
Algorithmica (1998) 20: 31–60 Algorithmica
© 1998 Springer-Verlag New York Inc.

Average-Case Analysis of Dynamic Graph Algorithms

D. Alberts1 and M. R. Henzinger2

Abstract. We present a model for edge updates with restricted randomness in dynamic graph algorithms
and a general technique for analyzing the expected running time of an update operation. This model is
able to capture the average case in many applications, since (1) it allows restrictions on the set of edges
which can be used for insertions and (2) the type (insertion or deletion) of each update operation is arbitrary,
i.e., not random. We use our technique to analyze existing and new dynamic algorithms for the following
problems: maximum cardinality matching, minimum spanning forest, connectivity, 2-edge connectivity,k-
edge connectivity,k-vertex connectivity, and bipartiteness. Given a random graphG with m0 edges andn
vertices and a sequence ofl update operations such that the graph containsmi edges after operationi , the

expected time for performing the updates for anyl is O(l logn +6 l
i=1 n/

√
mi) in the case of minimum

spanning forests, connectivity, 2-edge connectivity, and bipartiteness. The expected time per update operation
is O(n) in the case of maximum matching. We also give improved bounds fork-edge andk-vertex connectivity.
Additionally we give an insertions-only algorithm for maximum cardinality matching with worst-caseO(n)
amortized time per insertion.

Key Words. Dynamic graph algorithm, Average-case analysis, Minimum spanning forest, Connectivity,
Bipartiteness, Maximum matching.

1. Introduction. In many applications a solution to a problem has to be maintained
while the problem instance changes incrementally.Dynamicalgorithms incrementally
update the solution by maintaining an additional data structure. Their goal is to be more
efficient than recomputing the solution with a static algorithm after every change.

Given an undirected graphG = (V, E), a (fully) dynamic data structure allows the
following three operations:

• Insert(u, v): Insert an edge between the nodeu and the nodev.
• Delete(e): Delete the edgee.
• Query: Output the current solution. (Depending on the the particular problem a query

might be parametrized.)

1 Martin-Luther-Universität Halle-Wittenberg, Institut f¨ur Informatik, Kurt-Mothes-Strasse 1, 06099 Halle,
Germany. alberts@informatik.uni-halle.de. Research supported by the Deutsche Forschungsgemeinschaft,
Grant We 1265/2-1 (Graduiertenkolleg “Algorithmische Diskrete Mathematik”), and Grant We 1265/5-1
(Leibniz-Preis). This research was done in part while visiting the Max-Planck Institute for Computer Sci-
ence, Im Stadtwald, 66123 Saarbr¨ucken, Germany, and Cornell University, Ithaca, NY 14853, USA.
2 Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue, Palo Alto, CA 94301, USA.
monika@pa.dec.com. This research was done in part while visiting the International Computer Science Insti-
tute, 1947 Center Street, Suite 600, Berkeley, CA 94704, USA, and at the Max-Planck Institute for Computer
Science, Im Stadtwald, 66123 Saarbr¨ucken, Germany.

Received June 11, 1995; revised March 8, 1996. Communicated by K. Mehlhorn.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

32 D. Alberts and M. R. Henzinger

Two nodesu andv arek-edge(resp.k-vertex) connectedfor fixedk if there arek edge-
disjoint (resp.k vertex-disjoint) paths betweenu andv. A query in the case of connectivity
(resp. 2-edge connectivity) has two parametersu andv and returns “yes” ifu andv are
connected (resp. 2-edge connected). In the case ofk-edge (resp.k-vertex) connectivity
a query returns “yes” if the graph isk-edge (resp.k-vertex) connected. Amatchingis a
subset of the edge set such that no two edges are incident to the same vertex. Amaximum
matching is a matching of maximum possible cardinality. In the case of maximum
matching a query outputs a current maximum matching. Alternatively, a query could
also be: “Is the edgee in the current graph in the current maximum matching?”

Recently, much work has been done on dynamic algorithms for various connectivity
properties [10]–[13], [17], [27]–[29]. The current best deterministic bound for main-
taining connected or 2-edge connected components of a graph isO(

√
n) [10]. The best

randomized algorithm achievesO(log2 n) (resp.O(log3 n)) per update [19], [18]. It is
an open problem whether the connected or 2-edge connected components of a graph
can be maintained deterministically faster thanO(

√
n). A second interesting question is

whether a maximum matching can be maintained in timeo(m) per update. Note that a
dynamic algorithm which executes one phase of the static algorithm described by Tarjan
in [33] for each update operation achieves an update timeO(m). This was used, for
example, in [2]. This is the only known improvement over recomputation from scratch
which takes timeO(

√
nm) [24], [35].

We achieve better (average-case) bounds for both problems in the followingmodel of
restricted randomness(rr-model): Given a random graphG with n vertices andm edges,
an adversary can determine whether the type of the next operation is an insertion or a
deletion. If the type is an insertion, an edge chosen uniformly from all “allowed” edges
not in G is inserted. If the type is a deletion, an edge chosen uniformly from all edges
in G is deleted. Thus, only theparameterof the next operation is chosen at random, but
not thetypeof the next operation.

The rr-model is especially suited to capture the average case in many applications,
since (1) it allows restrictions on the set of edges which can be used for insertions and
(2) the type (insertion or deletion) of each update operation is arbitrary, i.e.,not random.

1.1. Related Work. Karp [20] gave a deletions-only connectivity algorithm. If the initial
graph is random and random edges are deleted, the total expected time for a sequence
of deletions isO(n2 logn).

In [29] a different random input model for dynamic graph algorithms is presented,
called thefair stochastic graph process(fsgp). It assumes that the type of the next
operation as well as its parameter are chosen uniformly at random. Since the rr-model
does not make any assumptions about the distribution of the types of update operations,
it is more general than an fsgp, which assumes that insertions (deletions) occur with
probability 1/2. The algorithm, presented in [29], takes expected timeO(lk log3 n)
maintaining thek-vertex connected components (k constant) for a sequence ofl ≥
n2 logn update operations. This bound is better than our bound in the case of connectivity
if the sequence of update operations is long enough and the graphs are not dense, but
since the model is weaker, the results are incomparable.

The rr-model is a variation of a model for random update sequences used before in
computational geometry (see, e.g., [6], [8], [25], and [30]). Eppstein [8] considers the

Average Case Analysis of Dynamic Graph Algorithms 33

dynamic (geometric) maximum spanning tree problem and related problems for points
in the plane. Exploiting their geometry, he gives data structures with polylogarithmic
expected update times for these problems.

1.2. New Results

• Assuming that the weight of an edge is arbitrary, but fixed, we show that a modified
version of Frederickson’s topology tree data structure [12] for dynamic minimum
spanning forests has an average-case update time ofO(logn+n/

√
m) plus amortized

constant time. The data structure needs linear space and linear expected preprocessing
time using [21]. The best worst-case update time for this problem isO(

√
n) [10].

• Dynamic connectivity, 2-edge connectivity, and bipartiteness (“Is the current graph
bipartite?”) are closely related to the dynamic minimum spanning forest problem.
They can be updated within the same bounds for space and time. In the worst case
the best deterministic bound isO(

√
n) [10] and the best randomized algorithms take

polylogarithmic time per update [18].
• We show that a conceptually simple dynamic algorithm for maximum cardinality

matching has an average update time ofO(n) with respect to the rr-model. The
algorithm is based on the static maximum matching algorithm described in [33]. The
space needed is linear and the preprocessing time isO(

√
nm) using [24]. Additionally

we give an insertions-only algorithm for maximum cardinality matching withO(n)
amortized time per insertion.

In the case ofk-edge andk-vertex connectivity we slightly improve the known bounds:

• Eppsteinet al. [11] describe an algorithm for dynamick-edge connectivity with
worst-case update timeO(k2n log(n/k)) using a minimum edge cut algorithm by
Gabow [15]. We show that (with a slight modification) its average-case update
time is O(min(1, kn/m)k2n log(n/k)) plus O(k) amortized time. This gives time
O(min(1, n/m)n logn) plus amortized constant time for constantk. The data struc-
ture is able to answer a query whether the current graph isk-edge connected in constant
time. The data structure needsO(m+ kn) space and preprocessing time.
• We create a dynamick-vertex connectivity algorithm, using the algorithm by Nag-

amochi and Ibaraki for finding sparsek-vertex certificates [26] and theO(k3n1.5 +
k2n2) minimum vertex cut algorithm by Galil [16]. A query takes constant time. The
average update time isO(min(1, kn/m)(k3n1.5+k2n2)), which isO(min(n2, n3/m))
for constantk. The preprocessing time and the space requirement is linear.

Note that our algorithms are deterministic andnotrandomized (except for preprocess-
ing in the case of minimum spanning trees, but by increasing the running time by a factor
of log(log∗ n) the algorithm can be made deterministic). The average-case performance
of all algorithms matches the best known worst-case bounds in the case of sparse graphs,
but it is significantly better if there are more edges. In the case of dense graphs these
improvements are exponential for some of the problems.

After presenting the rr-model in Section 2 we give a general technique for analyzing the
expected running time of an update operation using backwards analysis [31] in Section 3.
As far as we know, this is the first application of backwards analysis to dynamic graph
problems. In Section 4–9 we apply this technique to analyze the expected running time

34 D. Alberts and M. R. Henzinger

of dynamic algorithms for minimum spanning forest, connectivity, bipartiteness, 2-edge
connectivity, maximum matching, andk-edge andk-vertex connectivity, respectively. A
preliminary version of this paper appeared in [1].

2. A Model for Random Update Sequences. To model the average case it is common
practice to consider the expected performance with respect to a “random” input. So we
have to define a probability distribution on possible updates. An update consists of two
parts, itstype, i.e., either insert or delete, and itsparameter, i.e., the specific edge to
be inserted or deleted. If the type and the parameter of an operation are given by an
adversary, we are in a worst-case setting. For the average-case analysis at least the edge
to be inserted or deleted should be given with some probability distribution. Now two
cases are possible: either the type of the update operation is random or not. Reifet al. [29]
studied a model in which the probability of an insertion (deletion) is 1/2. In contrast, we
do not make any assumptions on the distribution of types of update operations. Thus, our
analysis also applies if an adversary provides the (worst-case) types of update operations.

We adopt a generic model for random update sequences from computational geometry
(see, e.g., [6], [8], [25], and [30]). The dynamically changing object is a setE which is a
random subset of a fixed setĒ, the universe. An update is arbitrarily either a deletion of
an element ofE which has to be chosen uniformly at random from the elements which
are currently in the setE, or an insertion of an element chosen uniformly at random from
the setĒ\E. Since the type of an update operation is not random, the cardinality ofE is
also not random. Applied to the dynamic graph algorithms setting we get the following
model which we call themodel of restricted randomnessor rr-model. We have a fixed
set of verticesV of cardinalityn. Ē is a subset of

(V
2

)
called the set of allowed edges

and we callG = (V, E) the current graph. If we start with a random subset of̄E of
cardinalitym0 (for anym0) and apply a sequence of updates as described above we get a
current graph with a certain numberm of edges depending on the type of updates. This
graph is with equal probability any of the possiblem-edge subgraphs of̄G = (V, Ē). If
Ē is equal to

(V
2

)
, thenG is a random graph in the well-knownGn,m model [3].

