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Abstract 

Two edges el and e2 of an undirected graph are 
cycle-equivalent iff all cycles that contain el also 
contain e2, i.e., iff el and e2 are a cut-edge pair. 
The cycle-equivalence classes of the control-flow graph 
are used in optimizing compilers to speed up ezast- 
ing control-flow and data-flow algorithms. While the 
cycle-equivalence classes can be computed in linear 
time, we present the first fully dynamic algorithm for 
maintaining the cycle-equivalence relation. In  an n- 
node graph OUT data structure executes an edge in- 
sertion OT deletion in O(fi1ogn) time and answers 
the query whether two given edges are cycle-equivalent 
in O(log2n) time. W e  also present an algorithm for 
plane graphs with O(1ogn) update and query time 
and for planar graphs with O(1ogn) insertion time 
and O(log2 n) que y and deletion time. Additionally, 
we show a lower bound of R(lognllog1ogn) for the 
amortized tame per operation for the dynamic cycle- 
equivalence problem in the cell probe model. 

1 Introduction 

Two edges e1 and e2 of an undirected graph are 
cycle-equivalent iff all cycles that contain el also 
contain e2. Computing cycle-equivalence is central 
to  many compilation problems, because the control- 
dependence equivalence relation of a program is 
the cycle-equivalence relation of the undirected ver- 
sion of the control-flow graph [12]. In particular, 
code-optimization algorithms, such as static single- 
assignment form construction, and data-flow analy- 
sis, such as determining the subexpression availability, 
can be sped up if the cycle-equivalence classes of the 
control-flow graph are known [13]. A third applica- 
tion of the control-dependence equivalence relation is 
in global scheduling of instructions for pipelined ma- 
chines [ll]. 

In [13], a static algorithm is used that computes 

the cycle-equivalence relation in linear time. Then the 
question is posed if the cycle-equivalence relation can 
be maintained efficiently during modifications of the 
control-flow graph. This problem is of practical signif- 
icance, because it can speed up incremental compilers 
used in programming environments and text editors. 
In particular, fast query time is essential. 

We present the first dynamic algorithm for main- 
taining the cycle-equivalence relation under edge in- 
sertions and deletions. Our data  structure requires lin- 
ear preprocessing time and space and tests if two edges 
are cycle-equivalent in O(log2 n) query time, where n 
is the number of vertices in the graph. The data struc- 
ture can be updated in O(fi1ogn) time after the in- 
sertion or deletion of an edge. Note that  up to logn 
factors this is as efficient as the fastest known algo- 
rithm for the simpler problem of dynamically main- 
taining the connectivity relation, which requires O( 1) 
query time and O(& update time [3]. 

Dynamic cycle-equivalence is also interesting be- 
cause of the relation to dynamic 3-edge connectivity: 
two edges el and e2 are cycle-equivalent iff ( e 1 , e ~ )  is 
a cut-edge pair (i.e., the removal of el and e2 discon- 
nects the graph). While the best known dynamic algo- 
rithm for testing 3-edge connectivity requires O(n2/3) 
query and update time 191, we can solve the witness 
version of 3-edge connectivity in O(log2 n)  query time 
and O(fi1ogn) update time: given two vertices U and 
v and two edges el and e2, is (e1,e2) a cut-edge pair 
witnessing that  U and v are not 3-edge connected (i.e., 
does the removal of el and e2 disconnect U and v)? 
Again, note that up to logn factors our algorithm is 
as efficient as the best known dynamic algorithms for 
the witness versions of the simpler problems of 2-edge 
connectivity: checking if an edge is a bridge witness- 
ing that two given vertices U and v are not 2-edge 
connected requires O(1ogn) query time and O(&) 
update time [3]. 

We also present an algorithm for plane graphs with 
O(1ogn) time per operation and an algorithm for pla- 
nar graphs with O(log2 n) time per operation. Addi- 
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tionally, we show a lower bound of R(1og n/ log log n) 
on the amortized time per operation for the dy- 
namic cycle-equivalence problem in Yao’s cell probe 
model [17]. This is the most general model for lower 
bounds and encompasses all RAM algorithms. All 
three bounds match the best known bounds for the 
dynamic connectivity problem. 

We call a binary relation of vertices (or edges) 
conuex if whenever two vertices (edges) U and v are 
related, then there exists a path between U and v 
such that all vertices (edges) on the path are related. 
For example, connectivity, 2-edge connectivity, and 
2-vertex connectivity are convex; k-edge connectiv- 
ity and k-vertex connectivity for k 2 3 are not con- 
vex. Convexity simplifies the design of dynamic algo- 
rithms: the best known dynamic algorithms for con- 
nectivity 2-edge connectivity require O( &) update 
time and 0 ( 1 )  resp. O(1ogn) query time; for 2-vertex 
connectivity, O ( f i )  update time and O(1) query 
time [15]; for 3-edge connectivity, R(n2/3) update and 
query time (91; for 3-vertex connectivity, R(n) update 
time (31; for 4-edge connectivity and 4-vertex connec- 
tivity, R(na(n)) update time [3]; for k-edge connec- 
tivity with constant k > 4, R(n1ogn) update time [4]. 
Cycle-equivalence is not convex: two edges e l  and e2 
can be cycle-equivalent without any other edge being 
cycle-equivalent to  e l  or e2. Our algorithm, therefore, 
is the first known O(&logn) update time algorithm 
for a nonconvex problem in general graphs. 

Convexity supports a divide-and-conquer approach: 
(1) decompose the graph into small connected sub- 
graphs, so-called clusters; (2) solve the problem in 
each cluster using a static algorithm; and (3) apply 
a variant of the dynamic algorithm recursively to  the 
graph of clusters. The lack of convexity in the cycle- 
equivalence problem, on the other hand, makes it im- 
possible to  solve the problem in each cluster with a 
static algorithm alone. Rather, we maintain a span- 
ning tree T of the graph and we solve three sub- 
problems: (2a) test the cycle-equivalence between a 
tree edge and a non-tree edge; (2b) test the cycle- 
equivalence between a tree edge in the cluster and a 
tree edge outside of the cluster; and (2c) test the cy- 
cle equivalence between two tree edges in the cluster. 
(Two non-tree edge cannot be cycle-equivalent.) For 
testing (2a) we combine the ambivalent data  struc- 
ture of [7] with the recipe technique of [lo]. For test- 
ing (2b), we introduce the following new technique, 
called f a s t  non-tree updates: We give each edge out- 
side the cluster cost 1 and each other edge cost 0 and 
maintain a minimum spanning tree of this graph using 
a data  structure that implements insertions of edges 

and deletions of non-tree edges in time O(1ogn) and 
deletions of tree edges in time linear in its size, which 
is O(&). Note that no edge outside the cluster is 
contained in the minimum spanning tree of the graph. 
Thus, the data  structure of a cluster can be updated 
in O(1ogn) time when an outside edge changes. Since 
during an update one inside edge in at most two clus- 
ters and O( 1) outside edges in potentially all O( &) 
clusters have to be updated, this technique allows us to 
update all data  structures in time O( &log n). Later, 
the technique of fast non-tree updates has also been 
used to  analyze and design dynamic algorithms in a 
random input model [l]. For testing (2c), we maintain 
for every cluster ambivalent information and develop a 
variant of topology trees [6], called lazy topology trees: 
each node in the topology tree is labeled, but after 
each update the labels of only a dynamically changing 
subset of the nodes are updated, even though the label 
value at all nodes can change. 

In Section 2 we present the algorithm for general 
graphs, in Section 3 we give the algorithm for plane 
and planar graphs and show the lower bound. 

