesx andy
arek-edge (resp.k-vertex) connected if there arek edge-disjoint (resp. vertex-disjoint)
paths connecting them. For further terminology we refer to [6].

Given a graphG, thefully dynamic k-edge(resp. k-vertex) connectivity problemis to
execute the following operations in arbitrary order:

Insert(u, v): Add the edge(u, v) to G.
Delete(u, v): Remove the edge(u, v) from G.
Query(u, v): Return yes, ifu andv arek-edge (resp.k-vertex) connected, and no

otherwise.

In thefully dynamic planarity testing problemwe execute a sequence of edge inser-
tions and deletions interleaved with queries of the form

Query(u, v): Return yes, if inserting the edge(u, v) does not destroy the planarity
of the graph, and no otherwise

in arbitrary order.
If G is plane, an insertion is given as a parameter the new edge(u, v) and also the

location of this edge in the order of edges at vertexu and at vertexv. We require that

1 This work was done by the first author in part while at the Department of Computer Science, Cornell
University, Ithaca, NY 14853, USA, and was supported by NSF CAREER Award, Grant No. CCR-9501712.
Her maiden name was Monika H. Rauch.
2 Systems Research Center, Digital Equipment Corporation, 130 Lytoon Ave, Palo Alto, CA 94301, USA.
3 Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, USA.

Received January 1995; revised February 1997. Communicated by D. Eppstein.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

352 M. R. Henzinger and M. L. Fredman

Table 1.The best upper bounds for fully dynamic problems.

General, General,
Plane Planar randomized deterministic

Connectivity O(logn) [3] O(log2 n) [5] O(log2 n) [8],[10] O(
√

n) [4]
2-Edge-connectivity O(log2 n) [11] O(log2 n) [5] O(log3 n) [8],[10] O(

√
n) [4]

2-Vertex-connectivity O(log2 n) [14] O(
√

n) [5] O(
√

n log3/2 n) [9]
3-Edge-connectivity O(

√
n) [5] O(n2/3) [4]

3-Vertex-connectivity O(
√

n) [5] O(n) [4]
4-Edge-connectivity O(

√
n) [5] O(nα(n)) [4]

Planarity testing O(log2 n) [12] O(
√

n) [5]

the resulting embedding remains planar. We call fully dynamic problems with these
restrictionsfully dynamic problems in plane graphs.

In Table 1 we give the current best upper bounds per operation in plane graphs, planar
graphs, and general graphs. For general graphs we present both the best deterministic
and the best randomized bounds.

We establish lower bounds on the time per operation for the above problems in the
cell probe model. We show the lower bounds in the cell probe model of computation
with word sizeb [18]. The time complexity of a sequential computation is defined to
be the number of accessed memory words in a RAM of fixed word sizeb. All other
operations are free. This model is at least as powerful as a random access machine of
the same word size.

Given a graphG with n nodes we show the following bounds for arbitrary word sizeb:

1. A lower bound ofÄ(logn/(log logn+ logb)) on the time per operation for the fully
dynamic planarity testing problem in embedded and in general graphs.

2. A lower bound ofÄ(logn/(k(log logn+ logb))) on the time per operation for the
fully dynamic k-edge ork-vertex connectivity problem in (general)(k − 1)-vertex
connected graphs. The lower bound holds even if every query tests the same two
nodess andt .

3. A lower bound ofÄ(logn/(k(log logn+ logb))) on the time per operation for the
fully dynamick-edge ork-vertex connectivity problem in planec-vertex connected
graphs, wherec = min(k − 1,2). The lower bound holds even if every query tests
the same two nodess andt .

These lower bounds show that the upper bounds for connectivity and 2-edge connec-
tivity in plane graphs and the randomized bounds in general graphs differ by only a factor
of O(logn log logn), andO(log2 log logn), respectively, from optimal. The fact that the
lower bounds also apply to (k−1)-vertex connected graphs (and thus also to (k−1)-edge
connected graphs) implies that the “hardness” of thek-edge (resp.k-vertex) connectivity
problem does not depend on the “hardness” of the (k − 1)-edge (resp.(k − 1)-vertex)
connectivity problem.