Note that there are two ways to control the graphs in the rr-model to suit the needs
of a particular application: (1) We can prescribeĒ and thus, e.g., force the graph to be
bipartite, and (2) the adversary can give us an arbitrary sequence of updates, e.g., highly
regular update patterns, likel insertions,l deletions,l insertions, and so on.

3. Average-Case Analysis. In this section we present an abstract setting for the
average-case analysis of dynamic data structures with respect to the rr-model. We use a
technique called backwards analysis, which already lead to a variety of elegant proofs
for randomized incremental geometric algorithms, see [31] and its references.

If all updates are performed in approximately the same time bound, there is no need for
an average-case analysis. We are interested in dynamic data structures where we employ
two update algorithms: a slow algorithm that works in any case and a fast algorithm
that works only when the update operation fulfills certain conditions (that depend on
the current graph). Of course, the update algorithm applies the fast algorithm whenever
possible. To achieve a good expected time performance we show that the conditions for

Average Case Analysis of Dynamic Graph Algorithms 35

the fast algorithm are met by an update operation with a relatively high probability, i.e.,
that the probability for the slow algorithm is relatively low.

We explain the ideas for bounding the probability for the slow algorithm using the
dynamic minimum spanning tree problem as an example:

Deletions: If a deletion does not remove an edge of the minimum spanning tree, the
minimum spanning tree does not change and the update can be handled quickly (as we
show in Section 4.2). Thus, if a deletion does not remove a minimum spanning tree edge,
it fulfills the conditions for the fast algorithm. The probability that a randomly chosen
edge ofG is an edge of the minimum spanning tree is(n− 1)/m. Thus, the probability
that we have to use the slow algorithm is(n− 1)/m.

Insertions: If the minimum spanning tree is still correct after the insertion of an edge
e, then the conditions of the fast algorithm are fulfilled. If an insertion modifies the
minimum spanning tree, the newly inserted edgee either (i) connects two disconnected
pieces ofG or (ii) the cost ofe is less than the cost of an edge on the tree path connecting
the endpoints ofe. In both casesebelongs to each minimum spanning tree ofG∪e. Thus,
the probability that we have to use the slow algorithm is the probability that a randomly
chosen edge not inG fulfills (i) or (ii). Using the fact thatE is a random subgraph of
Ē and thate belongs to the minimum spanning tree ofG ∪ e, we argue below that the
probability of this case is identical to the probability that a randomly chosen edge ofG∪e
belongs to the minimum spanning tree ofG∪e. The latter probability is(n−1)/(m+1).
Thus, the probability that we have to use the slow algorithm is(n− 1)/(m+ 1).

Let S denote a minimum spanning tree of the current graph. Note that we use only
two facts to bound the probability of the slow algorithm:

• If a deletion does not delete an edge ofS, thenS is a valid minimum spanning tree in
the new graph.
• If, after an insertion,S is no longer a valid minimum spanning tree for the new current

graph, then every minimum spanning tree of the new current graph contains the new
edge.

Thus, our strategy for bounding the probability of the slow algorithm is as follows:
We choose for each graphG a set of subgraphs that we callsuitable(defined below). The
suitable subgraphs ofG correspond to the minimum spanning trees ofG in the above
example. The algorithm maintains a suitable subgraphS of the current graph such that
the following two conditions are fulfilled:

A. If a deletion does not delete an edge ofS, thenS is suitable in the new graph.
B. If, after an insertion,S is no longer suitable for the new current graph, then every

suitable subgraph of the new current graph contains the new edge.

The fast algorithm is used when the update does not lead to a change inS. If Conditions A
and B are fulfilled and the size of all suitable subgraphs is limited by some integer function
s(n), then we bound the probability of the slow algorithm bys(n)/m (resp.s(n)/(m+1))
using the same arguments as for minimum spanning trees.

Let Suitbe a function that maps every graphG onn vertices to a subset of the set of
subgraphs ofG. A set S is suitablefor G if S ∈ Suit(G). Conditions A and B put the
following conditions onSuit, wheree is an edge not inG:

36 D. Alberts and M. R. Henzinger

A′. All sets inSuit(G ∪ {e}) that do not containe belong toSuit(G).
B′. If there exists a setS∈ Suit(G) andS 6∈ Suit(G∪{e}), then every set inSuit(G∪{e})

containse.
The latter is equivalent to saying:
If Suit(G ∪ {e}) contains a set withoute, thenSuit(G) ⊆ Suit(G ∪ {e}).
Combining the two conditions finally leads to the following condition onSuit:

C. Lete be an edge withe 6∈ G. If Suit(G ∪ {e}) contains a set withoute, then{S; S∈
Suit(G ∪ {e}) ande 6∈ S} ⊆ Suit(G) ⊆ Suit(G ∪ {e}).
We want to analyze a dynamic algorithm which maintains a suitable subgraph along

with other information. For a current graph and a current suitable subgraphSwe define
an update to be agood caseif S is also suitable for the new current graph. IfS is no
longer suitable we define the update to be abad case. The dynamic algorithm performs
an update by testing whether it is a good or a bad case and then performing the fast
update algorithm in the good case and the slow update algorithm otherwise. Instead of
repeating the average-case analysis for each dynamic graph problem in this paper, we
give one average-case analysis that applies to any dynamic graph problem for which we
can find a functionSuit fulfilling Condition C.

We now want to derive a bound on the expected running time of one update according
to the rr-model. We do not consider the time for testing here. LetD be the dynamic data
structure. Letg(n,m) (resp.b(n,m)) be the running time of the fast (resp. slow) update
algorithm. We assume thatm ≥ s(n). Otherwise we get a bound ofb(n,m). First we
analyze a deletion. LetTdel(n,m) be the expected running time for deleting an edge in
a randomm-element subset of̄E. Let E be an arbitrarym-element subset of̄E and let
m̄ = |Ē|. Fix one suitable subgraphS for E. Let Tdel(E, e) be the worst-case running
time for updatingD whene∈ E is deleted. Since the bad case occurs only ife∈ S, we
get

Tdel(n,m) = 1(m̄
m

)
m

∑
E⊂Ē
|E|=m

∑
e∈E

Tdel(E, e)

≤ 1(m̄
m

)
m

∑
E⊂Ē
|E|=m

s(n)b(n,m)+ (m− s(n))g(n,m)

= O

(
s(n)

m
b(n,m)+ g(n,m)

)
.

Next, we consider the insertion of an edge. LetTins(n,m) be the expected time needed to
insert a random edge if the current random graph hasn vertices andm edges. In analogy
to Tdel(E, e) let Tins(E, e) be the time needed to updateD if e ∈ Ē\E is inserted into
E. Then we have

Tins(n,m) = 1(m̄
m

)
(m̄−m)

∑
E⊂Ē
|E|=m

∑
e∈Ē\E

Tins(E, e),

Average Case Analysis of Dynamic Graph Algorithms 37

since every pair(E, e) is equally likely according to the rr-model. Now backwards
analysis appears on the scene. We formulate the cost in terms of the edge setE′ which
results by insertinge into E. Choosingm elements fromĒ and afterward an additional
one from the remaining set is the same as choosingm+1 elements fromĒ first and then
selecting one of the chosen elements. Thus, we get

Tins(n,m) = 1(m̄
m+1

)
(m+ 1)

∑
E′⊆Ē
|E′|=m+1

∑
e∈E′

Tins(E
′ − e, e).

Now, we look at the inner sum. LetG′ = (V, E′) and letS′ be a suitable subgraph forG′.
If the insertion ofe was a bad case, thene has to be contained inS′. Since|S′| ≤ s(n),
this happens at mosts(n) times. So, we get

Tins(n,m) ≤ 1(m̄
m+1

)
(m+ 1)

∑
E′⊆Ē
|E′|=m+1

s(n)b(n,m)+ (m+ 1− s(n))g(n,m)

= O

(
s(n)

m
b(n,m)+ g(n,m)

)
.

This implies the following theorem.

THEOREM3.1. LetḠ be a graph on n vertices; letP be a dynamic graph problem such
that a function Suit fulfilling Condition C exists; let D be a dynamic data structure for
P with

• a query time of q(n,m),
• a bad-case update time of b(n,m),
• a good-case update time of g(n,m), and
• a bound of t(n,m) for testing whether an update is a good case.

Then there is a dynamic graph algorithm forP with an expected update time with respect
to the rr-model of O(t (n,m)+g(n,m)+min(1, s(n)/m)b(n,m)). Its worst-case query
time is q(n,m).

Note that the gap between average-case and worst-case performance is largest if the
graph is dense.

Using the same line of proof, we could also handle asymmetric update times for
insertions and deletions, e.g., the slow insertion time is not the same as the slow deletion
time. We do not include this for the sake of clarity, and since it is not needed for our
applications.

4. Minimum Spanning Forests. Frederickson [12] introduced the topology tree data
structure to maintain a minimum spanning forest dynamically. In this section we slightly
modify the topology tree data structure to give a dynamic minimum spanning forest
algorithm with good average and the same worst-case performance as the algorithm

38 D. Alberts and M. R. Henzinger

in [12]. This data structure is also the key data structure for the dynamic graph algorithms
described in Sections 5–7.

To apply our technique of Section 3 we chooseSuit(G) to consist of all minimum
spanning trees ofG. Additionally, we modify the topology trees such that updates in-
volving nontree edges take timeO(logn) plus amortized constant time for rebuilding
parts of the data structure (good case), while the time for updates involving tree edges
staysO(

√
m) (bad case), which is the bound of [12]. By Theorem 3.1 this results in an

average-case update time with respect to the rr-model ofO(n/
√

m+ logn) expected
time plusO(1) amortized time if we consider an arbitrary but fixed weight for every
edge inḠ.

To guarantee that nontree edge updates are fast we make three modifications in the
topology tree data structure: (1) We add a condition to the definition of arestricted
partition of order k. This is necessary to guarantee thatÄ(

√
m) updates are executed

before part of the data structure is rebuilt. (2) We add priority queues to the data structure
to avoid that the minimum ofO(

√
m) edge costs is recomputed from scratch after each

update. (3) We remove some parts of the data structure at which no new information is
stored. While the second modification leads immediately to an improvement, we show
in Section 4.4 that the first modification leads to the desired amortizedO(1) rebuild
time per update. The third modification is necessary to speed up updates in the good
case.