2 General graphs 

We assume that the graph G is connected. If not, 
we connect it with O(n)  artificial edges that we update 
appropriately if the connected components change. A 
pair of edges ( e 1 , e 2 )  is a cut-edge pair  if the removal 
of e l  and e2 disconnects the graph. 

Lemma 2.1 Two edges are cycle-equivalent iff they  
are a cut-edge pair  in the graph. 

Let T be a spanning tree of G, let T’ (T”) be a 
spanning forest of G \ T (G \ {T U TI}) ,  and let G” = 
TUT’UT”. (When refering to  a tree edge, we mean an 
edge of T . )  As shown in [14] two edges are a cut-edge 
pair in G iff they are a cut-edge pair in G”. Lemma 2.1 
immediately implies the following lemma. 

Lemma 2.2 Two edges of G are cycle-equivalent in 
G iff they  both are contained in GI’ and they  are cycle- 
equivalent in G”. 

This implies that it suffices to  test cycle-equivalence 
in a graph with O ( n )  edges. Using a dynamic connec- 
tivity data  structure for G, for G\T and for G\{T, TI}  
we maintain T ,  TI,  and TI’ and, thus G” dynami- 
cally. We present in the next section an algorithm for 
maintaining cycle-quivalence in G” with update time 
O((k  + n / k  + log n) log n) and query time O(log2 n). 
Choosing k = f i  gives the following result. 
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Theorem 2.3 The cycle-equivalence of edges in a 
graph can be maintained an time O(log2n) per query 
and O(Ji6logn) per update. 

Lemma 2.4 Two edges el and e2 are a cut-edge pair 
witnessing that to vertices U and v are not 3-edge con- 
nected iff el and e2 are a cut-edge pair and either el 
or e2 lies on the tree path between U and U. 

Theorem 2.5 OUT data structure can answer a 
witness-query in time O(log2 n). 

Note that 2 non-tree edges cannot be cycle- 
equivalent. Thus, it suffices to test the cycle- 
equivalence between two tree edges (Section 2.2) and 
the cycle-equivalence between a tree edge and a non- 
tree edge (Section 2.3). First (Section 2.1) we give 
some basic definition and data structures. 

2.1 Basics 

We present first the topology trees data structure [6]. 
Given a graph G with spanning tree T we expand ev- 
ery vertex of G with degree d > 3 into d vertices that 
are connected by a chain of d - 1 edges. We naturally 
expand T to  be a spanning tree of the expanded graph 
G’. Note that two edges are cycle-equivalent in G’ iff 
they are cycle-equivalent in G. 

A cluster partition of order k of T is a partition of 
T into O ( m / k )  subtrees, each consisting of O(k)  edges 
and vertices. Each subtree is called a level-0 cluster or 
simply cluster. An edge with (exactly) 1 endpoint in 
C is an incident edge of C. The tree degree of a C is 
the number of tree edges incident to  C. A restricted 
partition of order k is a cluster partition where the 
tree degree of all clusters is at most 3 and if the tree 
degree of a cluster is 3, then the cluster consists of 
only one vertex and this vertex is not incident to  any 
non-tree edges. 

An edge with 2 endpoints in C is an internal edge 
of C, an edge with 0 or 1 endpoint in C is an external 
edge of C .  Note that a cluster with tree degree 3 does 
not have any internal edges. The tree path T P ( C )  of 
C with tree degree 2 is the tree path connecting the 
two tree edges incident to  C. If C has tree degree 
1 or 3, its tree path consists of the endpoint of the 
tree edge(s) incident to  C. We denote by R ( u , ~ )  the 
tree path between U and v and by C ( u )  the cluster 
containing U .  A non-tree edge (2, y )  cowers a tree edge 
e iff e lies on the tree path ? r ( z , y )  between x and y .  

Let a high-level graph H of G consist of one vertex 
per cluster and an edge between two clusters C1 and 
C, iff there exists an edge between a vertex of Cl and 

C2. The spanning tree of G induces a spanning tree 
on H. An edge incident to  two clusters is a high-level 
edge or h-edge. 

A level-i cluster is (1) the union of two level-(i - 1) 
clusters that are connected by a tree edge such that 
one of them has tree degree 1 or both have tree degree 
2, or (2) one level-(i - 1) cluster if the previous rule 
does not apply. A topology tree TT is a tree such that 
each node C at level i corresponds to a level-i cluster. 
If X is the union of two clusters X1 and X2 at level 
i - 1, then X1 and X2 are the children of X. If X 
consists of one level-(i - 1) clusters X at level i, then 
X1 is the only child of X in TT. We call the vertices 
of TT nodes. We say that  a vertex x of G belongs to 
a node X of TT and that X contains x if x belongs to 
the cluster corresponding to X .  

2.2 The cycle-equivalence of two tree 
edges 

To test the cycle-equivalence of 2 tree edges we dis- 
tinguish between testing (1) 2 h-edges, (2) an internal 
and an external edge of a cluster C, and (3) 2 edges 
internal to C. We build 3 different data structures, 
called external, combined, and internal data  structure 
and use combinations of them to solve cases (1) - (3). 

In the rest of the section let us denote the 2 query 
edges by (u,v) and ( z , y )  and assume that v and y 
lie on R ( Z , U )  (i.e., v , y  E ~ ( x , u ) ) .  If ( z , y )  is a tree 
edge, we denote by the subtree of x in T \ ( x , y )  the 
subtree of T \ (2, y )  containing x .  If x is contained in 
a cluster C, then the subtree of x in c \ (x,y) is the 
part of the subtree of x in T \ ( s , y )  that is contained 
in C. If e = (u ,v)  and e’ = ( z , y )  are 2 edges of T 
with v , y  E ?T(u,x), then the subtree of e and e’ is the 
subtree of T \ { e ,  e’} containing v and y .  

We need to  test 4 quite technical properties, called 
Type i queries for i 5 4. The external data structure 
tests the lst ,  the combined data structure tests the 2nd 
and 3rd, and the internal data structure tests the last. 
Type 1 query: Let el = (x,y), e2,  and e3 be h-edges 
of T such that the subtree TI of x in T \ (z, y )  and the 
subtree T2 of e2 and e3 are vertex-disjoint. Is there a 
non-tree edge between TI and T2? 
Type 2 query: Let ( z , y )  be an edge on T P ( C )  and 
let ( u , v )  be an edge with U $! C and v , y  E ?T(u,x) .  
Is there a non-tree edge between (1) the subtree of 
x in C \ (2, y )  and the subtree of ( x , y )  and (u ,v)  or 
(2) between the subtree of y in C \ ( x , y )  and either 
the subtree of U in T \ (u , v )  or the subtree of x in 

Type 3 query: Let (x, y )  be an internal edge of C not 
on T P ( C )  and let (u ,v)  be an edge with U C and 

T \ (x, Y)? 
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w,y E T ( u , z ) .  Is there a non-tree edge (1) between 
the subtree of z in C \ (z, y) and the subtree of (x, y)  
and (u,w) or (2) between the subtree of y in C\ (z,y) 
and the subtree of U in T \ ( U ,  w)? 
Type 4 query: Let (z,y) be an internal edge of C 
no on T P ( C )  and let (u,w) be an edge on T P ( C )  with 
y , v  E ~ ( x , u ) .  Let ( z , w )  and (2, w’) be the tree edge 
incident to  C with w,  w’ @ C and U ,  v E ~ ( x ,  w’). Is 
there a non-tree edge (1) between the subtree of w in 
H \ C and either the subtree of z in C \ (z, y )  or the 
subtree of U in C \ ( U ,  w) or (2) between the subtree of 
w’ in H \ C and the subtree of (5,y) and ( u , ~ )  in C? 