Related Work. Miltersen et al. independently showed the lower bound for the fully dy-
namic connectivity problem [13]. Eppstein [2] recently simplified the proof and applied
it to grid graphs. Westbrook and Tarjan [16] gave a lower bound for a (stronger) variant

Lower Bounds for Fully Dynamic Connectivity Problems in Graphs 353

of the dynamic connectivity, 2-edge-connectivity, and 2-vertex-connectivity problems.
Their model of a dynamic algorithm requires that a query returns the component to
which a vertex belongs. In this stronger model they proved that for the separable pointer
machine model for anyn and anym there exists a sequence ofm edge insertions and
backtracking edge deletions whose cost isÄ(m logn/ log logn).

If only insertions and queries, but no deletions are allowed, then tight lower bounds
of Ä(α(m,n)) per operation are known for connectivity, 2-edge connectivity, 2-vertex
connectivity, 3-edge connectivity, 3-vertex connectivity, and planarity testing [17],[15]
by reducing these problems to the union-find problem.

An earlier version of this work has appeared in [14].
In the next section we give the general ideas of the lower bound proofs. In Sections 3

and 4 we present the proofs for fully dynamic planarity testing andk-edge andk-vertex
connectivity. In Section 5 we remove the dependency onb in a more specific model of
computation.

2. The General Idea. We give first a data structure problem, called thehelpful parity
prefix sum problem, for which a lower bound is known. Then we reduce the helpful parity
prefix sum problem to each fully dynamic problem discussed in this paper to:

Theparity prefix sum problemis defined as follows: Given an arrayA[1], . . . , A[n]
of integers mod 2 with initial value zero execute an arbitary sequence of the following
operations:

Add(l): IncreaseA[l] by 1.
Sum(l): ReturnSl mod 2, whereSl =

∑l
i=1 A[i].

The helpful parity prefix sum problemis the following modified parity prefix sum
problem: Given an arrayA[0], . . . , A[n+1] of integers mod 2 such that initially allA[i]
are 0, except forA[0] and A[n + 1] which are 1, execute the following operations in
arbitrary order:

Add(l , i, j): If 0 ≤ i < l < j ≤ n+ 1, A[i] > 0, A[j] > 0, andA[k] = 0 for all
i < k < j , then incrementedA[l] by 1. Otherwise, do nothing.

Sum(l): ReturnSl mod 2, whereSl =
∑l

i=1 A[i].

Fredman and Saks [7] show that there exists a sequence ofm operations for the parity
prefix sum problem that take timeÄ(m logn/(log logn+ logb)) in the cell probe model
with word sizeb. To show the lower bound for the helpful parity prefix sum problem we
observe that the proof pertaining to the parity prefix sum problem applies to the helpful
parity prefix sum problem, since it does not put any constraints on the information input
of an update.

Given an instance of the helpful parity prefix sum problem we construct a fully
dynamic problem and a current graphG with at leastn+ 1 nodes as follows. We label
the nodes by consecutive numbers starting at 0 and partition the set of nodes labeled
by i with 1 ≤ i ≤ n into anevenand anoddset as follows: Vertexi is calledevenif
Sum(i) returns 0, andoddotherwise. The even nodes are connected by a chain of edges,
called theeven chain, the odd nodes are connected by another chain of edges, called
theodd chain. The chain might be connected to additional nodes. ASum(l) operation

354 M. R. Henzinger and M. L. Fredman

corresponds to determining the parity of nodel which in turn corresponds to inserting
and deletingO(k) edges, and asking a query in the fully dynamic problem with nodel as
one of the parameters. AnAdd(l , i, j) operation corresponds to inserting and deleting
a constant number of suitable edges.