Note that the running time of [12] can be reduced toO(
√

n) using improved sparsifi-
cation [10], [11]. Sparsification is a technique which was designed to reduce the number
of edges that a dynamic graph algorithm has to deal with fromm to O(n). This is ac-
complished by splitting the edge set into groups of size at most 2n and maintaining a
spanning tree for each group. It follows that about half of the edges belong to the span-
ning tree of a group and, thus, are expensive to update. This implies that the probablity
for a bad-case update is about 1/2. Hence, combining sparsification with our approach
does not improve the running time.

4.1. Data Structure. We first review parts of the data structure in [12], [13], and make
some changes needed to speed up the good case. We always keep the graph connected
by dummy edges of weight∞. To build a topology tree we mapG to a graphG′ of
maximum degree 3 by replacing a vertexx of G of degreed > 3 by a cycle ofd new
verticesx1, . . . , xd in G′. The edges connectingxi andxi+1 get a weight of−∞, which
implies that they always stay in the minimum spanning forest ofG′. The edge connecting
xd andx1 gets a weight of 0. Edges between thexi nodes are calleddashededges. Every
edge(x, y) is replaced by an edge(xi , yj), wherei and j are the appropriate indices of
the edge in the adjacency lists forx andy. Note that there areO(m) nodes inG′ and that
the edges of a minimum spanning forest ofG are a “subset” of those forG′. We denote
by T ′ the minimum spanning tree ofG′. We describe next how the topology tree data
structure achieve anO(

√
m) time per update operation. The topology tree data structure

decomposes the vertex set ofG′ into sets, calledclusters. The update algorithm spends
time proportional to the size ofO(1) clusters plus the number of clusters. Initially the
nodes are decomposed in a roughly balanced way such that each cluster contains at most
2k nodes and there areO(m/k) clusters, for some parameterk. Choosingk = √m gives
an O(k+m/k) = O(

√
m) time update algorithm.

Average Case Analysis of Dynamic Graph Algorithms 39

Adding edges can increase the number of nodes in a cluster (since the cycle repre-
senting a node ofG can increase), deleting nodes can decrease the number of nodes in a
cluster. By splitting and merging clusters the above roughly balanced decomposition is
maintained and, thus, every update operation takes timeO(

√
m).

We explain next the basic idea to reduce the time for updates in the good case to
O(logn) plus O(1) amortized time. Clusters arecreatedand deletedin three ways:
(A) If all the nodes in a cluster have been deleted, the cluster is deleted. (B) If a cluster is
merged with another cluster, the two old clusters are deleted and a new cluster is created.
(C) If a cluster is split, the cluster is deleted and two new clusters are created. A cluster
is created(resp.deleted) by an update operation if it is created (resp. deleted) while
processing the update.

Creating and deleting a cluster in Cases (B) and (C) takes timeO(k). Each update
creates and deletes at most a constant number of clusters and incurs, thus, anO(k)
rebuilding cost. To achieveO(k + m/k) update time in the bad case andO(logn)
update time plusO(1) amortized rebalancing time in the good case, we charge each bad-
case updateO(k) rebuilding costs and we charge each good-case updateO(1) amortized
rebuilding costs as follows: If the current update is a bad case, it is charged itsO(k)
rebuilding cost. If the current update is a good case, but one of the cluster that it deletes
was created by a bad-case update, the rebuilding cost of the current update is charged
to this bad-case update. If the current update is a good case and none of the clusters
that it deletes was created by a bad-case update, we guarantee thatÄ(k) rebuilds have
“contributed” to the cluster(s) deleted by the current update and amortize the rebuilding
costs of the current update over them. This adds an amortizedO(1) rebuilding cost to
every update. (All initial clusters are considered to be created by a bad-case update, since
the cost of deleting them can be charged to the linear preprocessing time.)

For this amortization scheme to work we call some clustersessentialand we maintain
the following invariant:

(I) Every cluster created by a good-case update consists of at most5k/3 nodes and, if
it is essential, by at least k/2 nodes.

As shown below, a cluster is deleted by a good-case update only if its size is either less
thank/3 or more than 2k. Since each update increases or decreases the size of a cluster
by at most six nodes, it follows that in either case at leastk/18 (namely,k/2− k/3 or
2k−5k/3) updates have modified the size of the deleted cluster since the creation of the
cluster. Amortizing the rebuilding costs of the good-case update over these updates adds
an amortizedO(1) rebuilding cost to every update, since each update affects the size of
only a constant number of clusters.

We give next the exact definitions. Aclusteris a set of vertices that induces a subgraph
of T ′ that is connected. An edge isincident to a cluster if exactly one of its endpoints
is in the cluster. Thetree degreeof a cluster is the number of tree edges incident to the
cluster. We call a clusteressentialif it has tree degree 1 or if it has tree degree 2 and is
not incident to a tree degree 3 cluster. Adynamic(l , u)-partition with respect toT ′ is a
partition of the vertices so that

(1) each cluster with tree degree 3 has cardinality 1,

40 D. Alberts and M. R. Henzinger

(2) each set in the partition is a cluster with tree degree≤ 3 and cardinality≤ u, and
(3) each essential cluster has cardinality at leastl .

Our definition is a modification of the definition of arestricted partition of order kin
[13]: Condition (3) is modified, since our amortized plan outline above would not apply:
in the definition of [13] it is possible that two clustersC1 andC2 are merged and only
O(1) updates have occurred since the creation ofC1 andC2. Thus, the2(k) rebuilding
costs to deleteC1 andC2 cannot be amortized overÄ(k) updates that occurred after the
creation ofC1 andC2.

Our algorithm maintains a dynamic(k/3, 2k) partition subject to invariant I.
We say clusterC2 is a tree neighborof clusterC1 if there exists a tree edge with

one endpoint inC1 and one endpoint inC2. To initialize the partition we first use the
procedure given in [13], which finds in linear time a partition of the vertices so that

(1) each cluster with tree degree 3 has cardinality 1,
(2) each set in the partition is a cluster with tree degree≤ 3 and cardinality≤ k, and
(3′) each essential cluster has a tree neighbor such that the combined cardinality of the

two clusters is larger thank.

To fulfill (3), we join every essential cluster of size less thank/3 with its tree neighbor
of Condition (3′) to create a cluster of size at leastk and at most 4k/3.

Given a dynamic(k/3, 2k) partition, atopology treeis a binary tree of depthO(logn)
whose leaves correspond to the clusters in the partition. An internal nodeC of a topology
treeT T corresponds to a cluster of larger size that is formed by unifying the clusters
corresponding to the leaves in the subtree ofC in T T. Thelevelof a leaf is 0, the level
of an internal node is 1 plus the level of its children, which are all at the same level.

A two-dimensional topology treeis a tree of depthO(logn) whose leaves are pairs
of clustersC × D. Each leafC × D is labeled with the minimum edge cost of an edge
betweenC andD or−∞ if no such edge exists. Each internal node has degree at most 4
and is labeled with the minimum label of its children. See [12] for a detailed definition.

The dynamic connectivity data structure of [12] consists of

• a topology tree T T,
• a two-dimensional topology tree2T T, and
• a dynamic tree data structure storing the minimum spanning treeT ′ of G′.

We modify the data structure as follows: (A) We omit some of the nodes of 2T T with
label−∞ together with their whole subtree. (This does not create problems in the query
or update algorithm of [12] since these subtrees do not store the cost of an edge, i.e., do
not contain any useful information for the algorithms.) (B) At each leafC × D of 2T T
we keep a priority queue of all nontree edges with one endpoint inC and one endpoint
in D.

4.2. Updates. To update the data structure we make use of the following well-known
lemma to split a cluster of sizex into two clusters of size at most 2/3x:

LEMMA 4.1 [22]. Every n-vertex tree with degree at most3 can be split into two sub-
trees, each with at most2/3n vertices, by removing one edge.

Average Case Analysis of Dynamic Graph Algorithms 41

An update operation (a) tests if the good case or the bad case occurs and (b) executes
the corresponding algorithm.

(a) The dynamic tree data structure that maintainsT ′ is used (as in [12]) to decide which
case occurs.

(b) The algorithm consists of three steps:
(b1) Updating the mapping from G to G′, i.e., maintaining G′ as a degree-3 graph.

This includes adding or removing the inserted or deleted edge and additional
nodes and edges. Since it is not explicitely stated in [12], we give the details in
Section 4.3. It takes constant time per update.

(b2) Updating the dynamic restricted partition and the structure of T T and2T T.
In the bad case we restore Conditions (1) and (2) as in [13], which modifies
O(1) clusters. Each of the resulting (at most constant) essential clusters of size
less thank/3 is merged with neighboring clusters until its size is at leastk/3 or
it is no longer essential. If a resulting cluster contains more than 2k nodes, it is
split into two clusters of size at least 2k/3 and at most 4k/3 using Lemma 4.1.

Each step takesO(k) time, which gives a total time ofO(k) for the bad
case. UpdatingT T and the structure of 2T T whenever the dynamic restricted
partition changes is identical to [12] and takes timeO(k) per update.

The procedure for the good case is described in Section 4.4 and takes time
O(logn) plus constant amortized time.

(b3) Updating the labels of2T T and the dynamic tree. For a bad-case update the
algorithm consists of the algorithm in [12] plus the obvious updates of the
priority queues.

In the good case, let(x, y) be the edge that is updated, letC be the cluster
containingx, and letD be the cluster containingy. The cost of(x, y) is added
or removed from the heap ofC × D. If min(C, D) changes, this change is
propagated up the tree 2T T, updating the labels of the ancestors of 2T T. Since
2T T has depthO(logn), this takes timeO(logn).

Summing the time for steps (a)–(b3) gives a total time ofO(k) for the bad case and
O(logn) plus O(1) amortized time for the good case.

4.3. Updating the Mapping from G to G′ in the Good Case. We describe only the
insertion of an edge(x, y)—a deletion is the inverse operation. We first update the
node(s) representingx and the node(s) representingy and then we add the appropriate
edge.

Let d be the degree ofx before the insertion. We callx′ the node representingx that
will be incident to the new edge. To update the node(s) representingx the algorithm
considers three cases:

d < 3: Setx′ = x, since the node representingx is unchanged.
d = 3: Replace the node representingx by four nodes that are put into the same cluster

asx and setx′ = x3. (In the case of a deletionx1 andx2 belong to the same
clusterC in the good case. We replacex1 to x4 by a new nodex which is put
into C. This does not change the tree degree of any cluster.)

d > 3: Add a new nodexd+1 betweenxd andx1 in the cycle representingx in G′ and

42 D. Alberts and M. R. Henzinger

add the nodexd+1 to the cluster ofxd. Setx′ = xd+1. (In the case of a deletion
the nodexi that is incident to(x, y) is removed andxi−1 andxi+1 are connected.
This does not change the tree degree of the cluster containingxi , since either
xi−1 or xi+1 must belong to the cluster ofxi in the good case.)

The nodey is processed in the same way. Finally a new edge(x′, y′) is added toG′.
Note that updating the mapping takes constant time and in the good case leaves the

tree degree of all clusters unchanged.