We first split the cycle-equivalence problem into 
suitable subcases and show how to  solve each of them 
by a combination of Type i queries. Then we present 
3 data  structures to  answer the Type i queries. 
Two h-edges 
Testing 2 h-edges requires one query in the external 
data  structure: 

L e m m a  2.6 Let (x,y) and (u,w) be two external tree 
edges with y , v  E ~ ( x , u ) .  Then (x ,y)  and (u,w) are 
cycle-equivalent iff there is no non-tree edge between 
the subtree of (z,y) and (u,w) and either the subtree 
of z in T \ (z, y) or the subtree of U in T \ ( U ,  w). 

O n e  internal and one external edge of C 
Testing an internal and an external edge of C requires 
tests in the external data structure (Condition 1 and 
2)  and in the combined data  structure (Condition 3): 

L e m m a  2.7 Let (x ,y )  be an edge internal to the clus- 
ter C ,  but not on T P ( C ) ,  and let ( u , v )  be an external 
edge of C withy, w E ~ ( x , u ) .  Let e l  be the tree edge on 
T ( U , Z )  incident to C and let e2 = ( z , w )  with w @ C 
be the other tree edge incident to C (if it exists). Then 
(z,y) and (u,w) are cycle-equivalent iff 

1. there is no non-tree edge between the subtree of U 

in T \ (u,w) and the subtree of (u,w) and e l ,  
2. there is no non-tree edge between the subtree of U 

in T \ (u , v )  and the subtree of w in T \ e2, and 
3. there is no non-tree edge between ( 1 )  the subtree 

o f u  in T \ (u,w) and the subtree of y in C\ (x, y) 
and (2) between the subtree of x in C \ (x, y) and 
the subtree of (u , v )  and ( 5 , ~ ) .  

L e m m a  2.8 Let (z,y) be an edge on T P ( C )  and let  
(u,w) be an external edge with y,w E ~ ( x , u ) .  Let el 
be the tree edge  on T ( U , Z )  incident to C and let e2 = 
( z ,w)  with w @ C be the other tree edge incident to C .  
Then (z, y) and (U, w) are cycle-equivalent ifl 

1 .  there is no non-tree edge between the subtree of u 
in T \ (u,w) and the subtree of (u,w) and e l ,  

2. there is no non-tree edge between the subtree of w 
and the subtree of ( U ,  U) and el .  

3. (1)  there is no non-tree edge between the subtree 
of y in  c \ (z,y) and either the subtree of U in  
T \ (u,w) OT the subtree of z in T \ (x ,y)  and 
(2)  there is no edge between the subtree of z in 
C \ (x ,y)  and the subtree of (u , v )  and (x ,y) ,  

Two internal edges of C 
We distinguish the case that (1) either both query 
edges lie on T P ( C )  or neither does and (2) that one 
query edge lies on T P ( C )  and the other does not. 
Let G’(C) be the graph consisting of all vertices of 
C and 1 vertex representing all vertices outside of C. 
The vertices of G’(C) are connected by all edges in- 
cident to  vertices of G’(C). Thus, G’(C) is created 
from G by collapsing all vertices outside C to  one ver- 
tex. Lemma 2.9 shows that Case (1) can be reduced to  
testing cycle-equivalence in G’(C), a graph with O ( k )  
edges and vertices. Cycle-equivalence in GI( C) can 
be maintained using the static algorithm in time O ( k )  
per update and O( 1) per query. 

L e m m a  2.9 Let (z,y) and (u,w) be two edges of C 
with y,w E T ( X , U )  and such that either both edges lie 
on T P ( C )  OT neither lies on T P ( C ) .  The edges (x,y) 
and (u , v )  are cycle-equivalent in G iff they are cycle- 
equivalent in  G’(C). 

Let G”(C) be the graph induced by all vertices of 
C and all edges internal to C. As in the case of G’(C), 
G”(C) can be maintained in time O ( k )  per update and 
O(1) per query. In Case (2) we test cycle-equivalence 
using the external data structure for Condition 1 of 
the next lemma, using G”(C) for Condition 2, and a 
Type4 query for Condition 3-5. 

L e m m a  2.10 Let (x,y) be an internal edge, not on 
T P ( C )  and let (u,w) be an edge on T P ( C )  with 
y , v  E ~ ( x , u ) .  Let e l  = (w,z) and e2 = ( w ‘ , ~ ’ )  be 
the tree edges incident to C with w ,  w’ @ C such that 
(u,w) E ~ ( x , w ’ ) .  The edges (x ,y)  and (u,w) are cycle- 
equivalent in G iff 

1. 

2. 
3. 

4 .  

5. 

there is no non-tree edge between the subtree of 
w’ in T \ e2 and the subtree of w in T \ e l .  
( 5 , ~ )  and (u,w) are cycle-equivalent in  G”(C) 
there is no non-tree edge between the subtree of U 

in C \ ( U ,  U) and the subtree of w in T \ el 
there is no non-tree edge between the subtree of 
w’ in T \ e2 and the subtree of (2, y) and ( U ,  U) in 
c, 
there is no non-tree edge between the subtree of x 
in C \ (x, y) and the subtree of w in T \ e l  
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2.2.1 The external data structure 

Given 3 h-edges el = (z, y ) ,  e2, and e3 that  are tree 
edge such that the subtree of x and the subtree of e2 
and e3 are vertex-disjoint, the external data structure 
allows to test if there is a non-tree edge between the 
subtree of z in T \ (z, y )  and the subtree of e2 and e3. 

We maintain a topology tree TT for G and keep 
at each node X of TT a copy T T ( X )  of TT (called 
individual topology tree or i-tree) in which we store 
some of the edges leaving X .  To be precise at the node 
representing the cluster Y which is not an ancestor or 
descendant of X in T T ( X )  we store an edge between 
Y and X if such an edge exists and 0 otherwise. 

All i-trees are computed bottom-up. If X is a level- 
0 cluster, T T ( X )  contains at the node Y which is not 
an ancestor of X one edge between X and Y if such an 
edge exists and 0 otherwise. If X is an internal node 
of TT and it has one child, the labels of T T ( X )  are 
identical to the label of its child. If X has two children 
XI and X2, then a node of T T ( X )  is labeled with an 
edge iff the corresponding node is labeled in TT(X1) 
or TT(X2).  Thus, building T T ( X )  takes time O(k + 
m/k)  in both cases. Note that updating T T ( X )  if the 
structure of TT has changed takes time O(1ogn) given 
(1) the edges incident to X if X is a level-0 cluster or 
(2) i-tree of the children of X if X is not a level-0 
cluster: First T T ( X )  is split and joined appropriately, 
then the labels of the 0 (1 )  new leaves of T T ( X )  are 
determined from (1) the edges incident to  X or (2) the 
i-trees of the children of X .  Finally the labels of the 
O(1ogn) new non-leaf nodes of T T ( X )  are computed 
bottom-up in T T ( X ) .  

After an update (a ,  b )  operation the i-trees of all 
clusters are rebuilt bottom-up. Since TT has depth 
O(logn), this takes time O((k  + m/k)logn). If the 
update changes TT,  then all O(m/k)  i-trees are up- 
dated, each in time O(1ogn). Thus the total time to  
update the external data structure after an update 
operation is O ( ( k  + m/k)  logn). 

To answer a query note that the subtree of x in 
T \ (2 ,  y )  (the subtree of e2 and ea) is represented by 
O(1ogn) subtrees of TT. We call the roots of these 
subtrees the topology nodes representing (topology 
nodes representing the subtree of e2 and e3). 