The above implemetation of the helpful parity prefix sum problem requires a constant
number of operations in the fully dynamic data structure. Thus, the lower bound for the
former problem shows that there exists a sequence ofm operations for the fully dynamic
problem that takes timeÄ(m logn/(log logn+ logb)) in the cell probe model with word
sizeb.

3. A Lower Bound for Fully Dynamic Planarity Testing. To reduce the helpful
parity prefix sum problem to the fully dynamic planarity testing problem we construct
the following graphG with n+ 3 nodes.

• Vertices 0,n+ 1, andn+ 2 form a triangle.
• Even vertices are connected by a even chain, odd vertices are connected by an odd

chain.
• The first vertexfeven of the even chain and the first vertexfodd of the odd chain are

connected by an edge to vertex 0. The clockwise order of the edges at vertex 0 is as
follows: (0,n+ 2), (0,n+ 1), (0, feven), (0, fodd).
• The last vertexleven of the even chain and the last vertexlodd of the odd chain are

connected to vertexn+1 by an edge. The clockwise order at vertexn+1 is(n+1, lodd),
(n+ 1, leven), (n+ 1,0), and(n+ 1,n+ 2).
• There is an edge between vertexlodd and vertexn+ 2 such that the order of the edges

at n + 2 is (n + 2, lodd), (n + 2,n + 1), (n + 2,0). Let i be the predecessor oflodd.
Then(lodd,n+1), (lodd,n+ 2), and(lodd, i) is the clockwise order of the vertices atlodd.

For an example see Figure 1. To reduce the helpful parity prefix sum problem to the
dynamic planarity testing problem we maintain a dynamic planarity testing data structure
for G and the variablesfeven, fodd, leven, andlodd.

Fig. 1.The plane graph for the array0 1 0 0 0 0 1 0 1 1 0 (n = 11).

Lower Bounds for Fully Dynamic Connectivity Problems in Graphs 355

3.1. A Sum Query. The odd chain, along with the edges(fodd,0), (0,n + 1), and
(n + 1, lodd) forms a cycle of edges. All vertices on the even chain are on one side of
this cycle, but the edge(lodd,n+ 2) forces the vertexn+ 2 to be on the other side. Thus
adding an edge between a vertex on the even chain and vertexn+2 destroys the planarity
of the graph, while adding an edge between a vertex on the odd chain and vertexn+ 2
preserves planarity. Hence, an edge between vertexl and vertexn+ 2 can be added to
the graph if and only ifSl is odd. This implies that aSum(l) query can be answered by
testing whether an edge between vertexn+ 2 and vertexl preserves the planarity of the
graph.

3.2. AnAddOperation. An Add(l , i, j) changesSq for all q ≥ l from odd to even and
vice versa. To update the embedding appropriately we have to cut the edge(iodd, jodd)

of the odd chain withiodd < l and jodd ≥ l and the edge(ieven, jeven) of the even chain
with ieven< l and jeven≥ l . We describe below how to determineiodd, jodd, ieven, and
jeven. Then we insert an edge connecting the first part of the odd chain with the second
part of the even chain and vice versa. Thus, only a constant number of edge insertions
and deletions are necessary.

If we execute anAdd(4) operation in the example of Figure 1, then(3,4) and(1,7)
are the edges to be deleted. In the example of Figure 1 the edges(3,7) and(1,4) have
to be added. See the result in Figure 2.

To maintain the planarity of the embedding (and also the connectedness of the graph)
we execute these steps in the following order:

1. Delete the edges(iodd, jodd) and(lodd,n+ 2).
2. Insert the edge(ieven, jodd) (such that it is consistent with the embedding).
3. Delete the edges(lodd,n+ 1) and(ieven, jeven).
4. Replacelevenby lodd and vice versa.
5. Insert the edges(iodd, jeven), (leven,n+ 1), and(lodd,n+ 2) (in the right order of the

embedding at the verticeslodd, n+ 1, andn+ 2).