4.4. Updating the Dynamic Partition and the Structure of T T and2T T in the Good Case.
The insertion or deletion of a node inG′ might invalidate the partition by violating some
of the conditions of the dynamic restricted partition. We restore Conditions (1)–(3) in
this order such that fixing Condition (i) fori = 2 or 3 does not disturb the previously
restored conditions.

Condition(1). Every tree-degree-3 clusterC with more than one node consists of at
most four nodes, one with tree degree 3 and three with tree degree 2. To restore Con-
dition (1), C is split: The tree-degree-3 node forms a new tree-degree-3 cluster. The
remaining nodes are added to tree neighbors ofC with tree degree 1 or 2, if this is pos-
sible. Otherwise, they are grouped into up to two clusters of constant size. See Figure 1.

Condition(2). If the cardinality|C| of a clusterC is larger than 2k, the cluster is split
using Lemma 4.1.

Condition(3). An essential cluster of size less thank/3 is called aviolatedcluster. A
good update can create at most two violated clusters, namely during an edge deletion.
Restoring Conditions (1) and (2) does not create a violated cluster. Thus, in the good case
the violated clusters have size at leastk/3− 6 and merging each violated cluster with a
tree neighbor will result either in a cluster of size at leastk/2 (if merged with another
essential or violated cluster) or in a nonessential cluster (if merged with a nonessential

Fig. 1.Restoring Condition (1). Bold edges represent tree edges, dotted ellipses represent clusters.

Average Case Analysis of Dynamic Graph Algorithms 43

cluster). If the cardinality of a new cluster is larger than 5k/3, this cluster is split using
Lemma 4.1.

The Structure of T T and2T T. We updateT T as in [12]. If Conditions (2) or (3) had to
be restored (i.e., the update already spentO(k) time), we update 2T T as in [12]. If only
Condition (1) had to be restored (i.e., the update spent onlyO(1) time so far), the update
added at most six constant-size clusters. For each such clusterC and each neighborC′

of C we add a leafC ×C′ and its appropriateO(logn) ancestors to 2T T. Note that we
add a total ofO(logn) nodes instead of a leafC × D for everyother clusterD and all
the ancestors of these leaves. However, the omitted nodes of 2T T would be labeled with
−∞ and form subtrees of 2T T. Thus, the resulting tree 2T T agrees with our modified
definition of 2T T.

LEMMA 4.2. The updating algorithm maintains invariant I.

PROOF. We have to show that every cluster created in the good case has size at most
5k/3 and, if it is essential, at leastk/2. The good-case update algorithm creates clusters
when restoring Conditions (1)–(3). We check below that the invariant is maintained in
every step.

When restoring Condition (1), no essential clusters are created and each created
cluster has constant size. When Condition (2) is restored, the cardinality|C| of the
deleted clusterC is larger than 2k and at most 2k+ 6. Thus, the resulting clusters have
size at most 4/3k + 4 and at least 2k/3+ 1. When Condition (3) is restored, each new
essential cluster has size at leastk/2 and at most 2k+ k/3−1. If it is larger than 5k/3 it
is split, resulting in two clusters of size at most 2/3(2k+ k/3− 1) < 5k/3 and at least
1/3(5k/3) = 5k/9> k/2. Thus, in each of the three cases invariant I is maintained.

Next we analyse the running time of updating the dynamic partition and the structure
of T T and 2T T in the good case. If only Condition (1) is restored, it takesO(1) time to
restore Condition (1), and timeO(logn) to update the structure ofT T and 2T T.

If either Conditions (2) or (3) are restored, it takes timeO(k) to restore the conditions
and updateT T and 2T T. In both cases if (one of) the deleted cluster(s) were created by
a bad-case update, theO(k) rebuilding cost are charged to this bad-case update. Only if
(all) the deleted cluster(s) were created by a good-case update, theO(k) rebuilding cost
are amortized over previous updates: If Condition (2) is restored, the deleted cluster(s)
consisted of at most 5k/3 nodes at creation (by Invariant I) and now contains more than
2k nodes. If Condition (3) is restored, the deleted essential cluster(s) consisted of at least
k/2 nodes at creation (by Invariant I) and now contains less thank/3 nodes. As described
before, each update operation increases or decreases the size of a constant number of
cluster by at most six nodes. Thus, in either case at leastk/18 update operations must
have increased (resp. decreased) the size of the deleted cluster(s). Amortizing theO(k)
rebuilding cost over these updates gives an amortized constant rebuilding cost per update.

4.5. Final Result. Choosingk = O(
√

m) gives a data structure that fulfills the follow-
ing lemma, using the linear expected time algorithm for minimum spanning trees [21]
during preprocessing.

44 D. Alberts and M. R. Henzinger

LEMMA 4.3. There exists a data structure that maintains a minimum spanning forest
of a graph with any real-valued cost-function on the edges. The data structure can be
updated in time O(

√
m) if a tree edge is inserted or deleted and in time O(logn) plus

O(1) amortized time if a nontree edge is inserted or deleted. The data structure needs
linear space and linear expected preprocessing time.

If the weight for every edge in̄G is arbitrary but fixed we can apply Theorem 3.1 to
analyze the expected time per operation, ignoring the cost of rebuilds. Since we showed
before that the total time spent for rebuilds duringl updates isO(l), this implies the
following result.

THEOREM4.4. There exists a data structure for maintaining a minimum spanning forest
such that for any l the expected time for a sequence of l updates starting with a random
subgraph ofḠ of size m0 for any m0 is O(l logn +∑l

i=1 n/
√

mi), where mi is the
number of edges in G after operation i.

5. Connectivity. To maintain connectivity dynamically the algorithm by Frederickson
in [12] assigns cost 1 to edges in the current graphs and connects different connected
components by cost 2 (dummy) edges. Queries can be answered in worst-case logarith-
mic time using the dynamic tree data structure representingT ′. However, Frederickson
describes an additional data structure which allows constant-time connectivity queries.
Its update time is dominated by the update time of the dynamic minimum spanning
forest data structure. Using the same approach with the minimum spanning forest data
structure presented in the previous section gives the following result.

THEOREM5.1. There exists a data structure that answers connectivity queries in con-
stant time and that can be updated in total expected time O(l logn +∑l

i=1 n/
√

mi)

during a sequence of l update operations starting with a random subgraph ofḠ of size
m0 for any m0, where mi is the number of edges in G after operation i.

6. Bipartiteness. In this section we analyze the average-case performance of an al-
gorithm for dynamic bipartiteness due to Eppsteinet al. [10], [11]. As in Section 5, we
give each edge cost 1 and connect different connected components by dummy edges of
cost 2. The basic idea is to maintain a spanning treeT of the graphG and additionally
to maintain the parities of the cycles which are induced by the nontree edges. The graph
is bipartite if and only if no nontree edge induces an odd cycle.

As in Section 4, we chooseSuit(G) to consist of all minimum spanning trees of
G. The minimum spanning treeT of G is maintained by creating a degree-3 graphG′

and maintaining the minimum spanning treeT ′ of G′ using a topology treeT T and a
two-dimensional topology tree 2T T.

6.1. Data Structure. For a nontree edgee let λe denote its induced cycle. Letd(u, v)
be the distance of the verticesu andv in T , i.e., dashed edges (introduced to satisfy the
degree constraints) are not counted. Aboundary vertexof a cluster is an endpoint of a

Average Case Analysis of Dynamic Graph Algorithms 45

tree edge connecting the cluster with a different cluster at the same level of the topology
tree. The data structure in [11] consists of

1. the MSTT ′,
2. a topology treeT T where we store at each nodeC the distances between every pair

of boundary vertices ofC, and
3. the corresponding two-dimensional topology tree 2T T. The nodes of 2T T are aug-

mented with the following labels:
Associated with each node of 2T T are up to two edges which represent the two

parity classes. These are called theselected edges. For each selected edge we maintain
the distances of its endpoints to the boundary vertices of the corresponding clusters.

We extend this data structure as follows to speed up updates in the good case.

1. We keep a dynamic tree data structure [32] ofT ′ (for determining distances between
nodes inT) giving dashed edges length 0 and nondashed edges length 1.

2. At each leafC× D of 2T T we keep two lists, each one containing the nontree edges
of G betweenC andD of the same parity.

6.2. Updates. An update operation (a) tests if the good case or the bad case occurs and
(b) executes the corresponding algorithm.

(a) The dynamic tree data structure that maintains the minimum spanning treeT ′ is used
(as in [12]) to decide which case occurs.

(b) The algorithm consists of three steps:
(b1) Updating the mapping from G to G′, i.e., maintaining G′ as a degree-3 graph.

See Section 4.3. It takes constant time per update.
(b2) Updating the dynamic restricted partition and the structure of T T and2T T.

The procedure for the bad case is described in Section 4.2 and takes time
O(
√

m), the procedure for the good case is described in Section 4.4 and takes
time O(logn) plus constant amortized time.

(b3) Updating the labels of2T T and the dynamic tree. In [11] it is shown that the
worst-case update time for this data structure isO(

√
m). Our extensions only

increase the running time by a constant factor. Thus, the update time in the bad
case isO(

√
m).

We show in Section 6.3 that updates in labels of 2T T and the dynamic tree
takes timeO(logn) plus constant amortized time in the good case.

Summing the time for steps (a)–(b3) gives a total time ofO(k) for the bad case and
O(logn) plus O(1) amortized time for the good case.

6.3. Updating the Labels of2T T and the Dynamic Tree in the Good Case. We describe
how to update in the good case the labels of 2T T and the dynamic tree data structure.

The Labels of2T T. If Conditions (2) or (3) are restored when updating the dynamic
partition (see Section 4.4), then the labels are updated in timeO(

√
m), as in the bad

case. Otherwise at mostO(1) clusters of sizeO(1) are created. The data structure for
them and their ancestors inT T and 2T T can be built in timeO(logn). We next show
how to update the data structure of the remaining clusters in timeO(logn). Amortizing

46 D. Alberts and M. R. Henzinger

the cost if Conditions (2) or (3) are restored as in Section 4.4 gives a running time of
O(logn) plus O(1) amortized time.

First assume thate is inserted. Letu ∈ C andv ∈ D. We have to compute the parity
class ofe in order to insert it into the right list at the leaf nodeC× D in 2T T. If C = D
we use the dynamic tree data structure to determine the parity ofe and of the selected
edges ofC×C. If C 6= D we determine the distance ofu (resp.v) to a boundary vertex
of C (resp.D) by determining the number of nondashed edges on the path inT between
them. This can be computed in timeO(logn) using the dynamic tree data structure for
T . Then we compare the parity ofewith the parities of the selected edges stored atC×D
(if they exist) in constant time using the distance information in the data structure and
the following lemma shown in [11].