Lemma 2.11 Let R I , .  . . , R I  be the topology nodes 
representing x .  There is an edge between the subtree 
of x an T \ (2 ,  y )  and the subtree of e2 and e3 a# there 
is an edge at a node X that is an internal node in 
TT(R, )  for of a node Ri and represents the subtree of 
e2 and e3 in TT(R,) .  

Theorem 2.12 The external data structure can an- 
swer a query in time O(log2n) and can be updated an 
time O( ( k  + m/k)  log n). 

2.2.2 The combined data structure 

Description 
The combined data structure answers Type2 and 

Type3 queries using a data structure with fast non- 
tree updates. Since in this case C has an internal 
edge, the tree degree of C is 1 or 2. 

We define a graph G(C)  consisting of one vertex for 
each vertex of C, one vertex for each edge incident to 
C (called e-vertez), and all edges incident to  vertices 
of C with cost 0 such that an edge (a ,b)  with a E 
C and b # C is represented by an edge between a 
and the e-vertex of (a,b). Since each cluster contains 
O ( k )  edges, G ( C )  has size O(k) .  Additionally, G(C)  
contains artificial edges with cost 1 that are defined 
using the following order, called Eulerian tour order 
(ET-order): 

We fix a tree degree-1 cluster S. Let s E S be the 
endpoint of the tree edge incident to  S. We start an 
Eulerian tour of the spanning tree of H at S and create 
a list L of dl clusters (with multiple occurrences) in 
the order in which they are visited. We assign to  each 
cluster C up to  3 numbers n u m l ( C ) ,  numz(C) ,  and 
num3(C) such that numi(C) = j iff the i th  visit of 
C is on position j of L. We also assign each vertex 
x E C a number num(z) such that num(x)  = i iff 
x is the i th  vertex visited by the following Eulerian 
tour of the spanning tree of C: Let e be the tree edge 
that is incident to a cluster C and that is used by the 
Eulerian tour to  visit C for the first time if C # S, 
and let e be the tree edge incident to  C if C = S. 
The tour starts at e and it visits all vertices before it 
crosses the other tree edges incident to  C (if the tree 
degree is > 1). The ET-order on the vertices of G is 
the lexicographic combination ( n u m l ( C ( x ) ) ,  num(z)) 
and is denoted by >ET. If x >ET y ,  then the first 
visit of 2 occurs after the first visit to  y in the above 
Eulerian tour of T .  The edges incident to  C are in 
ET-order if they are ordered in the ET-order of their 
endpoints that  are not in C (ambiguities are resolved 
in an arbitrary but fixed way). 

Let w be a vertex connected to C by a tree edge. 
Let L(w) be the list of all edges incident to  C and to 
the subtree of w in H \ C. The e-vertices of all edges 
in L(w) are connected in G(C)  by a chain of artificial 
edges such that  el and e2 of L ( w )  are connected by 
an artificial edge iff el is the immediate successors of 
e2 in the ET-order. 



Assuming the vertices are in ET-order, the follow- 
ing lemmata show how to  answer Type 2 or 3 queries. 

L e m m a  2.13 Let ( x , y )  be an edge on T P ( C ) ,  let 
( u , v )  be a tree edge with U 6 C such that v , y  E 
T ( u , x ) ,  let G, be the subtree of U in T \ ( u , v )  and 
let G,, be the subtree of (u ,v)  and ( x , y ) .  

I f s  6 G,, then let 
a U’ be the smallest vertex in  G, incident to C 
a U” be the largest vertex in G, incident to C ,  
a U’ be the largest vertex in G,, incident to C OT in 

a U” be the smallest vertex in  G,, incident to C 

Ifs E G,, then let 
a U’ be the largest vertex in G ,  incident to C such 

that U’ S E T  U ,  

e U“ be the smallest vertex in G, incident to C such 
that U” >ET U ,  

e U’ be the smallest vertex in  G,, incident to C or 
in C ,  

a U” be the largest vertex in G,, incident to C. 
(It is possible that U“ and U” do not exist.) There 

is an edge between (1) the subtree of x in C \ (x, y) 
and the subtree of ( u , v )  and ( x , y )  or (2) between the 
subtree of y in C\(x, y) and the subtree of U in T\(u, v) 
or the subtree of x in T \ ( x ,  y) i f  (2 ,  y) is covered in 

C such that v’ <ET U ,  

such that U” > E T  U. 

{G(C) U (U‘, x ) )  \ {(U’, U ’ ) ,  (U’’, v”)). 

L e m m a  2.14 Let (2, y) be an internal edge of C not 
on T P ( C ) ,  let ( u , v )  be a tree edge with U 6 C such 
that v , y  E T ( u , x ) .  Let u’,~’’,v~,v’’ be defined as in 
Lemma 2.14. 

There is an edge between ( 1 )  the subtree of x in 
C \ ( x , y )  and the subtree of (u , v )  and ( 2 ,  y) or (2) 
between the subtree of y in C\ ( 2 ,  y) and the subtree of . .  ~, 

U i n T \ ( u , v )  i . f ( x , y )  is covered in {G(C)U(u ’ ,x) } \  
{(u’,v’), (u”,v”)}. 

Data s t ruc tu re  
The data  structure at each cluster C consists of 2 

parts: ( 1 )  We keep a balanced search tree of all edges 
incident to C in ET-order. (2) We keep the follow- 
ing data structure for fast non-tree updates FAST(C): 
We maintain the minimum spanning tree of G(C) in 
a dynamic tree data  structure [16] and keep for each 
tree edge the coverage number, the number of non- 
tree edges covering it. Every insertion or deletion 
of an edge ( a , b )  increases or decreases the coverage 
number of all edges on ~ ( a , b )  by one. Thus, it takes 
time O(1ogn). Since the minimum spanning tree of 

G(C) does not contain any artificial edges, insertions 
or deletions of artificial edges in FAST(C) take only 
time O(1ogn). 
Updates 

We describe how to update each of the 2 parts: 
( 1 )  If the ET-order inside a cluster C’ changes, we 
delete all edges incident to  C’ from all balanced search 
trees of the other clusters and reinsert them in the 
new order. Since O ( k )  edges are incident to  C‘, 
this takes time O(k1ogn). If the ET-order of H 
changes, note that the change is structured as fol- 
lows: Let 1 , 2 , .  . . , p  be the labels of the clusters be- 
fore the change. Then there exist labels il < i2 and i 3  

such that the new order is either 1 , 2 , .  . . , il - 1,  i 2  + 
l , i 2  + 2 , .  . . , i 3 , i l , i l  + 1 , .  . . , i 2 , i 3  + l , i 3  + 2 , .  . . , p  or 
1 , 2 , .  . . i 3 ,21 ,21  + l , . .  . , i 2 , i 3  + 1 , i 3  + 2 ,  .. . ,il - l , i 2  + 
1, i 2  + 2 , .  . . , p .  Thus, updating a balanced search tree 
requires a constant number of splits and joins and 
takes time O(1ogn). 