To determine the verticesiodd, jodd, ieven, and jeven it suffice to ask aSumquery as
shown by the following lemma.

Fig. 2.The plane graph of the array0 1 0 1 0 0 1 0 1 1 0 (n = 11).

356 M. R. Henzinger and M. L. Fredman

LEMMA 3.1. Let S be the value of Sl before an Add(l , i, j) operation. Then

• ieven= i − 1 and jeven= j and iodd= l − 1 and jodd= l if S is odd, and
• ieven= l − 1 and jeven= l and iodd= i − 1 and jodd= j if S is even.

PROOF. If S is odd, obviouslyiodd = l − 1 and jodd = l . Note thati − 1 is the largest
vertex smaller thanl that lies on the even chain, and henceieven= i − 1. Note that j is
the smallest vertex≥ l + 1 such thatSj is even andSj−1 is odd. Thus,j is the smallest
vertex larger thanl that lies on the even chain, and hencejeven= j .

The proof is symmetric ifS is even.

Thus we proved that aSumoperation can be answered with one planarity test and an
Add operation causes a constant number of operations in the dynamic planarity testing
data structure. As shown in the previous section this implies the following theorem.

THEOREM3.2. Any fully dynamic planarity testing algorithm for an embedded graph
requiresÄ(logn/(log logn + logb)) amortized time per operation in the cell probe
model with word size b.

4. The Lower Bounds for Fully Dynamic Connectivity Problems. We first give
the lower bounds for fully dynamic connectivity problems in (k− 1)-connected graphs
and then in plane graphs.

4.1. The Lower Bound in General Graphs

THEOREM4.1. In the cell probe model with word size b any algorithm for testing if two
fixed nodes s and t are k-edge or k-vertex connected in a(k−1)-vertex connected graph
under a sequence of insertions and deletions of edges requiresÄ(logn/(k log logn +
logb)) amortized time per operation.

PROOF. Let S0 be 1. Forp > 0 we still defineSq =
∑q

j=1 A[j]. Given a helpful parity
prefix sum problem, we construct a graph consisting of a vertex labeledt andk(n+ 1)
vertices, labeled(l , p), with 0 ≤ l ≤ n and 0≤ p ≤ k − 1. The vertex(0,0) is also
labeleds. The graph contains the following edges:

• For a fixedl the vertices(l , p) are connected by a complete graphKk. The vertices
(l , p) represent the sumSl .
• If Sl is odd andl ′ is the largest index smaller thanl such thatSl ′ is odd, there is an edge
((l ′, p), (l , p)) for 0≤ p ≤ k−1. This createsk oddchains. The vertices representing
evenSl are connected in the same way and createk evenchains.
• Let foddbe the lowest indexi larger than 0 such thatSi is odd and letfevenbe the lowest

indexi such thatSi is even. There is an edge((fodd, p), (0, p)) for 0≤ p ≤ k− 1. If
k > 1, there is an edge((feven, p), (0, p)) for 1 ≤ p ≤ k − 1. (Note that we do not
insert an edge forp = 0.)
• For each 0≤ p ≤ k− 1 there is an edge(t, (n, p)).

Lower Bounds for Fully Dynamic Connectivity Problems in Graphs 357

Fig. 3.The graph constructed for the array 1 0 1 1 1 0 to show a lower bound for 3-vertex and 3-edge connectivity
in a 2-vertex connected graph (n = 6). Here feven= 3, fodd= 1, leven= 6, andlodd= 4.

Note that the resulting graph is (k− 1)-vertex connected. In the example of Figure 3
feven= 3 and fodd= 1.

To answer aSum(l) operation we first add the edges(t, (l , p)) for all 0≤ p ≤ k− 1
and then delete all edges of the form(t, (n, p)). In the resulting graph vertexsand vertex
t arek-edge andk-vertex connected if and only ifSl is odd. Thus we ask aQuery(s, t)
and then restore the graph. This shows that aSum(l) operation corresponds tok edge
insertions and deletions plus onek-edge ork-vertex connectivity query in the graph.