LEMMA 6.1. Let C and D be any two clusters at the same level of the topology tree,
and let f1 and f2 be any two nontree edges between C and D. LetwC be a boundary
vertex of C, and letwD be a boundary vertex of D. Let j1 and j2 be respectively the
endpoints of f1 and f2 in C and let r1 and r2 be respectively the endpoints of f1 and
f2 in D. The two cyclesλ f1 and λ f2 have the same parity if and only if the quantity
d(j1, wC)+ d(j2, wC)+ d(r1, wD)+ d(r2, wD) is even.

After determining the parity class ofe we inserte in the appropriate list. This takes
constant time. If the selected edges ofC × D change, we percolate this change up in
2T T. Since we can update each level in constant time using Lemma 6.1 the whole
procedure takes timeO(logn).

If e is to be deleted, we delete it from the listL atC× D in which it is contained. Ife
was a selected edge we replace it by the next edge inL if one exists. This takes constant
time. Updating the ancestors ofC × D takes timeO(logn) as in the case of insertions.

The Dynamic Tree. In the good case updating the mapping fromG to G′ changes a
constant number of edges ofT ′. Each modification takes timeO(logn).

6.4. The Final Result. The analysis for minimum spanning trees carries over, so we
get the following theorem.

THEOREM6.2. There exists a data structure that answers bipartiteness queries in con-
stant time and that can be updated in total expected time O(l logn +∑l

i=1 n/
√

mi)

during a sequence of l update operations starting with a random subgraph ofḠ of size
m0 for any m0, where mi is the number of edges in G after operation i.

7. 2-Edge Connectivity. Frederickson gives a data structure, called anambivalent
data structure, that answers 2-edge connectivity queries in timeO(logn) [13]. It can be
updated in timeO(

√
m).

The basic idea is to maintain a spanning treeT of the graphG andcoverage infor-
mationfor each tree edge. A tree edgee is coveredif there exists a nontree edge(x, y)
such thate lies on the tree path betweenx andy. As shown in [13], two nodesu andv
are 2-edge connected iff all edges in the tree path betweenu andv are covered. Thus,

Average Case Analysis of Dynamic Graph Algorithms 47

to answer 2-edge connectivity queries the ambivalent data structure maintains coverage
information in various forms such that it can quickly find uncovered edges on any path
in T .

We modify the ambivalent data structure and its update algorithm in order to speed
up the good case.

7.1. Data Structure. We first describe the data structure of [13] and then give our
modifications. As in Section 4, the algorithm gives each edgeG cost 1 and connectsG
by dummy edges of cost 2. We chooseSuit(G) to consist of all minimum spanning trees
of G. The algorithm creates a degree-3 graphG′ and maintains a minimum spanning
treeT ′ of G′ in a topologyT T and a two-dimensional topology 2T T.

The algorithm partitions the edges ofT ′ into chains, calledcomplete paths, for which
it keeps coverage information. Subpaths of complete paths are calledpartial paths. They
are used to compute coverage information for edges on complete paths efficiently and
to answer coverage queries about parts of complete paths.

Each cluster in the partition, i.e., each leaf ofT T has an associated partial path,
but no complete path, and each internal node ofT T has either an associated partial or
an associated complete path. The path associated with a clusterC is a subpath of the
spanning treeT ′, formed by edges ofC. See [13] for the definition of complete and
partial paths.

For a nodeu ∈ C, let proj(u) be the node on the partial path ofC that is closest tou
in T ′ and letdist(u, e) be the number of edges on the partial path ofC betweenproj(u)
and the tree edgee incident toC.

For each tree edgee incident toC we denote

• by maxcover(C, D, e) the maximum ofdist(u, e) over all nodesu ∈ C that are
connected by a nontree edge to a node inD,
• by maxcovernode(C, D, e) a nodeu such thatdist(u, e) = maxcover(C, D, e),

and
• by maxcoveredge(C, D, e) a nontree edge betweenC and D that is incident to

maxcovernode(C, D, e).

The ambivalent data structure consists of:

1. An MSTT ′.
2. The partial and complete paths represented in binary trees.
3. A topology treeT T for T ′, extended with the following labels:

(A) At each leafC of T T the algorithm stores the following labels:
(a) It stores a valuedisttobr for each nodeu ∈ C: In a graph that only contains

T and the nontree edges incident toC, disttobrcontains the number of edges
(in T) from u to the closest bridge on the path fromu to (but excluding) the
partial path ofC if such a bridge exists and∞ otherwise.

(b) It also keeps a least common ancestor data structure inT ′ for nodes ofC
rooted at an arbitrary boundary vertex ofC.

(B) For each nodeC of T T the data structure keeps
(a) a pointer to the partial or complete path ofC,
(b) thelengthof the partial path ofC (if it exists),

48 D. Alberts and M. R. Henzinger

(c) a valuetoptobr, which is the number of edges (inT ′) from a fixed endpoint
of the complete path associated withC to the closest bridge on the complete
path (if it exists), and

(d) additional values that do not change in the good case and that can be created
in time linear in the size ofC.

4. The corresponding two-dimensional topology tree 2T T. The nodes of 2T T are la-
beled with the following values:
(A) At each leafC × D with C 6= D it keeps for each tree edgee incident toC the

valuemaxcover(C, D, e).
(B) At each internal node of 2T T it keeps a constant number ofmaxcovervalues.

These values are computed in constant time from themaxcovervalues of its
children. In this way, for each pair(c, D) of nodes on the same level ofT T and
for each tree edge incident toe, amaxcover(C, D, e) value is computed.

We modify the data structure as follows:

1. Extended Dynamic Path Data Structure. Inserting or deleting nontree edges can
change the coverage information atÄ(

√
m) leaves of the binary trees representing partial

and complete paths. To avoid this cost, we maintain all partial and complete paths in
a new data structure, called theextended dynamic path data structure. We present the
interface of the data structure next and give its implementation in Section 7.5.

The extended dynamic path data structure extends the dynamic path data structure
of [32]. It represents a set of paths such that two paths are either vertex-disjoint or one
path is contained in the other one.3 Note that each edge on one of the paths is represented
just once, since a pathP1 contained in a pathP2 shares parts of the data structure ofP2.
There is a uniquecover valueassociated to each edgee′, counting the number of edges
which covere′.

The data structure supports the following operations:

• Initialize(P, E′): Build a data structure for a partial pathP with a set of covering
edgesE′.
• Cover(P, e): Increase the cover value of each edgee′ in P which is covered bye.
• Uncover(P, e): Decrease the cover value of each edgee′ in P which was covered

by e.
• Link(P1, P2, e): Link the data structures forP1 andP2 by the edgee. This is allowed

if neither P1 nor P2 are subpaths of another path in the data structure.
• Unlink(P): Undo theLink operation that createdP. This is allowed ifP is currently

not linked with another path.
• RightUncovered(P): Return the rightmost uncovered edge onP if it exists.
• LeftUncovered(P): Return the leftmost uncovered edge onP if it exists.
• Add(P, x, y): Replace the edge(x, y) of P by the edges(x, z) and(z, y), wherez is

a new node that does not appear on any path. The cost of both new edges is equal to
the cost of(x, y).

3 The definition of complete paths in [13] does not make them vertex-disjoint: the head of a complete path can
be contained in another complete path. To make them vertex-disjoint we simply create a second copy of these
shared nodes in the extended path data structure.

Average Case Analysis of Dynamic Graph Algorithms 49

• Remove(P, z): Remove the two edges(x, z) and(z, y) of P and add the new edge
(x, y). The operation demands that the cost of the two removed edges be identical.
The cost of the new edge is the cost of a removed edge.

A sequence ofLinkandUnlinkoperations results in a “linkage tree.” Letd be the depth of
this tree. Below we describe an implementation of this data structure that takes constant
time forLink andUnlink; O(d+ logn) time forRightUncovered, LeftUncovered, Cover,
Uncover, Add, andRemove; and O(|P| + |E′|) time for Initialize(P, E′). Sinced is
O(logn) in our applicationRightUncovered, LeftUncovered, Cover, Uncover, Add, and
Removetake timeO(logn).

We use this data structure to maintain the complete and partial paths together with
their coverage information. An edgee on a partial or complete pathP is covered in the
extended dynamic path data structure iff it is covered in the binary tree representation
of [13]. Expressed more formally, the cover value ofe is larger than 0 in the extended
dynamic path data structure iff thesomecovvalue of an ancestor ofe is set to 1 in the
binary tree representation ofP.

2. Labeled Dynamic Tree. This data structure is used for three different reasons: (i) It
replaces thedisttobr of 3(A)(a). (ii) It replaces the least common ancest data structure
of 3(A)(b). (iii) It computes adist(u, e) value in timeO(logn) instead ofO(

√
m).

(i) We do not store thedisttobr values, since one good-case update might change
Ä(
√

m) disttobrvalues. Instead we store the spanning tree ofT ′ in a dynamic tree
data structure [32] and keep for each tree edgee in C acover-counter: If e is not on
the partial path ofC, its cover-counter counts the number of nontree edges incident
to C that covere. If e is on the partial path ofC, its cover-counter is always 1.
Determining thedisttobr value of a nodeu corresponds to afindmin-query in the
dynamic tree data structure to determine the bridge nearest tou and to determine
the length of the path fromu to this bridge.4

A constant number ofdisttobr values change during an update operation. The
new values can be computed in timeO(logn) in the modified data structure, as
opposed toO(

√
m) in the original data structure. Thedisttobr values are used

during a 2-edge connectivity query. However, each query only needs to know the
value of a constant number ofdisttobrvalues, which takes timeO(logn) using our
data structure. Thus, our data structure does not increase the query time ofO(logn).

(ii) We do not store the least common ancestor data structure inT ′, since even good-case
updates might change a constant number of edges ofT ′ (see Section 4.3). Instead
we use the above dynamic tree data structure to answer least common ancestor
queries in timeO(logn). As described fordisttobr values, this does not increase
the query time, since only a constant number of least common ancestor queries are
asked during a 2-edge connectivity query. It also reduces the time to update the
least common ancestor information toO(logn).

(iii) Given a new nontree edge(u, v) with u in the level-0 clusterC andv 6∈ C, a slight
variant of this data structure can also be used to computeproj(u) and to compute

4 The latter can be done with a straightforward extension of the dynamic tree data structure in timeO(logn).

50 D. Alberts and M. R. Henzinger

dist(u, e) for each tree edgee incident toC. It takes timeO(logn). We leave the
details to the reader.

3. Max-heaps. We do not keepmaxcovervalues, but instead the correspondingmax-
cover edgeat each node of 2T T. While the data structure in [13] usedmaxcovervalues
to cover paths, our algorithm usesmaxcoveredgesinstead.

Storing the edge instead of the value has the following advantage: Even during good-
case updates, edges can be added to or removed from a partial or complete path when
updating the mapping fromG to G′ and the dynamic partition. Thus, themaxcovervalue
becomes outdated, while themaxcoveredgeand the relative order of the nontree edges
incident to a cluster in the “maxcover-order” does not becomes outdated.