( 2 )  Whenever an edge incident to  a cluster is in- 
serted or deleted, we rebuild its FAST-data structure 
from scratch in time O ( m / k  + k ) .  Since each edge is 
incident to  at most 2 clusters, a t  most 2 FAST-data 
structures have to  be rebuilt. If the ET-order inside a 
cluster C’ changes, we delete all artificial edges in- 
cident to e-vertices of edges between C’ and C in 
FAST(C). Then we reconnect the e-vertices with arti- 
ficial edges in the new order. Updating all FAST-data 
structures takes time O(k1ogn). If the ET-order of H 
changes, then as shown in ( 2 )  a constant number of 
artificial edges of FAST(C) have to  be modified (and 
the balanced search tree of C provides these edges). 
Hence, updating FAST(C) takes time O(1og n) ,  up- 
dating all FAST-data structures takes time O ( k  log n). 
Thus, updating all combined data  structures takes 
time O ( ( k  + m/k)  logn). 
Queries 

To answer Type 2 and Type 3 queries we deter- 
mine the vertex U‘, U”, U‘, and U” (as defined in 
Lemma 2.13) in time O(1ogn) using the balanced 
search tree of the edges incident to C, the num, la- 
bels of the clusters, and the num label of the ver- 
tices. Then we delete (u’,v’) and ( u ” , ~ ” )  from the 
FAST-data structure of G(C),  insert (x ,u’)  with cost 
1, and test the coverage of ( x , y ) .  Afterwards we re- 
store G(C). Since (U’, v’), (U”,  v”) and (x, U’) are non- 
tree edges of G(C),  this takes O(1ogn) time. 

Theorem 2.15 Each query in a combined data struc- 
ture can be answered in time O(1ogn). After an update 
in  G it takes time O ( ( k  + m/lc)logn) to update all 
combined .data structures. 
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2.2.3 The internal data structure 

If the query edges (z, y )  and (U, U) lie in the same clus- 
ter C with (x ,y)  not on TP(C)  and (u ,v)  on T P ( C ) ,  
we have to answer a Type 4 query which corresponds 
to  testing Conditions 3-5 of Lemma 2.10. Since (2, y )  
is not on TP(C) ,  the tree degree of C is 2 and, thus, 
s 6 C (see Section 2.2). A vertex z is cowered iff the 
removal of z does not disconnect the graph. 

Lemma 2.16 Condition 1 of Lemma 2.10 holds iff 
the cluster C is not COWeTed an H.  

We only test for Condition 3-5 if Condition 1 holds: 
Thus, we maintain ambivalent information to  test 
Condition 3 and 4, and a lazy topology tree to test 
Condition 5 only for uncovered clusters. To determine 
a t  update time all uncovered clusters we maintain a 
dynamic biconnectivity data structure (3, 151. It is 
updated in O(m/k)  time per insertion or deletion. 
Condition 3 and 4 
The non-tree edges incident to  c are in El”-ordeT if 
they are ordered in the ET-order of their endpoint in 
C (ambiguities are resolved in an arbitrary but fixed 
way). Let the projection proj(e’) of a non-tree edge 
e’ = (a, b)  with a E C and b fZ C onto TP(C)  be the 
vertex on T P ( C )  which is closest to  a. Let sub(e’) be 
the subtree of a in C\proj(e’) and let other(e’) be the 
set of all edges incident to  C whose endpoint in C does 
not lie in sub(e’). Since the degree of proj(e’) is 3, the 
projection of an edge in other(e’) is not proj(e’). 
Data structure 

For each pair of clusters C and C’ and each tree 
edge e incident to C we maintain ambivalent informa- 
tion [7] in the form of 3 non-tree edges ambivi(C, C’, e )  
for i = 1,2,3 (if they exist): Assuming that  e 
lies on .(C, C’) let ambivl (C, C’, e )  (ambivz(C, C’, e ) )  
be the edge e‘ between C and C’ that (1) cov- 
ers the maximum number of edges on T P ( C )  and 
that (2) is the first (last) edge in the ET’-order in 
sub(e’). Let ambivs(C,C’,e) be one of the edges of 
other(ambivl(C, C’, e ) )  that covers the largest num- 
ber of edges on TP(C) ,  assuming again that e lies 
on .(C,C’). I t  is possible that ambiwZ(C,C’,e) = 
ambivl (C, C’, e).  

For each uncovered cluster C and each tree edge e 
incident to  C we maintain in addition up to 3 edges 
mazi(C,e) for i = 1 , 2 , 3  (if they exist): The edge 
mazl(C,e) (maxz(C,e)) is the non-tree edge e’ inci- 
dent to  C and covering e that (1) covers the maximum 
number of edges on T P ( C )  and that (2) is the first 
(last) edge in the ET’-order in sub(e’). I t  is possible 
that maxl(C, e )  = maxz(C, e).  Let maxs(C, e )  be an 

edge of other(mazl(C,e)j  that  (1) covers e and (2) 
covers the largest number of edges on T P ( C )  of all 
edges in other (max1 (C, e ) ) .  
Updates 

Since the edges ambivi(C, C’, e )  depend only on the 
spanning tree of C and the edges between C and C’, 
an update changes the ambiv-values only for clusters 
whose incident edges change or whose spanning tree 
changes. There are only O( 1) such clusters [6]. Com- 
puting the ambiv-values of a cluster takes time O ( k ) .  
Thus, all ambiw-values are updated in time O(k) .  

Note (1)  that  given the numi-labels of the clus- 
ter all maz;(C,.) edges can be computed from the 
ambivi(C, ., .) edges in time proportional to  the num- 
ber of neighboring clusters of C. Note (2) that after an 
update (a, b) operation the maxi-values only change 
for clusters on .(a, b) .  Note (3) that  we only maintain 
the maxi-values for clusters that  are uncovered after 
the operation. The number of neighboring clusters of 
uncovered clusters on x(a,b) sums to O ( m / k ) ,  since 
each cluster of H is incident to  at most two of them. 
Thus, updating all maxi values takes time O(m/k ) .  
Queries 
The maxi valses are used to test Condition 3 and 4 in 
time o( l0gn)  by executing a binary search on T P ( C )  
as follows: 

Lemma 2.17 Let x, y ,  U, U, w ,  w’, z ,  and z’ be de- 
fined as in Lemma 2.10. 

Condition 3 holds i f f  the endpoint of maxl(C, e )  
does not lie in the subtree of U in C \ (U, U). 
Condition 4 holds iff the endpoints of ma21 (C, e’) 
and maxz (C, e’) are contained in  the subtree of x 
in C \ (x,y) or in the subtree of U in C \ (u , v )  
and i f  the endpoint of ma23 (C, e’) is contained in 
the subtree of U in C \ (u,v). 

Condition 5 
Let C be a level-0 cluster and w and w’ be the 

vertices that are connected to C by tree edges. We 
denote by edge(w) the set of edges incident to C whose 
other endpoint lies in the subtree containing w in H \ 
C. Given a topology tree TT(C)  of C let X be a node 
of TT(C).  We say X is w-sided if an edge of edge(w) is 
incident to a vertex of X. A node X is double-sided if 
it is w-sided and w’-sided. If (2, y )  is a tree edge in C, 
the subtree of z in C\ ( z , y )  is represented by O(1ogn) 
subtrees of TT(C).  The roots of these subtrees are the 
topology nodes representing x in  TT(C).  

Lemma 2.18 Let x, y ,  U, v, w ,  w’, z ,  and z’ be de- 
fined as in Lemma 2.10. Condition 5 does not hold iff 
one of the topology nodes representing x in  TT(C)  is 
w-sided. 
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Proof: If a topology node R representing x is 
w-sided, there exists an edge e with one endpoint 
belonging to  R and with the other endpoint in 
the subtree of w in T \ (w, 2). Since every vertex 
that  belongs to  R lies in the subtree of x in C \ 
(2, y), Condition 5 does not hold. 