Each Add(l , i, j) operation corresponds to the following at mostk + 1 insertions
and deletions of edges in the graph. Letiodd be the largest vertex on the odd chain with
iodd < l and let jodd be the smallest vertex on the odd chain withjodd ≥ l . Let ieven and
jeven be defined accordingly. We determineieven and jeven with a Sumquery as in the
previous section. To update the graph we execute the following steps:

• We insert the edges((iodd, p), (jeven, p)) and((ieven, p), (jodd, p)) for 0≤ p ≤ k−1.
• Afterward we delete the edges((iodd, p), (jodd, p)) and((ieven, p), (jeven, p)) for 0≤

p ≤ k− 1.
• If fevenor fodd changes, we update the edges to(0, p) for all p appropriately. Ifleven

or lodd changes, we update the edges incident tot appropriately.

Since the graph is (k − 1)-vertex connected before and after the update and we first
insert and afterward deleted edges, the graph remains (k − 1)-vertex connected during
all insertions and deletions.

Thus, this reduces the prefix sum problem to a fully dynamick-edge ork-vertex
connectivity problem in a(k − 1)-vertex connected graph. A sequence ofm Add and
Sum operations corresponds toO(km) edge insertions, deletions, and connectivity
queries. Thus, the lower bound for the prefix sum problem gives an amortized lower
of Ä(logn/k(log logn+ logb)) per operation.

4.2. The Lower Bound in Plane Graphs. In this section we prove the following
theorem.

358 M. R. Henzinger and M. L. Fredman

THEOREM4.2. In the cell probe model with word size b any algorithm for testing if two
fixed nodes s and t are k-edge or k-vertex connected in a plane c-vertex connected graph
under a sequence of insertions and deletions of edges requiresÄ(logn/k(log logn +
logb)) amortized time per operation, where c= min(k− 1,2).

PROOF. Let S0 be 1. Given a helpful parity prefix sum problem we construct a graph
consisting of one vertext andk(n + 1) vertices, labeled(l , p) with 0 ≤ l ≤ n and
0 ≤ p ≤ k − 1. The vertex(0,0) is also labeleds. The graph contains the following
edges:

• There is an edge((l , p), (l , p+ 1)) for all l and 0≤ p ≤ k − 2. The vertices(l , p)
representSl for 0 ≤ l ≤ n. If Sl is odd andl ′ is the largest index smaller thanl such
that Sl ′ is odd, there is an edge((l ′, p), (l , p)) for 0 ≤ p ≤ k − 1. This createsk
oddchains. All vertices with evenSl are connected in the same way, creatingk even
chains.
• Let fodd (resp. feven) be the lowest indexi larger than 0 such thatSi is odd (resp. even)

and letlodd (resp.leven) be the highest indexi smaller thann+ 1 such thatSi is odd
(even). For all 0≤ p ≤ k − 1 there is an edge((0, p), (fodd, p)). Additionally, the
graph contains an edge((0,0), (feven,0)) and((0, k− 1), (feven, k− 1)).
• The nodet is connected to each node(lodd, p) for 0≤ p ≤ k−1 by an edge. The order
(t, (lodd,0)), . . . , (t, (lodd, k− 1)) corresponds to the counterclockwise embedding at
t of these edges.
• There is an edge((leven,0), (leven, k− 1)).
• The embedding of the edges at(l , p) is ((l , p), (l , p− 1)), ((l , p), (l ′′, p)), ((l , p),
(l , p+ 1)), and((l , p), (l ′, p)), wherel ′ < l < l ′′ (nonexisting edges omitted).

Note that this gives a plane graph. Figure 4 gives an example.
For the case thatk > 1 we depict below each step of an operation. In these figures

the affected embedding is drawn with the even chains placed above the odd chains (see
Figure 5). The shaded areas depict parts of the graph that are not affected by the operation
and thus not drawn in detail.