Note that for an internal node with a partial path of 2T T its maxcoveredgescan
be computed in timeO(1) from themaxcoveredgesof its children. (i) To determine
quickly themaxcoveredgeat a leaf of 2T T we keepmax-heaps at leaves of 2T T. (ii) We
also keep them at internal nodes ofT T with complete paths to speed up updating their
coverage information.

(i) At each leafC × D with C 6= D of 2T T we keep for each tree edgee incident
to C a heapmax(C, D, e) that contains all nontree edges(u, v) with u ∈ C and
v ∈ D in the order of thedist(u, e) values. The maximum element of the heap is the
maxcoveredge(C, D, e).

(ii) If a nodeC of T T has a complete path, it has a degree-1 childC1 in T T (see [13]).
Let ebe the tree edge incident toC1. For all clusterD 6= C1 on the same level asC1,
the heapmax(C) contains all nontree edges(u, v) with u ∈ C1 andv ∈ D in the
order of thedist(u, e) values. The algorithm of [13] recomputes this value, which is
a maximum ofO(

√
m) numbers, from scratch after each update. We avoid this by

adding the heap.

7.2. Updates. We now describe the modified update algorithm. As in Section 4.2 an
update executes steps (a)–(b3). Steps (a)–(b2) are identical to Section 4.2. Step (b3)
updates the partial and complete paths, the labels ofT T, the labels of 2T T, and the
dynamic tree ofT . In the bad case it updates the labels in the original data structure
as in [13] and it updates the new labels of the modified data structure in timeO(

√
m)

in the straightforward way. The partial and complete paths are updated using the same
operations as in [13], but using our new data structure instead of the binary tree data
structure. For each operation, its running time matches the running time of the binary
tree representation.

The algorithm for step (b3) in the good case is given in Section 7.3. Step (b3) takes
time O(

√
m) for the bad case andO(logn) plusO(1) amortized time for the good case.

Summing the time for steps (a)–(b3) gives a total time ofO(
√

m) for the bad case
andO(logn) plus O(1) amortized time for the good case.

7.3. Updating the Partial and Complete Paths, the Labels of T T and2T T, and the
Dynamic Tree of T′ in the Good Case. If Conditions (2) or (3) are restored when
updating the dynamic partition, (see Section 4.4), then the partial and complete paths,
the labels ofT T and 2T T, and the dynamic tree ofT are updated in timeO(

√
m), as

in the bad case. The costs are amortized as discussed before and contribute anO(1)

Average Case Analysis of Dynamic Graph Algorithms 51

amortized cost to each update. Otherwise, there are at most six new clusters, each of
constant size. The data structures for them and their ancestors can be created in time
O(logn). We show that each part of the data structure for the old clusters can be updated
in time O(logn).

Let Ci (x) be the level-i cluster containingx. We consider the insertion or deletion
of an edge(u, v). The only labels that have to be updated are the labels of clusters
(at various levels) containingu or v. We achieveO(logn) update time, since there are
O(logn) such clusters at which we spendO(1) time each, and there areO(1) clusters
at which we spendO(logn) time.

The Partial and Complete Paths. We denote byPP(C) the partial path of clusterC
and byCP(C) the complete path of clusterC. Let Cu be the least ancestor ofC0(u) in
T T with associated complete path. If edges are added to or removed from the partial or
complete path of a clusterC′, then there exists a level-0 clusterC such that the edges
are also added to or removed from the partial path ofC. The algorithm that updates
the partial path data structure ofC also updates the partial path ofC′, by data structure
sharing.

When edges are added to the partial path, the algorithm first executesUnlinkoperations
until the resulting partial path corresponds to the partial path of the level-0 clusterC.
Then it executes anAddoperation. Finally it executes the steps below to add the nontree
edge. When edges are removed from the partial path, the algorithm first executes the
steps below to remove the nontree edge. Then it executesUnlink operations until the
resulting partial path is the partial path of a level-0 cluster. Since each pair of edges to be
removed from the partial path by aRemoveoperation has the same cost, they are finally
removed by aRemoveoperation.

The coverage information of at most two partial or complete paths needs to be updated
when a nontree edge(u, v) is inserted or deleted. Which paths have to be updated depends
onu andv. We distinguish three cases:

(i) If u andv are contained in the same level-0 clusterC and the update is an insertion,
then we executeCover(PP(C), (proj(u), proj(v))). If they are in the same level-0
cluster and the update is a deletion we executeUncover(PP(C), (proj(u), proj(v))).

(ii) If u andv are not contained in the same level-0 cluster, butCu = Cw, leti be the high-
est level such thatCi (u) 6= Ci (v). We can determinei in time O(logn). The only
maxcoveredgesthat have changed and are used to cover a partial or complete path
are maxcoveredge(Ci (u),Ci (v), e) and maxcoveredge(Ci (v),Ci (u), e), where
e is the tree edge connectingCi (u) andCi (v). Let m(u) (resp.m(v)) denote the
former value of maxcoveredge(Ci (u),Ci (v), e) (resp. maxcoveredge(Ci (v),

Ci (u), e)), and let m′(u) and m′(v) be the current edges. We execute first
Uncover(PP(Ci+1(u)),m(u)) and Uncover(PP(Ci+1(u)),m(v)), and then
Cover(PP(Ci+1(u)),m′(u)) andCover(PP(Ci+1(u)),m′(v)).

(iii) If Cu 6= Cv, then the maximummaxcoveredge in max(Cu) is the only max-
cover edgethat has changed and is used to cover a partial or complete path (namely,
the complete path ofCu). Thus, we uncoverCP(Cu) from the old maximum element
of max(Cu) and cover it with the new maximum element ofmax(Cu). We do the
same for same forv.

52 D. Alberts and M. R. Henzinger

The Labels of T T. (A) We update the labeled dynamic trees ofC0(u) and ofC0(v)

by adding a constant number of edges with the appropriate cover counter. Ifproj(u) =
proj(v) (and thusC0(u) = C0(v)) we increase thecover-counterof all tree edges between
u andv. Otherwise we increment thecover-countersof all edges on the tree path between
u andproj(u), and betweenv andproj(v). Either case takes timeO(logn).

(B) We discuss the items in the order of Section 7.1.

(b) If tree edges are added to the partial path ofC0(u) or C0(v), then theirlengthvalues
are updated. To update their ancestors, the changes are percolated up the tree.

(c) For a clusterC the toptobr(C) value can be computed in timeO(logn) using the
data structure for the complete path ofC. Since at most two complete paths are
affected by the update, updating alltoptobrvalues takes timeO(logn).

(d) Instead of the least common ancestor data structure, we update the dynamic trees of
C0(u) andC0(v) as described in (A).

The Labels of2T T. (A) Using the dynamic tree data structure of the spanning tree
of C0(u) we can finddist(u, e) to each tree edgee incident toC0(u) in time O(logn).
Inserting or deleting(u, v) from the heapmax(C0(u),C0(v), e) determines the new
value ofmaxcoveredge(C0(u),C0(v), e) in time O(logn). Since at most four heaps are
affected, updating allmaxcoveredgevalues at level-0 clusters takes timeO(logn).

(B) Eachmaxcoveredgeof an internal node of 2T T can be computed in constant
time from themaxcoveredgesof its children. Since 2T T has depthO(logn), all max-
cover edgescan be updated in timeO(logn).

Additionally. The onlymax-heaps of internal nodes that change are the heaps ofCu

andCv. To updatemax(Cu) andmax(Cv) we delete the oldmaxcoveredgeof the cor-
responding tree-degree-1 child and insert the new one if the value has actually changed.
This takes timeO(logn).

The Dynamic Tree. In the good case updating the mapping fromG to G′ changes a
constant number of edges ofT ′. Each modification takes timeO(logn).

This shows that the data structure can be updated in timeO(logn)plusO(1)amortized
time in the good case.

7.4. Final Result. Using the analysis of Section 3 gives the following theorem.

THEOREM7.1. There exists a dynamic data structure that answers2-edge connectivity
queries in time O(logn) and that can be updated in total expected time O(l logn +∑l

i=1 n/
√

mi)during a sequence of l update operations starting with a random subgraph
of Ḡ of size m0, where mi is the number of edges in G after operation i.

7.5. An Extended Dynamic Path Data Structure. In this section we present the extended
dynamic path data structure for the maintenance of the cover values of the edges of paths.
It is based on the dynamic paths data structure which Sleator and Tarjan used for their
dynamic trees [32].

We consider the following problem. We are given a set of paths such that two paths
are either vertex-disjoint or one path is contained in the other. Each path has a leftmost
degree-1 vertex (also called thehead) and a rightmost degree-1 vertex (also called the

Average Case Analysis of Dynamic Graph Algorithms 53

tail). There is a cover value associated to each edgee′ in one of the paths. It counts the
number of edges which covere′. The data structure allows the following operations:

• Initialize(P, E′): Build a data structure for a partial pathP with a set of covering
edgesE′.
• Cover(P, e): Increase the cover value of each edgee′ in P which is covered bye.
• Uncover(P, e): Decrease the cover value of each edgee′ in P which was covered

by e.
• Link(P1, P2, e): Link the data structures forP1 andP2 by the edgee. This is allowed

if neither P1 nor P2 are subpaths of another path in the data structure.
• Unlink(P): Undo theLink operation that createdP. This is allowed ifP is currently

not linked with another path.
• RightUncovered(P): Return the rightmost uncovered edge onP if it exists.
• LeftUncovered(P): Return the leftmost uncovered edge onP if it exists.
• Add(P, x, y): Replace the edge(x, y) of P by the edges(x, z) and(z, y), wherez is

a new node that does not appear on any path. The cost of both new edges is equal to
the cost of(x, y).
• Remove(P, z): Remove the two edges(x, z) and(z, y) of P and add the new edge
(x, y). The operation demands that the cost of the two removed edges is identical. The
cost of the new edge is the cost of a removed edge.

Multiple edges are allowed, but not self-loops. A sequence ofLink andUnlink operations
results in a “linkage tree.” Letd be the depth of this tree. In this section we describe
an implementation of the data structure that takes constant time forLink andUnlink;
O(d + log |P|) time for RightUncovered, LeftUncovered, Cover, Uncover, Add, and
Remove; andO(|P| + |E′|) time for Initialize(P, E′).

In their paper on dynamic trees [32] Sleator and Tarjan introduce a data structure for
the dynamic maintenance of a collection of vertex-disjoint edge weighted paths. Each
pathp has a head and a tail. The data structure supports 11 kinds of operations. A subset
of them is quoted below from [32]. The operationspath, head, tail, before, andafter
have the obvious meaning.

pmincost(path p): Return the vertexv closest totail(p) such that(v, after(v)) has
minimum cost among edges onp.
pupdate(path p, real x): Add x to the cost of every edge onp.
reverse(path p): Reverse the direction ofp, making the head the tail and vice versa.
concatenate(path p,q, real x): Combinepandq by adding the edge(tail(p), head(q))
of costx. Return the combined path.
split(vertex v): Divide path(v) into (up to) three parts by deleting the edges incident
to v. Return a list [p,q, x, y], wherep is the subpath consisting of all the vertices from
head(path(v)) to before(v), q is the subpath consisting of all vertices fromafter(v)
to tail(path(v)), x is the cost of the deleted edge(before(v), v), andy is the cost of
the deleted edge(v, after(v)). If v is originally the head ofpath(v), p is null andx is
undefined; ifv is originally the tail ofpath(v), q is null andy is undefined.