If there is an edge e from the subtree of x in 
C \ (x ,y)  to  the subtree of w in T \ (w, z ) ,  then 
let R be the topology node representing x that  
contains the endpoint of e in C. Obviously R is 
w-sided. I 
Lemma 2.18 suggests a way t o  test for Condition 5: 

Test if one of the O(1ogn) topology nodes represent- 
ing x is w-sided. In the following we present a data 
structure that executes this test in time O(log2 n). 
Data Structure 

For each cluster C we keep a bit Cond 3&4 (see 
below) and a lazy topology tree TT(C).  At each node 
X of TT(C)  we keep (1) a list L(C, C’, X )  for each 
level-0 cluster C’ # C containing all edges between 
the subgraph represented by X and C’; (2) a list 
L ( X )  of all non-emtpy trees L(C, . ,X ) ;  (3) the number 
n u m ( X )  of level-0 clusters whose vertices are incident 
to a vertex belonging to  X ;  (4) the bits marked and 
doublesided (see below). The two bits of (4) are up- 
dated only for a dynamically changing set of nodes 
of TT(C) .  The number of edges stored in all lists 
L(C, C’, .) is O(v(C, C’) logn), where v(C, C’) is the 
number of edges between C and C’. 

Lemma 2.19 If num(R) = 0 for a node R of TT(C) ,  
t h e n  R i s  n o t  w-sided.  

Thus, we are left with testing if a node R with 
num(R) > 0 is w-sided: Using the num, labels of 
Section 2.2 we can determine in constant time if a 
cluster C’ # C lies in the subtree of w or of w’ in 
H \ C. If L(C, C’, X )  is non-empty and C’ lies in the 
subtree of G with G E {w, w’}, it follows that X is G- 
sided. Thus, using L ( X )  we can determine in constant 
time a vertex 6 such that X is G-sided. If we have 
some more information about X ,  namely if we know 
that X is not double-sided, then this test determines 
in constant time if X is w-sided. Note that without 
this information if it takes time O ( n u m ( X ) )  to  deter- 
mine if X is w-sided or not. Since it takes also time 
O ( n u m ( X ) )  to determine if X is double-sided, it is too 
expensive to  determine for each node X in T T ( C )  if 
it is double-sided. Thus, after each update we mark a 
dynamically changing set of O(1ogn) nodes in TT(C)  
and we determine for all marked nodes and their chil- 
dren if they are double-sided. We keep at  each node of 

TT(C)  two bits, called marked and doublesided such 
that the following invariant is fulfilled: If C is n o t  
cowered and ei ther  X OT its parent marked,  t h e n  
d o u b l e s z d e d ( X )  is set  t o  1 iff X is double-sided. We 
discuss below which nodes are marked. 

We call a node of TT(C) red if it contains a vertex 
of T P ( C )  and a vertex not on T P ( C ) ,  and white  oth- 
erwise. We store at each node a bit indicating its color 
when TT(C) is built. (This increases the time to build 
TT(C)  only by a constant factor.) If Lemma 2.10 ap- 
plies to C, the edge (x,y) does not lie on T P ( C )  and, 
thus, the root of TT(C)  is red. The following lemma 
shows that the double-sided, red nodes in C form two 
paths in TT(C).  

Lemma 2.20 L e t  x,  y, U, v, w, w’, z ,  and z’ be 
defined as in L e m m a  2.10. If Condi t ion  3 and 4 of 
L e m m a  2.10 hold,  t h e n  every double-sided, Ted node 
contains  e i ther  (x,y) or (u,v). 

Proof: Assume there exists a double-sided, red 
node X that  does not contain (x ,y)  or (u,v).  
Then the subtree represented by X either lies 
completely (1) in the subtree of (x,y) and (u ,v)  
or (2) in the subtree of U in C \ (u ,v)  or (3) in 
the subtree of x in C \ (x,y).  Since Condition 
3 and 4 hold and X is double-sided, the first 
and second case are not possible. The third case 
is not possible, since X is red and the subtree 
of x in C \ (2, y) does not contain vertices from 
TP(C).  I 
After each update we determine for ever uncovered 

cluster C if the red, double-sided nodes from two paths 
in TT(C).  If not, we set the bit C o n d  3&4(C) to 1. 
Otherwise, we set this bit to 0 and call the nodes with 
lowest level on each of the paths X I  and X2 such that 
X1 contains (x,  y).  Note that the definition of X1 and 
X2 does not depend on the query edges and can, thus, 
be computed after each update. 

The marked nodes are all ancestors and all children 
of X I  and X2 and some of the descendants of these 
children such that the following invariant is main- 
tained: A node X is marked ifl i t s  parent is marked,  
X is double-sided and the sibling of X is n o t  double- 
sided. Note that O(1ogn) nodes are marked, since at  
most one child of each marked proper descendent of 
X1 or X2 is marked. We first show a technical lemma. 

Lemma 2.21 If a node X is double-sided and un- 
marked and its parent is marked,  then  (1)  ei ther  the  
parent in a n  ancestor  of X I  OT X2 OT (2) the parent 
is a proper descendant  of X I  or X2 and the  sibling of 
X is double-sided. 
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The highest unmarked ancestor of a node R in 
T T ( C )  is denoted by HU(R). This is the lowest an- 
cestor of R for which we know at query time if it is 
double-sided or not. 

Lemma 2.22 Let x ,  y ,  U, U, w, w', z, and z' be de- 
fined as in Lemma 2.10 and let R be a topology node 
representing x with num(R) > 0 .  If Condition 3 and 
4 of Lemma 2.10 hold, then the following is true: If 
HU(R)  is not w-sided, then R is not w-sided. If 
HU(R) is w-sided, then there exists a topology node 
R' representing x that is w-sided. 

Proof: Let A = HU(R). If R is w-sided, then 
A is w-sided, since A is an ancestor of R. 

If A is w-sided, but not w'-sided, then all 
edges incident to A,  and, thus all edges incident 
t o  R belong to edge(w).  Hence, R is w-sided. 
We are left with the case that  A is double-sided. 
Again we distinguish two cases: (1) If A does not 
contain x ,  then A contains only vertices of the 
subtree of z in C\(x, y ) .  Since A is double-sided, 
there exists a topology node R' representing x 
that  is w-sided. (2) If A contains x ,  then, by 
Lemma 2.21, A and the parent of A are proper 
descendants of XI, since A is unmarked. Since 
the parent of A is double-sided and XI is the 
lowest double-sided node that  is red and con- 
tains 2,  it follows that the parent of A is white. 
Together with the fact that A contains x, this 
implies that  the parent of A does not contain 
any vertices on T P ( C ) ,  especially it does not 
contain U. Lemma 2.21 shows that the sibling 
s (A)  of A is double-sided as well. Since s (A)  
contains neither x nor U, all vertices of s (A)  are 
completely contained either (1) in the subtree 
of x in C \ (2 ,  y )  or (2) in the subtree of U in 
C\ (U, U) or (3) in the subtree of (U, U) and ( x ,  y) 
of C .  Since Condition 3 and 4 hold, case (2) and 
(3) are not possible. Thus, all vertices of s (A)  
are contained in the subtree of x in C \ ( x , y ) .  
Since s(A) is double-sided, it follows that there 
exists a topology node R' representing x that  is 
w-sided. 

Lemmata 2.19, 2.18, and 2.22 imply the following 
lemma. 

Lemma 2.23 Let x ,  y, U, U, w, w', z,  and z' be 
defined as in Lemma 2.10. If Condition 3 and 4 of 
Lemma 2.10 hold, then Condition 5 of Lemma 2.10 
holds i f f  for  all topology nodes R representing x in 
T T ( C )  with num(R) > 0 the node HU(R) is not w- 
sided. 