Fig. 4. The plane 2-vertex connected graph constructed for the array 1 0 1 1 1 0 to show a lower bound for
4-edge and 4-vertex connectivity (n = 6). Here feven= 3, fodd= 1, leven= 6, andlodd= 4.

Lower Bounds for Fully Dynamic Connectivity Problems in Graphs 359

Fig. 5.A planar graph and its embedding as constructed in this proof for the casek > 1.

4.2.1. SumQueries. To answer aSum(l) query, we execute the following steps. We
depict each step for the case thatSl is even. Newly inserted edges are drawn bold.

1. We insert the edges(t, (l ,0)) and(t, (l , k− 1)) (see Figure 6 for evenSl).
2. We delete the edges((l , p), (l ′, p)) for all 0≤ p ≤ k− 3, wherel ′ > l and(l ′, p) is

the neighbor of(l , p) on the (even or odd) chain (see Figure 7 for evenSl).
3. We insert the edges(t, (l , p)) for all 1≤ p ≤ k− 2 (see Figure 8 for evenSl).
4. We delete the edges(t, (n, p)) for all 0≤ p ≤ k− 1 (see Figure 9 for evenSl).
5. In the resulting graphs andt arek-edge (resp.k-vertex) connected iffSl is odd. Thus

we test ifs and t arek-edge (resp.k-vertex) connected. Afterward, we restore the
graph.

Note that the above steps maintain the planarity of the embedding and thec-vertex
connectivity of the graph. This shows that eachSum(l) query requiresO(k) edge in-
sertions and deletions and onek-edge (resp.k-vertex) connectivity query in a plane,
c-vertex connected graph.

4.2.2. AddOperations. For an Add(l) operation we execute the following steps:

1. We add the edges((ieven, k−1), (jeven,0)), ((iodd, k−1), (jodd,0)), and(t, (leven, k−
1)) (see Figure 10).

2. We delete the edges((ieven, p), (jeven, p)) for 1 ≤ p ≤ k − 1 and the edges
((iodd, p), (jodd, p)) for 0≤ p ≤ k− 2 (see Figure 11).

3. We insert the edges((ieven, p), (jodd, p)) for 1≤ p ≤ k− 1 (see Figure 12).

Fig. 6.After step 1. Fig. 7.After step 2.

360 M. R. Henzinger and M. L. Fredman

Fig. 8.After step 3. Fig. 9.After step 4.

Fig. 10.After step 1. Fig. 11.After step 2.

Fig. 12.After step 3. Fig. 13.After step 4.

Fig. 14.After step 5. Fig. 15.After step 6.

Lower Bounds for Fully Dynamic Connectivity Problems in Graphs 361

Fig. 16.After step 7. Fig. 17.Final graph.

4. We delete the edge((ieven,0), (jeven,0)) and the edge((iodd, k−1), (jodd, k−1)) see
Figure 13.

5. We insert the edges((iodd, p), (jeven, p)) for 1≤ p ≤ k− 1 (see Figure 14).
6. We delete the edges((ieven, k−1), (jeven,0)), ((iodd, k−1), (jodd,0)), and(t, (leven, k−

1)) (see Figure 15).
7. Finally we swap leven and lodd, delete ((lodd,0), (lodd, k − 1)), insert
(t, (lodd,0)), . . . , (t, (lodd, k−1)), delete(t, (leven,0)), . . . , (t, (leven, k−1)), and in-
sert((leven,0)(leven, k− 1)) (see Figure 16).

The embedding in the final graph (see Figure 16) is identical to the originally defined
embedding of the graph (see Figure 17).

The above steps maintain the planarity of the embedding and thec-vertex connectivity
of the graph. This shows that eachAdd(l) operation can be executed withO(k) edge
insertions and deletions in a plane,c-vertex connected graph and completes the proof of
the theorem.