Every path in the dynamic path data structure is represented by a balanced binary tree
whose leaves represent the vertices of the path, and whose internal nodes represent the

54 D. Alberts and M. R. Henzinger

edges of the path. At each internal node of such a tree a constant amount of local (weight)
information is stored.

Every path in the extended dynamic path data structure is stored as a path or a subpath
of a dynamic path data structure. The edge weights are the cover values. Whenever an
operation (exceptLink andUnlink) involves a pathP that is a subpath of another path,
we reconstructP by a suitable sequence ofUnlink operations. After performing the
operation we execute the correspondingLink sequence.

• To executeInitialize(P, E′) we first compute the cover value for the edges ofP by
a left-to-right scan ofP with each edge ofE′ stored at its endpoints inP. Then we
build a dynamic tree data structure forP using the cover values as edge weights.
• We realizeCover(P, (u, v)) by usingsplit, pupdate, and concatenateas follows.

Without loss of generality assume thatu is closer tohead(P) thanv. If u is not the
head ofP, then we splitP at before(u). If v is not the tail ofP, then we split the
subpath containingu atafter(v). We add 1 to all edge weights in the subpath starting
at u by usingpupdateand mergeP together again usingconcatenate. Obviously,
Uncover(P, (u, v)) can be realized in the same way, except that we subtract 1 instead
of adding 1.
• To implement theLink(P1, P2, e) operation we do not use theconcatenateoperation

because we want to execute this operation in constant time. Instead we create a new
node forewhose children are the roots of the data structures forP1 andP2. Afterward
we update the local information. AnUnlink(P) is the reversal of theLink operation.
• A LeftUncovered(P) query can be answered by usingpmincost. If we want to answer a

RightUncovered(P) query we first executereverse(P), usepmincost(P), and execute
reverse(P) again.
• We realizeAdd(P, x, y)by the following sequence of operations. First, wesplit Patx.

This returns (up to) two paths and weights as described above. Then weconcatenate x
to the path ending at its former predecessor again (if it existed) using the corresponding
weight which was returned bysplit. We create a new path consisting only ofz, and
concatenateit with the paths ending atx and starting aty with the weight of the edge
(x, y) which was returned bysplit as well.
• The operationRemove(P, z) is realized by asplit at z followed by aconcatenate

operation for the two paths returned bysplit with one of the two (identical) weights
returned bysplit.

The running time ofInitialize(P, E′) is O(|P|+ |E′|) since the scan can be executed
in linear time and the dynamic tree for a pathP with given edge weights can be built
in time O(|P|). A Link or Unlink operation takes constant time since, as shown in [32],
the local information can be updated in constant time. Any of the other operations is
enclosed in a sequence of at most 2d Unlink andLink operations. The operation itself
consists of a constant number of dynamic path operations which take timeO(log|P|)
giving a total of timeO(d + log|P|). This shows the claimed bounds on the running
times.

8. Maximum Cardinality Matching. Unlike minimum spanning tree and connectiv-
ity, the dynamic maximum matching problem is not solvable using sparsification [10],

Average Case Analysis of Dynamic Graph Algorithms 55

[11], because there are no nontrivial certificates. However, there are sparse suitable sub-
graphs, so this problem reveals an interesting difference between the otherwise similar
concepts of certificates and suitable subgraphs.

Using just one phase of a static maximum cardinality matching algorithm per update
leads to a dynamic algorithm withO(n+m)worst-case update time (see, e.g., [2]). This
is still the best known algorithm. In the following we show that a variant of this simple
approach yields a bound ofO(n) expected time for inputs which are random according
to the rr-model.

8.1. Terminology. The cardinality of a maximum matching is thematching numberof
the graph. In general a maximum matching is not unique. All of the following definitions
are with respect to a fixed matchingM . A pathP in G is analternating path with respect
to M iff the edges inP alternate between being in the matchingM and not being in
M as we walk alongP. We drop the phrase “with respect toM” whenever there are
no ambiguities. Afree vertexis a vertex which is not incident to any matching edge.
An alternating forestis a forest inG with the free vertices as roots whose paths are
alternating.

An augmenting pathis an alternating path which starts and ends with a free vertex.
A matching can beaugmentedalong an augmenting pathP by removing the matching
edges onP from the matching and inserting the nonmatching edges onP into the
matching. This yields a matchingM ′ which contains one more edge thanM .

A graphH is factor-critical if H − v has a perfect matching for every vertexv ∈ V(H).
This implies that|V(H)| is odd andH itself has no perfect matching. LetG = (V, E) be
a graph with some matchingM . A blossom Bin G with respect toM is a factor-critical
subgraph ofG which containsk matching edges where|V(B)| = 2k + 1. One vertex
is a trivial blossom. The easiest nontrivial case is just an odd cycle where all vertices
but one are matched. Note that the definition of a blossom is not unique in the literature,
we define it similarly to [23]. A blossom which is not properly contained in another
one is amaximal blossom. A blossom forest with respect to Mis a subgraphF of G
containing vertex-disjoint blossoms such that contracting each blossom inF to a single
vertex—which is calledshrinkingthe blossom—leads to an alternating forest. Amaxi-
mum blossom forestis a blossom forest with maximal cardinality of its vertex set. In the
following we only deal with maximum blossom forests and drop the word “maximum.”
Since an arbitrary number of edges can be added to a blossom and it remains a blossom,
blossom forests are not necessarily sparse, but it is easy to see that there always exist
sparse blossom forests.

Now let M be a maximum matching again. If there exists an alternating path with
respect toM from some free vertex to a certain vertexv, thenv is reachable. If one of the
alternating paths from a reachable vertexv to some free vertex is of even length,5 thenv
is aneven vertex. If v is reachable, but only using odd alternating paths, then it is anodd
vertex. Free vertices are also even. The sets of even and odd vertices are unique, i.e., they
are independent of the particular choice of a maximum matching [7]. A nonreachable
vertex is called anout-of-forest vertex.

5 The length of a path is the number of edges it contains.

56 D. Alberts and M. R. Henzinger

8.2. Data Structure and Suit(G). The data structure we maintain consists of a sparse
blossom forest, parity informations (even, odd, or out-of-forest) for the vertices, and a
list consisting of the edges in a current maximum matching. The matching and forest
edges are marked. Thus, it is trivial to answer a query. Additionally, we store at each
node in the blossom forest a pointer to the tree that it belongs to. A blossom forest is a
well-known data structure used in static maximum cardinality matching algorithms, see,
e.g., [7], [23], and [33].

Conceptually, the data structure is a sparse subgraph of the current graphG, which
has the same matching number and the same parities asG. Even, odd, and out-of-forest
vertices correspond to the Gallai–Edmonds-Decomposition of a graph. For a definition
and properties of this decomposition see [23]. Since our algorithm maintains the partition
of the vertices into even, odd, and out-of-forest vertices, it also maintains the Gallai–
Edmonds-Decomposition of the graph.

We define the setSuit(G) as follows. An element ofSuit(G) is a maximum matching
of the current graph unioned with a blossom forest with respect to this matching. It
follows thats(n) = O(n). We show next that the mappingSuitmeets the requirements
for Theorem 3.1.

LEMMA 8.1. The mapping Suit as defined above fulfills Condition C(see p. 36).

PROOF. It is equivalent to show that Conditions A and B hold (see p. 35). LetG be
the current graph. LetSbe the current suitable subgraph, consisting of the union of the
current maximum matchingM , and a blossom forestB with respect toM .

We begin with Condition A. Assume that we delete an edgee which does not belong
to S. Sincee is not in M , its deletion does not decrease the matching number. ThusM
is maximum inG− {e}. Sincee is not in B, its deletion has no influence on the parities
of the vertices. ThusB is a blossom forest with respect toM for G − {e}, too. Hence,
the unionM ∪ B is a member ofSuit(G− {e}).

In order to show Condition B, suppose that we insert an edgee into the current edge
setE. Let E′ = E ∪ {e}. We have to update the blossom forest or the matching only, if
one of the following three conditions applies:

(1) The insertion of e increases the matching number. In this case we find an augmenting
path whene is inserted, we augment the matching and have to rebuild the blossom
forest. If there is a maximum matching inE′ not containinge, then the deletion of
e from E′ does not decrease the matching number. This is a contradiction, since the
matching number is unique. Soe has to be in every maximum matching inE′.

(2) The insertion of e increases the number of reachable vertices, but it does not change
the matching number. In this case the blossom forest grows. Since the reachable
vertices are unique and they form the vertex set of every blossom forest, we can
argue in the same way as in the previous case thate is in every possible blossom
forest for the new graph.

(3) The insertion of e neither changes the matching number nor the number of reachable
vertices, but it changes the parity of some odd vertices to even. In this case there is
a new blossom in the forest. Since the parities of the reachable vertices within the

Average Case Analysis of Dynamic Graph Algorithms 57

blossom forest are the same as in the whole graph and they are unique, we can again
deduce thate has to be in every possible blossom forest for the new graph.

In all three cases whereS is no longer suitable after the insertion of the new edgee, e
has to be part of any new suitable subgraph. Thus, Condition B holds.

8.3. Updates. It is easy to detect whether an update implies a change in the suitable
subgraph (the bad case) or not. In case of a deletion, this is done using the labels of
the edges. In case of an insertion, we can check whether one of the three conditions
mentioned in Lemma 8.1 applies by using the parity information and the tree pointers at
the vertices. In both cases this can be done in constant time.

Tarjan [33] describes a static algorithm for computing a maximum matching in general
graphs. This algorithm is a variant of Gabow’s earlier implementation [14] of Edmond’s
algorithm [7]. It proceeds in phases. In each phase it either constructs a sparse blossom
forest, or it finds an augmenting path with respect to an intermediate matching computed
so far and augments this matching inO(n + m) time. The algorithm computes the
reachable vertices, their parities, the blossoms and informations to retrieve augmenting
paths. It grows an alternating forest and shrinks nontrivial blossoms reachable via an
even alternating path when they are detected.

In a bad case we simply recompute the data structure by using one phase of Tarjan’s
algorithm. If the change also affects the current maximum matching, we have to apply
the algorithm twice, once for augmenting and once for computing a new blossom forest
with respect to the new maximum matching. These bad cases takeO(n+m) time. All
good cases can be handled in constant time, since we just update the adjacency structure
of the graph. For preprocessing we use the staticO(

√
nm) algorithm of Micali and

Vazirani [24], [35] to construct a maximum matching in the initial random graph and
one phase of Tarjan’s algorithm to construct a sparse blossom forest with respect to the
initial maximum matching. Using Theorem 3.1 we get the following result.