The topology tree TT(C)  has depth O(1og n) which 
implies that  there are O(1ogn) topology nodes repre- 
senting x .  Finding the highest unmarked ancestor of 
a topology node takes time O(1ogn). Thus, it takes 
time O(log2 n) to  find the highest unmarked ancestor 
for all topology nodes that represent x .  Since we know 
at query time for each highest unmarked ancestor, if 
it is double-sided, we can determine in constant time 
if it is w-sided. Thus, Lemma 2.23 provides a test for 
condition 5 in time O(log2 n). 

Updates 
After each update we rebuild the topology tree of 

the 0 ( 1 )  clusters whose spanning tree has changed. 
The list L(C,  C', X) can be built in time linear in its 
size if the lists L(C,C',.) of the children of X are 
given. Thus, whenever TT(C)  is rebuilt or an edge 
incident to C is inserted, we can compute all lists 
L(C,.,.), the lists L(X), and num(X) from scratch 
in time O(k1ogn). Since only O(1) clusters are af- 
fected, updating all trees TT(C)  and labels (1) - (3) 
takes time O ( ( k  + m / k )  logn). 

To update the doublesided and marked bits after an 
update (a, b) operation, note (1) that the doublesided 
bits only change for clusters on n(a, b)  and (2) that 
only the doublesided and marked bits of uncovered 
clusters have t o  be updated. We describe below how 
to update these bits in T T ( C )  and the Cond 3&4(C) 
bit in time O(v(C) logn), where v(C) is the number of 
neighboring clusters of C. Since the sum of v(C) for 
all clusters C fulfilling (1) and (2) adds up to  O ( m / k ) ,  
the total time for updating all marked, doublesided, 
and Cond 3&4 bits is O(m/klogn). 

We describe first how to find X1 and X2. We set 
a counter to 0 and start the following recursion using 
the root of T T ( C )  as current node: We determine if 
the children of the current node are double-sided. If 
the current node has only one red, double-sided child, 
we recurse on it. If it has two red, double-sided chil- 
dren and the counter is 0, we set the counter to l 
and recurse on both. Otherwise, we terminate. If a t  
termination one of the two current nodes has two red, 
double-sided children, we set Cond 3&4(C) to  0.  Oth- 
erwise, we set it to  1 and we call the two current nodes 
XI and X2. Note that this requires to determine for 
O(1ogn) nodes if they are double-sided. Each test 
takes time O(v(C)). 

Next we describe how to set the marked and 
doublesided bits of the appropriate nodes of T T ( C )  
in O(v(C)logn) time. First we clear all marked bits 
of T T ( C ) .  Then we set the marked bit and compute 
the doublesided bit for all ancestors of X1 and XZ and 
the children of XI and X.L. Then for each child X 

7 52 



of X1 or X2 we execute the following recursive algo- 
rithm starting with X as the current node Y: First we 
set the marked bit of Y and determine if Y is double- 
sided. If Y is not double-sided, set doubIesided(Y) 
to  0 and stop. Otherwise, set Y’s doublesided bit to 
1 and determine and set the doublesided bit for the 
at most 2 children of Y. If one child of Y is double- 
sided and the other child is not double-sided or does 
not exist, we recurse on the double-sided child, oth- 
erwise we quit. This algorithm evaluates O(1ogn) 
nodes in time O(w(C)) each. This shows that the 
doublesided and marked bits of C can be updated in 
time O(w(C)logn). 

Note that the space requirement of the presented 
data structure is O(mlogn), since each cluster re- 
quires O(k1ogn) space for the labels. However, the 
space per cluster can be improved to  O ( k )  as fol- 
lows: Except for the root of T T ( C )  we store at X 
instead of L(C,C’,X) a recipe T (C ,C’ ,X)  that al- 
lows to  reconstruct L(C, C ’ , X )  if L(C, C‘ ,p (X) )  for 
the parent p ( X )  of X is known. Since L(C,C’,p(X))  
is created by concatenating the lists of the children 
of p ( X ) ,  the recipe r (C ,C’ ,X)  consists of 2 point- 
ers into L(C,C’ ,p(X))  at the first and last element 
of L(C,C’ ,X)  if L(C,C’ ,X)  # L(C,C’ ,p(X)) ,  and 
is empty otherwise. The list L ( X )  contains all non- 
empty recipes. When computing the bits for X in 
T T ( C ) ,  we traverse T T ( C )  top-down and can recon- 
struct L(C, C’, X )  with an overhead of a constant fac- 
tor since L(C, C’,p(X))  has been constructed before. 
The lists a t  the root of T T ( C )  require O ( k )  space. 
The space needed at each other node is proportional 
to the number of non-empty recipes at C. Since there 
are O ( k )  non-empty recipes, the space per cluster is 
O ( k )  and, hence, the total space requirement is O(m). 

Theorem 2.24 The presented data structure tests 
condition 3-5 in time O(log2n) and can be updated 
in time O ( ( k  + m/k)  logn). 

2.3 The cycle-equivalence of a tree edge 
and a non-tree edge 

The ambivalent data structure of [7] tests if a tree 
edge is covered by at least one non-tree edge. We ex- 
tend this data structure to  test if a tree edge el is 
covered by exactly one non-tree edge and, if so, which 
non-tree edge is covering e l .  This is equivalent to test- 
ing the cycle-equivalence of e and a non-tree edge: 

Lemma 2.25 [13] A tree edge el and a non-tree edge 
e2 are cycle-equivalent iff e2 is the only non-tree edge 
covering e l .  

Our data structure consists of (1) a topology tree 
TT of G augmented with recipes and pointers to 
search trees P P  and CP, (2) a labeled 2-dimensional 
topology tree 2TT of G, and (3) for each edge that 
does not lie on the tree path of its cluster only non- 
tree edge covering it if such a non-tree edge exists. 
Maintaining (3) using the static algorithm takes time 
O ( k )  per update operation, since it has to  be com- 
puted for only O(1) clusters. Next we discuss (1) and 

We extend the definition of a tree path T P ( X )  (Sec- 
tion 2.1) to  clusters X whose level is > 0: If X has 
one child, T P ( X )  is the tree path of its child. If X has 
two children, none of which has tree degree 3, T P ( X )  
is the concatenation of the tree path of the children of 
X .  Otherwise, T P ( X )  is empty. 

A 2-dimensional topology tree maintains a label 
l ( X ,  X’ )  for two clusters X and X’ at the same level of 
T T  in time O(k + t ( n ) m / k )  if Conditions (1) and (2) 
hold: (1) All labels l (X,  .> can be computed in time 
O ( k )  if the level of X is 0. ( 2 )  The label l (X ,X’ )  can 
be computed in time t(n) from the labels of all pairs 
of children of X and X’ if the level of X is > 0.  

Let e be a tree edge incident to X .  Let 
maz1 ( X ,  XI, e )  be the edge between X and X’ cov- 
ering the most edges on T P ( X )  assuming that e E 
A ( X , X ’ ) .  Assuming that e E .(X,X’) and that 
maz1 ( X ,  XI, e )  does not exist, let maz2 ( X ,  X ’ ,  e )  be 
the edge between X and X’ that  covers the most edges 
on T P ( X ) .  In [7] it sufficed to  maintain maz1. We 
maintain both maz- labels and additional labels as 
in [7] that are necessary to  guarantee that both maz- 
labels fulfill Conditions (1) and (2) with t ( n )  = O(1). 
The same holds for the additional labebs. Thus, all 
maz-labels can be maintained in time O(k + m/k) .  