5. Extensions. The dependence of the lower bounds on the word length can be re-
moved for the price of assuming a more specific model of computation, namely, a
RAM with arithmetic instructions on integers of unbounded word size. Using the lower
bounds of [1] for the parity prefix sum problem and the helpful parity prefix sum prob-
lem and the same reductions as in the previous sections we obtain a lower bound of
Ä(logn/log logn) if the data structure uses space that is polynomial inn and a lower
bound ofÄ(logn/log logm) if the space is unrestricted andm operations are executed.

Acknowledgment. We thank an anonymous referee for pointing out the helpful parity
prefix sum problem and the above extensions.

References

[1] A. M. Ben-Amram, On the Power of Random Access Machines, Ph.D. Thesis, School of Mathematical
Sciences, Tel-Aviv University, 1994.

[2] D. Eppstein, Dynamic Connectivity in Digital Images, manuscript.

362 M. R. Henzinger and M. L. Fredman

[3] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung, Maintenance of a
Minimum Spanning Forest in a Dynamic Planar GraphJ. Algorithms, 13 (1992), 33–54.

[4] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification—A Technique for Speeding
Up Dynamic Graph Algorithms,Proc. 33rd Annual Symp. on Foundations of Computer Science, 1992.

[5] D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer, Separator Based Sparsification for Dynamic
Planar Graph Algorithms,Proc. 23nd Annual Symp. on Theory of Computing, 1993.

[6] S. Even,Graph Algorithms, Computer Science Press, Rockville, MD, 1979.
[7] M. L. Fredman and M. E. Saks, The Cell Probe Complexity of Dynamic Data Structures,Proc. 19th

Annual Symp. on Theory of Computing, 1989, pp. 345–354.
[8] M. R. Henzinger and V. King, Randomized Dynamic Algorithms with Polylogarithmic Time per Oper-

ation,Proc. 27th Annual Symp. on Theory of Computing, 1995, to appear.
[9] M. R. Henzinger and H. La Poutr´e, Certificates and Fast Algorithms for Biconnectivity in Fully-Dynamic

Graphs, submitted.
[10] M. R. Henzinger and M. Thorup, Improved Sampling with Applications to Dynamic Graph Algorithms,

Proc. 23rd International Colloquium on Automata, Languages, and Programming(ICALP), Springer-
Verlag, Berlin 1996, to appear.

[11] J. Hershberger, M. Rauch, and S. Suri, Fully Dynamic 2-Edge-Connectivity in Planar Graphs,Proc. 3rd
Scandinavian Workshop on Algorithm Theory, LNCS 621, Springer-Verlag, Berlin, 1992, pp. 233–244.

[12] G. Italiano, H. La Poutr´e, and M. Rauch, Fully Dynamic Planarity Testing in Embedded Graphs, in:
T. Lengauer (ed.),Algorithms—ESA ’93, LNCS 726, Springer-Verlag, Berlin, 1993, pp. 212–223.

[13] P. B. Miltersen, S. Subrhmanian, J. S. Vitter, and R. Tamassia, Complexity Models for Incremental
Computation,Theoret. Comput. Science, 130 (1994), 203–236.

[14] M. H. Rauch, Improved Data Structures for Fully Dynamic Biconnectivity,Proc. 26th Annual Symp.
on Theory of Computing, 1994, pp. 686–695.

[15] J. Westbrook, Fast Incremental Planarity Testing,Proc. 19th Internat. Colloq. on Automata, Languages,
and Programming(ICALP), 1992, pp. 342–353.

[16] J. Westbrook and R. E. Tarjan, Amortized Analysis of Algorithms for Set Union with Backtracking,
SIAM J. Comput., 18(1) (1989), 1–11.

[17] J. Westbrook and R. E. Tarjan, Maintaining Bridge-Connected and Biconnected Components On-Line,
Algorithmica, 7 (1992), 433–464.

[18] A. Yao, Should Tables Be Sorted,J. Assoc. Comput. Mach., 28(3) (1981), 615–628.