THEOREM8.2. There exists a data structure for dynamic maximum matching which
can be updated in O(n) expected time with respect to the rr-model. It returns a current
maximum matching or answers the question whether a particular edge is in the current
maximum matching in optimal time.

8.4. Insertions Only. We give below an insertions-only maximum cardinality matching
algorithm withO(n) amortized time per insertion of an arbitrary (not random) edge, if
the initial edge set is empty.

Each phase of Tarjan’s algorithm scans the edges inG in arbitrary order until an
augmenting path is found. Scanning them in the order of insertion leads immediately to
a semidynamic algorithm. Whenever an insertion creates an augmenting path, the data
structure is rebuilt. A sequence of insertions between two rebuilds corresponds to one
phase of Tarjan’s algorithm. All the work which has to be done in one such phase, i.e.,
growing the forest, shrinking blossoms, augmenting the matching at the end of the phase,
and rebuilding the blossom forest with respect to the new maximum matching afterward,
takes timeO(n+m). Since there are at mostn/2 phases, the total time isO((n+m)n),

58 D. Alberts and M. R. Henzinger

i.e., the amortized time per insertion isO(n), provided the algorithm is started with an
empty edge set.

9. k-Edge Connectivity andk-Vertex Connectivity. Eppsteinet al. [11] give a dy-
namic algorithm fork-edge connectivity with worst-case update timeO(k2n log(n/k)),
which we slightly modify in order to speed up the good case. It uses an algorithm by
Gabow [15] for the static problem and the following lemma.

Let G be a graph and letT1 = U1 be a spanning forest ofG. Let Ti be a spanning
forest ofG\Ui−1 and letUi beUi−1∪ Ti . ThenUk is called asparse k-edge connectivity
certificatefor G.

LEMMA 9.1 [26], [34]. Let G be a graph and let Uk be a sparse k-edge connectivity
certificate for G. Then G is k-edge connected if and only if Uk is k-edge connected.

For notational convenience letU0 be the empty graph. For eachi we storeG\Ui−1 in
the above minimum spanning tree data structure to maintainTi . We chooseSuit(G) to
be the set of all sparsek-edge connectivity certificates ofG. If an update operation does
not changeUk (good case) we incur amortized costO(k logn). In the bad case we incur
O(k
√

m+ k2n log(n/k)) = O(k2n log(n/k)).
The size of the suitable subgraph in this case isO(kn), so by Theorem 3.1 we get the

following result.

THEOREM9.2. There exists a data structure that answers the question whether
the current graph is k-edge connected in constant time and that can be updated in
O(min(1, kn/m)(k2n log(n/k))) amortized expected time with respect to the rr-model.

We discuss next how to test dynamically if the graph isk-vertex connected. Lemma
9.1 also holds fork-vertex connectivity provided thatTi is chosen to be a scan-first search
forest ofG\Ui−1 [4], [26]. To test quickly for the good case we define thesmallest sparse
k-edge connectivity certificateas follows: we number all vertices during a preprocessing
phase with a unique label between 1 andn in an arbitrary, but fixed way. Then we use
the linear-time algorithm of [26] to findUk. This algorithm sometimes makes arbitrary
choices of which vertex to select next. We require that if more than one vertex can
be selected, the algorithm has to use the one with the minimum label. The resulting
sparsek-edge connectivity certificateSk is called the smallest sparsek-edge connectivity
certificate. We chooseSuit(G) to be the unique smallest sparsek-edge connectivity
certificateSk of G.

Note that even with this additional requirement the algorithm of [26] runs in time
O(m+ n logn). Thus, we can test if the insertion of an edgee is a good case or a bad
case by running this algorithm onSk ∪ e in time O(kn+ n logn). If this is the case we
can construct a new suitable subgraphS′k by running this algorithm onG ∪ e in time
O(m+ n logn). Testing if a deletion changesSk is obvious: if an edge ofSk is deleted,
Sk has to be recomputed, otherwise nothing has to be done.

In the good case we are done. In the bad case we additionally might have to check
whether the new suitable subgraphS′k is k-vertex connected. For this purpose we use

Average Case Analysis of Dynamic Graph Algorithms 59

the (static)O(k3n1.5 + k2n2) time k-vertex algorithm by Galil [16]. This provides the
following result.

THEOREM9.3. There exists a data structure that answers the question whether the
current graph is k-vertex connected in constant time and that can be updated in
O(min(1, kn/m)(k3n1.5+ k2n2)) expected update time with respect to the rr-model.

Conclusion. We present a general technique for analyzing dynamic graph algorithms
in the average-case setting. Note that this technique can also be used for analyzing the
expected time of randomized incremental algorithms for static graph problems. There we
have a worst-case input graph and the algorithm works by maintaining a current solution
while inserting the edges one by one in random order. In fact, backwards analysis was
first used in computational geometry for exactly this purpose by Chew [5].

Note that our technique can also be used to analyze the average-case performance of
randomized dynamic graph algorithms. (A randomized algorithm is an algorithm that
makes use of random choices for computing the solution to a worst-case input.)

For the connectivity problems considered in this paper the running time of an update
consists of two parts: an expected running time ofO(n/

√
m+ logn) (wherem is the

number of edges after the update) plus an amortized constant time for rebuilds. It is an
interesting open question whether the data structure can be improved by distributing the
costs of rebuilds over previous updates in a way that gives an expected time bound of
O(n/
√

m+ logn) per update.
Eppstein [9] suggested that a good average-case behavior for some of the above

problems can also be shown for node insertions and deletions.

Acknowledgments. The authors would like to thank Emo Welzl for helpful discus-
sions.

References

[1] D. Alberts and M. R. Henzinger. Average case analysis of dynamic graph algorithms. InProc. 6th Symp.
on Discrete Algorithms, pages 312–321, 1995.

[2] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity, and symmetries of geometric
objects.Discrete Comput. Geom., 3:237–256, 1988.

[3] B. Bollobás.Random Graphs. Academic Press, London, 1985.
[4] J. Cheriyan, M. Y. Kao, and R. Thurimella. Algorithms for parallelk-vertex connectivity and sparse

certificates.SIAM J. Comput., 22:157–174, 1993.
[5] L. P. Chew. Building voronoi diagrams for convex polygons in linear expected time. CS Tech Report

TR90-147, Dartmouth College, Hanover, NH, 1986.
[6] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental constructions.

Comput. Geom. Theory Appl., 3:185–212, 1993.
[7] J. Edmonds. Paths, trees, and flowers.Canad. J. Math., 17:449–467, 1965.
[8] D. Eppstein. Average case analysis of dynamic geometric optimization. InProc. 5th Symp. on Discrete

Algorithms, pages 77–86, 1994.
[9] D. Eppstein. Personal communication, 1995.

60 D. Alberts and M. R. Henzinger

[10] D. Eppstein, Z. Galil, and G. F. Italiano. Improved sparsification. Technical Report 93-20, Dept. of
Information and Computer Science, University of California, Irvine, CA, 1993.

[11] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification—a technique for speeding up
dynamic graph algorithms. InProc. 33rd Symp. on Foundations of Computer Science, pages 60–69,
1992.

[12] G. N. Frederickson. Data structures for on-line updating of minimum spanning trees, with applications.
SIAM J. Comput., 14:781–798, 1985.

[13] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity andk smallest spanning
trees. InProc. 32nd Symp. on Foundations of Computer Science, pages 632–641, 1991.

[14] H. N. Gabow. Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D.
thesis, Dept. of Computer Science, Stanford University, Stanford, CA, 1973.

[15] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. InProc.
23rd Symp. on Theory of Computing, pages 112–122, 1991.

[16] Z. Galil. Finding the vertex connectivity of graphs.SIAM J. Comput., 9:197–199, 1980.
[17] M. R. Henzinger. Fully dynamic cycle equivalence in graphs. InProc. 35th Symp. on Foundations of

Computer Science, pages 744–755, 1994.
[18] M. R. Henzinger and V. King. Randomized dynamic algorithms with polylogarithmic time per operation.

In Proc. 27th Symp. on Theory of Computing, pages 519–527, 1995.
[19] M. R. Henzinger and M. Thorup. Improved sampling with applications to dynamic graph algorithms.

In Proc. ICALP ’96, pages 290–299, 1996.
[20] R. M. Karp. Personal communications.
[21] P. N. Klein and R. E. Tarjan. A linear-time algorithm for the minimum spanning tree. InProc. 26th

Symp. on Theory of Computing, pages 9–15, 1994.
[22] P. M. Lewis, R. E. Stearns, and J. Hartmanis. Memory bounds for recognition of context-free and

context-sensitve languages. InProc. IEEE Conf. on Switching Theory and Logical Design, pages 191–
202, 1965.

[23] L. Lovász and M. D. Plummer.Matching Theory. Annals of Discrete Mathematics, volume 29. North-
Holland, Amsterdam, 1986.

[24] S. Micali and V. Vazirani. AnO(V1/2E) algorithm for finding maximum matching in general graphs.
In Proc. 21st Symp. on Foundations of Computer Science, pages 17–27, 1980.

[25] K. Mulmuley. Randomized, multidimensional search trees: dynamic sampling. InProc. 7th Symp. on
Computational Geometry, pages 121–131, 1991.

[26] H. Nagamochi and T. Ibaraki. Linear time algorithms for finding a sparsek-connected spanning subgraph
of ak-connected graph.Algorithmica, 7:583–596, 1992.

[27] M. H. Rauch. Fully dynamic biconnectivity in graphs. InProc. 33rd Symp. on Foundations of Computer
Science, pages 50–59, 1992.

[28] M. H. Rauch. Improved data structures for fully dynamic biconnectivity. InProc. 26th Symp. on Theory
of Computing, pages 686–695, 1994.

[29] J. H. Reif, P. G. Spirakis, and M. Yung. Re-randomization and average case analysis of fully dynamic
graph algorithms. Alcom Technical Report TR 93.01.3.

[30] O. Schwarzkopf. Dynamic maintenance of convex polytopes and related structures. Ph.D. thesis, Freie
Universität Berlin, Berlin, 1992.

[31] R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor,New Trends in
Discrete and Computational Geometry, pages 37–67. Springer-Verlag, Berlin, 1993.

[32] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.J. Comput. System Sci., 26:362–391,
1983.

[33] R. E. Tarjan.Data Structures and Network Algorithms. CBMS-NSF Regional Conference Series in
Applied Mathematics, volume 44. Society for Industrial and Applied Mathematics, Philadelphia, PA,
1983.

[34] R. Thurimella. Techniques for the design of parallel graph algorithms. Ph.D. thesis, University of Texas,
Austin, TX, 1989.

[35] V. V. Vazirani. A theory of alternating paths and blossoms for proving correctness of theO(
√

V E)
general graph maximum matching algorithm.Combinatorica, 14(1):71–109, 1994.