We keep for each node X of TT a pointers to 2 
binary search trees P P ( X )  and C P ( X ) .  The leaves 
of P P ( X )  leaves are the edges on T P ( X )  in the or- 
der of their occurrence on the tree path. Every node 
of P P ( X )  contains two fields cower1 and cmer2. Let 
e’ be an internal non-tree edge of e ,  let e’ and e‘’ be 
the first and last edge on T P ( X )  covered by e and 
let T I ,  ... ,r1 be the O(1ogn) nodes in P P ( X )  (1) that 
are either ancestors of e’ or e’’ or children of these an- 
cestors and (2) whose subtree contains only leaves on 
the path between e’ and e’’. We say we cover P P ( X )  
b y  e if for every node T ;  we store e in cover1(ri) if it 
is empty, or in cower2(r;) if cowerl(T;) is not empty, 
but cowerz(r;) is empty. If neither cmer1(r;)  nor 
cower~(r i )  are empty, e is not stored at  ~ i .  If X is 
a level-0 cluster the cover-fields are set as follows: Ini- 
tially, all cower fields of nodes of P P ( X )  are empty. If 

(2). 
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an edge e on TP(X) is covered by at least two non-tree 
edges, then the cover-fields of the corresponding leaf 
in PP(X) store each a different non-tree edge covering 
e. If e is covered by only one non-tree edge, a pointer 
to it is stored in the cover1 field and the cover2 field is 
empty. If e is not covered, both cover fields are emtpy. 
The tree C P ( X )  and the recipe of X is empty. 

Next we discuss the case that  the level of X is 
> 0. If X has only one child XI, P P ( X )  is iden- 
tical to PP(X1),  CP(X) and the recipe of X are 
empty. If X has two children X1 and X2, none of 
which has tree degree 3, then P P ( X )  is created by 
(1) creating a new root node r that points to the 
roots of PP(X1) and PP(X2)  and (2) covering the re- 
sulting tree by maxi(X1, X2, e) and m ~ ~ i ( X 2 ,  XI, e) 
for i = 1,2. We also keep at X a list of all modi- 
fied cover fields, called the recipe of X. If both chil- 
dren have tree degree l, then C P ( X )  is identical to 
P P ( X ) ,  otherwise CP(X) is empty. If X has a child 
X1 with tree degree 1 and a child X2 with tree degree 
3, connected by a tree edge e, then P P ( X )  is empty. 
Let mu21 be the edge of all edges mux1(Xl,Xi,e) 
that covers the maximum number of edge on TP(X1) 
for any cluster Xi # XI, and let max2 be the edge 
of all edges {maxl(Xl,Xi,e),max2(Xl,Xi,e) with 
X i  # XI} \ {maxl} that  covers the maximum number 
of edge on TP(X1). The tree C P ( X )  is created from 
PP(X1) by (1) creating a new root node T that points 
to the root of PP(X1) and to  a 1-node tree that rep- 
resents e and (2) covering the resulting tree by ma21 
and max2. We also keep at X a list of all modified 
cover fields, called the recipe of X. 

Assume a label of a node X of TT can be con- 
structed (1) from the edges and nodes of X in time 
to(n, k) if X is a level-0 cluster and (2) from the label 
of the parent of X and the recipes in time O(t:(n, 5)). 
Assume (3) that the label and the recipe can be built 
from the labels of the children of X in time O(ti(n, k)) 
if X is a level-i cluster. Then the update algorithm for 
TT in [6] maintains the labels of all clusters dynami- 
cally in time O ( C i  ti(n, k) + t:(n, k)). The trees P P  
and CP are labels that  fulfill Condition ( l ) ,  (2), and 

for i > 0, where ni is the number of level-i clusters 
and t:(n,k) = O(1ogn). Thus, all trees PP and CP 
can be maintained in time O(k1og n + log2 n). 

At a node X we need 0 ( 1 )  space for pointers to the 
root of P P ( X )  and of C P ( X )  and O(1ogn) space for 
the recipe. The trees P P ( X )  and C P ( X )  need O(n) 
total space since if P P ( X )  has size O(k)  for a level- 
0 cluster, and for each cluster whose level is > 0 we 
allocate a constant amount of new space. Thus, the 

(3) with to(n,k) = O(klOgn), t i (n ,k)  = O(ni+logn)  

whole data  structure requires O(m + n) space. 
If el does not lie on the tree path of its cluster, we 

use data  structure (3) to  test el and e2. If it does, we 
determine in time O(1ogn) the cluster X whose tree 
CP contains e l ,  traverse the path from the root of 
CP(X) to  el and check whether e2 is the only edge 
stored in a cover-field on any node along this path. 
If yes, then el and e2 are cycle-equivalent, otherwise 
they are not. Since the depth of TT is O(logn), the 
depth of CP(X) is O(1ogn). Thus, a query can be 
answered in time O(1ogn). 

Theorem 2.26 We can test in time O(1ogn) whether 
a tree edge and a non-tree edge are cycle-equivalent. 
The data structure can be updated in time O(m/k + 
(k + log n) log n). 

3 Algorithms for planar graphs and 
the lower bound 

Dynamic connectivity and cycle-equivalence are 
connected as follows: 

Lemma 3.1 Two edges el = (x,y) and e2 = (u,v) 
are cycle-equivalent iff after the removal of el and e2 
either x and y are disconnected OT U and ZI- are discon- 
nected. 

This lemma provides the following dynamic al- 
gorithm for cycle-equivalence: We maintain a dy- 
namic connectivity data structure. To check the cycle- 
equivalence of el and e2 we delete them from the graph 
and test if x and y disconnected or U and v are dis- 
connected. Then we restore the graph. 

The best known dynamic connectivity algorithm 
in plane (=planar embedded) graphs takes O(1ogn) 
time per operation [2] solving the dynamic cycle- 
equivalence problem in plane graphs in time O(1ogn) 
time per operation. The best known dynamic con- 
nectivity algorithm in planar graphs takes O(1ogn) 
time per insertion or query and O(log2n) time per 
deletion [5] implying a solution for the dynamic cycle- 
equivalence problem in planar graphs in time O(1ogn) 
per insertion and O(log2 n) per deletion. 

We also show a lower bound of R(1og n/k(log log n+ 
logb)) on the amortized time per operation for the 
fully dynamic cycle-equivalence problem in plane and 
planar graphs where b indicates the wordsize in Yao’s 
cell probe model [17]. (Note that  this implies a bound 
for general graphs.) The lower bound construction is 
similar to  [15]. We reduce the problem to  the following 
parity prefix sum problem (PPS problem) for which 
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a lower bound of R(logn/(loglogn + log b ) )  on the 
amortized time per operation is shown in [8]: 

Given an array A[1], . . . , A[n] of integers execute 
Add(1) and Sum(1) operations, where an Add(1) 
increases A[l] by 1 and a Sum(1) returns SZ := 

The-idea of the proof is as follows: Given an in- 
stance of the PPS problem, we construct a graph con- 
sisting of n + 1 vertices, labeled 0, .  . . , n. Vertex 1 rep- 
resents SI. Let SO := 0. We connect vertex i with ver- 
tex j if j is the largest index smaller than i such that  
Sj + Si is even. Thus, all vertices 1 with odd (even) St 
are connected by an odd (even) chain. Additionally, 
we insert an edge between the last vertex of the odd 
chain and vertex 0. In this graph a Sum(1) query cor- 
responds the testing the cycle-equivalence of the edges 
( 0 , l )  and el, where el is the edge connecting vertex 1 
to its predecessor on its chain. An Add(1) operation 
corresponds to  a constant number of edge insertions 
and deletions. With additional care the bound can be 
shown even in a 2-edge connected graph. 

Theorem 3.2 Fully dynamic cycle-equivalence in a 
plane 2-edge connected graph requires amortized time 
R(logn/(loglogn + log b ) )  per operation in the cell 
probe model with wordsize b.  

(&i<l 4 4 )  mod 2. 
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